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ABSTRACT

Indiscriminate data poisoning attacks, which add imperceptible perturbations to
training data to maximize the test error1, have become a trendy topic because they
are thought to be capable of preventing unauthorized use of data. In this work,
we investigate why these attacks work in principle. We find that the perturbations
of advanced attacks are almost linear separable when assigned with the target
labels of the corresponding samples. This is an important population property for
various perturbations that were not unveiled before. Moreover, we further confirm
that linear separability is indeed the workhorse for recent attacks. We synthesize
linear separable data as perturbations and show such synthetic perturbations are
as powerful as the deliberately crafted attacks. Our finding also suggests that the
shortcut learning problem is more serious than previously believed as deep models
heavily relies on shortcuts even if they are of an imperceptible scale and mixed
together with the normal features. It also suggests that pre-trained feature extractors
can be a powerful defense.

1 INTRODUCTION

Figure 1: An illustration of indiscriminate poisoning
attacks.

Big datasets crawled from the Internet keep
advancing the state-of-the-art results (De-
vlin et al., 2018; He et al., 2020; Chen et al.,
2020). However, there are increasing con-
cerns about the unauthorized use of per-
sonal data (Hill & Krolik, 2019; Prabhu &
Birhane, 2020; Carlini et al., 2020). For
instance, a private company has collected
more than three billion face images to
build commercial face recognition models
without acquiring any user consents (Hill,
2020). To address those concerns, many
data poisoning attacks have been proposed to prevent data from being learned by unauthorized deep
models (Feng et al., 2019; Shen et al., 2019; Huang et al., 2021; Yuan & Wu, 2021; Fowl et al.,
2021a;b). They add imperceptible perturbations to the training data so that the model accuracy on
unseen data is arbitrarily bad. We refer to these attacks as indiscriminate poisoning attacks as the
adversary targets at all test examples. This type of attack is also know as availability attack (Biggio
& Roli, 2018) or delusive attack (Tao et al., 2021). We note that the word is also used to denote the
adversary does not have a specific target class (Muñoz-González et al., 2017). In Figure 1, we give an
illustration of the attacks studied in this paper.

Roughly speaking, there are three methods available to construct the indiscriminate poisoning
attack2. The first method formulates the perturbations as the solution of a bi-level optimization
problem (Biggio et al., 2012; Feng et al., 2019; Fowl et al., 2021a; Yuan & Wu, 2021). The bi-level
optimization problem requires models trained on perturbed data to have the maximum loss on unseen

1There are some attacks have the same objective but they inject malicious training samples instead of
perturbing existing ones, e.g., Biggio et al. (2012). In this work, we focus on the latter approach.

2This paper focuses on recent attacks that are designed for deep neural networks. Some earlier attacks against
SVM are not covered in this work.
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Figure 2: T-SNEs of the first three classes of clean CIFAR-10 data and the perturbations generated via
DeepConfuse (Feng et al., 2019) and error-minimizing noises (Huang et al., 2021). The perturbations
are flattened and normalized into unit norms.

data. Then Huang et al. (2021) conceive a simpler poisoning attack called error-minimizing noises,
where the perturbation on training data is crafted by minimizing the training loss so that nothing is
left to backpropagate in the regular training procedure. The last method uses common adversarial
examples as an indiscriminate poisoning attack (Nakkiran, 2019; Tao et al., 2021; Fowl et al., 2021b).
Despite of these quite different approaches, they all give strong poisoning attacks. Intrigued by this
observation, we ask the following question:

What is the underlying workhorse of recent indiscriminate poisoning attacks?

To answer the above question, we first take a closer look at the perturbations of existing attacks. We
visualize the perturbations of two advanced attacks via two-dimensional T-SNEs (Van der Maaten &
Hinton, 2008) in Figure 2. Surprisingly, the perturbations with the same class label are well clustered,
suggesting that the perturbations would be linear separable in the original high-dimensional space.
We confirm this by fitting the perturbations with linear models. The perturbations are assigned with
the labels of their target examples. It turns out that simple softmax regression models can fit the
perturbations of four representative attacks with > 90% accuracy. This finding suggests that using
linear separable perturbations may be the key for an indiscriminate poisoning attack to succeed.

To further confirm that the linear separability is a sufficient (not only necessary) condition, we reverse
the above procedure: synthesizing some linear separable data to see if they can serve as data poisoning
attacks. Extensive experiments on benchmark datasets and models demonstrate that the synthetic
perturbations can be as powerful as advanced indiscriminate poisoning attacks. Notably, generating
synthetic data as perturbations is significantly easier and cheaper than existing attacks as it does not
require solving any optimization problems. This finding reveals that linear separability is indeed the
workhorse to the success of recent indiscriminate poisoning attacks.

The above finding coincidentally matches a recent concept called shortcut learning (Geirhos et al.,
2020). Shortcut learning stands for the behavior that deep models tend to rely on features that do
not generalize on realistic test data. Such features are referred to as shortcuts. With this concept,
the perturbations of indiscriminate poisoning attacks are also shortcuts. We note that the shortcuts
in previous works are usually part of natural data, which are somehow heuristic, e.g., “grass” is a
shortcut for recognizing “cow” in natural images (Beery et al., 2018; Geirhos et al., 2020). In this
work, we expose a more explicit form of shortcuts and discuss extensively how to construct such
shortcuts. We unveil that deep learning models would overwhelmingly rely on spurious shortcuts
even though the shortcuts are scaled down to an imperceptible magnitude. This finding exposes a
fundamental vulnerability of deep models and hence may be of independent interest to the community.

Finally, our understanding of the working principle of indiscriminate poisoning attacks also motivates
a powerful defense against them. As the attacks succeed by providing shortcuts, they will be less
effective if those shortcuts are filtered out. To achieve this, we use pre-trained models as feature
extractors. If a pre-trained model is trained on datasets that have similar distributions as the target
dataset, it can extract useful features and avoid shortcuts. Our experiments suggest that training only
the linear classification layers with the features extracted from the pre-trained model can successfully
defend existing attacks.

2



Under review as a conference paper at ICLR 2022

Our findings and contributions are summarized as follows:

• We find that the perturbations used in several advanced indiscriminate poisoning attacks
are (almost) linear separable. We further validate that this property is the workhorse for the
perturbations to be effective. To the best of our knowledge, we are the first to unveil this
important property, which is fundamental to understand existing poisoning attacks and may
inspire future attacks.

• We connect this property to the shortcut learning problem and demonstrate the omnipres-
ence of shortcuts in learning. We show that one can construct invisible shortcuts that
machine learning models would heavily rely on. We believe this finding greatly widens the
understanding of shortcuts in machine learning.

• Motivated by breaking the shortcuts, we use pre-trained feature extractors to defend against
indiscriminate poisoning attacks. Experiments show the proposed defense is very powerful.

1.1 RELATED WORK

Data poisoning. In general, data poisoning attacks perturb training data to intentionally cause some
malfunctions of the target model (Biggio & Roli, 2018; Goldblum et al., 2020; Schwarzschild et al.,
2021). A common class of poisoning attacks aims to cause test-time error on some given samples
(Koh & Liang, 2017; Muñoz-González et al., 2017; Chen et al., 2017; Koh et al., 2018; Shafahi et al.,
2018; Zhu et al., 2019; Shan et al., 2020; Geiping et al., 2020; Huang et al., 2020; Cherepanova et al.,
2021) or on all unseen samples (Biggio et al., 2012; Feng et al., 2019; Liu & Shroff, 2019; Shen et al.,
2019; Huang et al., 2021; Yuan & Wu, 2021; Fowl et al., 2021a;b). The latter attacks are also known
as indiscriminate poisoning attacks as they do not have specific target examples (Barreno et al., 2010).
Backdoor attack is another type of poisoning attack that perturbs training data so that the attacker
can manipulate the target model’s output with a designed trigger (Chen et al., 2017; Shafahi et al.,
2018; Turner et al., 2018; Xie et al., 2019; Bagdasaryan et al., 2020; Nguyen & Tran, 2020; Saha
et al., 2020; Nguyen & Tran, 2021). In this work, we investigate indiscriminate poisoning attacks and
reveal the workhorse of them. We show that the perturbations of advanced attacks are (almost) linear
separable. We further confirm that using linear separable perturbations is a sufficient condition to
perform strong attacks.

There are defenses against indiscriminate poisoning attacks. Huang et al. (2021) show training with
advanced data augmentation methods improves the test performance. Another defense is to train
the target model with adversarial training (Madry et al., 2018), which currently achieves the best
performance (Huang et al., 2021; Fowl et al., 2021b; Tao et al., 2021). Recently, Radiya-Dixit &
Tramèr (2021) challenge the security of poisoning attacks from another view. They argue that unless
existing attacks can fool all future defenses, they cannot protect the data well because the adversary
can simply save the perturbed data and wait for better defenses3. In this work, we propose to use
pre-trained models to defend indiscriminate poisoning attacks. Our experiments demonstrate that
using pre-trained models is a powerful defense against indiscriminate attacks. We note that Cinà et al.
(2021) have explored running poisoning attacks against pre-trained feature extractors. Nonetheless,
they focus on backdoor attacks and do not advocate using pre-trained models as a defense.

Shortcut learning. Recently, the community has realized that deep models may rely on shortcuts
to make decisions (Beery et al., 2018; Niven & Kao, 2019; Ilyas et al., 2019; Geirhos et al., 2020;
Huh et al., 2021). Shortcuts are spurious features that are correlated with training labels but do not
generalize on test data. Beery et al. (2018) show that a deep model would fail to recognize cows
when the grass background is removed, suggesting that the model takes “grass” as a shortcut for
“cow”. Niven & Kao (2019) show that large language models use the strong correlation between some
simple words and labels to make decisions, instead of trying to understand the sentence. For instance,
the word “not” is directly used to predict negative labels. In this work, we show the shortcut learning
problem is more serious than previously believed. Our experiments in Section 3 demonstrate that
deep models only pick shortcuts even if the shortcuts are scaled down to an imperceptible magnitude
and mixed together with normal features. These experiments reveal another form of shortcut learning,
which has already been unconsciously exploited by indiscriminate data poisoning attacks. We note
that there also exist other synthesize datasets that offer a stratification of features (Ross et al., 2017;

3Radiya-Dixit & Tramèr (2021) only verify this is achievable for targeted poisoning attacks (Shan et al.,
2020; Cherepanova et al., 2021) though the general idea may also apply to indiscriminate poisoning attacks.
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Jacobsen et al., 2018; Hermann & Lampinen, 2020; Shah et al., 2020). Those synthetic data contain
shortcuts that can not be used as perturbations as they are visible and affect the normal data utility,
e.g., vertically concatenations of images from MNIST and CIFAR-10.

1.2 NOTATIONS

We use bold lowercase letters, e.g., v, and bold capital letters, e.g.,M , to denote vectors and matrices,
respectively. The Lp norm of a vector v is denoted by ‖v‖p. A sample consists of feature x and label
y. We use D to denote a dataset which is sampled from distribution D. The loss of a model f on a
given sample is denoted by `(f(x), y).

2 INDISCRIMINATE POISONING ATTACKS USE LINEAR SEPARABLE
PERTURBATIONS

In this section, we investigate the perturbations of several advanced indiscriminate poisoning attacks.
First, we introduce three approaches of poisoning attacks. Then, we visualize them with two-
dimensional T-SNEs. Finally, we verify that the perturbations of four advanced attacks are almost
linear separable by fitting them with linear models and two-layer neural networks.

2.1 THREE TYPES OF INDISCRIMINATE POISONING ATTACKS

2.1.1 THE ALTERNATIVE OPTIMIZATION APPROACH

We first introduce the alternative optimization approach to generate perturbations for indiscriminate
poisoning attacks. It solves the following bi-level objective,

arg max
{δ}∈∆

E(x,y)∼D[`(f∗(x), y)],

s.t. f∗ ∈ arg min
f

∑
(x,y)∈D

`(f(x+ δ), y),
(1)

where δ is a sample-wise perturbation and ∆ is a constraint set of all perturbations. To put in other
words, the optimal solution on perturbed data (specified by the second objective) should have a
maximum loss on clean data (specified by the first objective). The perturbations are restricted to not
affect the normal data utility.

Directly solving Equation (1) is intractable for deep neural networks and recent works have designed
multiple approximate solutions (Feng et al., 2019; Fowl et al., 2021a; Yuan & Wu, 2021). Feng
et al. (2019) use multiple rounds of optimization to generate perturbations. At each round, they first
approximately optimize the second objective by updating a target model on perturbed data for a few
steps. Then they approximate the first objective by updating a generator for a few steps. The outputs
of the generator are used as perturbations. Another example is the Neural Tangent Generalization
Attacks (NTGAs) in Yuan & Wu (2021). They rewrite the entire Equation (1) into a single objective
based on the recent development of Neural Tangent Kernels (Jacot et al., 2018). Then they solve the
new objective with a lightweight surrogate model.

2.1.2 THE ERROR-MINIMIZING NOISE

Huang et al. (2021) propose a simple way to generate data poisoning perturbations. Instead of solving
Equation (1), they use the following objective,

min
f

E(x,y)∼D[arg min
{δ}∈∆

`(f(x+ δ), y)]. (2)

That is to say, the perturbations are intentionally optimized to reduce the training loss. A randomly
initialized model is used as a surrogate of the target model. They use multiple rounds of bi-level
optimization to generate perturbations. At each round, they first train the surrogate model for a few
steps to minimize the loss on perturbed data. Then they optimize the perturbations to also minimize
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Table 1: Training accuracy (in %) of simple models on the perturbations of different attacks.
Algorithm Linear Model Two-layer NN
Clean Data 49.9 70.1

DeepConfuse (Feng et al., 2019) 100.0 100.0
NTGA (Yuan & Wu, 2021) 100.0 100.0

Error-minimizing (Huang et al., 2021) 100.0 100.0
Adversarial Examples (Untargeted) (Fowl et al., 2021b) 91.5 99.9
Adversarial Examples (Targeted) (Fowl et al., 2021b) 100.0 100.0

the loss of the surrogate model. They repeat the above process until the loss on perturbed data is
smaller than a pre-defined threshold. The main motivation is that if the training loss is zero, then the
target model will have nothing to learn as there is nothing to backpropagate.

2.1.3 ADVERSARIAL EXAMPLES

Instead of using bi-level objectives, Fowl et al. (2021b) show that the common objectives of adversarial
examples are sufficient to generate powerful data poisoning perturbations. They use both untargeted
(the left objective) and targeted adversarial examples (the right objective),

arg max
{δ}∈∆

E(x,y)∼D [` (f (x+ δ) , y)] , arg min
{δ}∈∆

E(x,y)∼D [` (f (x+ δ) , y′)], (3)

where y′ 6= y is an incorrect label and f is a trained model. Surprisingly, Fowl et al. (2021b)
demonstrate that these simple objectives can generate perturbations that achieve state-of-the-art attack
performance.

2.2 VISUALIZING THE PERTURBATIONS

Although the three approaches in Section 2.1 have different objectives, they all manage to generate
perturbations with the same effect. Intrigued by this observation, we seek to find the underlying
working principle of those approaches if there is a common pattern of different types of perturbations.

To find such a common pattern, we first visualize different types of perturbations by computing
their two-dimensional t-SNEs (Van der Maaten & Hinton, 2008). We generate perturbations using
DeepConfuse (Feng et al., 2019), NTGA (Yuan & Wu, 2021), error-minimizing noises (Huang et al.,
2021), and adversarial examples (Fowl et al., 2021b). These four attacks achieve advanced attack
performance and cover all the three approaches in Section 2.1. We use the official implementations to
generate perturbations. Detailed configurations are in Appendix E.

The two-dimensional t-SNEs of DeepConfuse and error-minimizing noises are shown in Figure 2.
The plots of NTGA and adversarial examples are presented in Appendix B. Surprisingly, for all the
attacks considered, the perturbations for the same class are well clustered, suggesting that even linear
models can classify them well. For comparison, we also compute the t-SNEs of the clean data. As
shown in Figure 2, in contrast with the t-SNEs of perturbations, the projections of different classes of
the clean data are mixed together, which indicates that they require a complex neural network to be
correctly classified.

2.3 PERTURBATIONS OF POISONING ATTACKS ARE ALMOST LINEAR SEPARABLE

In order to quantify the ‘linear separability’ of the perturbations of different indiscriminate poisoning
attacks, we fit the perturbations with simple models and examine the training accuracy. The perturba-
tions are labeled with the labels of the corresponding target examples. The simple models include
linear models and two-layer neural networks. Details can be found in Appendix E.

The results are presented in Table 1. Compared to the results on clean data, simple models can
easily fit the perturbations. On all attacks considered, linear models achieve more than 90% training
accuracy and two-layer neural networks achieve nearly 100% training accuracy. These results confirm
that the perturbations of advanced indiscriminate poisoning attacks are all (almost) linear separable.
We note that existing attacks against deep neural networks all use ReLU activation functions so their
crafting models learn piecewise linear functions in input space. In Appendix C, we replace the ReLU
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layers with Tanh layers and show the perturbations are still linearly separable. This suggests that the
linear separability is not stemming from the property of ReLU.

2.4 CONNECTING OUR FINDINGS TO SHORTCUT LEARNING

The fact that the perturbations can be easily fitted by linear models naturally connects to a recent
concept named shortcut learning (Geirhos et al., 2020). Shortcut learning summarizes a general
phenomenon when any learning system makes decisions based on spurious features that do not
generalize on realistic test data4. Shortcut features have been found in different fields. For vision
tasks, Beery et al. (2018) show deep models fail to recognize cows when the grass background is
removed from images, suggesting the grass background is a shortcut for predicting cows. In the field
of natural language processing, Niven & Kao (2019) show language models use the strong correlation
between some simple words and labels to make decisions, instead of really understanding the data.

Figure 3: An illustration of the shortcut learn-
ing phenomenon in this paper.

With the presence of shortcut learning, it seems rea-
sonable to postulate that the perturbations of existing
attacks succeed by creating shortcuts to the target
model. We give an illustration in Figure 3. A ma-
jor difference between the perturbations of poisoning
attacks and existing shortcut features is that the per-
turbations are of an imperceptible scale and mixed
together with useful features. Since there is no direct
evidence to show deep models will take this kind
of shortcuts, the observation that the perturbations
are linear separable may only be some superficial
results of the underlying root cause. In the next sec-
tion, we design experiments to confirm the postulated
explanation. We synthesize imperceptible and lin-
ear separable data and show deep models are very
vulnerable to such synthetic shortcuts.

3 IS LINEAR SEPARABILITY A SUFFICIENT CONDITION FOR POISONING
ATTACKS TO SUCCEED?

Although we have demonstrated that the perturbations of four advanced attacks are all almost linear
separable, it is a bit early to claim that ‘linear separability’ is the underlying working principle
of indiscriminate poisoning attacks. For example, perturbations are linear separable may only be
a necessary but not sufficient condition for poisoning attacks to succeed. In order to verify this
postulated explanation, we use simple synthetic data to serve as perturbations and compare their
effectiveness with existing poisoning attacks. It turns out that the synthetic perturbations are as
powerful as the perturbations of advanced attacks.

The rest of this section is organized as follows. In Section 3.1, we first give an algorithm for generating
synthetic data as perturbations. In Section 3.2, we verify the effectiveness of synthetic perturbations
on different models and datasets.

3.1 GENERATING SIMPLE SYNTHETIC DATA

The synthetic data in this section are generated via two building blocks. In the first block, we use an
algorithm in Guyon (2003) to generate samples from some normal distributions. In the second block,
we transfer the samples into two-dimensional images in order to apply them to benchmark datasets.

The first building block proceeds as follows. We first generate some points that are normally
distributed around the vertices of a hypercube. The points around the same vertex are assigned
with the same label. Then for each class, we introduce different covariance. Any two classes of the

4Geirhos et al. (2020) use a more specific definition of shortcuts. They denote shortcuts as those features
that do not generalize on out-of-distribution (OOD) data. We note that poisoning attacks would change the
distribution of training data and hence make the clean test data ‘OOD’ with respect to the trained model.
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generated points can be easily classified by a hyperplane as long as the side length of the hypercube
is reasonably large. We give the pseudocode of this block in Appendix A.

Algorithm 1: Transform A 1-D Sample Into A 2-D Image

1: Input: input vector x ∈ Rd, target image size s.

//For simplicity, we assume the image is square and s is divisible by
√
d.

2: Compute patch size p = s/
√
d.

3: Get x′ ∈ Rs2 by duplicating each dimension of x for p2 times.
4: Rearrange x′ to get d patches so that the pixel values in each patch are the same.

In the second building block, we pad each dimensional of the sampled points and reshape them into
two-dimensional images. The padding operation introduces local correlation into the synthetic images.
Local correlation is an inherent property of natural images. In Appendix F, we show the padding
operation is necessary to make the synthetic perturbations remain effective when data augmentation
methods are applied. The pseudocode of this block is given in Algorithm 1.

The synthetic images are scaled down before being used as perturbations. We visualize the synthetic
perturbations and corresponding perturbed images in Figure 4. We also visualize the perturbations in
Huang et al. (2021) for a comparison. The details of perturbations can be found in Section 3.2. As
shown in Figure 4, the synthetic perturbations do not affect data utility.

Original a) b) c) d)

Figure 4: Visualization of perturbed images and normalized perturbations. Columns a) and b) use
synthetic perturbations. Columns c) and d) use the attack in Huang et al. (2021).

3.2 SYNTHETIC PERTURBATIONS ARE HIGHLY EFFECTIVE AS DATA POISONING ATTACK

Now we verify the effectiveness of synthetic perturbations and make comparisons with existing
poisoning attacks. We perturb the entire training set following the setup in previous works (Feng
et al., 2019; Huang et al., 2021; Yuan & Wu, 2021; Fowl et al., 2021b)5. That is, we synthesize a
perturbation for every training example. We use L2-norm for synthetic perturbations to keep the
sample-wise variation in the same class. We normalize the synthetic noises into a L2-norm ball with
radius

√
dε′, where d is the dimension of the input.

We evaluate synthetic perturbations on three benchmark datasets: SVHN (Netzer et al., 2011), CIFAR-
10, and CIFAR-100 (Krizhevsky & Hinton, 2009). The target model architectures include VGG
(Simonyan & Zisserman, 2014), ResNet (He et al., 2016), and DenseNet (Huang et al., 2017). We
adopt standard random cropping and flipping as data augmentation. The hyperparameters for training
are standard and can be found in Appendix E. We use ε′ = 6/255 for synthetic perturbations. The
patch size in Algorithm 1 is set as 8.

We first compare synthetic perturbations with existing poisoning attacks. The comparisons are made
on the CIFAR-10 dataset with ResNet-18 as the target model. The perturbations in previous works

5In Appendix D, we show synthetic perturbations are still effective when different percentages of training
data are poisoned (range from 20% to 90%).
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Figure 5: Training curves of ResNet-18 models on perturbed and clean data. The word ‘poisoned’
denotes the model is trained on perturbed data. The test performance is evaluated on clean data. The
test accuracy is low throughout training when synthetic perturbations are added.

Table 2: Accuracy on clean test data of CIFAR-10. The target model is ResNet-18. The training data
are poisoned with different attacks. The smaller the accuracy, the better the attack efficiency.

Algorithm Test Accuracy (in %)
No Perturbation 94.69

TensorClog (Shen et al., 2019) 48.07
Alignment (Fowl et al., 2021a) 56.65

DeepConfuse (Feng et al., 2019) 28.77
NTGA (Yuan & Wu, 2021) 33.29

Error-minimizing (Huang et al., 2021) 19.93
Adversarial Examples (Fowl et al., 2021b) 6.25

Synthetic Perturbations 13.54

are normalized with L∞ bound with ε = 8/255. We present the comparisons in Table 2. Then we
evaluate synthetic perturbations on different models and datasets. The final test accuracy of target
models is in Table 3. We also plot the training curves of target models on both clean and perturbed
data in Figure 5.

As shown in Table 2, synthetic perturbations are as powerful as advanced poisoning attacks and
reduce the test accuracy close to that of random guessing. The results in Table 3 and Figure 5 further
confirm the effectiveness of synthetic perturbations. Notably, generating synthetic perturbations is
data irrelevant and only takes several seconds using a single CPU core. We compare the computational
complexities of synthetic perturbations and recent attacks in Appendix A.

In summary, our experiments demonstrate that using linear separable perturbations is indeed a
sufficient condition for indiscriminate poisoning attacks to succeed. Moreover, these results also
expose that deep models are very vulnerable to obscured shortcuts. This finding has two meanings
to the community. First, it confirms that advanced indiscriminate poisoning attacks do succeed by
providing shortcuts. Second, it further exposes the shortcut learning problem, which is a fundamental
vulnerability of deep models.

Table 3: Accuracy (in %) on clean test data. The target models are trained on clean data (Dc) and
data perturbed by synthetic perturbations (Dsyn).

Target Model SVHN CIFAR-10 CIFAR-100
Dc Dsyn Dc Dsyn Dc Dsyn

VGG-11 95.4 18.1 91.3 28.3 67.5 10.9
ResNet-18 96.2 8.0 94.7 13.5 74.8 9.0
ResNet-50 96.4 7.8 94.8 14.9 75.2 8.4

DenseNet-121 96.7 9.7 95.0 10.6 76.5 7.6
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4 DEFEND INDISCRIMINATE POISONING ATTACKS WITH PRE-TRAINED
FEATURE EXTRACTORS

We now explore possible defenses against indiscriminate poisoning attacks with our understanding.
The experiments in Section 2 and 3, suggest that deep models only use shortcuts to make predictions
and ignore the useful features. A reasonable defense should be able to filter out such shortcuts and
make the decision based on normal features. To achieve this goal, we explore using pre-trained
models to extract useful features. Pre-training is a popular technique that trains the model on some
auxiliary data before learning on target data. If the auxiliary data is similar to the target data, the
pre-trained models can recognize some useful features and hence avoid relying on shortcuts.

Our implementation is as follows. We use a ResNet-152 model pre-trained on unlabeled ImageNet
with SimCLR (Chen et al., 2020). To apply the pre-trained model on CIFAR-10, we remove the final
layer and add a ten-class readout layer. The output dimension of the penultimate layer is 4096. We
try two different approaches to take advantage of the pre-trained model. The first approach uses the
pre-trained weights as initialization and fine-tunes the whole model. The second approach only uses
the outputs of the penultimate layer and trains a linear classifier on them.

We run experiments on five types of perturbed CIFAR-10 datasets that are crafted via DeepConfuse
(Feng et al., 2019), NTGA (Yuan & Wu, 2021), error-minimizing noise (Huang et al., 2021), error-
maximizing noise (Fowl et al., 2021b), and synthetic perturbations. The strength of perturbations is
the same as that in Section 3. In Appendix G, we increase ε up to 32 and show the proposed defense
remains effective. The hyperparameter choices of fine-tuning can be found in Appendix E.

Our baseline method is adversarial training. It is a powerful defense against existing attacks (Huang
et al., 2021; Tao et al., 2021; Fowl et al., 2021b). We use Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2014) with the L∞ norm bound to generate adversarial examples. We choose ε
from a list [2/255, 4/255, 8/255] and report the best test accuracy for adversarial training.

Table 4: Test accuracy (in %) when different countermeasures are applied. ‘Linear eval.’ means we
fix the pre-trained weights and only train the classification layer.

Algorithm Adv. Training Pre-train Pre-train (Linear eval.)
No Perturbation 93.8 95.9 95.4

DeepConfuse (Feng et al., 2019) 86.5 17.6 94.1
NTGA (Yuan & Wu, 2021) 90.8 39.5 95.2

Error-minimizing (Huang et al., 2021) 91.2 21.6 94.0
Error-maximizing (Fowl et al., 2021b) 85.4 37.3 87.6

Synthetic Perturbations 87.8 15.7 93.8

The results are shown in Table 4. When fine-tuning the full models, the models still pick the shortcuts
and achieve poor test accuracy. In contrast, when we freeze the pre-trained weights and only train
linear classifiers on the extracted features, pre-training substantially increases the test accuracy.
Moreover, the pre-trained feature extractor achieves better defense than adversarial training.

Although the proposed defense achieves state-of-the-art results against advanced attacks, it could
have potential risks when facing white-box attacks. The four advanced poisoning attacks evaluated in
this section are all black-box, i.e., they do not have access to the target model or try to recover the
target model first. The power of our defense may be compromised if the perturbations are generated
to invalid the chosen pre-trained model.

5 CONCLUSION

This work gives an explanation of the working principle of indiscriminate poisoning attacks. We
show advanced attacks coincidentally generate linear separable perturbations. We further synthesize
linear separable perturbations to demonstrate that using linear separable perturbations is a sufficient
condition for attacks to succeed. Our findings also suggest deep models are more prone to shortcuts
than previously believed as they will find and heavily rely on shortcuts even when the shortcuts
are scaled down to an imperceptible magnitude. Finally, our explanation also motivates us to use
pre-trained feature extractors as a powerful defense.

9
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REPRODUCIBILITY STATEMENT

We upload our source code in the supplementary materials. The README files in the uploaded
code provide example commands to verify our results. Our implementation is based on Pytorch
(https://pytorch.org/), which is a popular open-source machine learning framework.
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A GENERATE SYNTHETIC DATA FROM NORMAL DISTRIBUTIONS

We adopt an algorithm in Guyon (2003) to generate synthetic data from normal distributions. Algo-
rithm 2 shows the pseudocode. The algorithm places data of different classes at different vertices of a
hypercube. It also introduce different random covariance to each class.

Algorithm 2: Generating Synthetic Data From Normal Distributions

1: Input: number of classes k, number of examples in each class {ni}ki=1, data dimension d.

2: Create a d-dimensional hypercube.
3: for i = 1 to k do
4: GenerateD(i) ∈ Rni×d, where each row ofD(i) is sampled from N (0, Id×d).
5: // Introduce random covariance among columns.
6: Uniformly sample the elements ofA ∈ Rd×d from [−1, 1].
7: ComputeD(i) = D(i)A.
8: Randomly choose an unused vertex and let c(i) ∈ Rd be its coordinates.
9: // Move the sampled points to the chosen vertex.

10: ComputeD(i) = D(i) + c(i), i.e., c(i) is added to each row ofD(i).
11: Assign the rows ofD(i) with label i.
12: end for

The computational complexity of generating synthetic perturbations is O(nd/p2), where n is the size
of dataset, d is the dimension of clean data, and p is the patch size in Algorithm 1. This complexity is
mainly from introducing covariance into synthetic data (Line 6 in Algorithm 2). We note that the
complexity of generating synthetic perturbations is significantly smaller than that of recent attacks.
The complexity of running the algorithms in recent attacks is O(TLn(dw + w2)), where T is the
number of iterations generating the poisons, L is the network depth, and w is the network width (the
cost of one forward and backward process). This complexity is strictly worse than that of generating
synthetic perturbations.

B ADDITIONAL T-SNE PLOTS

Here we plot the t-SNEs of two other attacks in Table 1, i.e., adversarial examples (Fowl et al., 2021b)
and NTGA (Yuan & Wu, 2021). We use their official implementations to generate the perturbations
(see Appendix E for details). The t-SNEs are plotted in Figure 6. The perturbations for the same class
are well clustered. This observation is similar to that from Figure 2.
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Figure 6: T-SNEs of targeted adversarial examples (Fowl et al., 2021b) and NTGA (Yuan & Wu,
2021). Perturbations from the same class are well clustered. Notably, many embeddings of NTGA
are overlapped, suggesting that it uses very similar perturbations for some examples.
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Table 5: Training accuracy (in %) of simple models on the perturbations of different attacks. The
perturbations are generated with Tanh-DNNs.

Algorithm Linear Model Two-layer NN
Error-minimizing (Huang et al., 2021) 100.0 100.0

Adversarial Examples (Untargeted) (Fowl et al., 2021b) 92.7 100.0
Adversarial Examples (Targeted) (Fowl et al., 2021b) 100.0 100.0

Table 6: Test accuracy (in %) with different poisoning percentages p. Training with the poisoned
subset does not improve the test accuracy much compared to training with clean data only.

Method p =90% p =80% p =50% p =20%
Clean Data Only (100%-p) 82.6 86.5 92.4 93.9

Error-minimizing (Huang et al., 2021) 85.2 86.8 92.8 94.1
Adversarial Examples (Fowl et al., 2021b) 85.3 88.2 92.2 93.7

Synthetic Perturbations 85.7 86.3 92.9 94.0

C LINEAR SEPARABILITY IS NOT STEMMING FROM RELU

Existing indiscriminate poisoning attacks against deep neural networks all use ReLU activation
functions in their crafting models. It is well known to the community that a ReLU-DNN learns
a piecewise linear function in input space (Arora et al., 2016). To verify that whether the linear
separability of perturbations is stemming from the property of ReLU, we replace the ReLU layers
with Tanh layers in the crafting models of error-minimizng noises (Huang et al., 2021) and adversarial
examples (Fowl et al., 2021b). We fit the new perturbations with the same simple models as those
in Section 2. The results are presented in Table 5. The new perturbations are still almost linearly
separable: linear models achieve more than 90% training accuracy and two-layer neural networks
achieve 100% training accuracy. This suggests the linear separability is not stemming from the
property of ReLU.

D POISONING DIFFERENT PERCENTAGES OF THE TRAINING DATA

In this section, we show synthetic perturbations are as effective as advanced attacks when only a
given percentage of the training data is poisoned. We follow the method in Huang et al. (2021);
Fowl et al. (2021b). For each poisoning percentage, we train two models. One model uses both the
clean subset and the poisoned subset as its training data and the other one only uses the clean subset.
The difference between the performances of those two models represents how much information the
former model gains from the poisoned data.

We test four different poisoning percentages (from 20% to 90%) on the CIFAR-10 dataset. The
experiments are run on ResNet-18 models. We compare the performance of synthetic perturbations
with adversarial examples and error-minimizing noises (Huang et al., 2021; Fowl et al., 2021b). The
results are presented in Table 6. The performance gain of using the poisoned subset is small for all
three attacks. This suggests that synthetic perturbations are still effective in this setting.

E IMPLEMENTATION DETAILS OF EXPERIMENTS

Implementation details of the experiments in Section 2. We generate perturbations for the CIFAR-
10 dataset using the official implementations of DeepConfuse6, NTGA7, error-minimizing noise8, and
adversarial examples9. The configuration is set to be the one that achieves the best attack performance
on CIFAR-10. Specifically, DeepConfuse uses an 8-layer U-Net (Ronneberger et al., 2015) as the

6https://github.com/kingfengji/DeepConfuse
7https://github.com/lionelmessi6410/ntga
8https://github.com/HanxunH/Unlearnable-Examples
9https://github.com/lhfowl/adversarial_poisons
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Figure 7: Training curves of ResNet18 models trained on SVHN, CIFAR-10, and CIFAR-100 datasets.
The word “initial” denotes the synthetic perturbations are generated directly using Algorithm 2.

crafting model. NTGA uses a 3-layer convolutional network. Error-minimizing noises and adversarial
examples use standard ResNet-18 models.

The experimental setup for training the simple models are as follows. We train the simple models
with standard cross-entropy loss. Before training, all perturbations are flattened into 1-dimensional
vectors and normalized to unit norm. The two-layer neural networks have a width of 30. All models
are trained with the L-BFGS optimizer (Liu & Nocedal, 1989) for 50 steps.

Implementation details of the experiments in Section 3. We use the Stochastic Gradient Descent
(SGD) optimizer with a momentum coefficient 0.9 for all experiments. For all datasets, we use a
batchsize of 128. The learning rates of all models are set to follow the choices in the original papers
(Simonyan & Zisserman, 2014; He et al., 2016; Huang et al., 2017). The learning rate for ResNet and
DenseNet models is 0.1. The learning rate for VGG models is 0.01. All models are trained for 100
epochs. The learning rate is divided by 10 at epoch 50 and 75.

Implementation details of the experiments in Section 4. To fine-tune the pre-trained model on
the CIFAR-10 dataset, we first use bicubic upsampling to resize the image into 224× 224. For the
first approach, we use the same hyperparameters as Section 3 to fine-tune the full model. For the
second approach, we first extract the features of all samples and train linear classifiers on the extracted
features. The linear classifiers are trained with the L-BFGS optimizer for 50steps.

F THE EFFECT OF THE PADDING OPERATION IN ALGORITHM 1

Here we explain why we duplicate each dimension of the initial data points into two-dimensional
patches in Algorithm 1. Intuitively, it is more convenient to directly generate synthetic perturbations
that have the same dimension as the original images. We will show this straightforward approach has
unstable performance when common data augmentation methods are applied.

We implement the above straightforward by directly using the output of Algorithm 2, i.e., the
dimension of synthetic data is the same as the dimension of flattened images and we simply reshape
the synthetic data into two-dimension. Other configurations are the same as those in Section 3.
The models are trained with standard augmentation methods including random crop and flipping.
We compare this straightforward approach with the one that further processes the outputs with
Algorithm 1. The training curves of the target models are plotted in Figure 7. When using the
straightforward approach, the test accuracy sometimes increases to a high point which violates the
requirement of indiscriminate poisoning attacks.

G INCREASING THE STRENGTH OF PERTURBATIONS

In Section 4, we only use a single level of perturbation. Here we increase the perturbation strength
and examine whether the proposed defense remains effective. Specifically, we try ε = 16, 32 for
existing attacks and ε′ = 12, 24 for synthetic perturbations. Other settings are the same as those in
Section 4. The results are presented in Table 7. Even when strong perturbations are applied (ε = 32
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Table 7: Test accuracy (in %) when the proposed defense is applied. We fix the pre-trained weights
and only train the linear readout layer.

Algorithm ε = 16 (ε′ = 12) ε = 32 (ε′ = 24)
DeepConfuse (Feng et al., 2019) 92.4 82.4

NTGA (Yuan & Wu, 2021) 92.9 84.4

Error-minimizing (Huang et al., 2021) 92.2 87.9

Error-maximizing (Fowl et al., 2021b) 82.6 76.6

Synthetic Perturbations 92.0 87.4

and ε′ = 24), the proposed defense still achieves decent test accuracy. We note that increasing the
perturbations strength will make the perturbations visible. This will ultimately violate the designing
goal of indiscriminate poisoning attacks in this paper that is to reduce the test accuracy without
hurting the normal data utility.
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