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Abstract

This work presents a novel framework for few-shot 3D part segmentation. Recent
advances have demonstrated the significant potential of 2D foundation models
for low-shot 3D part segmentation. However, it is still an open problem that how
to effectively aggregate 2D knowledge from foundation models to 3D. Existing
methods either ignore geometric structures for 3D feature learning or neglects
the high-quality grouping clues from SAM, leading to under-segmentation and
inconsistent part labels. We devise a novel SAM segment graph-based propagation
method, named SegGraph, to explicitly learn geometric features encoded within
SAM’s segmentation masks. Our method encodes geometric features by modeling
mutual overlap and adjacency between segments while preserving intra-segment
semantic consistency. We construct a segment graph, conceptually similar to an
atlas, where nodes represent segments and edges capture their spatial relation-
ships (overlap/adjacency). Each node adaptively modulates 2D foundation model
features, which are then propagated via a graph neural network to learn global
geometric structures. To enforce intra-segment semantic consistency, we map seg-
ment features to 3D points with a novel view-direction-weighted fusion attenuating
contributions from low-quality segments. Extensive experiments on PartNet-E
demonstrate that our method outperforms all competing baselines by at least 6.9%
mloU. Further analysis reveals that SegGraph achieves particularly strong per-
formance on small components and part boundaries, demonstrating its superior
geometric understanding. The code is available at: jhttps://github.com/YueyangHu-
2000/SegGraphl

1 Introduction

3D part segmentation is a fundamental task in computer vision and graphics with broad implications
for shape analysis [1], 3D modeling [2, 3], and robotic manipulations [4} 5]]. For instance, a user can
edit a 3D shape based on part components and embodied agents need to interact with diverse object
parts for different manipulations, such as identifying a drawer’s handle or a bottle’s neck. Many of
these real-world applications involve novel shapes, and it is essential to achieve high-quality 3D part
segmentation with only a few number of annotations.

2D foundation models (FMs) with powerful generalization capacities have brought new possibilities
to part segmentation. Nevertheless, the modality gap between 2D images and 3D geometric shapes
poses a fundamental challenge for their direct deployment in 3D domains. A prevalent strategy [6} (7]
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Figure 1: Architecture comparisons of different methods. (a) 3D label aggregation-based methods [6}
18,1114 [12L [7]], (b) 3D feature aggregation-based methods [[16} 17], (c) distillation-based methods [13}
14, [15]] to distill 2D knowledge from foundation models, and (d) ours with an emphasis on SAM
segments and SAM-segments-based feature propagation.

is to render a 3D shape into multi-view images, then leverage 2D foundation models such as GLIP [§]]
or Diffusion [9] for image segmentation, and finally aggregate 2D labels to the 3D domain with
voting (see Fig. [Th). During the process, segmentation foundation models, e.g., SAM [10], can
further enhance the semantic awareness for finer part segmentation [11} [12} [7]. However, simply
aggregating 2D labels to 3D domains overlooks the geometric structures of 3D inputs, resulting in
under-segmentation of shape parts and inconsistency among neighbor points.

3D distillation from foundation models [13}114,|15] and 3D aggregation-based feature learning [16,
17]) take a step forward and learn 3D features with geometry awareness (see Fig.[Ib,c). Distillation-
based methods typically learn geometric features by transferring knowledge from foundation models
but rely on large-scale 3D shapes for good performance. 3D feature aggregation-based methods
aggregate multi-view image features from foundation models and propagate fused features via KNN-
based point structures. However, simple KNN propagation struggles to encode complex geometric
patterns and does not take into account grouping clues from SAM. Moreover, these two schemes
involve downsampling 3D points (about 100 times for PartNet-E) or using voxel-based 3D feature
encoding, leads to ambiguous features for boundary points and small components.

We propose a novel framework, called SegGraph, for part segmentation of 3D point clouds. We
develop the method based on three key insights. First, SAM’s high-quality segmentation provides
consistent intra-segment grouping cues for 3D points, effectively reducing misclassification errors
near boundaries. These segments can efficiently encode 3D geometric structures with less than 1000
SAM segments for each shape, avoiding input downsampling. Second, spatial relationships among
segments offers two critical priors for part segmentation: (1) overlapping segments across different
views typically share the same part label, (2) adjacent segments naturally preserve part boundary
information. Third, the quality of SAM segments correlates with the viewing direction of an image,
exhibiting under-segmentation of small parts in challenging views.

To implement these three observations, we introduce a segment graph propagation-based part learning
framework, as illustrated in Fig. 2} First, we encode 3D point features through multi-view feature
pooling from 2D foundation model outputs. Simultaneously, we generate view-consistent 3D
segments by aggregating SAM-based 2D segmentations across all views. We then model both
the spatial relationships (overlapping/adjacent) between segments and the constituent relationships
between points and segments. The segment graph takes 3D segments as nodes and represent spatial
relationships as nodes. Segment features encoded from its constituent points’ aggregated features are
propagated via a graph neural network for geometric structure-aware feature encoding. Thereafter,
we enhance 3D point features with segment features with a view quality-aware feature unpooling,
where points with a normal off a view direction for obtaining the SAM segment are assigned with
lower importance.

Extensive experiments demonstrate that SegGraph can significantly outperform competing methods
by a large margin of 6.9% mloU on the PartNet-E dataset [6]. SegGraph is quite extensible and can
leverage different kinds of foundation models with an improvement of at least 4% on the PartNet-E
dataset.



2 Related Work

Supervised 3D Segmentation. Supervised 3D segmentation has been widely studied in recent
years, facilitated by the availability of annotated datasets [[19} 20, 21} 22} [23| 24]. Prior works
have proposed a variety of architectures tailored to 3D data, including point-based models (e.g.,
PointNet [25] and its variants [[26} 25| 27, 28]] ), volumetric CNNs [29} 130, [31]], graph convolutional
networks [32} 133 134] and Transformer-based methods [35, 136, [37]]. These methods are typically
trained with large amounts of manually annotated 3D data. A particularly challenging sub-task is 3D
part segmentation that predicts semantic part labels for a shape. PartNet [23] and DeepGCNs [38]]
achieves part segmentation via a graph convolutional network (GCN)-based model to learn local
geometric features. CSN [39] improves part segmentation by introducing a cross-shape attention
mechanism that captures interactions among different shapes in 3D point clouds. However, most
of these methods rely on dense part annotations for good performance. Some works explore multi-
prototype networks with attention [40]] and learning part-specific probability spaces via template
morphing and density estimation [41] for few-shot part segmentation.

3D Part Segmentation with Foundation Models. Recent advancements of foundation models
[42,110,43] have shown remarkable capabilities across diverse tasks. A simple yet effective approach
to exploit 2D foundation models for 3D tasks is to render multi-view projections of the 3D data,
feed the rendered images into a 2D foundation model, and subsequently aggregate the model outputs
back to 3D via voting. Pioneering efforts like PartSLIP [[6] and SATR [[18]] follow this scheme and
utilize GLIP [8]] for open-vocabulary segmentation. PartSLIP++ [[11]] and PartSTAD [12] further
utilize detections of GLIP as the visual prompts for SAM [10]] for better part masks, while 3-by-2 [7]
constructs multiview labels based on DIFT [9] and aggregates 2D labels to 3D based on multiview
masks from SAM [[10]. However, aggregating 2D segmentation into 3D entirely overlooks the inherent
geometric structure of the 3D data and consistent point segmentations among neighbors, leading to
under-segmentation and noisy parts. COPS [44]] and [17] address this problem by directly aggregating
2D features from foundation models to 3D and propagating 3D features via superpoint-based pooling
and KNN-based feature smoothing for superpoints. Despite better results, feature aggregation with
simple KNN smoothing disables complex 3D context learning and geometric superpoints are often
inconsistent with part grouping. Another line of work [13} [14} [15] leverages a distillation-based
framework. For example, PartDistill [[13]] presents a bidirectional distillation between predicted 2D
labels and 3D labels from a native 3D network. SAMPart3D [[14] and PartField [15] construct training
pairs for contrastive learning based on SAM segmentation. These distillation methods require a large
amount of 3D data to learn generalizable 3D features. This work combines the benefits of both SAM
segmentations and light-weight 3D feature aggregation with shape structural context encoding for
easy adaption to few-shot novel shapes.

3 Methodology

Our goal is to predict a part label for each point of a given point cloud with only low-shot training
samples for novel shapes. We approach this problem with a graph-based feature aggregation network
as illustrated in Fig. 2| The method encodes point-wise features using an off-the-shelf foundation
model (Sec.[3.T) and generates a list of segment masks based on SAM segmentation (Sec. [3.2). Then
we construct a SAM-segment-based graph to encode different kinds of relations among different
segments and 3D points (Sec. [3.3).

3.1 Feature Encoding for 3D Points

To harness the power of image foundation models, such as DINOv2 [43] and CLIP [42], our
approach renders a point cloud input into multi-view images from M predefined camera views. We
denote rendered images as {I,,, € RIT*W>3}M | The rendering process follows PartSLIP [6]],
incorporating occlusion culling [45] to eliminate obscured points. Next, we feed each view image to
an image foundation model (DINOV?2 in our implementation) to extract image features. However, the
resolution of output image feature maps (‘1% * I—Ii) is usually lower than the input image. Therefore,
image feature maps are upsampled to the original image resolution using bicubic interpolation and
are mapped from 768 channels to 96 channels with a linear layer. We can obtain the 3D feature F"
for each point by taking the average of its projected image features at views where the point is not
occluded.



T
SR, -
& ‘ T ?
FM
-
a7\
S 2 YA o
‘ Q
Point Feature Encoding F3 g )]
o 3 p
- = = Q g IR~
- ot [ [} . .
75 = [ :(\’
SAM . m Part Prediction
i =] * -
Input 3D Point Cloud ‘T' iy i | |
&Tw ey b
m
Multi-view

2D Rendering

Figure 2: The overview of the pipeline. Given a 3D point cloud, we render it into multi-view images.
We extract individual point features by pooling foundation model features (DINOv2) of rendering
views. At the same time, multi-view images are fed to SAM for segment generation. Point features
and segments are sent to a segment graph to learn geometric features and segment relations for part
prediction.

3.2 Segment Generation

In light of the high-quality segmentation masks of SAM [10]], we further leverage these masks to
enhance the quality of part segmentation. While the semantic granularity of SAM’s predictions may
vary across views, these masks nevertheless provide reliable grouping clues (see the colored segments
in Fig. [3). Our method processes each rendered image using SAM to produce an initial set of
segmentation masks. Following the approach in [7], we subsequently decompose overlapping masks
under a single view into non-overlapping, over-segmented regions. This decomposition effectively
resolves semantic confusions for 3D points whose projections fall within multiple overlapping masks
of varying granularity and semantics. Afterwards, all 3D points that project within the same 2D
segmentation mask form a corresponding segment. The set of segments is denoted as S.

3.3 Segment-based Feature Refinement via Graph Propagation

Given 3D point features F? and segments S, we further exploit the grouping cues from individual
segments, along with their underlying geometric structures, to enhance 3D features. The key
motivations are as follows: 1) points within the same segment typically share the same part label; 2)
overlapping segments constructed from different views likely correspond to the same part label; 3)
adjacent segments from the same or different views encode the holistic 3D structure and delineate
possible part boundaries. To compile these ideas into a framework, we first encode segment features,
then propagate them through overlapping segments and adjacent segments, and finally map segment
features to individual point for part segmentation.

Segment Encoding. A straightforward way to compute segment features is to average the features of
their member points. However, simple pooling fails to account for the varying semantic importance
of individual points based on their geometric attributes, including their spatial distribution relative
to the segment centroid and local surface normal. Inspired by [46], we instead learn adaptive point
contributions with a geometric feature encoding module. For each point p; within a segment, the
module calculates its normalized relative position p7; w.r.t. the centroid ¢; of a segment S; as follows:

p; — ¢
pj = max(p ;f Hzli (Pp)’ M
kesi o m T pesik

Then we compute the local geometric feature Fé € RY with a multi-layer perceptron that takes as

input the concatenation of point’s normal and its normalized position pj. Afterwards, we obtain
the segment feature F* € R by applying max pooling to the local geometric features Fé of all
points within the segment. The segment feature F'° is further refined through an attentively weighted
aggregation of point features F'Z, where attentive weights are computed with an additive attention [47]]

on Fé and F°.
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Figure 3: An illustration of graph construc-  Figure 4: Two examples for the impacts of the
tion. Features of 3D points (green dots)  rendering views on the quality of SAM segments.
are first aggregated to segment nodes (blue  For each group, left: input, right: SAM segments.
boxes).

Building a SAM Segment-based Graph. Denote the graph as G = (V, £) with nodes V rep-
resenting 3D segments and edges £ encoding segment relationships. The segment relationships
include 3D adjacent relations &, and overlapping relations £,. An overlapping relationship exists
between two segment nodes in different views if their corresponding 3D points have significant
overlaps (mloU larger than 10%). An adjacent relation between two segments is constructed if their
covered points have rare overlaps but are close enough (with a minimal distance between points
of two segments less than 0.01 units in the normalized space). Note that overlapping relations and
adjacent relations are mutually exclusive. We show an example of a segment graph in Fig.[3] In
this example, overlapping segments (connected by dashed lines) share identical part labels, while
adjacent segments (connected by solid lines) demarcate part boundaries. This graph structure is
analogous to an atlas in differentiable manifold mapping the 3D shape consistently. Specifically, each
segment corresponds to a chart, and transitions between charts are edges derived from the adjacency
and overlap relationships among segments; the collection of all charts and their connecting edges
constitutes an atlas. In this way, our segment graph provides a structure for analyzing the semantics
of object shapes with geometric consistency.

Feature Propagation via the Segment Graph. After building the segment graph, we propagate
segment features through the edges using GATv2 [48]. We feed the segment feature F'° to a three
GATV2 network layer. Given the distinct nature of overlapping and adjacent relationships, we
implement two GATv2 networks with separate weight parameters to model these relationships,
respectively. Then we concatenate the output features of two GATV2 at each layer and feed them to a
MLP as the node features for the next layer.

Viewing Quality-Aware Feature Unpooling. Subsequently, we propagate segment features to
member 3D points to enforce label consistency within segments. This propagation requires careful
feature fusion since points usually belong to multiple segments with varying reliability. A naive
averaging approach is suboptimal as segments from some challenging views are usually of low quality.
As shown in Fig.[d] under certain challenging viewpoints, parts such as laptop keyboards and clock
components are not well segmented by SAM. In contrast, under more favorable viewpoints, SAM is
able to segment these parts accurately. As the quality of segment masks often depends on the viewing
angle, we devise a viewing quality-aware unpooling module for this purpose. This module estimates
the quality based on the point normal 72; and the camera view direction:

b; — ¢

rr——h @
Ip; — cill

wi; = [n;
where c; is the camera position for extracting segment % and mn; is the normal direction of point
J. The quality score w;; is further refined with a learnable MLP with a softmax to reweighing the
quality scores. The final 3D point features combine the original point features and a weighted fusion
of segment features, and then the features are fed to the segmentation head with a two-layer MLP to

produce the logits Y:
FI'=F'+> wl-F],  Y;=MLP(F?) 3)
i€S;



For the network training, we use cross-entropy as the objective to train the network with few-shot
examples.

4 Experimental Results

We evaluate the effectiveness of our method on two benchmark datasets: PartNet-Ensemble (PartNet-
E) [6] and ShapeNetPart [49]. PartNet-E, proposed by PartSLIP [6], consists of 1,906 shapes across
45 categories with RGB colors. The dataset splits follow that of [[12]]. ShapeNetPart contains 31,963
shapes spanning 16 categories but lacks color information. We adopt the mIoU as the evaluation
metric. We evaluate our method on the official testing set using a few-shot setting, where 8-shot
examples are sampled from the training set for all experiments. We trained our method three times and
reported the average mIoU and the standard deviations to reflect the influence of training variances
using different seeds.

4.1 Comparisons on Part Segmentation

Baselines. On the PartNet-E dataset, we compare SegGraph with fully supervised approaches [37,
20, 50] as well as state-of-the-art few-shot methods based on 2D foundation models including
label aggregation-based methods [6} [11, 12 [7], and distillation-based methods [13}[15]. The fully
supervised methods were trained on 28K objects from 17 overlapping categories in PartNet [23] that
overlap with PartNet-E, along with the few-shot training shapes. The few-shot baselines were trained
solely on the few-shot set. For the zero-shot method PartField, which successfully distills part-level
3D representations from SAM, we fine-tune an MLP on its extracted features to adapt the model to
the few-shot setting. Among the above-mentioned methods, [6, (11}, [12} [13]] provide testing codes
and weight checkpoints for comparisons, while [7] does not have available sources. For methods
without sources and that we fail to reproduce, we use their reported results and mark them with *.
However, as few-shot methods, e.g., [6, 12, [13], require prompt tuning and do not have training code,
we instead compare with PointCLIP [51] and PointCLIPv2 [52]] with support of few-shot learning
on the ShapeNetPart. Specifically, we replace text embedding for classification in PointCLIP and
PointCLIPv2 with a trainable MLP classifier for few-shot example training.

Results on PartNet-E. Tab. [T| presents the comparison results on PartNet-E (see the supplementary
for per-category results). All foundation model-based methods achieve superior performance to
supervised ones (the top three rows), even with only a few-shot training. This suggests the strong
capability of foundation models on downstream tasks. We also observe that label aggregation-based
methods [6, [11} 12} [7]], performs worse than feature aggregation-based methods [7]] and distillation-
based methods [13|[15]], because label aggregation-based methods rely solely on 2D images to obtain
labels, completely ignoring the geometric information crucial for 3D part segmentation. Among all
methods, our approach outperforms the current state-of-the-art few-shot part segmentation method,
PartDistill, by a significant margin with more than 6% gains in mIoU across all 45 categories, achiev-
ing the highest performance in 32 of them. Notably, we observe over 10% absolute improvements
on categories such as Door and Lamp, which, based on our observations, can be attributed to our
method’s superior ability to segment relatively small parts such as door handles and light bulbs.

Despite the overall improvement being substantial, different training runs of our method produce
varying performance because of random initial seeds. When training the model three times with the
same setting, the average standard deviation across the 45 categories is about 1.09%.

Since most of these foundation model-based methods use GLIP, to ensure a fairer comparison, in
addition to employing DINOv2, we also transformed GLIP into a feature extractor for comparison, as
detailed in Sec. [21;2} The results show that when using GLIP as the feature extractor, our method still
achieves performance that is only slightly lower than that obtained with DINOv2, as shown in Tab.

Further inspection of segmentation results with large variances reveals that semantically ambiguous
3D segments are prone to errors in the few-shot setting, leading to the variance in different training
runs with random initial seeds.

We further inspect the improvements on different sized parts. Benefiting from the over-segmented
segments and the segment graph, our method demonstrates significantly improved performance (more
than +20%) in segmenting small parts. As illustrated in Tab.[2] we select six representative categories
that include small parts such as buttons (in Coffee Machine, Remote), knobs (in Coffee Machine),



Table 1: Few-shot part segmentation results on PartNet-E. The mIoU metric is measured in percent-
age. The number in the top row bracket counts the number of shape categories. SD is for Stable
Diffusion [53]]. The methods in the top three rows are trained with both few-shot shapes and PartNet
shapes that share overlapping categories (17) with PartNet-E.

Methods ‘ M ‘ Overlapping Categories (17) | None-Overlapping Categories (28) | 45)

‘ |Bottle Chair Door Knife Lamp|Overall|Camera Dispe. Kettle Oven Suitca.|Overall| Overall
PointNet++ [26] - 48.8 84.7 4577 354 68.0| 553 6.5 12.1 209 344 407 | 250 | 365
SoftGroup [50] - 414 883 53.1 313 822 504 236 189 574 137 183 | 313 38.5
PointNext [37] - 68.4 91.8 43.8 58.7 649 | 59.1 332 260 451 378 13.6 | 455 | 50.6
PartSLIP [6] GLIP 834 853 40.8 652 66.1 | 563 583 738 77.0 735 704 | 613 59.4
PartSLIP++ [11]| GLIP & SAM | 855 853 45.1 643 68.0| 59.7 632 720 85.6 703 70.0 | 63.5 62.1
PartSTAD [12] | GLIP & SAM | 83.6 853 614 638 684 | 614 | 644 737 842 719 683 | 67.1 65.0
3-By-2 [7]* SD & SAM 809 844 544 751 59.5| 60.4 62.6 782 815 60.0 652 | 66.5 64.2
PartDistill [13]* | GLIP & SAM | 84.6 884 555 714 69.2| 64.6 60.1 747 78.6 728 734 | 66.7 | 659
PartField [15] SAM 759 87.6 654 729 73.8| 65.7 520 739 824 502 720 | 66.7 | 66.3
GLIP & SAM 875 885 695 793 84.2| 69.1 | 66.7 748 882 702 728 | 715 | 704
SCgGraph (£ 173) (£0.69) (£045 (£1.70) (£2.19)| (£2.04) (£ 0.88) (£2.39) (£120) (£340) (£ 1.54) (£2.13) (£ 2.08)
(ours) DINOV2 & SAM 90.0 89.5 73.6 77.3 78.5| 70.1 708 77.6 87.8 757 773 | 744 | 728
(4 0.66) (£ 0.44) (£ 0.15) (£0.06) (£0.73) | (£ 0.80) (£ 1.01) (£0.36) (£047) (£ 1.28) (£ 1.28) (+1.23) (£ 1.09)

Table 2: Results on shapes with small components of PartNet-E. The mloU metric is measured in
percentage.

Coffee Machine Door Laptop Lamp Safe Remote Overall (6)
Large Small | Large Small | Large Small | Large Small | Large Small | Large Small | Large Small
PartSLIP [6] 57.1 17.4 441 473 62.0 10.7 84.1 13.1 68.0 19.4 - 36.5 56.5 2438
PartSLIP++ [11] | 59.2 18.4 43.6 485 62.7 7.6 86.1 13.5 71.6  20.1 - 364 | 585 251
PartSTAD [12] 52.8 18.9 67.7 489 71.2 10.2 86.9 12.7 66.5 220 - 534 | 62.1 289
Ours 55.5 28.7 81.7 554 | 765 345 848 393 81.6 546 - 82.0 | 64.1 49.8

Table 3: Few-shot part segmentation results on ShapeNetPart. The mIoU metric is in percentage.

Methods ‘ VLM | Airplane  Cap Car  Knife Laptop Mug Pistol Table | Overall(16)
PointCLIP [51] CLIP 27.2 61.1 30.2 72.2 89.9 59.6 55.6 53.0 52.1
PointCLIPv2 [52] CLIP 37.1 66.8 38.3 73.3 89.1 75.7 68.4 56.3 57.0
SegGraph CLIP & SAM 37.81 7396 48.19 74.8 90.98 80.08 70.6 72.72 62.6
(ours) (+£073)  (£03) (£152) (£093) (£027) (£0.04) (£116) (121 (£ 1.00)

and cameras (in Laptop). Both the quantitative results in the table and the qualitative visualizations in
Fig. §]indicate that our method exhibits clear advantages in accurately segmenting small parts.

In Fig.[5] we compare the predictions of SegGraph with those of previous approaches. Benefiting from
the high-quality over-segmentation provided by SAM, our method achieves superior segmentation
performance on small-sized parts compared to the 2D label aggregation methods used in the second
and third rows. Notable examples include the hands of clocks, buttons on phones and remote controls,
and handles on pot lids. Compared to the fourth row, which uses 3D feature-based method, our
method exhibits greater advantages along the boundaries of small objects, such as the handle of
a bucket and the clock hands. Overall, our approach yields better segmentation performance for
small-size parts.

Results on ShapeNetPart. Tab. [3|presents the evaluation results on ShapeNetPart. Since only sparse
point clouds without color are available for ShapeNetPart (2048 points), we follow PointCLIP-v2
to densify and smooth point clouds in preprocessing. Therefore, the rendering depth images of
ShapeNetPart are of significantly lower quality compared to the rendered images of PartNet-E,
leading to worse SAM segmentation and pretrained image features. However, our method still
prevails against baseline methods with a 5.6% improvement in mIoU.

4.2 Ablation Studies

We ablate each module in our method. As the vanilla baseline, we aggregate multi-view 2D features
extracted by DINOv2 [43]] onto the 3D space using average pooling, resulting in 3D feature represen-
tation. A MLP is then employed as a classifier to perform point-wise segmentation on the aggregated
3D features without using SAM segments. The performance of this vanilla baseline is shown in the
first row of Tab. ] All experiments are conducted on all shape categories of PartNet-E with an 8-shot
setting. We leave hyperparameter analysis and more results to the supplementary.
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Figure 5: Qualitative comparison of part segmentation results on the PartNet-E dataset under the
few-shot setting.

Table 5: Results of using different founda-
Table 4: Ablation experiments. SE is for segment en- tion models and feature propagation (Seg-
coding and AVE for mean pooling or unpooling. SAM  Graph vs MLP).

means using 3D segments from SAM segmentation. ‘ |Bottle Door Suitca. | Overall (45)
SAM AVE—SE AVE*}Eq.@ &, Eq|Bottle Door Suitca.|Overall(45) o MLP | 632 350 44.0 393
(1) 838 622 703 65.2 CLIP 2] SegGraph‘ 712 365 52.1 ‘ 49.5
2) v 89.0 72.7 1705 70.5 MLP 788 540 59.1 56.8
v v 887 728 67.7 | 707 Diffusion Ol Grapn| 850 500 694 | 643
@) v v 88.7 725 655 | 705
G) v v v 879 723 669 | 710 GLIP [§ MLP ‘821 577 62.1 ‘ 61.1
©) v v v 1878 705 73.0 71.4 SegGraph| 87.4 69.5 72.8 70.4
T v v v v 89.0 733 744 722 MLP 759 654 72.0 66.3
®) v v v V897 726 740 | 723 PartField [15] SegGmph‘ 766 709 75.9 ‘ 703
O v v Y100 36 73| 728 o | MLP | 820 628 685 | 652
V23 | SeoGraph| 900 736 77.3 72.8

The Role of Segment Encoding (SE) and Viewing Quality-Awareness. The settings without
check marks for AVE—SE use average pooling, while those without check marks for AVE—Eq.(2)
removes viewing quality awareness and uses average unpooling, instead. In rows 3-4 of Tab.
applying either SE or Eq.(2) individually results in only marginal or even no improvement. However,
using both modules together (row 5 vs row 2) leads to slight improvement (0.5%).

The Role of Different Segment Relations. In rows 2,6 of Tab. 4] even without segment encoding
and viewing quality awareness, incorporating segment graph leads to segment improvement (+0.9%),
suggesting the positive role of graph propagation with GATv2. We conjecture these two graph edges
encode geometric features and segment relations, leading to more consistent part segmentation.

Comparing rows 5,7,8 of Tab. 4] using either kind of graph edges for feature propagation with segment
encoding and viewing quality awareness exhibits significant performance improvements (1.2% for
&, and 1.3% for &,, respectively). Using both edges simultaneously lead to a performance gain of
1.8% (see rows 5.9).

Robustness to Different Foundation Model Features. We conducted experiments by replacing
DINOV2 [43] with pretrained features of three different foundation models: CLIP [42], Diffusion [9],
GLIP [8], and PartField [15]]. Among them, PartField is a 3D model distilled from a 2D foundation
model. Since most comparison methods in Table [l|adopt GLIP, for fair comparison, we also modified
GLIP into a feature extractor for our experiments. For GLIP, we utilized its multi-scale visual
features fused with text features, and further applied a Feature Pyramid Network (FPN) structure to
integrate these multi-scale representations, thereby transforming GLIP into a feature extractor. As a
comparison, we also replaced the graph propagation module with a MLP to assess the role of structural



Table 6: Detailed runtime analysis of each component in the data Tgple 7: Training and in-
preprocessing stage in our method compared with PartSLIP++. All ference time comparison per

runtime is measured on a per-shape basis. shape.
Method Render (s) GLIP+SAM/SAM (s) Voting Preprocess / Build Graph (s) Total (s) Method Train (s) Inference (s)
PartSLIP++ 2.12 16.33 (GLIP+SAM) 92.38 (Voting Preprocess) 110.30
Ours 212 52,40 (SAM) 10.40 (Build Graph) 64.92 PartSLIP++ i 5-23
Ours 212 130 (FastSAM) 10.40 (Build Graph) 13.82 Ours 25 1.46

reasoning. As shown in Tab. 5} when replacing the MLP with our proposed graph propagation module,
we observe consistent and significant performance improvements across all foundation models. This
demonstrates that our method is not only well-suited for 2D-to-3D knowledge transfer, but also
effectively enhances the performance of 3D segmentation models. These results validate the strong
generalizability of our approach across different types of feature representations.

4.3 Runtime Analysis

Tab. [6] and Tab.[7] present the runtime analysis of each component and comparison with PartSLIP++
on the PartNet-E dataset. All measurements are on a per-shape basis, with training time referring to
one epoch for a single shape, using a single NVIDIA V100 GPU.

For PartSLIP++, most preprocessing time is spent on superpoint generation via LO-cut pursuit and
voting weight computation (92.38 s). Its weighted voting during inference also results in high latency
(5.8 s).

For our method, the main overhead stems from SAM segmentation on ten multi-view images. As
the SamAutomaticMaskGenerator processes one image at a time, this step is relatively slow but still
faster than PartSLIP++ (64.9 s vs. 110.8 s). Employing faster variants such as FastSAM [54] further
reduces the time but slightly degrades accuracy (72.8 — 70.9 mloU).

During inference, our method is more efficient (1.46 s vs. 5.83 s). Since PartSLIP++’s training code
is unavailable, its training time is omitted. However, we can reasonably expect that our training time
is much faster than PartSLIP++’s based on the inference time comparison. Note that both the "Train"
and "Inference" time measurements include the time for DINOv2 feature encoding.

4.4 More Analysis

Feature Visualization To more clearly demonstrate the capability of our method in learning 3D
structural information, we visualize extracted 3D features in Fig.[6] As a baseline for comparison,
we use 3D features obtained by directly averaging DINOv2 [43] features of multi-view rendered
images, without any graph-based propagation. We apply PCA to reduce the feature channels to 3,
corresponding to the RGB color channels for visualization. Fig. [6]suggests that the features processed
by SegGraph exhibit clear separability among different parts. This strong discriminative ability arises
from two aspects. First, the few-shot fine-tuning process enables the model to learn meaningful
part-level distinctions even the number of shots is quite low (8-shot). Second, it benefits from the
proposed graph design to encode 3D structural information. For instance, regions such as the screen
area of the phone and the supporting bracket at the top of the coffee machine on the far right-both
of which lack annotations in the training set—still exhibit clear part-level separability in the feature
visualization.

Feature Similarities Across Shapes. Given the strong part-level separability observed in Fig. [6]
we further explore feature similarities in Fig.[/| Specifically, after selecting an anchor point within
a shape (indicated by the red arrow), we compute the Euclidean distance between the feature of
each point and that of the anchor point, either within the same shape or across different shapes (as
shown in the second row). The distances are then normalized, with a distance of 0 mapped to blue
and a distance of 1 mapped to gray. As demonstrated in the figure, the selected anchor point yields
consistent part-level feature similarity, both within the same shape and across different shapes.

Failure Cases. We examined the visual results and observed an interesting failure case in the USB
category (Fig.[8). The USB model contains two disconnected parts—the cap and the body—each with
a visually and geometrically similar connection subpart. While SAM correctly distinguishes these
subparts, DINOv?2 features for them are nearly identical despite their spatial separation. Consequently,



SegGraph misclassifies the two as belonging to the same category. This case indicates that SegGraph
can be confused by repeated or similar sub-parts even when they are spatially distant.
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Figure 6: Feature Visualization. Points with similar colors are likely to share the same part label.

Figure 7: Feature similarities between an anchor point (red arrows) and points in the same shape (top
row) and points in a different shape (bottom row). We use colors to encode feature similarities.
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Figure 8: Failure cases on the USB category

5 Conclusion and Discussion

We presented SegGraph, a SAM segment-based graph propagation method for utilizing 2D features
of foundation models for 3D part segmentation. Based on multi-view segmentation masks generated
by SAM, we construct a graph to encode geometric features with segments as nodes and spatial
relationships between nodes as edges. Through feature propagation on this graph, our method
effectively adapts features from 2D foundation models to the 3D domain. SegGraph achieves state-
of-the-art performance on 3D part semantic segmentation, especially for part boundaries and small
components.

While our method demonstrates strong performance, there are some limitations. First, the rendering-
view based feature aggregation paradigm fundamentally limits our ability to handle occluded or
internal structures of 3D models. Second, the current framework operates at a fixed segmentation
scale, without accommodating multi-scale part granularity. Future work could explore constructing
hierarchical semantic representations of shapes, facilitating more versatile applications.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Relevant content can be found in the abstract and Sec.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Relevant content can be found in the Sec.
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not involve theoretical claims that necessitate formal proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The detailed experimental procedure and settings can be found in Sec. {]
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will submit the code in the supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: A comprehensive description of all training and testing details will be provided
in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to limited computational resources, we were unable to compute error bars
through multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: A description of the computational resources utilized for the experiments will
be provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research fully adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The work does not have any societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This study poses no such risks.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all the creators of the code packages and datasets used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use large language models (LLMs) for editing purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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