
Under review as a conference paper at ICLR 2023

CONFOUNDER IDENTIFICATION-FREE CAUSAL
VISUAL FEATURE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Confounders in deep learning are in general detrimental to model’s generaliza-
tion where they infiltrate feature representations. Therefore, learning causal fea-
tures that are free of interference from confounders is important. Most previous
causal learning-based approaches employ back-door criterion to mitigate the ad-
verse effect of certain specific confounders, which require the explicit identifi-
cation of confounders. However, in real scenarios, confounders are typically di-
verse and difficult to be identified. In this paper, we propose a novel Confounder
Identification-free Causal Visual Feature Learning (CICF) method, which obvi-
ates the need for identifying confounders. CICF models the interventions among
different samples based on the front-door criterion, and then approximates the
global-scope intervening effect based on the instance-level intervention from the
perspective of optimization. In this way, we aim to find a reliable optimization di-
rection, which eliminates the confounding effects of confounders, to learn causal
features. Furthermore, we uncover the relation between CICF and the popular
meta-learning strategy MAML (Finn et al., 2017), and provide an interpretation of
why MAML works from the theoretical perspective of causal learning for the first
time. Thanks to the effective learning of causal features, our CICF enables models
to have superior generalization capability. Extensive experiments on domain gen-
eralization benchmark datasets demonstrate the effectiveness of our CICF, which
achieves the state-of-the-art performance.

1 INTRODUCTION

Deep learning excels at capturing correlations between the inputs and labels in a data-driven man-
ner, which has achieved remarkable successes on various tasks, such as image classification, object
detection, and question answering (Liu et al., 2021; He et al., 2016; Redmon et al., 2016; He et al.,
2017; Antol et al., 2015). Even so, in the field of statistics, correlation is in fact not equivalent to
causation (Pearl et al., 2016). For example, when tree branches usually appear together with birds in
the training data, deep neural networks (DNNs) are easy to mistake features of tree branches as the
features of birds. A close association between two variables does not imply that one of them causes
the other. Capturing/modeling correlations instead of causation is at high risk of allowing various
confounders to infiltrate into the learned feature representations. When affected by intervening ef-
fects of confounders, a network may still make correct predictions when the testing and training data
follow the same distribution, but fails when the testing data is out of distribution. This harms the
generalization capability of learned feature representations. Thus, learning causal feature, where the
interference of confounders is excluded, is important for achieving reliable results.

As shown in Fig. 1, confounders C bring a spurious (non-causal) connection X ←− C −→ Y between
samples X and their corresponding labels Y . A classical example to shed light on this is that we
can instantiate X,Y,C as the sales volume of ice cream, violent crime and hot weather. Seem-
ingly, an increase in ice cream sales X is correlated with an increase in violent crime Y . However,
the hot weather is the common cause of them, which makes an increase in ice cream sales to be a
misleading factor of analyzing violent crime. Analogically, in deep learning, once the misleading
features/confounders are captured, the introduced biases may be mistakenly fitted by neural net-
works, thus leading to the detriment of the generalization capability of learned features. In theory,
we expect DNNs to model the causation between X and Y . Deviating from such expectation, the
interventions of confounders C make the learned model implicitly condition on C. This makes that
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Figure 1: (a) Examples of some confounders, which may lead to learning biased features. (b) Back-
door criterion in causal inference, where the counfunders are accessible. (c) Front-door criterion in
causal inference, where the confounders are inaccessible.
the regular feature learning does not approach the causal feature learning. To learn causal features,
previous studies (Yue et al., 2020; Zhang et al., 2020; Wang et al., 2020b) adopt the backdoor cri-
terion (Pearl et al., 2016) to explicitly identify confounders that should be adjusted for modeling
intervening effects. However, they can only exploit the confounders that are accessible and can
be estimated, leaving others still intervening the causation learning. Moreover, in many scenarios,
confounders are unidentifiable or their distributions are hard to model (Pearl et al., 2016).

Theoretically, front-door criterion(Pearl et al., 2016) does not require identifying/explicitly modeling
confounders. It introduces an intermediate variable Z and transfers the requirement of modeling the
intervening effects of confounders C on X → Y to modeling the intervening effects of X on
Z → Y . Without requiring explicitly modeling confounders, the front-door criterion is inherently
suitable for wider scenarios. However, how to exploit the front-door criterion for causal visual
feature learning is still under-explored.

In this paper, we design a Confounder Identification-free Causal visual Feature learning method
(CICF). Particularly, CICF models the interventions among different samples based on the front-
door criterion, and then approximates the global-scope intervening effect based on the instance-level
interventions from the perspective of optimization. In this way, we aim to find a reliable optimization
direction, which eliminates the confounding effects of confounders, to learn causal features. There
are two challenges we will address for CICF. 1) How to model the intervening effects from other
samples on a given sample in the training process. 2) How to estimate the global-scope intervening
effect across all samples in the training set to find a suitable optimization direction.

As we know, during training, each sample intervenes others through its effects on network parame-
ters by means of gradient updating. Inspired by this, we propose a gradient-based method to model
the intervening effects on a sample from all samples to learn causal visual features. However, it
is intractable to involve such modeled global-scope intervening effects in the network optimiza-
tion, which requires a traversal over the entire training set and is costly. To address this, we pro-
pose an efficient cluster-then-sample algorithm to approximate the global-scope intervening effects
for feasible optimization. Moreover, we revisit the popular meta-learning method Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017). We surprisingly found that our CICF can provide an
interpretation on why MAML works well from the perspective of causal learning: MAML tends to
learn causal features. We validate the effectiveness of our CICF on the Domain Generalization (DG)
(Wang et al., 2021; Zhou et al., 2021a) task and conduct extensive experiments on the PACS, Digits-
DG, Office-Home, and VLCS datasets. Our method achieves the state-of-the-art performance.

2 RELATED WORK

Causal Inference aims at pursuing the causal effect of a particular phenomenon by removing the
interventions from the confounders (Pearl et al., 2016). Despite its success in economics (Rubin,
1986), statistics (Rubin, 1986; Imbens & Rubin, 2015) and social science (Murnane & Willett,
2010), big challenges present when it meets machine learning, i.e., how to model the intervention
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from the confounders and how to establish the causal model. A growing number of works have
moved a step forward by taking advantage of the back-door criterion (Pearl et al., 2016) on various
tasks, e.g., few-shot classification (Yue et al., 2020), vision-language task (Wang et al., 2020b),
domain adaptation (Yue et al., 2021), class-incremental learning (Hu et al., 2021), and semantic
segmentation (Zhang et al., 2020). Limited by the back-door criterion, most of them are required
to identify and model the distributions of the confounders. However, this may be challenging in the
real world because confounders are typically diverse and usually appear implicitly. To get rid of the
dependency on confounders, Yang et al. (2021), for the first time, propose to utilize the front-door
criterion to establish a causal attention module for vision-language task. However, it still requires
the modeling of intervention in the testing stage, which is complicated.

In contrast, this work is the first attempt to apply the front-door criterion for learning causal visual
features by considering the intervention among samples. Ours improves the generalization ability of
DNNs from the optimization perspective and is confounder identification-free.

Model Generalization plays a prominent role for DNNs to be applied in real-world scenarios. To
improve the performance on the testing dataset which has distribution shift (Sun et al., 2016) with
training data, various domain generalization (DG) (Muandet et al., 2013; Zhou et al., 2021a; Wang
et al., 2021; Shen et al., 2021; Wei et al., 2021) methods have been proposed. In general, these
methods can be divided into three categories, i.e., domain-invariant representation learning, data or
feature manipulation, and meta-learning. The first category intends to learn domain-invariant fea-
tures that follow the same distributions (Muandet et al., 2013; Li et al., 2018b; Taori et al., 2020; Li
et al., 2018d; Motiian et al., 2017; Mahajan et al., 2021b; Jin et al., 2020). The second category aims
to improve the generalization ability of models through enriching the diversity of source domains,
either in image space (e.g., CrossGrad (Shankar et al., 2018), DDAIG (Zhou et al., 2020a) and M-
ADA (Qiao et al., 2020)), or feature space (MixStyle (Zhou et al., 2021c) and RSC (Huang et al.,
2020)). Another new line of DGs utilize meta-learning as training strategy (Zhao et al., 2021; Liu
et al., 2020; Li et al., 2018a; 2020; Wei et al., 2021; Balaji et al., 2018). MAML (Finn et al., 2017)
takes the advantage of meta-learning to find a good parameters initialization for fast adaptation to
new tasks. Following MAML, Li et al. (2018a); Dou et al. (2019); Li et al. (2020); Balaji et al.
(2018) introduce meta-learning into DG to simulate domain shift or learn domain-invariant parame-
ters regularizer during training. Other variants of DGs exploit episodic training (Li et al., 2019) and
ensemble learning (Zhou et al., 2021b; Seo et al., 2020; Cha et al., 2021).

In this paper, from a new perspective, we propose a scheme for model generalization termed as
Confounder Identification-free Causal Visual Feature Learning (CICF).

3 PROPOSED METHOD

In this section, we first depict a supervised learning process in a causal graph (Pearl, 2009b), and
uncover the stumbling effects of confounders which prevent the achievement of high generalization
capability of models in Sec. 3.1. Then, in Sec. 3.2, based on the front-door criterion, we elaborate
our Confounder Identification-free Causal Visual Feature Learning(CICF) from two perspectives,
respectively as how to model mutual intervening effects between different instances and how to ap-
proximate such intervening effects from the global scope. Furthermore, we describe our CICF which
alleviates the intervening effects from the optimization perspective in Sec. 3.2. In Sec. 3.3, we un-
cover the relation between our CICF and the popular meta-learning strategy MAML (Finn et al.,
2017), and provide an interpretation of why MAML works from the theoretical perspective of causal
inference.

3.1 PROBLEM DEFINITION AND ANALYSIS

Given a training dataset with input and label pairs {X,Y }, the goal of training Deep Neural Net-
works is to learn/capture the causation between input samples X and prediction labels Y , i.e., the
conditional probability P (Y |do(X)). As shown in Fig. 2 (a), we parameterize the network as φ and
separate it into two successive parts, i.e., h and f .

DNNs capture label-associated features which are not necessarily the casual ones due to the in-
tervening effects of confounders, such as background, brightness, and viewpoint. We denote the
intermediate features and confounders as Z and C, respectively. Fig. 2 illustrates the relations in
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Figure 2: Causal graph in supervised learning. (a) A network/model φ consists of sub-models h
and f . X and Y denote the input and prediction labels, respectively. (b) Causal graph where do
operation aims to remove the intervening from confounder C.

a causal graph. Intervened by the confounders, the conditional probability P (Y |X) learned by the
model φ actually involves two paths, i.e., X −→ Z −→ Y and X ←− C −→ Y . X −→ Z −→ Y
denotes the expected causal effect from the input samples X to their prediction labels Y . The path
X ←− C −→ Y denotes the non-causal correlation between X and Y due to their common cause C,
which may introduce biases into the learning of P (Y |X) and thus affect the generalization capability
of model φ.

Intuitively, it is crucial to get rid of the harmful bias from those confounders for causal feature
learning. In the literature of causal inference (Pearl et al., 2016), the confounding effects from con-
founders can be removed through the do operation (Pearl et al., 2016) by cutting off the connection
from C to X , as illustrated in Fig. 1 (b). With the definition of do operation, the real causation
from X to Y can be formulated by P (Y |do(X)). The objective of our CICF is to learn features
representation conforming to P (Y |do(X)).

Back-door criterion. In previous works (Yue et al., 2020; Wang et al., 2020b; Hu et al., 2021),
when C is identifiable, the back-door criterion (Pearl et al., 2016) is typically utilized to achieve the
do operation as:

P (Y |do(X = x)) =
∑
c

P (Y |X = x,C = c)P (C = c), (1)

which acquires access to the distributions of all confounders c ∈ C. However, in many scenarios,
the intervening effects are caused by unobservable or implicit factors. It is not feasible to identify
the distribution of C during training, limiting the usage of the back-door criterion.

Front-door criterion. For unidentifiable confounders, the Front-door criterion (Pearl et al., 2016)
provides us with a more practical alternative to Estimate the Intervening Effect, called FEIE, es-
chewing the identification of confounders C. Specifically, it introduces an intermediate variable Z
to help assess the effect of X on Y , i.e., P (Y |do(X)), which can be formulated as:

P (Y |do(X = x)) =
∑
z

P (Z = z|X = x)
∑
x̃∈X

P (Y |Z = z, x̃)P (x̃), (2)

where Z = h(X), x̃ ∈ X denotes a sample from training data. Note that the effect of X on Z is
identifiable because they have no common causes. In other words, there is no backdoor path from
X to Z. Thus, we have P (Z = z|do(X = x)) = P (Z = z|X = x).

Front-door criterion is attractive for eliminating interventions. However, it is still under-explored
for visual feature learning, where there is a lack of a simple and practical mechanism to exploit this
theory for enhancing the generalization capability of models.

3.2 CONFOUNDER IDENTIFICATION-FREE CAUSAL VISUAL FEATURE LEARNING

In this paper, we aim to achieve Confounder Identification-free Causal Visual Feature Learning,
obviating the need for confounder identification. As indicated by Eq. (2), thanks to the front-
door criterion, we do not need to identify and explicitly model confounders C. Despite this, it
still imposes a challenge on how to accurately model the term

∑
x̃ P (Y |Z = z, x̃) in the network

training process. We treat the first part of φ as the model h to obtain the intermediate variable z,
i.e., z = h(x). Because the parameters of h are fixed in the inference stage and z = h(x) is known
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given any x ∈ X , P (Z = z|X = x) is equal to 1 1. Thus, we can re-write Eq. (2) as:

P (Y |do(X = x)) =
∑
x̃∈X

P (Y |Z = h(x), x̃)P (x̃), (3)

where P (Y |Z = h(x), x̃) denotes the mutual intervening effects to the causation path Z −→ Y
from another sample x̃. With the summation operation, Eq. 3 represents the global intervening
effects accumulated from all samples in the training data. We will describe the instantiations of
P (Y |Z = h(x), x̃) and the accumulation in Eq. (3) respectively as below.

A Gradient-based Instantiation of FEIE. Referring to the practices in prior works (Yue et al.,
2020; Wang et al., 2020a) upon the back-door criterion, a straightforward method for modelling
P (Y |Z = h(x), x̃) is to directly concatenate z = h(x) and the feature of x̃ ∈ X before feeding
them into f . However, this method would easily lead to a trivial solution once the information of
x̃ is ignored by the layers of the neural networks. In contrast, we propose to explicitly model the
intervening effects of x̃ on Z −→ Y with a gradient-based instantiation. We notice that, in the training
process, the influence of one instance on others can be reflected on the parameters updating with the
gradient obtained based on this instance. Therefore, for a given sample x, we propose to explicitly
model the intervening effects P (Y |Z = h(x), x̃) of another sample x̃ on x through f as:

P (Y |Z = h(x), x̃) = fθx̃(Z = h(x)), where θx̃ = θ − αgx̃, gx̃ = ∇θL(fθ(h(x̃), ỹ)), (4)

fθ and fθx̃ denote the model f before and after the parameters updating respectively, gx̃ denotes the
calculated gradient with respect to the sample x̃ and its label ỹ. L and α represent the loss of cross
entropy and learning rate, respectively. Incorporating Eq. (4) into Eq. (3), we have Eq. (5) as below
to explicitly eliminate the interventions of all samples on the sample x as:

P (Y |do(X = x)) =
∑
x̃∈X

fθx̃(Z = h(x))P (x̃). (5)

Global-scope Intervening Effects Approximation. With the above introduced gradient-based in-
stantiation, the globally accumulative intervening effects from all the training samples can be esti-
mated by a traversal on X , which, however, is time- and memory-consuming in practice. To achieve
an efficient estimation in the global scope, we apply the first-order Taylor’s expansion on Eq. (5):

P (Y |do(X = x)) =
∑
x̃∈X

[fθ(h(x))−αgx̃∇θfθ(h(x))+o (∇θfθ(h(x)))]P (x̃)

≈ fθ(h(x))− α(
∑
x̃∈X

gx̃P (x̃))∇θfθ(h(x)). (6)

Eq. (6) reveals that the key to estimating P (Y |do(X)) lies in computing the global-scope gradient
g† =

∑
x̃∈X gx̃P (x̃) over all x̃ ∈ X accumulated via weighted sum with P (x̃) as the weight.

However, it is intractable to directly compute the global-scope gradient g† by traversing over all the
training samples. Alternatively, we can traverse over a sampled small subset that shares the similar
data distribution to that of all the training data. As we know, when the training data are unbalanced
and diverse, random sampling of a small subset would result in bias that mismatches the distribution
of the dataset, leading to an inaccurate estimation of the global-scope gradient. To better estimate
the data distribution and thus approach the global-scope gradient, we propose a sampling strategy
dubbed as clustering-then-sampling. More discussion/analysis can be found in the Appendix A.1.
Concretely, we first cluster the training samples of each class in the dataset into K clusters with
K-means algorithms (Pelleg et al., 2000) and totally obtain K† clusters for the whole training data.

It is noteworthy that we found the samples in each cluster usually have similar gradient directions in
optimization. Thus we represent each cluster with fewer samples randomly sampled from the same
cluster, avoiding traversing over all the data. Then, the global-scope gradient g† can be approximated

with weighted sum over the sampled M =
∑K†

k=1Nk samples from K† clusters:

g† =
1

M

K†∑
k=1

Nk∑
j=1

gx̃j,k∈Kk
, (7)

1We provide proof in Appendix A.3 that this satisfies the front-door criterion.
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where Nk is the number of instances sampled from the k-th cluster (being proportional to the size
of this cluster), gx̃j,k∈Kk

denotes the gradients of the sample x̃j,k ∈ Kk. Combined with Eq. (7),
we rewrite Eq. (6) as:

P (Y |do(X = x)) ≈ fθ(h(x))− αg†∇θfθ(h(x)). (8)

Causal Visual Feature Learning. Based on the above theoretical analysis and the proposed inter-
vention approximation strategy, the intractable causal conditional probability P (Y |do(X)) can be
approximated based on Eq.(8), without requiring the identification of confounders C. Actually, the
Eq. (8) can be viewed as the first-order Taylor’s expansion of fθ−αg†(h(x)). Thus, we have:

P (Y |do(X = x)) ≈ fθ−αg†(h(x)), (9)

here let θ† = θ−αg† (the parameters of f ), which are updated with the global-scope gradient g†. The
output of a model is thus denoted as ŷdo(x) = fθ†(h(x)), which has been aware of the global-scope
interventions from all other samples on the current sample x based on such global-scope gradient
updated model (i.e., fθ† ). Then, we can train an unbiased model f to learn the causal visual features
with the loss of cross-entropy:

LCICF =
∑
x∈X

Lce

(
fθ†(h(x)), y

)
, (10)

where y is the corresponding ground-truth label for x. The overall algorithm of Confounder
Identification-free Causal Visual Feature Learning is described in Alg. 1 of Appendix.

Note that clustering-then-sampling is better than random sampling to approach the distribution of
the training dataset, thereby being capable of approximating the global-scope gradient more ac-
curately. We have theoretically analyzed that clustering-then-sampling has a more minor stan-
dard error (SE) for estimating the distribution of all the training data than random sampling, i.e.,
SEours < SErandom in the Appendix A.1. This demonstrates that our clustering-then-sampling is
a more efficient and more accurate strategy to estimate the data distribution and then the global-scope
gradient.

3.3 DISCUSSION

In this section, we will provide an analysis and comparison between our CICF and MAML (Finn
et al., 2017). For the first time, we interpret why MAML works from a causal learning perspective,
which is supported by our analysis in the previous subsections.

In the seminal work MAML (Finn et al., 2017), Finn et al. propose a model-agnostic meta-learning
strategy that treats a batch of data as meta-train and another batch of data as meta-test for optimiza-
tion. Particularly, given T sets of data {Dt

tr, D
t
te}Tt=1 corresponding to T tasks {Tt}Tt=1, where Dt

tr
and Dt

te denote meta-train and meta-test data respectively, the loss function of MAML for optimiza-
tion can be represented as:

LMAML =
∑
t

L
(
fθt

tr
(Xt

te), Y
t
te

)
, (11)

where θttr refers to the parameter virtually updated with the gradient gttr calculated on Dt
tr, i.e.,

θttr ← θ− αgttr, which is treated as meta-train task. The optimization on Dt
te is treated as meta-test

task, where the parameters are updated as θtte ← θ − α∇θLMAML. They interpret why MAML
works from the perspective that it can provide a good parameter initialization which is robust for
fast adaptation to new data. However, there is a lack of theoretical analysis and support in Finn et al.
(2017). Based on our analysis in Section 3.2, for the first time, we have a new understanding of the
previous uses of MAML (Finn et al., 2017; Li et al., 2018a) (see Eq. (11)) from the perspective of
causal inference. L

(
fθt

tr
(Xt

te), Y
t
te

)
in Eq. (11) actually models the intervention from meta-train

data Dt
tr to meta-test data Dt

te within the task t and endeavors to eliminate such local data modeled
intervention. However, as revealed by our theoretical analysis in Section 3.2, learning reliable causal
features requires the capturing and modeling of interventions from all the samples (i.e., global inter-
ventions). There is no such solution in the previous works while we provide a practical and efficient
one to model and eliminate the global-scope interventions in this paper. This enables reliable causal
feature learning and promotes the achievement of higher generalization capability of models.
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Figure 3: Ablation study on the influence from (a) batch-size, (b) the number of clusters, for the
global-scope intervention estimation, and (c) different choices of Z (c.f. Fig. 7). {Z0, ..., Z5}
denotes the features from the shallow layer to the deep layer. All results are averaged over four
domains on PACS.

Table 1: Classification accuracy (%) of different DG methods on PACS with ResNet-18 and Digits-
DG with a CNN backbone (Zhou et al., 2021c). ‡: our reimplemented results using the official code
are different from the ones reported in the original paper.

Method PACS Digits-DG
A C P S Avg. MINIST MINIST-M SVHN SYN Avg.

MMD-AAE 75.2 72.7 96.0 64.2 77.0 96.5 58.4 65.0 78.4 74.6
CCSA 80.5 76.9 93.6 66.8 79.4 95.2 58.2 65.5 79.1 74.5
JiGen 79.4 75.3 96.0 71.6 80.5 96.5 61.4 63.7 74.0 73.9

CrossGrad 79.8 76.8 96.0 70.2 80.7 96.7 61.1 65.3 80.2 75.8
MLDG 79.5 77.3 94.3 71.5 80.7 94.7 60.3 61.5 75.4 72.6
MASF 80.3 77.2 95.0 71.7 81.1 - - - - -

MetaReg 83.7 77.2 95.5 70.3 81.7 - - - - -
RSC 83.4 80.3 96.0 80.9 85.2 - - - - -

MatchDG 81.3 80.7 96.5 79.7 84.6 - - - - -
MixStyle‡ 83.0 78.6 96.3 71.2 82.3 96.5 63.5 64.7 81.2 76.5

FACT 85.4 78.4 95.2 79.2 84.5 97.9 65.6 72.4 90.3 81.5
ERM 77.0 75.9 96.0 69.2 79.5 95.8 58.8 61.7 78.6 73.7

ERM+MAML 77.0 74.5 94.8 72.1 79.6 96.0 63.1 65.0 81.1 76.5
ERM+CICF 80.7 76.9 95.6 74.5 81.9 95.8 63.7 65.8 80.7 76.5

ERM∗ 82.5 74.2 95.4 76.5 82.1 96.1 65.0 73.0 84.6 79.7
ERM∗+MAML 81.8 73.2 94.8 75.7 81.4 96.2 67.0 74.0 84.1 80.3
ERM∗+CICF 84.2 78.8 95.1 83.2 85.3 95.6 68.8 76.5 86.0 81.7

4 EXPERIMENTS

To validate the effectiveness of our CICF, we apply it on the Domain Generalization (DG) (Zhou
et al., 2021a; Wang et al., 2021) task, where the models are expected to learn the unbiased causal
features to be generalized to different domains. We describe the datasets and implementation details
in Sec. 4.1. Then we clarify the effectiveness of each component of our CICF in Sec. 4.2, and
compare with previous methods in Sec. 4.3. Finally, we qualitatively show that CICF captures the
causal features in Sec. 4.4.

4.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. We evaluate our method on four commonly used benchmark datasets (i.e., PACS (Li et al.,
2017), Digits-DG, Office-Home (Venkateswara et al., 2017) and VLCS (Torralba & Efros, 2011))
for Domain Generalization. 1) PACS (Li et al., 2017) contains images from four domains, i.e., Photo
(P), Art painting (A), Cartoon (C), and Sketch (S). Each domain consists of images in seven object
categories. 2) Digits-DG is composed of four digit datasets, including MINIST (LeCun et al., 1998),
MINIST-M (Ganin & Lempitsky, 2015), SVHN (Netzer et al., 2011) and SYN (Ganin & Lempitsky,
2015). Each dataset is regarded as a domain, which contains ten digit categories from zero to nine.
3) Office-Home is divided into four domains, including Artistic, Clipart, Product and Real World.
There are 65 object categories related to the scenes of office and home. 4) VLCS (Torralba &
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Figure 4: Visualization of the Grad-CAMs w.r.t. classification task for domain generalization. The
first row of left/right panels shows the images from sketch/art painting (Art) domains in PACS. The
second, third and fourth rows show the Grad-CAMs of ERM, IRM (Arjovsky et al., 2019) and our
CICF.

Efros, 2011) covers images of five object categories from four domains, i.e., PASCAL VOC 2007,
LabelMe, Caltech, and Sun datasets. Following previous DG methods (Li et al., 2019; Zhou et al.,
2021c; Li et al., 2018b;a), we evaluate methods under the leave-one-domain-out protocol, where one
domain is used for testing while others for training.

Implementation Details. For PACS and Office-Home, we take ResNet18 (He et al., 2016) pre-
trained on ImageNet (Deng et al., 2009) as backbone, following Zhou et al. (2021c); Carlucci et al.
(2019). We also take the ResNet-50 pretrained on ImageNet as the backbone for PACS, following
Huang et al. (2020). For VLCS, we take AlexNet (Krizhevsky et al., 2012) pretrained on Ima-
geNet (Deng et al., 2009) as our backbone, which is the same as (Matsuura & Harada, 2020; Dou
et al., 2019). For Digits-DG, we adopt the model architecture used in previous works (Zhou et al.,
2020b; 2021c). We cluster three clusters within each class in training datasets. All reported results
are averaged among six runs. More implementation details can be found in the Appendix A.5.

4.2 ABLATION STUDY

Effectiveness of CICF. Our proposed CICF enables models to have superior generaliza-
tion ability by effectively causal feature learning. We compare our CICF with the popular

Method A C P S Avg.
MatchDG 85.6 82.1 97.9 78.8 86.1

RSC 87.9 82.2 97.9 83.4 87.8
FACT 89.6 81.8 96.8 84.5 88.2
Fish - - - - 85.5

ERM∗ 88.0 78.8 98.2 81.7 86.7
ERM∗+CICF 89.7 82.2 97.9 86.2 89.0

Table 2: Classification accuracy (%) of
different DG methods on PACS with
ResNet-50.

meta-learning strategy MAML, which aims to explore
the commonly optimal optimization direction for all
tasks (i.e., different domains), on two baselines. 1) ERM:
training models only on source domains with simple data
augmentations including flip and translation. 2) ERM∗:
training models on source domains with AutoAug-
ment (Cubuk et al., 2018). The results on PACS are
shown in Table 1, with baseline ERM, ERM+CICF out-
performs ERM by 2.4 % in accuracy without known do-
main labels, while MAML only achieves the improve-
ment of 0.1% with known domain labels. Moreover,
with another baseline, ERM∗+CICF outperforms ERM∗

by 3.2% and 2.0% on PACS and Digits-DG respectively.
However, MAML is not robust for different baselines and does not work for ERM∗.

Different ways to estimate global-scope intervening effects. To estimate the global-scope inter-
vening effects efficiently and accurately, we propose a clustering-then-sampling strategy. An alter-
native is the naı̈ve random mini-batch sampling. As shown in Fig. 3(a), the classification accuracy
increases along with the increased sampling batch-size. This is because increasing batch-size will
result in a better estimation of the global-scope intervention with lower SE. However, the memory
overhead increases drastically simultaneously. In contrast, our clustering-then-sampling outper-
forms the naı̈ve random sampling by 0.7% with lower memory utilization (the batch-size is fixed as
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256 for PACS in our case). We also conduct experiments on the influence of the number of clusters
K† for all datasets. The results in Fig. 3(b) show that more clusters result in better performance, and
the performance is saturated when K† = 21 for PACS (i.e., three clusters for each class). Because
more clusters lead to lower intra-cluster variance σk of the kth cluster and more accurate estimation
of the global-scope intervention with lower SE, which is derived in the Appendix A.1.1. And three
clusters for each class are enough for global-scope intervention modeling.

Different choices of Z. We explore the effects of different choices of Z from shallow layer features
to deep layer features. The experiments and analysis are shown in Appendix A.4, which reveals that
shallow features are better.

4.3 COMPARISON WITH STATE-OF-THE-ARTS

PACS. As shown in Table 1, our proposed CICF on top of ERM∗ achieves the best per-
formance on PACS, outperforming the SOTA works including MixStyle (Zhou et al., 2021c),
RSC (Huang et al., 2020), MatchDG (Mahajan et al., 2021a) and FACT Xu et al. (2021) More-
over, ERM∗+CICF is clearly better than previous gradient-based and meta-learning based methods,
e.g., CrossGrad (Shankar et al., 2018), MLDG (Li et al., 2018a), MetaReg (Balaji et al., 2018),
and MAML (Finn et al., 2017), thanks to the more accurate global intervening effects modeling in
CICF. On the most challenging domain sketch, our ERM∗+CICF outperforms all previous methods
by a large margin (≥ 2.3%), which demonstrates that CICF can learn the causal visual features by
removing the influence from confounders efficiently. The experiments on PACS with ResNet-50 are
shown in Table 2, where our CICF is clearly superior to the SOTA methods, e.g., RSC (Huang et al.,
2020), MatchDG (Mahajan et al., 2021a), FACT (Xu et al., 2021) and recent Fish (Shi et al., 2021).

Digits-DG. As shown in Table. 1, our ERM∗+CICF achieves the best performance, outperforming
the MAML (Finn et al., 2017) by 1.4% and the recent MixStyle (Zhou et al., 2021c) by 5.2%. For
the most challenging domains (i.e., MNIST-M and SVHN), ERM∗+CICF improves the accuracy of
ERM∗ by 3.8% and 2.5% respectively.

Office-Home. As shown in Table 3 of Appendix, our ERM∗+CICF achieves the best performance
of 66.2%, exceeding the previous state-of-the-art method MixStyle (Zhou et al., 2021c) by 0.7%.
Furthermore, ERM∗+CICF improves ERM∗ on the challenging Clipart by a margin of 3.2%.

VLCS. The results on VLCS are shown in Table 4 of Appendix, where our ERM∗+CICF achieves
the state-of-the-art result, outperforming the second best MASF (Dou et al., 2019) by 0.6%, which
is based on meta-learning. Moreover, CICF brings the improvement of 1.7% for ERM∗.

4.4 FEATURE VISUALIZATION

To validate that CICF actually learns the causal visual features, we visualize and compare the
Grad-CAM (Selvaraju et al., 2017) of ERM and ERM+CICF in Fig. 4. Intervened by the con-
founders (e.g., background), ERM easily focuses on the object-irrelevant regions (i.e., non-causal
features), impeding the model’s generalization ability. In contrast, thanks to the guidance of CICF,
ERM+CICF is prone to focus more on the foreground object regions (i.e., causal features). Further,
we visualize the learned features by t-SNE (Saito et al., 2019) on Digits-DG in the Appendix A.6.

5 CONCLUSION

In this paper, we propose a novel method dubbed Confounder Identification-free Causal Visual Fea-
ture Learning (CICF) for learning causal visual features without explicit identification and exploita-
tion of confounders. Particularly, motivated and based on the front-door criterion, we model the
interventions among samples and approximate the global-scope intervening effects for causal vi-
sual feature learning. Extensive experimental results on domain generalization validate that our
CICF can help a model to achieve superior generalization capability by learning causal features,
without the need of identifying confounders. Our method is generic which should be applicable to
other fields such as NLP. We leave this as future work.
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A APPENDIX

A.1 MORE DETAILS ON CICF

A.1.1 STATISTICAL ANALYSIS ON SAMPLING ALGORITHMS

In this section, we provide the statistical analysis for the superiority of our proposed sampling strat-
egy, i.e., clustering-then-sampling, by comparing it to the random mini-batch sampling strategy. As
a result, we theoretically derive that using our clustering-then-sampling has a significant smaller
standard error (SE) in estimating the global-scope gradient, compared with using the random mini-
batch sampling strategy.

Given a training dataset D = (xi, yi)
N
i=1, the global-scope gradient can be computed as:

g† =

N∑
i=1

giP (xi), where P (xi) =
1

N
(12)

However, it is intractable to compute g† with Eq. 12 directly, which requires traversing over all
training data.

Our clustering-then-sampling aims to simulate the global-scope gradient with partial data from the
training dataset. Another alternative naı̈ve method is random mini-batch sampling.

Random mini-batch sampling. With this strategy, the gradient grandom of each iteration is com-
puted over a mini-batch data {xr

j , y
r
j}

M

j=1
, where the mini-batch data with size M is randomly sam-

pled from the training data:

grandom =

M∑
j=1

gjP (xr
j), where P (xr

j) =
1

M
(13)

According to the sampling theory (Ghosh, 2002), the expectation of grandom can be represented as:

E(grandom) = E(
1

M

M∑
j=1

gj) =
1

M

M∑
j=1

E(gj) = µ, (14)

where µ denotes the expectation of gradients of all samples in the training data. To measure this
strategy’s estimation accuracy of approximating the global-scope gradient grandom in Eq. 12, we
can derive its SE as:

SErandom =
σ2

M
(1− M − 1

N − 1
), (15)

where σ2 is the variance of the gradients of all training samples. Considering M ≪ N , Eq. 15 can
be further approximated as:

SErandom ≈
σ2

M
. (16)

clustering-then-sampling. In contrast, in our clustering-then-sampling, we first cluster the training
samples of each class in the dataset into K cluster with K-means algorithm (Pelleg et al., 2000)
and totally obtain K† clusters for the whole training data. We denote the mean and variance of
the gradients of the kth cluster Kk as µk and σ2

k respectively. Since the clustering, the variance
of the sample distribution in each cluster is significantly smaller than the variance of the sample
distribution in whole training data. Therefore, the gradient variance of the kth cluster σ2

k is smaller
than σ2. Then we sample Nk samples from the kth cluster to form a mini-batch with the size of
M (i.e., M =

∑K†

k=1 Nk). Here, Nk is proportional to the ratio P (Kk) (i.e., Nk = MP (Kk))
and P (Kk) is ratio of the size of the kth cluster NK

k to the size of entire training data N (i.e.,

P (Kk) =
NK

k

N ). Then the global-scope gradient can be computed with:

gours =
1

M

K†∑
k=1

Nk∑
j=1

gx̃j,k∈Kk
(17)
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Algorithm 1 Confounder Identification-free Causal Visual Feature Learning
1: Input: Training dataset {(xi, yi)}Ni=1.
2: Init: learning rate: α, β; model f with parameter θ.
3: Obtain K† clusters from training data by clustering the samples of each class into K clusters.
4: while not converge do
5: Sample M samples from K† clusters as a batch.
6: Estimate global intervention with g†. ▷ Eq. 7
7: Update f with g† as: θ† = θ − αg†.
8: Compute the loss LCICF. ▷ Eq. 10
9: Update θ ← θ − β∇θLCICF.

10: end while

Based on stratified sampling theory (Ghosh, 2002), the expectation of gours can be computed as:

E(gours) =

K†∑
k=1

Nk

M
µk =

K†∑
k=1

MP (Kk)

M
µk = µ (18)

The standard error (SE) of our clustering-then-sampling can be derived as :

SEours =

K†∑
k=1

P (Kk)
2 1

Nk
(1− Nk − 1

NK
k − 1

)σ2
k, (19)

where NK
k denotes the number of all samples in the kth cluster. Considering Nk ≪ NK

k ,

SEours ≈
K†∑
k=1

P (Kk)
2 1

Nk
σ2
k =

K†∑
k=1

P (Kk)

M
σ2
k (20)

In clustering, the intra-cluster gradient variance σ2
k reduces with the increasing the number of clus-

ters. Thus, we can get σ2
k < σ2 when 1 ≤ k ≤ K†. We represent the maximum value of σ2

k as
(σ2

k)max = max{σ2
k|1 ≤ k ≤ K†}. The Eq. 20 can be rewritten as:

SEours =

K†∑
k=1

P (Kk)

M
σ2
k ≤ (σ2

k)max

K†∑
k=1

P (Kk)

M

=
1

M
(σ2

k)max <
1

M
σ2 = SErandom (21)

Based on the Eq. 21, we can draw a conclusion that our clustering-then-sampling is better than
random mini-batch sampling for simulating the global-scope gradient accurately. Furthermore, from
the Eq. 21, we can let (σ2

k)max ≪ σ2 by increasing the number of clusters, and obtain the SEours ≪
SErandom.

A.1.2 EXPERIMENTAL EVIDENCE FOR THE SIGNIFICANT DIFFERENCE BETWEEN TWO
SAMPLING STRATEGIES.

To further demonstrate the difference between our clustering-then-sampling and random mini-batch
sampling, we introduce a metric E =

∑K†

k=1(|Nk −Rk|) to measure the difference degree between
two sampling strategies, where Nk and Rk denote the number of sampled instances from the kth

cluster using clustering-then-sampling and random mini-batch sampling, respectively. We conduct
two experiments on PACS with batch-size M = 256 as follows. 1) We cluster three clusters for each
of the seven classes in PACS and totally obtain 21 clusters. The average E is 55, i.e., the difference
ratio E/M between clustering-then-sampling and random mini-batch sampling is 55/256 = 21.5%.
2) We consider the class prior for random mini-batch sampling, and adopt the random mini-batch
sampling weighted by the number of each class. We have E as 46 and the difference ratio E/M =
46/256 = 18.0%. Based on the above experiments, we can find that our clustering-then-sampling
is significantly different from random mini-batch sampling.
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A.1.3 MORE DETAILS ON THE SETTING OF SAMPLING ALGORITHM

Our CICF aims to simulate the global intervening effects from the perspective of optimization with:

g† =
1

M

K†∑
k=1

Nk∑
j=1

gx̃j,k∈Kk
, (22)

where a mini-batch sampling procedure is applied to x̃j,k ∈ Kk (i.e., clustering-then-sampling).
After obtaining the updated θ† with θ† = θ − α ∗ g†, we can obtain the loss function LCICF and get
the reliable optimization direction against the intervening effects of confounders:

LCICF =
∑
x∈X

Lce(fθ†(h(x)), y), (23)

where another mini-batch sampling procedure is applied to the variable x.

As above, there are two mini-batch sampling in our CICF adopted for computing global-scope
gradient and loss function LCICF respectively. They are denoted by {x̃, ỹ}Mi=1 and {x, y}M l

i=1, respec-
tively. To clarify the composition of the samples in each mini-batch, we first define some notations,
respectively as follows:

• N : The number of all samples in the training dataset

• NK
k : The number of all samples in the kth cluster.

• Nk: The number of sampled samples in the kth cluster to form a mini-batch.

• M : The number of all samples in a mini-batch for computing global-scope gradient.

• M l: The number of all samples in a mini-batch for computing LCICF.

• P (Kk): The ratio of all samples NK
k in the kth cluster to all training data N , which is

represented as P (Kk) =
NK

k

N

For computing global-scope gradient, we respectively sample Nk samples from the kth cluster to
form a mini-batch {x̃, ỹ}Mi=1. Nk can be set with two strategies, respectively Nk = MP (Kk) and
Nk = M

K† , responding to two scheme for computing LCICF.

When we directly consider the unbalance question between different clusters in computing LCICF,
we can sample M l

K† samples from each cluster to form a mini-batch {x, y}M l

i=1, and corresponding
Nk is Nk = M

K† . On the contrary, when we randomly sample M l samples from all training data to
compute LCICF, the corresponding Nk is Nk = MP (Kk), which needs to model the intervention
caused by the unbalance question.

A.2 MORE DETAILS ON BACK-DOOR/FRONT-DOOR CRITERION

Back-door and front-door criteria have been proposed in Pearl et al. (2016); Pearl (2009a) to reveal
the causality between two variables X and Y . We further clarify their basics mathematically in this
section.

Back-door criterion. Fig. 5 shows the back-door criterion, which targets for removing the inter-
vention effects with do operation. Do operation denotes a surgery to cut off the connection from
C to X . From Fig. 5(a), the P (Y |X) is associated with two paths, respectively as X ←− C −→ Y
and X −→ Y . Here X ←− C −→ Y is a spurious path, which intervenes the estimation of causality
between X and Y , denoted as P (Y |do(X)) (i.e., the Fig. 5(b)). Following the Pearl et al. (2016),
we can denote the conditional probability between X and Y in Fig. 5(b) as Pm(Y |X). Since C has
no parent-level variable, the Pm(C) = Pm(C|X) in the Fig. 5(b) is equivalent to the P (C) in the
Fig. 5(a). Furthermore, we can get the Pm(Y |X,C) in the Fig. 5(b) is equivalent to P (Y |X,C)
in the Fig. 5(a) since the same graph architecture. Based on the above definition, the back-door
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Figure 5: Back-door criterion

Figure 6: Front-door criterion

criterion can be derived as:
P (Y |do(X)) = Pm(Y |X)

=
∑
c

Pm(Y |X,C = c)Pm(C = c|X)

=
∑
c

Pm(Y |X,C = c)Pm(C = c)

=
∑
c

P (Y |X,C = c)P (C = c) (24)

Then we can get the formulation of the back-door criterion as:

P (Y |do(X)) =
∑
c

P (Y |X,C = c)P (C = c). (25)

Front-door criterion. From Eq. 24, we can draw a conclusion that estimating the causality be-
tween X and Y (i.e., P (Y |do(X)) requires traversing the distribution of confounders C. However,
confounders C are in general diverse and not identifiable. To solve the above question, as shown in
Fig. 6, the front-door criterion introduces an intermediate variable Z and transfers the requirement
of modeling the intervening effects of confounders C on X −→ Y to modeling the intervening effects
of X on Z −→ Y (Pearl et al., 2016). Specifically, front-door criterion decompose the P (Y |do(X))
into two components, i.e., P (Y |do(Z)) and P (Z|do(X)), which can be represented as:

P (Y |do(X)) =
∑
z

P (Z = z|do(X))P (Y |do(Z = z)) (26)

As shown in Fig. 6(a), the variables X and Z do not have common causes, which reveals the path
X −→ Z is not intervened by other variables. Therefore, the causality between X and Z is equivalent
to its correlation as:

P (Z = z|do(X)) = P (Z = z|X) (27)
From Fig. 6(a), the path Z −→ Y is intervened by two variables, respectively as C, X , since the
existing spurious path Z ←− X ←− C −→ Y . Then we can simply block this spurious path by cutting
off the path X −→ Z with back-door criterion (Pearl et al., 2016), which gets rid of identifying the
confounders C.

P (Y |do(Z = z)) =
∑
x̃∈X

P (Y |Z = z, x̃)P (x̃) (28)

Based on Eq. 27 and 28, we can derive Eq. 26 as:

P (Y |do(X)) =
∑
z

P (Z = z|X)
∑
x̃∈X

P (Y |Z = z, x̃)P (x̃) (29)

Then we can obtain the formulation of the front-door criterion as Eq. 29.
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A.3 USING h(X) AS Z SATISFIES FRONT-DOOR CRITERION

In this section, we give the proof that using h(x) as Z satisfies the front-door criterion. As depicted
in Pearl et al. (2016), the definition of the front-door criterion is as following:

Definition: if Z satisfies the front-door criterion relative to an ordered pair of variables (X,Y ), it
must obey the following principles: 1) Z intercepts all directed paths from X to Y . 2) There is no
unblocked back-door path from X to Z. 3) All back-door paths from Z to Y are blocked by X .

We prove that ours satisfy the above principles as:

• As shown in Fig. 2, the direct path from X to Y is built from the model φ, that is composed
of two sub-models, h and f . We can represent this path as Z = g(X), Y = f(Z). We can
observe that Z intercepts all directed paths from X to Y , which satisfies the Principle 1).

• The second principle requires there is no unblocked back-door path from X to Z, (i.e.,
P (Z|do(X)) = P (Z|X)), which is a vital factor in ensuring that the causal effects can
be estimated. We interpret that ours satisfy this principle from two perspectives. 1) As
shown in Fig. 2, the effect of confounders C to Z is transmitted by X through a sub-model

f as C −→ X
f−→ Z instead of X ←− C −→ Z, which indicates that there is no back-

door from X to Z and thus no common confounders for X and Z. 2) We prove this from
contradiction. From the theory of the back-door criterion, if there are common confounders
C for X and Z, then P (Z|do(X))! = P (Z|X). In fact, when Z = h(X) is obtained from a
deterministic mapping of X at the inference stage, we always have P (Z|X,C) = P (Z|X)
for any confounder C. Then we can derive that P (Z|do(X)) =

∑
C=c P (Z|X, c)P (c) =∑

C=c P (Z|X)P (c) = P (Z|X). This means there are no common confounders for X and
Z (i.e., no unblocked back-door path for X and Z), which satisfies the Principal 2).

• There are two paths from Z to Y , i.e., Z −→ Y and Z ←− X ←− C −→ Y . The second path
is called the back-door path between Z and Y . When we condition on X , the back-door
path will be blocked. Therefore, all back-door paths from Z to Y are blocked by X , which
satisfies the Principal 3).

Consequently, exploiting Z = h(X) is consistent with the front-door criterion.

Another essential factor for estimating the causal effects by the front-door criterion is P (X,Z) > 0.
That means if P (X,Z)=0, the P (Y |do(X)) in Eq. 2 is equivalent 0 and cannot be estimated. In our
CICF, Z is deterministic related to X with Z = f(X). Based on the probability theory P (X,Z) =
P (X)P (Z|X). Since Z = f(X), the P (Z|X) = P (f(X)|X) = 1 is always holds when f is fixed
at inference stage. Therefore, P (X,Z) = P (X)P (Z|X) = P (X) > 0 holds in our method.

A.4 DIFFERENT CHOICES OF Z

As shown in Fig. 2 (a), the model φ is separated into successive h and f , and Z = h(X) is the inter-
mediate output of φ. To explore the effects of different choices of Z, i.e., and different separations
of φ, we conduct ablation experiments on PACS. Fig. 7 shows the different choices of Z based on
ResNet and the corresponding results are shown in Fig. 3(c). It is observed that the shallower Z
is obtained, the better accuracy the results achieved. We reckon the reason is that selecting Z from
shallower layers will result in a larger model for f , which will have more capability to learn the
conditional probability P (Y |do(Z)). In this paper, we set Z = Z0 to make f have more parameters
to learn causal features.

Figure 7: Different choices for the intermediate output Z.
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Figure 8: Visualization of the Grad-Cams w.r.t. classification task for domain generalization. The
first row of left/right panels shows the images from cartoon/photo domains in PACS. The second,
third and fourth rows show the Grad-Cams of ERM, IRM (Arjovsky et al., 2019) and our CICF.

Figure 9: t-SNE visualization of features learned by ERM (left) and our CICF (right).

A.5 MORE IMPLEMENTATION DETAILS

For PACS and Office-Home, we take ResNet18 (He et al., 2016) pretrained on ImageNet (Deng
et al., 2009) as backbone, following Zhou et al. (2021c); Carlucci et al. (2019); Li et al. (2018a). For
VLCS, we take AlexNet (Krizhevsky et al., 2012) pretrained on ImageNet (Deng et al., 2009) as our
backbone, which is the same as Dou et al. (2019); Li et al. (2019); Matsuura & Harada (2020). For
Digits-DG, we adopt the model architecture used in previous works (Zhou et al., 2020b; Carlucci
et al., 2019; Zhou et al., 2021c), which is composed of four convolution layers with inserted ReLU
and max-pooling layers. We set the mini-batch size M for computing the global-scope gradient as
256,and the mini-batch size M l for computing LCICF as 84. We set the batch size to 84 and train
the model using SGD optimizer for 60 epochs. For PACS, the learning rate α and β are set to 0.05
and 0.01 respectively. For VLCS, the learning rate α and β are 0.005 and 0.001 respectively. As for
Office-Home, we set α, β as 0.001 and 0.001 respectively. For Digits-DG, we set α, β as 0.5 and
0.1 respectively. All reported results are averaged among six runs with different seeds.

The GPU memory cost of our CICF is 7.151 GiB and the clustering for training data takes 164
seconds for PACS, which introduces only 4.8% extra time to the whole training process (i.e., 3432
seconds) while bringing the significant gain of 2.4%.
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Table 3: Classification accuracy (%) of different DG methods on Office-Home with ResNet-18 as
the backbone.

Method Office-Home
Art Clipart Product Realworld Avg.

JiGen 53.0 47.5 71.5 72.8 61.2
MMD-AAE 56.5 47.3 72.1 74.8 62.7

MLDG 57.8 50.3 70.6 73.0 63.0
CrossGrad 58.4 49.4 73.9 75.8 64.4

CCSA 59.9 49.9 74.1 75.7 64.9
MixStyle 58.7 53.4 74.2 75.9 65.5

ERM 58.1 48.7 74.0 75.6 64.2
ERM+MAML 56.8 52.5 74.0 74.7 64.5
ERM+CICF 57.1 52.0 74.1 75.6 64.7

ERM∗ 59.6 53.0 74.3 75.4 65.6
ERM∗+MAML 56.2 56.1 72.6 73.2 64.5
ERM∗+CICF 59.3 56.2 74.2 75.1 66.2

Table 4: Classification accuracy (%) of different DG methods on VLCS with AlexNet as the back-
bone.

Methods VLCS
Caltech Labelme Pascal Sun Avg.

MLDG 97.9 59.5 66.4 64.8 72.2
Epi-FCR 94.1 64.3 67.1 65.9 72.9

JiGen 96.93 60.9 70.6 64.3 73.2
MMLD 96.6 58.7 72.1 66.8 73.5
MASF 94.8 64.9 69.1 67.6 74.1
ERM 96.3 59.7 70.6 64.5 72.8

ERM+MAML 97.8 58.0 67.1 64.1 71.8
ERM+CICF 97.8 60.1 69.7 67.3 73.7

ERM∗ 96.4 60.7 68.6 66.2 73.0
ERM∗+MAML 98.1 58.2 69.6 64.5 72.6
ERM∗+CICF 98.1 62.4 69.3 69.1 74.7

A.6 FEATURE VISUALIZATION

We visualize more Grad-CAM (Selvaraju et al., 2017) of ERM and ERM+CICF in Fig. 8. We can
observe that our CICF focus more on foreground regions (i.e., the casual features), while ERM
easily focuses on the misleading regions (e.g., the bone in the dog of the cartoon, background) when
capturing causal features. As shown in Fig. 9, we visualize the learned feature on Digits-DG by t-
SNE (Saito et al., 2019). We find that the distribution of features extracted from ERM+CICF is more
compact across samples with the same category, compared to ERM. This validates the effectiveness
of our algorithm for causal feature learning. We also visualize the t-SNE visualizations with different
random seeds in the Fig. 10 and Fig. 11.

A.7 MORE COMPARISONS WITH THE DOMAINBED BENCHMARKS.

To further demonstrate the effectiveness of our CICF, we implement our CICF on the baseline
ERM of DomainBed (Gulrajani & Lopez-Paz, 2020) and compare it with the benchmarks used in
DomainBed (Gulrajani & Lopez-Paz, 2020), including IRM (Arjovsky et al., 2019), DRO (Sagawa
et al., 2019), Mixup (Xu et al., 2020), MLDG (Li et al., 2018a), CORAL (Sun et al., 2016), MMD (Li
et al., 2018b), DANN (Ganin et al., 2016), and C-DANN (Li et al., 2018c). We utilize the commonly-
used datasets Office-Home (Venkateswara et al., 2017), VLCS (Torralba & Efros, 2011), and the
synthesized ColorMNIST (Arjovsky et al., 2019). As shown in the Table 5, Table 6, Table 7, our
CICF improves the ERM by an average gain of 2% on Office-Home, 1.7% on VLCS and 4.1% on
ColorMNIST. Our CICF achieves the best performances on these three datasets. It is noteworthy
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that even in the most difficult domain in ColorMNIST, our CICF can achieve an accuracy of 21.4%,
which exceeds the second method MMD (Li et al., 2018b) by 10.9%.

Table 5: Classification accuracy (%) of different DG methods on Office-Home with ResNet-50 as
the backbone.

Office-Home: Model selection method: training domain validation set
Algorithm A C P R Avg.

ERM 62.7 ± 1.1 53.4 ± 0.6 76.5 ± 0.4 77.3 ± 0.3 67.5 ± 0.5
IRM 61.8 ± 1.0 52.3 ± 1.0 75.2 ± 0.8 77.2 ± 1.1 66.6 ± 1.0
DRO 61.6 ± 0.7 52.9 ± 0.2 75.5 ± 0.5 77.7 ± 0.2 66.9 ± 0.3

Mixup 64.7 ± 0.7 54.7 ± 0.6 77.3 ± 0.3 79.2 ± 0.3 69.0 ± 0.1
MLDG 63.7 ± 0.3 54.5 ± 0.6 75.9 ± 0.4 78.6 ± 0.1 68.2 ± 0.1
CORAL 64.4 ± 0.3 55.3 ± 0.5 76.7 ± 0.5 77.9 ± 0.5 68.6 ± 0.4
MMD 63.0 ± 0.1 53.7 ± 0.9 76.1 ± 0.3 78.1 ± 0.5 67.7 ± 0.1
DANN 59.3 ± 1.1 51.7 ± 0.2 74.1 ± 0.8 76.6 ± 0.6 65.4 ± 0.6

C-DANN 61.0 ± 1.4 51.1 ± 0.7 74.1 ± 0.3 76.0 ± 0.7 65.6 ± 0.5
ERM + CICF (Ours) 63.1 ± 0.2 59.4 ± 0.2 77.4 ± 0.0 78.1 ± 0.4 69.5 ± 0.2

Table 6: Classification accuracy (%) of different DG methods on VLCS with ResNet-50 as the
backbone

VLCS: Model selection method: training domain validation set
Algorithm C L S V Avg.

ERM 97.6 ± 1.0 63.3 ± 0.9 72.2 ± 0.5 76.4 ± 1.5 77.4 ± 0.3
IRM 97.6 ± 0.3 65.0 ± 0.9 72.9 ± 0.5 76.9 ± 1.3 78.1 ± 0.0
DRO 97.7 ± 0.4 62.5 ± 1.1 70.1 ± 0.7 78.4 ± 0.9 77.2 ± 0.6

Mixup 97.9 ± 0.3 64.5 ± 0.6 71.5 ± 0.9 76.9 ± 1.3 77.7 ± 0.4
MLDG 98.1 ± 0.3 63.0 ± 0.9 73.5 ± 0.6 73.7 ± 0.3 77.1 ± 0.4
CORAL 98.8 ± 0.1 64.6 ± 0.8 71.7 ± 1.4 75.8 ± 0.4 77.7 ± 0.5
MMD 97.1 ± 0.4 63.4 ± 0.7 71.4 ± 0.8 74.9 ± 2.5 76.7 ± 0.9
DANN 98.5 ± 0.2 64.9 ± 1.1 73.1 ± 0.7 78.3 ± 0.3 78.7 ± 0.3

C-DANN 97.5 ± 0.1 65.2 ± 0.4 73.4 ± 1.1 76.9 ± 0.2 78.2 ± 0.4
ERM + CICF (Ours) 99.1 ± 0.4 64.0 ± 0.1 74.2 ± 0.5 79.2 ± 0.4 79.1 ± 0.3

Table 7: Classification accuracy (%) of different DG methods on ColorMNIST with MNIST back-
bone used in DomainBed

ColorMNIST: Model selection method: training domain validation set
Algorithm 0.1 0.2 0.9 Avg.

ERM 72.7 ± 0.2 73.2 ± 0.3 10.0 ± 0.0 52.0 ± 0.1
IRM 72.0 ± 0.3 73.2 ± 0.0 10.1 ± 0.2 51.8 ± 0.1
DRO 72.7 ± 0.3 73.1 ± 0.3 10.0 ± 0.0 52.0 ± 0.1

Mixup 72.4 ± 0.2 73.3 ± 0.3 10.0 ± 0.1 51.9 ± 0.1
MLDG 71.4 ± 0.4 73.3 ± 0.0 10.0 ± 0.0 51.6 ± 0.1
CORAL 71.8 ± 0.4 73.3 ± 0.2 10.1 ± 0.1 51.7 ± 0.1
MMD 72.1 ± 0.2 72.8 ± 0.2 10.5 ± 0.2 51.8 ± 0.1
ADA 72.0 ± 0.3 72.4 ± 0.5 10.0 ± 0.2 51.5 ± 0.3

CondADA 72.2 ± 0.3 73.2 ± 0.2 10.4 ± 0.3 51.9 ± 0.1
ERM + CICF (Ours) 72.9 ± 0.3 74.1 ± 0.2 21.4 ± 0.4 56.1 ± 0.2
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Figure 10: t-SNE visualization of features learned by ERM (left) and our CICF (right) with different
seeds.
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Figure 11: t-SNE visualization of features learned by ERM (left) and our CICF (right) with different
seeds.
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