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ABSTRACT

Learning the spatial context of cells through pre-training may enable us to sys-
tematically decipher tissue organization and cellular interactions in multicellular
organisms. Yet, existing models often focus on individual cells, neglecting the
intricate spatial dynamics between them. We develop GeST, a deep generative
transformer model that is pre-trained on the task of using information from neigh-
boring cells to iteratively generate cellular profiles in spatial contexts. In GeST,
we propose a novel serialization strategy to convert spatial data into sequences, a
robust cell quantization method to tokenize continuous gene expression profiles,
and a specialized attention mechanism in the transformer to enable efficient train-
ing. We pre-trained GeST on a large-scale spatial transcriptomics dataset from the
mouse brain and demonstrated its performance in unseen cell generation. Our re-
sults also show that the pre-trained model can extract spatial niche embeddings in
a zero-shot way and can be further fine-tuned for spatial annotation tasks. Further-
more, GeST can simulate gene expression changes in response to spatial pertur-
bations, closely matching experimental results. Overall, GeST offers a powerful
framework for generative pre-training on spatial transcriptomics.

1 INTRODUCTION

In recent years, pre-training transformer-based models on large-scale scientific data have emerged
as a new paradigm in AI for biology (Webb et al., 2018; Bunne et al., 2024; Szałata et al., 2024), en-
abling the development of foundation models tailored to specific modalities such as DNA sequences
(Nguyen et al., 2024), proteins (Abramson et al., 2024), and single-cell gene expression (Theodoris
et al., 2023; Hao et al., 2024; Cui et al., 2024; Bian et al., 2024). However, most of these models fo-
cus on gene-gene relationships or products within isolated cellular contexts, neglecting the intricate
cell communications in spatial that is fundamental in multicellular organisms. As a result, current
models struggle to handle spatial tasks or understand spatial patterns, which limits their ability to
fully comprehend and model cellular behaviors in complex tissue environments.

Spatial transcriptomic (ST) is an emerging technology that combines high-throughput gene expres-
sion profiling with spatial localization of cells within tissue sections (Moses & Pachter, 2022).
Beyond scRNA-seq data, where a cell is analogous to a sentence composed of gene tokens, in
spatial transcriptomics data, a tissue is a document consisting of many cell sentences. Rich ST
datasets enable us to learn cell-cell relationships in a data-driven manner. Previous studies such as
GraphST(Long et al., 2023) and SpaGCN (Hu et al., 2021) often trained graph neural network to in-
tegrate spatial and gene expression information. These models were trained independently for each
dataset, leaving the paradigms of pretraining or generative modeling unexplored. A recent study
called CellPLM (Wen et al., 2023) built a BERT-style (Devlin, 2018) pre-trained model by using
partial gene expression data from a target cell and information from its neighboring cells to predict
the remaining gene expression. However, since CellPLM needs to know the expression of a subset
of genes in a cell before predicting the cell’s overall gene expression, it cannot generate brand new
cells in unseen locations. This limitation restricts its ability to explicitly study how spatial context
alone influences a cell’s characteristics, which is crucial to understand the pattern of tissue function-
ality. In addition, constrained by the BERT modeling, its predictions are based on the existing input
all at once, lacking the ability to iteratively generate new cells or adapt to dynamic spatial contexts.
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Inspired by the advancements of GPT models (Achiam et al., 2023; Radford et al., 2019; Brown,
2020), we endeavor to develop a generative pre-trained model on ST data to overcome these lim-
itations. Such a model can iteratively generate cells at unseen positions. It can further investigate
perturbation effects in spatial contexts by manipulating the given neighborhood information, provid-
ing an in-silico extension of current single-cell perturbation studies. However, GPT modeling on ST
data faces several unique challenges. First, there is no inherent order of cells within two-dimensional
tissue sections. While one solution can involve serializing spatial data into a fixed sequence, this ap-
proach fails to accommodate scenarios requiring different orders during inference. Therefore, a
flexible serialization strategy is essential. Second, cells in spatial transcriptomics data have continu-
ous gene expression profiles. Unlike the discrete tokens in natural language, these continuous values
may introduce error accumulation during the autoregressive generation (Figure A.1).

To address these challenges and support new applications such as in-silico spatial perturbation, we
present GeST, a deep generative pre-trained transformer that iteratively generates cells by leveraging
the neighbor information. To the best of our knowledge, GeST is the first generative pre-trained
transformer to understand cell-cell relationships and advance cell modeling in spatial context. Our
experiments showed its superior performance across several downstream tasks. Our work makes the
following key contributions:

• Spatial Serialization Strategy: We introduce a novel method for serializing spatial tran-
scriptomics data, coupled with a specialized attention mechanism called Spatial Attention
and a designed input sequence for the transformer. This ensures high computational effi-
ciency during pre-training and provides flexibility during inference.

• Robust Cell Tokenization: We develop a cell quantization method to tokenize cells’ ex-
pression profiles, alongside a hierarchical pre-training loss designed to mitigate error accu-
mulation in autoregressive generation.

• Transferable Performance: We pre-train a GeST model with 1 million parameters and
demonstrated that the pre-trained model can achieve superior performance after being
transferred to clustering and annotation tasks.

• Pioneering Spatial Perturbation Analysis: We establish GeST as a pioneering model
for in-silico spatial perturbation analysis, achieving substantial alignment with results from
real spatial experiments.

2 TASK FORMULATION

Given a spatial omics dataset, we denote it as a set {x1, x2, x3, . . . , xn}, encompassing all n cells
within a two-dimensional tissue slice. We define two critical functions: g(·), the gene expression
retrieval function, and s(·), the spatial information retrieval function. For any given cell x, the set
N(x) = {xN1, xN2, . . . , xNk} includes all k neighboring cells.

Unseen cell generation (Pre-training task). The objective is predicting the gene expression g(x)
of a target cell x based on its spatial location. Instead of making a direct prediction based on the
spatial coordinate like P (g(x)|s(x)), we aim to predict the gene expression of a target cell x using
the spatial locations and gene expressions of its neighboring cells:

P (g(x)|s(x), g(N(x)), s(N(x))) (1)

Following this modeling, the objective function of our task is:

min
θ
||g(xk+1)−Fθ(x | s(x), g(N(x)), s(N(x)))|| (2)

where Fθ represents our proposed spatial generative model. However, spatial data lacks a natural
sequential order, which challenges the application of auto-regressive models that usually work for
sequence prediction tasks. To address this, we transform this objective into a sequential format:

min
θ
||g(xk+1)−Fθ(xk+1 | s(xk+1), g(x1), s(x1), g(x2), s(x2), . . . , g(xk), s(xk))|| (3)

where xk+1 is the target cell, and the sequence (x1, x2, . . . , xk) represents its neighbors, arranged
by a serialization strategy.
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Transformer

= +

Gene Expression Token

Spatial Position Token

Figure 1: Given one spatial location x, the spatial generation model takes its spatial coordinate
information s(x), its neighbors’ N(x) gene expression g(N(x)) and spatial location s(N(x)) as the
input, and predicts its gene expression value.

Furthermore, similar to natural language generation, the objective of this task can be extended to
generating multiple cells, which requires iteratively applying the function F in Equation 3 to pro-
gressively estimate the gene expression of cells adjacent to the known tissue boundaries.

Niche clustering/annotation. In spatial transcriptomics, a niche refers to a functional or structural
tissue region where cells interact with each other and their surroundings. Identifying and under-
standing these niches is crucial for elucidating tissue organization (Jain & Eadon, 2024). Unlike the
spatial generation, the objective of niche clustering or annotation task is to map the spatial and gene
expression information of cell x and its neighbors N(x) information into a high-dimensional em-
bedding space that facilitates clustering or label prediction. This encoding process can be formalized
as follows:

Eϕ(x,N(x)) = Fϕ(g(x), s(x), g(N(x)), s(N(x))) (4)
Here, Eϕ represents the encoding function parameterized by ϕ, which integrates the gene expression
and spatial information of a cell and its neighbors into a unified embedding vector.

In-silico spatial perturbation. This task aims to simulate gene expression changes in response to
the perturbation of given target cells in the spatial context. We maintain the spatial positions of the
target cells and their neighboring cells but manipulate the gene expressions of the target cells to
predict how the neighboring cells change using Equation 3. Since it is impossible in real-world ex-
periments to obtain both normal and perturbed gene expressions from the same cell simultaneously,
we assess our results by analyzing statistical variations in gene expression between the normal and
perturbed scenarios and corroborate these findings with knowledge from existing literature.

3 GENERATIVE PRE-TRAINING AND FINE-TUNING METHODOLOGY

We introduce GeST, a spatial cell language model, with the following basic components: a cell ex-
pression quantization module and a transformer decoder. During pre-training, only the neighboring
cells have complete information (both gene expression and spatial position tokens), while the target
cells are provided only with their spatial position token, compelling the model to predict the gene
expression at that specific location(Figure 1). Fine-tuning extends GeST to other downstream tasks
with niche embeddings. We introduced these in detail in the following sections.

3.1 SERIALIZATION STRATEGY

At each training step, we first crop a square from the training tissue section, and all n cells X =
{xo1, xo2, xo1, ..., xoN} in this square will be used to constitute a training sequence. We serialize
them by sampling along diagonal paths. Specifically, we first randomly select an anchor point p from
four vertexes of the square. Then we calculate all cells’ Euclidean distances from p and use them
as the sampling weights: {wo1, wo2, wo3, ..., woN}, where woi = ||s(xoi) − p||2. We do sampling
without replacement in N times and thus get a sequence [x1, x2, x3, ...xN ]. At each sampling time
t, the probability of selecting cell xoi is:

P (xt = xoi) =
woi∑

j∈X\D woj
(5)

where D contains cells that have been selected into the sequence. This strategy allows the adjacent
cells in spatial to have similar indexes in sequence but still retain randomness to prevent the model’s
overfitting. Based on this, we design a novel attention mechanism to enhance the computational
efficiency of the pre-training, as shown in section 3.3.

3
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Figure 2: Model architecture. a) Schematic overview of GeST. b) illustration of output and input
relationships in our pre-training task. c) Spatial Attention matrix.

3.2 CELL TOKENIZATION

Given a training sequence, we tokenize both gene expression and spatial position for each cell. For
the spatial position, we take the cell that is centered in the original tissue region as the origin of the
coordinate system. Then we normalized each cell’s coordinates by calculating the relative coordi-
nates to the origin. We tokenize the coordinate values by a two-dimensional sinusoidal positional
encoding (Detailed in A.3).

For gene expression, we found in preliminary experiments that directly generating continuous
single-cell expressions would cause error accumulation in the iterative generation process, even-
tually leading to model failure (refer to ablation study “w/o quantization” in Table 4). Therefore, we
propose to build a “meta cell vocabulary” to quantize cells’ continuous expression to discrete cell
states. Formally, given a training spatial dataset X = {x1, x2, x3, . . . , xn} with n cells and T genes,
we first perform PCA reduction to p dimensions and categorize them into K clusters by K-means.
The center point of each cluster contributes a “meta cell”, and there are two attributes of the meta
cell vocabulary: the mean expression Cexpr ∈ RK×T and the mean PCs Cpca ∈ RK×p (Algorithm
1). We note that this quantization of continuous value loses distance relationship in the expression
space, i.e., two different meta cell labels may stand for either two very similar or two totally differ-
ent meta cells. Thus, we further perform K-means clustering on the meta cell vocabulary with few
cluster numbers to obtain hierarchical labels L1, L2, L3 at various levels. After that, for any input
continuous single-cell expression y ∈ RT , we can project its expression vector to PCA space and
retrieve the nearest meta cell. Then, we substitute the original expression with its corresponding
meta cell’s mean expression c ∈ RT as the actual input to the model (Algorithm 2).

3.3 SPATIAL CONTEXT-AWARE DECODER

Our main model is a transformer decoder (Vaswani, 2017) modified for the spatial generation task.
During pre-training, the model’s input is divided into two contiguous sequences after tokenization:
the neighbor cell sequence and the target cell position sequence, constituting a sequence of N +
(N − 1) tokens. The output is a sequence of N − 1 gene expression (Figure 2a).

Neighbor Cell Sequence. This part consists of the complete tokens of the first to the (N − 1)-
th cells, totaling N − 1 cells. Each token combines both gene expression and spatial information:
[gs(x1), gs(x2), . . . , gs(xN−1)], where gs(xi) = g(xi)+s(xi) represents the combined embedding
of gene expression and spatial position for cell xi.

Target Cell Position Sequence. This part has the spatial position tokens of the second
to the N -th cells, totaling N − 1 cells, formulating a target cell position token sequence,
[s(x2), s(x3), . . . , s(xN )].

As illustrated in Figure 2b, for each target cell position s(xi+1), we use the transformer de-
coder’s parallel training capability to predict the gene expression of the next neighbor cell
g(xi+1). Prediction of target cell xi+1 is conditioned on the complete tokens of the neighbor cells
{gs(x1), gs(x2), . . . , gs(xi)} and the spatial position token s(xi+1).

4
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To achieve this, we design a special attention matrix called Spatial Attention. Unlike the causal
attention used in language models, which employs a lower triangular mask to ensure that each to-
ken can only attend to previous tokens in the sequence, our Spatial Attention allows each position
to attend to specific relevant tokens, enabling the model to capture spatial dependencies more ef-
fectively (Figure 2c). Specifically, for a sequence length of 2L (where L = N − 1), the attention
mask M is a 2L× 2L matrix. For the token at position i+ L (corresponding to predicting the gene
expression of cell xi+1), we allow attention to 1) The neighbor cell tokens at positions 1 to i (i.e.,
{gs(x1), gs(x2), . . . , gs(xi)}). and 2) The target cell position token at position i+L (i.e., s(xi+1)).
Formally, for i ∈ [1, L], the attention mask M is defined as:

Mi+L,t =

{
1, if t ∈ {1, 2, . . . , i} ∪ {L+ i}
0, otherwise

(6)

This design leverages the transformer decoder’s capability for parallel computation while effectively
modeling spatial relationships (Radford et al., 2019). By allowing each prediction to attend to the
relevant neighbor cells and the spatial position of the target cell, the model learns to generate gene
expressions conditioned on spatial context. After the decoder, a multilayer perceptron is used to con-
vert the hidden embedding h ∈ RD to gene expression space ŷ ∈ RT . Each element of prediction
ŷ represents the expression level of a specific gene, where T is the total number of genes.

3.4 LOSS FUNCTION

To compute the loss between the predicted ŷ and the ground truth gene expression g(x), instead
of computing the regression loss, we propose a hierarchical cross-entropy loss function. From the
previous section, we quantize continuous gene expression vectors into discrete categories from a
meta cell vocabulary C. Each meta cell c ∈ C is associated with hierarchical labels at four levels:
l0(c), l1(c), l2(c), and l3(c), each of them has K, K1, K2, and K3 categories. For Ki, we use 15,
10, and 5 as default. Then we project the model outputs ŷ to logits z ∈ RK corresponding to each
meta cell:

z = ŷW⊤ (7)

where W ∈ RK×T is the codebook matrix containing the meta cell embeddings. We apply the
softmax function to obtain the predicted probability distribution over the meta cells:

p(c) =
exp(zc)∑

c′∈C exp(zc′)
(8)

To compute the hierarchical losses, we aggregate the probabilities over meta cells to obtain proba-
bilities over hierarchical labels at each level. For hierarchical level i, the probability of category k is
calculated as:

p(i)(k) =
∑
c∈C

δ (li(c) = k) p(c) (9)

where δ(·) is the Kronecker delta function, which equals 1 if the condition is true and 0 otherwise.

The overall loss function L is defined as a weighted sum of the negative log-likelihood losses at each
hierarchical level:

L =

3∑
i=0

αi · Li =

3∑
i=0

αi ·
(
−li(y) log p(i)

)
(10)

where αi are weights and we set 0.25 as default. Li is the cross-entropy loss at level i, and li(y)
is the ground truth hierarchical label of the target cell’s meta cell at level i. We minimize the loss
function L across all training samples during training. Under this hierarchical loss function, the
model is encouraged to make correct predictions at multiple levels, making it more robust to wrong
predictions in a single layer, especially on the finest layer.

With regard to the inference strategy, there are two modes to convert the predicted probability to the
final predicted gene expression value: (1) “picking” mode: we directly use the meta cell’s expression
with the highest probability as the prediction. (2) “weighted aggregation” mode: we set p(c) as the
weight to aggregate all meta cells’ expression as the prediction.
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Figure 3: Niche embedding. a) We input all cells’ information and extract the last token as niche
embedding. b) for the fine-tuning task, a pooling operation is used for token aggregation.

3.5 NICHE EMBEDDING EXTRACTION

GeST can be used for niche clustering in a zero-shot manner and can be fine-tuned for niche anno-
tation, both of which require the extraction of a niche embedding. Given a niche comprising a target
cell x and its N − 1 neighboring cells, we follow the pre-training setup to generate both position
tokens and cell tokens as input. We include the target cell’s position token twice: once at the begin-
ning and once at the end of all position tokens, resulting in a total of N + 1 position tokens. For
the cell sequence, we incorporate the content tokens of all cells, yielding N tokens, as illustrated
in Figure 3a. Under this configuration, the last output token of the model is generated based on the
information from all cells, and we define this as the niche embedding, consistent with Equation 4.
We use the hidden embedding h obtained here for the zero-shot niche clustering task.

For fine-tuning, we input the sequence in the same setting and apply a pooling operation to aggregate
these embeddings into a single vector (Figure 3b) hp = Pool({hx} ∪ {hn | n ∈ N(x)}). Mean
pooling is default but we also compare it with max pooling in downstream tasks. The embedding
hp is then passed through a linear layer to obtain the logit for the niche classification task.

4 EXPERIMENTS

We conducted four experiments to demonstrate our model’s capabilities: unseen region gene expres-
sion generation, zero-shot niche embedding clustering, fine-tuning based niche label annotation, and
in-silico spatial perturbation. In generations, we validated our model on three different datasets: a
large-scale MERFISH spatial dataset of the whole mouse brain (Zhang et al., 2023), a Visium hu-
man primary liver cancer (PLC) dataset (Wu et al., 2021), and a stereo-seq brain dataset (Cheng
et al., 2022). The MERFISH dataset contains more than 3 million cells and has two replicates, and
we used the first Mouse1 and second Mouse2 replicate as the training and test set, respectively. The
rest two PLC dataset and the Stereo-seq dataset are used to show GeST ability to handle irregular
spatial patterns and various resolutions. For the in-silico spatial perturbation experiment, we ap-
plied our pre-trained model to simulate the mouse brain ischemic process. We used a real ischemic
spatial dataset (Han et al., 2024) as a reference, providing a basis for ischemia-induced genes as
ground truth. Due to differences in resolution and gene panel between our training and the reference
datasets, instead of applying our model to this dataset, we performed in-situ in-silico gene pertur-
bation on a section of our training dataset that closely matched the spatial location of this ischemic
dataset. This allowed us to identify proposed ischemia-induced genes and compare our findings with
established results. More details can be found in Section 4.4.

We implemented GeST with 8 Transformer layers and 8 heads per layer, having about 1 million
parameters. Each training sequence comes from a sampled square region with a side length of
600µm. We used PyTorch (Paszke et al., 2019) and trained the model on four NVIDIA A800 GPUs.
The pre-training process took approximately 3 hours.

4.1 UNSEEN CELL GENERATION

For pre-training, we selected one right hemisphere section from the Mouse1 dataset as validation
data and used the remaining 146 Mouse1 left hemisphere sections as the training data, totaling

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Methods
Ours Ours-W GP MLP

1.30

1.33

1.35

1.38

1.40

1.43

1.45

A
ll 

G
en

e 
R

M
S

E

Ours Ours-W GP MLP

1.0

1.2

1.4

1.6

To
p2

00
 S

V
G

 R
M

S
E

Methods Methods
Ours Ours-W GP MLP

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 C
el

l S
pe

ar
m

an

a b

d

c

0 25 50 75 100 125 150 175 200
#SVG rank

0.8

1.0

1.2

1.4

1.6

1.8
R

M
S

E

Ours (1.19)

Ours-W (1.13)

MLP (1.47)

GP (1.26)

Slide 02

Ours (1.09)

Ours-W (1.02)

MLP (1.44)

GP (1.26)

0 25 50 75 100 125 150 175 200
#SVG rank

0.50

0.75

1.00

1.25

1.50

1.75

R
M

S
E

Slide 45

Figure 4: Gene expression prediction results on unseen region. a) Root Mean Square Error(RMSE)
of all genes. Each dot represents the mean error of all genes calculated from a slide for each method.
The bar plot shows the errors across all slides. b) Spearman correlation of all genes within cell. Each
dot and the barplot is defined in a similar way. c) RMSE of top 200 spatial variable genes. d) Each
dot represents a gene; the x-axis is the rank of spatial variation, and the y-axis is the RMSE.

Table 1: AMI score of different methods niche clustering results at both the region and division
level. NicheC: NicheCompass, Ours-FT: Our finetuned model

Level Ours GraphST NicheC. SpaGCN STAGATE Raw Ours-FT
Division 0.469

±0.173
0.388
±0.152

0.438
±0.177

0.201
±0.070

0.420
±0.167

0.183
±0.091

0.470
±0.174

Region 0.484
±0.107

0.414
±0.091

0.481
±0.113

0.231
±0.067

0.462
±0.114

0.244
±0.077

0.515
±0.077

2,839,984 cells (see description of datasets in A.1). For testing, we simulated unseen regions on
each coronal section from the Mouse2 dataset by randomly cropping squares with side lengths rang-
ing from 300µm to 900µm. We recorded the spatial coordinates of the cropped cells as model inputs,
enabling direct comparison between the predicted and actual gene expressions. If the unseen region
size exceeded the maximum neighbor size used for model training, we iteratively generated cells
(see A.2 for more details). We trained two models as baselines, a Gaussian Process and a Multi-
layer Perceptron (MLP), by using cells’ absolute spatial coordinates and gene expressions from the
uncropped areas in each slide as training data.

As shown in Figure 4a, our model in the “picking” mode (labeled as “Ours”), which directly retrieves
the meta-cell expressions for predictions, exhibited lower regression errors compared to the baseline
models. Switching to the “weighted aggregation” mode (labeled as “Ours-W”), our model produced
more variable outputs and achieved even lower regression errors. Spearman correlation analysis
(Figure 4b) further confirmed that “Ours-W” achieved the highest performance in predicting ground
truth gene expressions within cells. Recognizing that not all genes exhibit strong spatial patterns,
we focused on the top 200 spatially variable genes (SVGs) per slide, identified using SOMDE (Hao
et al., 2021). Our model consistently achieved the lowest prediction errors on these SVGs (Figure
4c). In a detailed analysis of slides 2 and 45 (Figure 4d), our model more accurately predicted genes
with high spatial variation, a trend less evident in the baseline models. We also visually compared the
predicted and actual spatial patterns of SVGs (Figure A.2) and noted that our model could predict
well-aligned patterns. These findings highlight our model’s capability of learning the underlying
spatial characteristics of gene expression and cell organization.

For the 10X Visium PLC dataset, on the evaluation slide we cropped an area containing the edge
of the tumor as unseen spots (Figure A.3). In the Stereo-seq brain dataset, we cropped an area
containing all the brain cortex layers (see A.1 and Figure A.4 for details). Compared with MLP and
GP on all these two datasets, our model achieves the highest performance. Specifically, in PLC, the
marker genes of malignant cells (SPINK1, GPC3, AKR1B10) and fibroblasts (COL1A1, COL1A2)
are predicted to have clear zones, which are consistent with the ground truth (Figure A.5). These
results reveal GeST generalizable generation ability on data from various techniques.
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Table 2: F1 score of annotation results. We report the mean ± standard deviation.

Level Ours (mean) Ours (max) scANVI CellTypist
Division 0.585±0.153 0.579±0.150 0.316±0.072 0.162±0.060
Region 0.407±0.902 0.396±0.084 0.202±0.058 0.051±0.020

4.2 UNSUPERVISED NICHE CLUSTERING

A key feature of our model is its ability to learn the spatial context of neighboring cells during pre-
training. We evaluated this capability on spatial clustering and annotation tasks. We used two levels
of anatomical labels, “Division” and “Region”, provided by the Mouse Brain Common Coordinate
Framework (CCF) v3 (Wang et al., 2020), as ground truth. For the niche clustering task, we used
niche-level embeddings of each cell for clustering. We compared our method with three methods:
NicheCompass (Birk et al., 2024), STAGATE (Dong & Zhang, 2022), GraphST (Long et al., 2023)
and SpaGCN(Hu et al., 2021). We also included a baseline that gets clusters based solely on the cell’s
own gene expression data (Raw). All spatial clustering methods outperformed the raw baseline,
with our model achieving the highest adjusted mutual information (AMI) scores at both resolutions
(Table 1 and Figure A.6). These results demonstrate that our pre-trained model can be effectively
transferred to new tissues in a zero-shot manner. We also noted that after we continued training our
model on the test data in the same generative way, the model showed an even higher performance.

Unlike previous methods, our model allows control over the scope of niche information used to
generate niche embeddings. To investigate this, we used the same pre-trained model but varied the
neighborhood window size during inference to 200µm, 400µm, and 600µm. As shown in Table A.2,
increasing the window size improved clustering performance, a trend observed in both zero-shot
and fine-tuning scenarios. These findings indicate that our pre-trained model is an effective niche
embedding extractor and benefits from incorporating larger neighborhood information.

4.3 SUPERVISED NICHE ANNOTATION

We used division and region labels from the Mouse1 dataset as ground truth to fine-tune our model
for predicting these labels in the Mouse2 dataset. Before the release of the data we used, spatial
annotation methods were lacking due to limited data. So we compared two single cell annotation
methods: scANVI (Xu et al., 2021) and Celltypist (Domı́nguez Conde et al., 2022), and experi-
mented with GeST using both max and mean pooling strategies. As detailed in Table 2, our model
outperformed the single-cell methods across both pooling strategies, with the mean strategy achiev-
ing a higher performance. Visualizations of the annotation results on a representative section (Figure
A.7) show that our model provides consistent annotations across adjacent spatial regions and delin-
eates clear boundaries between different regions.

4.4 IN-SILICO SPATIAL PERTURBATION

GeST is a pioneer model for predicting cell response of in-silico perturbation in spatial transcrip-
tomic. Inspired by single-cell large models (Theodoris et al., 2023), we proposed a design for
in-silico spatial perturbations: Firstly, select a region of interest (ROI) and generate the surrounding
cell expression as an in-silico control group. Next, simulate the perturbation by modifying specific
gene expression of cells in that ROI, and predict the expression profiles at the same surrounding
positions to obtain an in-silico perturbation group (Figure 5a). By analyzing these simulation data,
we could study the impact of the perturbations in spatial context.

Here, we demonstrated an in-silico spatial perturbation experiment of an ischemic condition of the
mouse brain. Recently, Han et al. (2024) measured gene expression and cell distribution in the
ischemic mouse brain and identified several ischemic regions including the infarct core area (ICA)
and the proximal region of the peri-infarct area (PIA P). In our experiment, we selected an area with
a similar location of ICA from sample 49 from Mouse1 as ROI and generated the surrounding cell
expression as the control group, representing the normal gene expression around the ROI. In order
to simulate the ischemic effect, we manually altered gene expression in this ROI according to the
differentially expressed genes (DEGs) of ICA through in-silico activation and in-silico inhibition
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(Detailed in A.5). We then fed the model with the same surrounding positions and obtained the gene
expression prediction as the perturbation group, representing the predicted PIA P.

To validate the results, we calculated the Pearson correlation coefficients (PCCs) between gene
expression of the perturbation group and the average expression of PIA P, and compared them with
those between control group and PIA P. The PCCs are significantly higher in the perturbation group
(Figure 5b). Taking all 87 high and low DEGs in PIA P as ground truth, we correctly classified
70.11% of them by our in-silico perturbation experiment (Detailed in A.3). This is higher than the
baseline accuracy of 44.8%, which is obtained by simply adopting the DEGs from ICA (i.e. a naive
model that believes changes in ROI are the same in the neighbor). For example, Rnh1, a gene for
normal homeostasis of the brain (Hedberg-Oldfors et al., 2023), and Neurod6, a key gene in the
development and function of the central nervous system (Tutukova et al., 2021), were not modified
in ROI, but we predicted them as the high/low DEG in the neighbor area (Figure 5c,d). These
findings are consistent with Han et al. (2024). Taken together, GeST demonstrates the ability to
simulate perturbation in spatial transcriptomics.

Figure 5: In-silico spatial perturbation experiment. a) Flow chart of in-silico spatial perturbation
experiment. b) Box plot showing Pearson correlation coefficient between perturbation group and
control group with PIA P. P -value < 0.001, t-test. c) Visualization of highly expressed genes in the
perturbation group. d) Visualization of lowly expressed genes in the perturbation group.

5 ABLATION STUDY

We conducted ablation experiments to evaluate the impact of model size and training data volume
on performance. All models were trained on the left hemisphere sections of Mouse1, with the right
hemisphere section split into validation and test sets. Performance was assessed using RMSE for all
genes, RMSE for the top 50 spatially variable genes (SVGs), and cell-level Spearman correlation on
the test set. We first ablated the model size (Table 3) and observed that increasing the model from
a small one to our baseline resulted in significant performance improvements. Beyond our base-
line, further increases in model size yielded diminishing benefits, suggesting that our current model
strikes an optimal balance between performance and computational efficiency. In addition, we ex-
plored the impact of training data size by training models on uniformly sampled subsets comprising
half and one-third of the full training data. The results revealed that models trained on larger datasets
performed better, suggesting that increasing the amount of training data could further enhance model
effectiveness in future work.

Neighbor window size is another important factor that controls the information density of the input
and also affect the input’s sequence length. We varied this setting from 200µm to 800µm and the
corresponding average sequence length was changed from 50 to 1200. In general we found that the
model with window sizes of 600µm and 800µm achieved higher performance than that of 200µm
(Table 4), demonstrating a large window size allows the model to better learn the underlying spatial
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Table 3: Ablation study of model and data size scaling law.

Model Size Data
Ours (L8H8&alldata) L2H2 L4H4 L16H16 1/2 1/3

RMSE 1.367 1.371 1.373 1.362 1.381 1.375
RMSE50 1.214 1.243 1.249 1.208 1.261 1.246
Spearman 0.29 0.288 0.289 0.291 0.289 0.288

Table 4: Ablation study of training window size, loss function, quantization and serialization strat-
egy.’800µm+L’ is a model with 12 layers and 8 heads trained on 800µm window size.

Ours
(600µm)

Window size w/o
hierarchy

w/o
quantization

random
order200µm 800µm 800µm+L

RMSE 1.367 1.376 1.371 1.362 1.382 1.389 1.384
RMSE50 1.214 1.251 1.232 1.204 1.27 1.315 1.256
Spearman 0.29 0.275 0.285 0.292 0.288 \ 0.287

context of cells. We also noted that the 800µm window size didn’t introduce a higher performance,
so we trained a model with larger size (12 layers and 8 heads) and found that it achieved a highest
performance. These results illustrated the a larger window size may introduce too much spatial
variation, making the small model hard to learn. And our current model and data setting is a trade off
between them. This result demonstrated the effectiveness of the quantization module on simplifying
and regularizing the data space, making the gain in performance.

We also ablated the hierarchy loss and expression quantization module. As shown in Table 4, We
found that the model without hierarchy loss achieved a bad performance on all three metrics. For
quantization module ablation, we trained a model with the mean square error(MSE) loss. We noted
this MSE model generated invalid negative expression value in prediction and showed a quite low
performance. We tried to clip the value into a positive number but found that after clipping it
predicted all zeros vectors for some cells, causing the failure in computing Spearman correlation.
Finally, we compared our spatial ordinal serialization strategy with a random sampling strategy (Fig-
ure A.8) and observed a substantial improvement from our strategy. It was intuitively aligned with
our assumption that the ordinal strategy meets the actual testing scenario and thus brings the gain in
the performance. We also removed all neighbor information by replacing all positional embedding
with all-ones vector (Table A.4). This resulted in a significant performance drop, emphasizing the
critical role of spatial positional embeddings in enhancing the model’s spatial understanding.

6 CONCLUSION

Understanding the spatial context of cells is critical for deciphering tissue organization mechanisms
(Palla et al., 2022) and has the potential to facilitate the identification of therapeutic biomarkers
(Zhang et al., 2022). In this work, we introduced GeST, a novel deep generative pre-trained trans-
former model that leverages spatial neighbor information, marking the first generative model in the
spatial transcriptomics field. GeST employs a cell quantization module to overcome the challenge
of error accumulation during generation and utilizes an ordinal serialization strategy with an effi-
cient attention mask design to model two-dimensional data in a sequential generative pretraining
framework. Our results demonstrate that this generative task enables the model to learn underlying
spatial contexts, thereby enhancing performance on niche-level tasks. To the best of our knowledge,
GeST is the first data-driven model to explore perturbation effects in spatial transcriptomic, laying
the groundwork for building more comprehensive foundation models for spatial biology.

Despite its advancements, GeST has certain limitations that warrant further investigation. The short-
age of large-scale reference ST data may restrict the model’s ability generalizability across diverse
tissue types. Besides, our current design does not fully account for dynamic gene-gene interac-
tions which similfies the biological mechanism. Future work could integrate GeST with single-cell
foundation models to capture both intrinsic and extrinsic cellular characteristics.
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A APPENDIX

A.1 DATASET AND TASK DESCRIPTION

The original MERFISH spatial transcriptomics dataset has two coronal and two sagittal sliced adult
mouse brain replicates with 1122 genes, containing 2.8, 1.2, 1.6 and 0.16 million cells, respectively.
All these data are mapped to the whole mouse brain taxonomy and Allen CCFv3 and each cell has
a 3-dimensional coordinate. The x and y coordinates are experimentally measured and aligned to
CCF, and the z coordinates are estimated. Then the multi-tissue annotation can be obtained based
on the locations. Since the spatial coordinates value is an important guidance to our model, we only
used the measured x and y coordinates in our training. And we selected the first coronal replicate
which has the most number of cells as the training data, and used another one as the test data. The
first Mouse1 dataset encompasses 2.8 million cells across 147 coronal sections, each annotated with
a panel of 1122 genes. The Mouse2 dataset is from a separate mouse brain replicate, comprising 1.2
million cells across 66 coronal sections.

The human primary liver cancer (PLC) dataset includes five cases of hepatocellular carcinoma
(HCC-1 to HCC-5), one case of intrahepatic cholangiocarcinoma (ICC-1) and one case of combined
hepatocellular and cholangiocarcinoma (cHC-1), containing 84,823 spots in total. We selected one
slice (HCC-1L, where L represents the leading-edge section) as the test set, and took the other 20
slices as the training set. Since the data volume of PLC by Visium is much less than the mouse brain
datasets by MERFISH, we trained a GeST model with fewer layers and heads (4 transformer layers
and 4 heads per layer). The slice for evaluation, HCC-1L, measured the spatial gene expression
from tumor to normal tissue of one patient. We cropped an area of 100 spots containing the edge of
the tumor as unseen spots (labeled as “Test”), and took all the other spots as seen spots (labeled as
“Ref”) (Figure A.3). After pretraining on 20 slices, we applied GeST to generate gene expression
at the location of unseen spots based on the information of the rest seen spots. We visualized the
meta-cell on the UMAP and results showed that it can well preserve the original data space (Figure
A.9).

The Stereo-seq dataset has one sagittal section from the mouse brain, with in total of 60,000 data
spots. Each spot is bin50 (25 µm), a typical resolution used for analyzing stereo-seq data. We
segmented the cortex region from the right top corner as the test data, and used the rest of the tissue
as the training data. We train GeST with the default model size.

The mouse brain ischemic dataset is collected from the ischemic hemisphere of mice subjected to
photothrombosis (experiment group) and the ipsilateral hemisphere of sham mice (control group),
and is sequenced by 10X Visium spatial transcriptomics platform. Each group has four coronal
sections, containing 19,777 spatial transcriptomic spots in total. Han et al. (2024) annotated the
spots with anatomical brain region labels, including the normal and ischemic regions. There are
425 DEGs in the ICA and 1263 in the PIA P. Since GeST was pre-trained on only 1122 genes in
the MERFISH dataset, we used the intersection of both dataset in the in-silico spatial perturbation
experiment.

A.2 ITERATIVE CELL GENERATION

Our model generated unseen cells based on the information from seen cells within a given win-
dow size. If the unseen region is larger than the given window size, an iterative generation is
needed (as shown in Figure A.10). Given the spatial location of all unseen cells Xunseen =
{s(xu1), s(xu2), ..., s(xuN )}, in each iterative round, we first find a subset of the seen cells, Xs

from all seen cells Xseen. Each cell in Xs has at least one unseen cell in its available window. These
cells will be used as the reference in this round. For each cell xs in Xs, we generate expression for
unseen cells in its window. Relatively speaking, a subset of cells Xpre = {xp1, xp2, ..., xpM} from
Xunseen will have at least one gene expression estimation given from reference cells. For instance,
we assume xpi has n estimations {gx1(xpi), gx2(xpi), ..., gxn(xpi)}, where gx· represents a gene
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vector function based on cell x·’s window. In practice, gx·(·) is a vector where each dimension is
the probability of a meta cell in the meta cell vocabulary. To get the final prediction for cell xui,
We use the mean value of all these estimations as the final value and multiply it with the meta cell
vocabulary:

g(xui) =
1

N

N∑
j=1

gxj(xui) · C (11)

Then we update Xseen = Xseen ∪Xpre and Xunseen = Xunseen \Xpre at the end of this round.
We repeat the above process in each round until Xunseen is empty.

A.3 2D SINUSOID POSITIONAL ENCODING

We first unified the spatial coordinates to millimeters based on the CCF information. Since the abso-
lute values of spatial coordinates in different slices are not comparable, for each training sequence,
we converted the coordinates of each cell into relative coordinates. Specifically, the coordinate value
of the central cell is subtracted from each cell. Then we anchored each coordinate into integers in
a fixed range. In our experiments, we use [0,200) as default. Then we use 2D sinusoidal posi-
tional encodings to encode the two-dimensional coordinates into high dimension embeddings. Our
approach is inspired by the method proposed in CellPLM, which employs sinusoidal functions to
encode spatial coordinates in two dimensions. The encoding for a cell located at coordinates (x, y)
is formulated as:

PE(x,y),2i = sin
( x

100002i/d

)
, PE(x,y),2i+1 = cos

( x

100002i/d

)
PE(x,y),2j+d/2 = sin

( y

100002j/d

)
, PE(x,y),2j+1+d/2 = cos

( y

100002j/d

) (12)

where d is the total dimension of the positional encoding, and i, j ∈ [0, d/4) specify the feature di-
mensions. This formulation extends the original sinusoidal positional encoding used in transformers
to two dimensions, capturing both horizontal and vertical spatial variations.

A.4 ALGORITHMS FOR CELL EXPRESSION QUANTIZATION

Algorithm 1: Construction of meta cell vocabulary.
Data: Spatial dataset X = {x1, x2, x3, . . . , xn}; Number of meta cells K; Number of

hierarchical labels at different levels K1,K2,K3

Result: Meta cell vocabulary C; Hierarchical labels of each meta cell L1, L2, L3

P ∈ Rn×p ← Normalize gene expression g(X ) and perform PCA reduction to p dimensions.
Plabel ∈ Rn ← Calculate labels of each cell in P by K-means algorithm with k categories.
Cpca ∈ RK×p ← Average P for each cluster label in PCA space.
Cexpr ∈ RK×T ← Average P for each cluster label in expression space.
L1, L2, L3 ∈ RK ← Calculate labels of Cpca by K-means with K1,K2,K3 clustering numbers.

Algorithm 2: Query for meta cell vocabulary.

Input: Query spatial expression profile y ∈ RT

Output: Meta cell c ∈ RT ; Hierarchical labels of the meta cell l1, l2, l3
p← Project y to PCA reduction space
i← Retrieve the nearest neighbor index of p in Cpca
c← Cexpr[i]
l1, l2, l3 ← L1[i], L2[i], L3[i]
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Table A.1: Performance comparison of methods on 10X Visium PLC and Stereo Brain datasets.

10X Visium PLC Stereo-seq Brain
Spearman RMSE RMSE Top50 Spearman RMSE RMSE Top50

MLP 0.491 1.347 1.008 0.314 1.403 1.327
GP 0.272 1.357 1.200 0.073 1.413 1.402

Ours 0.499 1.320 0.950 0.323 1.399 1.324

A.5 DETAILS FOR IN-SILICO SPATIAL PERTURBATION

In-silico activation: For genes that were highly expressed in ICA (e.g. Spp1, Anxa2, Rbp1), we
used a gaussian kernel function

fact(x, y) = a exp

(
− (x− x0)

2 + (y − y0)
2

2σ2

)
to replace the original expression in the ROI, where a = max g(x), x ∈ {x1, . . . , xn} was the
maximum value of all genes, (x0, y0) was the center of the perturbation and σ was a hyper-parameter
for controlling the rate of decay.

In-silico inhibition: For genes that were lowly expressed in ICA (e.g. Lamp5, Slc17a7, Tafa1), we
used a the similar gaussian kernel function

finh(x, y) = g(x, y)

[
1− exp

(
− (x− x0)

2 + (y − y0)
2

2σ2

)]
where g(x, y) represented the original expression at position (x, y), (x0, y0) was the center of the
perturbation.

A.6 EXTENDED FIGURES & TABLES

Figure A.1: Visualizing the effect of cell quantization on multiple steps generation. Regions below
the red line are reference spots, and we generated all spots above the red line by following the order
shown in the right sub-figure. The color in the first three figures represents the expression value of
one marker gene.

Table A.2: AMI score of clustering results under different neighbor window sizes. The window size
controls how many cells will be used for extracting niche embedding of the center cell. We report
the mean ± standard deviation.

Level Mode 200µm 400µm 600µm

Division Zeroshot 0.416±0.164 0.448±0.180 0.470±0.174
Finetune 0.452±0.166 0.495±0.173 0.501±0.173

Region Zeroshot 0.449±0.102 0.473±0.106 0.484±0.107
Finetune 0.490±0.116 0.517±0.127 0.515±0.077
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Figure A.2: Visualization of gene expression predictions. The black and red regions indicate the
reference and unseen test regions, respectively. Each row on the right shows a gene’s ground truth
and predicted spatial patterns.

Figure A.3: Evaluation setting of sample HCC-1L from 10X Visium PLC dataset. Left half in deep
purple is tumor tissue, and the rest right half is adjacent normal tissue. 100 spots containing the edge
of tumor as are labeled as ’Test’ set, and all the other spots are labeled as ’Ref’ set.
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Figure A.4: Stereo-seq brain experiment setting. We used the fraction of the cortex layer as the test
data and used the rest of the spots in the sagittal section as the training data.

Figure A.5: Visualization of gene expression predictions of HCC-1L experiment.
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Figure A.6: Niche clustering results. Color represents clustered tissue regions at the division level.
The number in the subtitle is the adjusted mutual information score.

Ground Truth Ours (0.68) CellTypist (0.30) scANVI (0.48)

Cortical subplate
Hippocampal formation
Hypothalamus
Isocortex
Olfactory areas
Pallidum
Striatum
Thalamus
Others

Figure A.7: Niche annotation results. Color represents annotated and predicted tissue divisions. The
number in the subtitle is the macro F1 score.
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Figure A.8: Random order and ordinal order in spatial. Given all cells (in blue) in a section, the
cells in red constitute a sequence for training. The number next to each cell represents the index in
the sequence. In the random serialization strategy, numbers are scattered in space and the cells are
not neared. In our proposed ordinal serialization strategy, numbers are sequentially assigned starting
from the lower left (smallest x and y values) to the upper right (largest x and y values), but still
retaining the randomness.

Figure A.9: UMAP plot of all meta cells and original cells from the PLC dataset. Orange arrow
indicates one rare sub-cluster.

Figure A.10: Illustration of our iterative generation. Given seen cells (in blue) and spatial locations
of unseen cells (in red), our model generated cells iteratively from left to right. For each round, it
takes seen cells near the edge of the tissue as the refernce and generates adjacent unseen cells (in
black), which will be used as the seen cells in the next generation.
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Table A.3: Full list of differentially expressed genes (DEGs) in PIA P.
(n.s., not significant)

Gene name DEG type
(ground truth)

DEG type
(prediction)

1 Col5a2 High High
2 Spp1 High High
3 Gfap High High
4 Ptprc High High
5 Lhfpl2 High High
6 Rnh1 High High
7 Ctss High High
8 Tmem176b High High
9 Dcn High High

10 Tgfbi High High
11 Prkcd High High
12 Cldn5 High High
13 Mdfic High High
14 Anxa2 High High
15 Fn1 High High
16 Tnc High High
17 Ucp2 High High
18 Maf High High
19 Cd44 High Low
20 Serpinf1 High High
21 Tmem176a High High
22 Cd24a High Low
23 Mcm6 High Low
24 Lsp1 High High
25 Serpina3n High n.s.
26 Col18a1 High Low
27 Lmo2 High High
28 Klk6 High High
29 Cd36 High n.s.
30 A2m High n.s.
31 Penk High n.s.
32 Cldn11 High High
33 Mafb High Low
34 Cdkn1a High Low
35 Lcp1 High Low
36 Fyb High n.s.
37 Lpl High Low
38 Rbp1 High High
39 Ctsc High Low
40 Tgfbr2 High High
41 Prdm8 Low High
42 Car4 Low High
43 Bhlhe22 Low High
44 Ccn3 Low High
45 Cnih3 Low n.s.
46 Krt12 Low n.s.
47 Slc30a3 Low n.s.
48 Pvalb Low n.s.
49 Chrm1 Low High
50 Fezf2 Low Low
51 Kcnj4 Low Low
52 Tafa1 Low Low
53 Coro6 Low Low

Continued on next page
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Table A.3 continued from previous page

Gene name DEG type
(ground truth)

DEG type
(prediction)

54 Rgs6 Low Low
55 Neurod2 Low Low
56 Lamp5 Low High
57 Igfbp6 Low Low
58 Cpne9 Low Low
59 Pamr1 Low Low
60 Bcl11a Low Low
61 Adra1b Low Low
62 Dkkl1 Low n.s.
63 Cckbr Low Low
64 Chrm3 Low Low
65 Kcnh3 Low High
66 Slc17a7 Low Low
67 Bdnf Low Low
68 Myl4 Low Low
69 Epha4 Low Low
70 Cbln2 Low Low
71 Satb2 Low Low
72 Egr3 Low Low
73 Hs3st2 Low Low
74 Pde1a Low Low
75 Nwd2 Low Low
76 Mef2c Low Low
77 Rbp4 Low Low
78 Gabbr2 Low Low
79 Ldb2 Low Low
80 Neurod6 Low Low
81 Fgf13 Low Low
82 Kcnab3 Low Low
83 Sv2b Low Low
84 Satb1 Low Low
85 Adcy2 Low Low
86 Epha10 Low Low
87 Zmat4 Low Low

Table A.4: Ablation study on spatial information

RMSE RMSE50 Spearman
Baseline 1.367 1.214 0.29

w/o Spatial 1.397 1.325 0.23
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