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ABSTRACT

In this paper, we investigate how the order in which tokens are unmasked during
masked diffusion models (MDMs) inference affects generative quality. We derive
an expanded evidence lower bound (ELBO) that introduces a planner, responsible
for selecting which tokens to unmask at each step. Our analysis suggests that alter-
native unmasking strategies can improve generative performance. Based on these
insights, we propose Path Planning (P2), a sampling framework that leverages
pre-trained BERT or the denoiser itself to guide unmasking decisions. P2 general-
izes all known MDM sampling strategies and enables significant improvements
across diverse domains including language generation (in-context learning, code
generation, story infilling, mathematical reasoning, reverse curse correction) and
biological sequence generation (protein and RNA sequences).

1 INTRODUCTION

Inspired by the success of diffusion models in continuous space, recent work has focused on de-
veloping effective training algorithms for discrete diffusion models, with absorbing state diffusion
emerging as the dominant approach (Austin et al., 2021). This has led to scalable masked diffusion
models (MDMs) with simplified objectives (Sahoo et al., 2024; Shi et al., 2024; Gat et al., 2024).
However, less attention has been given to inference strategies, raising the question: can novel in-
ference techniques improve generative quality? We answer affirmatively by examining how token
unmasking order during MDM inference impacts performance. While uniform unmasking is optimal
for a perfect denoiser (see Appendix D.3), empirical evidence shows it is suboptimal for imperfect
models (Ou et al., 2024; Shih et al., 2022; Li et al., 2021).

We propose Path Planning (P2), a training-free inference method derived from an expanded ELBO
that incorporates a “planner” to select tokens for unmasking—and optionally remasking—at each step.
Although uniform unmasking remains optimal for ideal denoisers, non-uniform planners improve
generation for real-world models by reweighting the MLM objective based on denoiser performance.
P2 leverages pre-trained BERT models or the denoiser itself as effective planners without additional
training. Notably, P2 generalizes existing MDM sampling strategies (Table 4) and achieves state-of-
the-art results across domains: outperforming a 7B Llama model in math reasoning with a 1B MDM,
surpassing ARMs in code generation, enhancing protein design with DPLM (Wang et al., 2024a),
and generating RNA sequences with greater structural plausibility than natural sequences.
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Figure 1: An example of the P2 sampling strategy (see Algorithm D.7). In each step, the denoiser
Dθ(·) makes predictions and the planner Gθ(·) ranks and selects positions to unmask (green colored)
and remask (red colored).

2 BACKGROUND

Notation We will denote by S = {1, ..., N} a finite dictionary of tokens, by S̄ = S ∪ {M} the
extension of this dictionary via the addition of some masked state M . For a metric space X , we
define by P (X) the space of Borel probability measures on X . When X is finite we endow X with
the discrete metric and let |X| denote the cardinality of X . With some abuse of notation we freely
identify µ ∈ P (X) with a column vector in [0, 1]|X| corresponding to the associated probability
mass function. We denote by δx ∈ P (X) the probability measure such that δx(y) := 1 if x = y
and 0 otherwise and by Unif(X) ∈ P (X) the uniform probability measure on X . We suppose that
we are interested in generating sequences of length L comprised of elements of S from some data
distribution pdata ∈ P (SL). We use xi to denote the i’th coordinate of an elements x ∈ S̄L, and x−i

to denote the element in S̄L−1 which is the same as x but with the i’th token removed. For x ∈ S̄L

and y ∈ S̄, we denote by x−i,y the element in S̄L which is the same as x but with the i’th token
replaced by y. We denote by ML := (M, . . . ,M) ∈ S̄L.

2.1 MASKED DIFFUSION MODELS

In a masked diffusion model, one starts with a a collection of probability mass functions given by, for
y ∈ S̄L and t ∈ [0, 1]:

Pt(y; pdata) := α(t)pdata(y) + (1− α(t))δML(y) (1)

for a monotone-decreasing, continuously differentiable noise scheduler α : [0, 1][0, 1] with α(0) = 1

and α(1) = 0, and finds continuous time Markov chain
←
Xt such that (Xt = x) = P1−t(x; pdata).

A rate matrix generating
←
Xt is given for x ̸= y ∈ S̄L, by:

←
Q(y, x) = − α̇(1− t)

1− α(1− t)

L∑
i=1

δM (xi)p
i
data(yi|x̸=M )δy−i(x

−i)

and
←
Q(x, x) = α̇(1−t)

1−α(1−t)
∑L

i=1 δM (xi) (see e.g. Ou et al. (2024) Theorem 1). Here for z ∈ S̄L,
z̸=M denotes the coordinates of z which are not equal to M , and for i ∈ {1, . . . , L}, and j ∈ S:

pidata(j|z̸=M ) := pdata({x : xi = j}|z̸=M ).

One then attempts to approximate
←
Xt with Xθ,mask

t with transition matrix given for x ̸= y by:

Qθ,mask
t (y, x) := − α̇(1− t)

1− α(1− t)

L∑
i=1

δM (xi)D
θ
i,yi(x)δy−i(x

−i). (2)
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Here we are using the “mean parametrization” of the approximate backwards matrix. That is, we
have a neural network parameterized by θ which gives a “denoising function” Dθ : S̄LP (S)L, with
the hope that

Dθ
i,·(x) ≈ pidata(·|x ̸=M ) ∈ P (S). (3)

In particular, one enforces during inference that Dθ
i,yi

(x) = δxi
(yi) if xi ̸= M .

Approximate samples from the data distribution are then obtained via simulating the Markov chain
Xθ,mask with Xθ,mask

0 = ML to time 1.

3 PATH PLANNING

3.1 BRIEF MATHEMATICAL FORMULATION

The complete mathematical description is provided in Appendix D.1.

To formulate P2, we modify the jump matrix for the approximate backward process by introducing a
planner function Gθ : SL × S̄L → [0, 1]L, which guides the (re)sampling of tokens during inference.
Specifically, Gθ

j (y, x) estimates the likelihood that the j-th token in a partially denoised sequence x

should be (re)sampled based on the denoiser Dθ.

We define:
F θ
j (y, x) := δM (xj)EY∼Dθ(x)[G

θ
j (Y

−j,yj , x)]

+ (1− δM (xj))EY∼Dθ(x)[G
θ
j (Y

−j,xj , x)],

which represents the probability of (re)sampling the j-th position, considering both masked and
unmasked states.

Next, we define:

D̂θ
i,yi

(x) = Dθ
i,yi

(x)δM (xi) +
Dθ

i,yi
(x−i,M )

1−Dθ
i,xi

(x−i,M )
(1− δM (xi)),

which approximates the probability of unmasking or resampling a token based on the denoiser’s
output.

The updated transition rate matrix is:

Qθ
t (y, x) := −

α̇(1− t)

1− α(1− t)

L∑
i=1

F θ
i (y, x)D̂

θ
i,yi

(x)δy−i(x−i). (4)

This formulation leads to an expanded Evidence Lower Bound (ELBO):
E(x0) = EMP (x

0) + EUP (x
0) + ED(x0),

EMP (x
0) = −

∫ 1

0

α̇(t)

1− α(t)
EXt

[ L∑
i=1

δM ([Xt]i)

× EY [log(G
θ
i (Y

−i,x0
i , Xt))]

]
dt,

EUP (x
0) = −

∫ 1

0

α̇(t)

1− α(t)
EXt

[ L∑
i=1

(1− δM ([Xt]i))

× EY [log(1−Gθ
i (Y

−i,x0
i , Xt))]

]
dt,

ED(x0) = −
∫ 1

0

α̇(t)

1− α(t)
EXt

[ L∑
i=1

δM ([Xt]i) log(D
θ
i,x0

i
(Xt))

]
dt.

While ED(x0) aligns with the standard masked diffusion ELBO, EMP (x
0) and EUP (x

0) capture
the planner’s role in guiding the denoising process. The full derivation and additional theoretical
insights are provided in Appendix C.5.
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3.2 A FAMILY OF PLANNERS: THE P2 SAMPLING STRATEGY

We introduce the P2 sampling strategy, designed for controllable generation by leveraging both the
planner Gθ and denoiser Dθ, ensuring convergence to a fully unmasked sequence. The planner is
decomposed as:

Gθ
j (y, x) = δM (xj)G

θ,M
j (y, x) + (1− δM (xj))(1−Gθ,U

j (y, x)),

where Gθ,M
j (y, x) predicts the likelihood of unmasking a masked token, and Gθ,U

j (y, x) predicts the
likelihood of retaining an unmasked token.

To enhance efficiency, we apply a modified top-k sampling strategy controlled by an unmasking
scheduler κ : {1, . . . , L} → {1, . . . , L}, a monotone non-decreasing function with κ(L) = L,
ensuring that κ(t) tokens are unmasked at iteration t.

We further introduce a stochasticity parameter η to control the remasking frequency:

G̃η
j (x, y) ∝ ηδM (xj)G

M
j (y, x) + (1− δM (xj))G

U
j (y, x), (5)

where increasing η promotes higher remasking rates. This tunable stochasticity aligns with principles
from DFM (Campbell et al., 2024), addressing gaps in prior sampling strategies (Shi et al., 2024;
Gong et al., 2024; Zheng et al., 2023; Wang et al., 2024a;b; Liu et al., 2024).

The full P2 sampling algorithm is detailed in Algorithm D.7 (Appendix), with an illustrative example
in Figure 1. The complete formulation of the P2 sample strategy can be found in Appendix D.2.

4 EXPERIMENTS

In the main text, we show our main protein and RNA generation results. Please find extensive
additional results on protein/RNA generation, language generation, code generation, as well as
ablation studies in the Appendix H.

4.1 PROTEIN SEQUENCE GENERATION

Setup and Evaluation. We benchmark our P2 method against state-of-the-art protein sequence
generation models, including discrete diffusion models (DPLM (Wang et al., 2024a), EvoDiff (Alam-
dari et al., 2024), and ESM3 (Hayes et al., 2025)), an autoregressive model (ProGen2 (Nijkamp
et al., 2022)), and masked language models (ESM2 (Lin et al., 2023)). Each model generates 100
sequences across lengths in [200, 300, . . . , 800], following their respective sampling strategies, with
modifications ensuring fair evaluation. Protein sequence quality is assessed using ESMFold (Lin
et al., 2023), measuring foldability through pLDDT, pTM, and pAE scores. We define foldability as
the percentage of sequences satisfying pLDDT > 80, pTM > 0.7, and pAE < 10. Additionally, we
analyze token entropy and sequence diversity to detect mode collapse. Further details on experimental
settings and evaluation metrics are provided in the appendix F.2.

Results. As summarized in Table 1, our P2 algorithm applied to DPLM (150M and 650M) consistently
improves all folding metrics—pLDDT, pTM, and pAE—outperforming the default RDM sampling
strategy (Zheng et al., 2023). Importantly, this improvement does not compromise token entropy or
sequence diversity, highlighting P2’s ability to maintain diversity while enhancing quality.

When compared to baselines, including the 2.7B ProGen2-Large autoregressive model and discrete
diffusion counterparts ESM3 and EvoDiff, P2 demonstrates remarkable foldability improvements.
Visualizations of predicted structures for generated sequences are shown in Figure 2, illustrating
P2’s ability to generate highly foldable, structurally plausible proteins. These results underscore
P2’s potential to enable de novo protein design directly from sequence alone. Detailed performance
comparisons across sequence lengths are provided in Appendix Figure 6.

4.2 RNA SEQUENCE GENERATION

Experimental Setup. We train a 150M Masked Diffusion Model (MDM) trained on 27M RNA
sequences from RNACentral (Petrov, 2021) over 100K steps with a batch size of 320K tokens.
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Table 1: Protein Sequence Generation Benchmark. The arrows indicate whether higher (↑) or lower
(↓) values are better. See Appendix Figure 6 for a detailed comparison.

Model Name pLDDT (↑) pTM (↑) pAE (↓) Foldability (%) (↑) Entropy (↑) Diversity (%) (↑)

EvoDiff 31.84 0.21 24.76 0.43 4.05 93.19
ESM3 34.13 0.23 24.65 1.50 3.99 93.44
Progen2-small 49.38 0.28 23.38 4.48 2.55 89.31
Progen2-large 55.07 0.35 22.00 11.87 2.73 91.48
Progen2-medium 57.94 0.38 20.81 12.75 2.91 91.45
DPLM-150M 80.23 0.65 12.07 48.14 3.14 92.80
DPLM-150M + P2 80.98 0.68 11.43 49.86 3.25 92.63
DPLM-650M 80.02 0.67 11.69 51.86 3.20 91.45
DPLM-650M + P2 80.78 0.68 11.39 53.43 3.24 91.97

Figure 2: Visualizing the Predicted Structures of Generated Protein (top) and RNA (bottom) Se-
quences. The protein structures are predicted by ESMFold (Lin et al., 2023) and the RNA structures
are predicted by AlphaFold3 (Abramson et al., 2024). See Appendix Figure 9 for more.

We adopted the protein sequence evaluation protocols, using an external folding model (Shen et al.,
2024) to estimate structural quality via pLDDT. We additionally calculate the Minimum Free Energy
(MFE), GC Content (%), and sequence entropy. We generate 100 RNA sequences of 100 base pairs
(bp) each. Visualizations are described in Appendix H.8.6.

Baselines. Two RNA language models, RiNALMo-150M and RiNALMo-650M (Penić et al., 2024),
served as primary language model baselines. Additionally, a reference set of 100 native 100-bp RNA
sequences was included for comparative purposes. We apply the existing sampling strategies along
with the two P2 variants self-planning and BERT-planning (RiNALMo-150M) to the MDM. We
evaluated stochasticity parameters ranging from 0 to 2 in 0.02 increments.

Results. As summarized in Table 2, self-planning outperforms native sequences baseline models
(RiNALMo), and existing sampling strategies. Employing the RiNALMo planner further improves
the key metrics, including pLDDT, predicted minimum free energy (MFE), and GC content with
slight compromises in MFE and GC content.

Table 2: RNA Sequence Generation Benchmark. The ”Native” row represents subsampled nat-
ural RNA sequences. ”MDM” refers to a pretrained 150M Masked Diffusion Model trained on
RNACentral (Petrov, 2021).

Sequence Source pLDDT (↑) MFE (kcal/mol) (↓) Entropy (↑) GC Content (%) (↑)

Native 48.26 -35.83 1.96 49.64
RiNALMo-150M 59.01 -30.12 1.29 29.50
RiNALMo-650M 46.99 -31.90 1.33 28.06
MDM + Ancestral 68.12 -48.46 1.93 60.84
MDM + RDM 67.35 -47.54 1.89 59.42
MDM + P2 (self-planning) 69.41 -48.21 1.89 59.84
MDM + P2 + Planner RiNALMo-150M 73.28 -51.91 1.86 65.47
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5 CONCLUSION

We demonstrated that unmasking order significantly impacts the generative performance of masked
diffusion models (MDMs). By expanding the ELBO formulation, we introduced a planner that
optimizes token selection during inference. We proposed Path Planning (P2), a sampling framework
that generalizes all existing MDM sampling strategies. P2 delivers state-of-the-art improvements
across diverse tasks, including language generation and biological sequence design, enabling MDMs
to outperform larger autoregressive models. Our findings highlight the importance of inference
strategies in discrete diffusion models, paving the way for more efficient and effective sequence
generation.
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APPENDIX

A REPRODUCIBILITY STATEMENT

We provide the PyTorch implementation in Appendix Section E. For the experiments, we integrate
our approach into the SMDM (Gong et al., 2024) GitHub codebase1 to obtain the results for ”MDM
(1.1B) + P2” reported in Table 8. Similarly, the results for ”DiffuLLaMA (7B) + P2” in Table 8
are derived using the DiffuLLaMA (Nie et al., 2024) GitHub codebase2. For the protein sequence
generation experiments, we utilize the DPLM (Wang et al., 2024a) open-source codebase3. The
RNA sequence generation results are obtained by adapting the DPLM codebase for MDM training,
combined with the RiNALMo (Penić et al., 2024) language model architecture.

B RELATED WORKS

Masked Diffusion Models (MDMs) represent a promising alternative to autoregressive models for
discrete data generation, particularly in language modeling. Recent advancements have focused
on simplifying and generalizing the MDM framework to improve performance and training effi-
ciency (Shi et al., 2024; Sahoo et al., 2024). These studies introduced a continuous-time variational
objective for MDMs, expressed as a weighted integral of cross-entropy losses, facilitating the training
of models with state-dependent masking schedules. At the GPT-2 scale, these MDMs outperformed
prior diffusion-based language models and demonstrated superior capabilities in zero-shot language
modeling tasks (Nie et al., 2024; Gong et al., 2024).

MDMs generate sequences starting from a fully masked input and progressively unmasking positions
until a clean sequence is reached. Once a token is unmasked, it will stay unchanged. However, there
is not guarantee that the state is correct, considering the approximation errors arise from the imperfect
fit to real-world data distributions. Additionally, time discretization (Zhao et al., 2024) and numerical
errors (Zheng et al., 2024a) may further the error incurred during sampling processes.

To address these challenges, several solutions have been proposed. These include methods allowing
models to revise prior predictions and guiding sampling trajectories using internal or external knowl-
edge. Examples include informed correctors (Zhao et al., 2024), greedy ancestral methods (Gong
et al., 2024), and RDM sampling techniques (Zheng et al., 2023; Wang et al., 2024a), which leverage
model scores to replace random masking with targeted corrections. None of these works, however,
allow for the use of an external planner, and (Zheng et al., 2023; Wang et al., 2024a) are simply
using a top-k sampling strategy without any concern for the theoretical underpinnings of the sampling
strategies viability.

In terms of theoretically-backed methods for selecting the denoising order during a generative model’s
sampling process, the current literature is quite sparse. Shih et al. (2022); Li et al. (2021) discuss
this task from the perspective of Any-Order Autoregressive models, with Li et al. (2021) requiring a
specially-trained external planner model using a specially designed architecture and Shih et al. (2022)
taking the perspective that a fixed family of possible generation orders should be chosen a priori to
eliminate redundancy.

The most closely related work to ours is likely the recent DDPD (Liu et al., 2024) introduced a
generative process divided into a planner, which identifies corrupted positions, and a denoiser, which
refines these positions. Though they discuss the ability to employ a MDM denoiser within their
framework, their analysis and sampling is through the lens of uniform discrete diffusion models. In
particular, as with Li et al. (2021), the success of their strategy is contingent upon training a large
specialized planner model of comparable size to the denoiser itself. Moreover, in their framework,
since they are based on uniform diffusion models, the partially de-noised sequence never contains
any masked states, and there is no way for the planner to be separated into masked and unmasked
components to design a sampling strategy with guaranteed finite-time along the lines of our Algorithm
D.7. Given the possible perceived similarity of this concurrent work with ours, we provide a thorough

1https://github.com/ML-GSAI/SMDM
2https://github.com/HKUNLP/DiffuLLaMA
3https://github.com/bytedance/dplm
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comparison of DDPD with P2 in Appendix D.4, highlighting the greater flexibility and difference in
role of P2s’ planners.

C ADDITIONAL BACKGROUND

C.1 DISCRETE DIFFUSION/FLOW MODELS: PROBLEM SETUP

Here we discuss the general formulation of the problem setup and motivation behind discrete diffusion
Austin et al. (2021); Lou et al. (2023); Sun et al. (2022); Campbell et al. (2022) and discrete flow
models Campbell et al. (2024); Gat et al. (2024). This helps contextualize this manuscript in the
broader landscape of the generative modeling framework, as well as introduce some additional
notation that will be useful for the mathematical derivations in Appendix D.

Suppose we have a set if N tokens, S = {1, ..., N}, and samples of sequences of length L comprised
of elements of S from some distribution pdata ∈ P (SL). We seek to generate new samples from
pdata via learning a “denoising” function Dθ which allows one to sample from pθ ≈ pdata.

To find such a function, we choose a family of probability measures {Pt(·;µ)}t∈[0,1],µ∈P (SL) such
that P0(·;µ) = µ and P1 = π, where π ∈ P (SL) is some easily-sampled from reference distribution.

Then we find {
←
Xt}t∈[0,1] a continuous-time Markov chain with (

←
Xt = x) =

←
P (x; pdata) :=

P1−t(x; pdata), and seek to use the “denoising function” Dθ to simulate a continuous time Markov

chain {Xθ
t }t∈[0,1] which is close in distribution to

←
X . In the end, we will have that taking Xθ

0 ∼ π

and simulating the chain to time 1, Xθ
1

d
≈
←
X1 ∼ pdata. To understand what this process Xθ is and

why the use of this intermediary Markov chain is useful for finding a choice of Dθ, we first briefly
review the theory of continuous time Markov chains in Appendix C.2.

C.2 TIME-INHOMOGENEOUS CONTINUOUS TIME MARKOV CHAINS (CTMC)

A (time-inhomogenous) continuous-time Markov chain {Xt}t≥0 on a finite set X is a stochastic
process satisfying the Markov property, which can be formally summarized (Xt = y|Xs1 =
x1, ..., Xsk = xk, Xs = x) = (Xt = y|Xs = x),∀y, x1, ..., xk, x ∈ X, 0 ≤ s1 < s2 < ... < sk <
s < t ≤ 1. One can construct such a process by specifying a ”rate matrix” Qt ∈ R|X|×|X| with
Qt(y, x) > 0 and Qt(x, x) = −

∑
y ̸=x Q(y, x) for all x ̸= y ∈ X and t ≥ 0. Along with an initial

distribution µ ∈ P (X), Q determines the 1-dimensional time marginals (Xt = ·) ∈ P (X) via the
Kolmogorov equation:

d

dt
(Xt = ·) = Qt(Xt = ·), t ≥ 0 (6)

(X0 = x) = µ(x), x ∈ X.

When the above holds, we will say Q ”generates” X . Note that one can see necessarily that if Q
generates X , Qt(y, x) := lims↓t

d
ds (Xs = y|Xt = x), x ̸= y ∈ X . Knowing the entries of Q also

provides a means of generating samples from Xt at any given time, since paths of {Xt}t≥0 can be
realized via a sequence of jump times {τn}n∈N , with τi = inf{t > τi−1 : Xt ̸= Xτi−1} and the
effective discrete-time jump process {Xτi}i∈N . Then

(Xτi+1 = y|Xτi = x, τi = t) = −Qt(y, x)

Qt(x, x)
, (7)

and

log((τi+1 > t|Xτi+1
= x, τi = s)) =

∫ t

s

Qp(x, x)dp.

For more background on time-inhomogenous continuous-time Markov chains, see e.g. Chapter 2 of
Yin & Zhang (2013) or the appendix of Ren et al. (2024).

C.3 THE ROLE OF THE DENOISER AND THE APPROXIMATE BACKWARDS PROCESS

In the “discrete diffusion model” framework, one in fact starts with specifying a rate matrix Qt

generating some Markov chain {Xt}t∈[0,1] with X0 ∼ pdata and X1 ∼ π and defines Pt(x; pdata) :=
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(Xt = x).
←
Xt is then simply defined as X1−t, and a rate matrix

←
Qt which generates

←
X can be found

from Qt via an application of Bayes’ rule (see Prop. 3.2 in Sun et al. (2022)). In the “Discrete Flow
Model” framework, one instead starts with a desired interpolation Pt(·; pdata) between pdata and π,

and constructs a rate matrix
←
Qt generating a

←
Xt with one-dimensional time marginals

←
P t(·; pdata) a

posteriori.

As explained above, in order to generate samples of
←
Xt at a given time (and in particular of

←
X1 ∼

pdata), it is sufficient to have access to the entries of
←
Qt. In both settings, however, the entries

of
←
Qt will naturally depend on the unknown distribution pdata, and hence, using the form of this

dependence, a the denoiser function Dθ is constructed in an attempt to approximate these unknown

quantities. This results in a rate matrix Qθ
t ≈

←
Qt, which generates the approximate backwards

Markov chain {Xθ
t }t∈[0,1]. The distribution of the output of the resulting sampling scheme is then

pθ = P θ
1 = (Xθ

1 = ·).

The form of the denoiser, as well as the choice of Pt,
←
Q, and Qθ in our particular setup are introduced

in Sections 2.1 and 2.1.

C.4 THE CONDITIONAL BACKWARDS PROCESS

A pervasive assumption made in the literature is that for any fixed x0 ∈ SL,

Pt(y; δx0) =

L∏
i=1

pt(yi|x0
i ) (8)

for a family of probability measures {pt(·|x0
i )}t∈[0,1] ⊂ P (S). We denote by

←
X

x0

the “conditional

backwards process,” on the point x0, defined as the Markov chain with distribution (
←
X

x0

t = y) =
←
P (y; δx0), and by

←
Q

x0

its rate matrix. The coordinates (
←
X

x0

1 , ...,
←
X

x0

L ) of
←
X

x0

are thus assumed

independent, and each described by a continuous-time Markov chain {←x
i

t}t∈[0,1] with rate matrix
←̂
Q

x0
i

t ∈ RN×N for i = 1, ..., L, t ∈ [0, 1] that yields (
←
x
i

t = yi) =
←
p t(yi|x0

i ) for all t ∈ [0, 1] and

yi ∈ S. The hope in making this assumption is that each coordinate of Xθ
t ≈

←
Xt will be able to be

simulated independently in parallel without introducing significant error Sun et al. (2022).

Pt(y;µ) is taken to be linear in µ, so we have Pt(y; pdata) =
∑

x∈SL Pt(y; δx)pdata(x), and hence

specifying pt(j|i), i, j ∈ S is what ultimately what determines the form of
←
Qt and hence the functions

needed to be approximated by Dθ in order to construct Qθ. The most common choices explored this
far in the literature are the “uniform diffusion,” Lou et al. (2023); Schiff et al. (2024) which sets

pt(j|i) = α(t)δi(j) +
1− α(t)

S
(9)

for α : [0, 1]→ [0, 1] with α(0) = 1, α(1) = 0 and the “masked diffusion,” which is out subject of
focus.

Note that in the Discrete Diffusion Model framework, pt(j|i) is not always defined explicitly, and is
often implicitly prescribed by asserting the “forward noising” process is the independent evolution of
a CTMC on S with rate matrix Q̂t ∈ RN×N on each coordinate (see e.g. Equations (15) and (16) in
Lou et al. (2023)). pt(j|i) is then found by solving equation 6 with Q = Q̂ and µ = δi.

In the case of a “masked diffusion model,” one extends S to S̄ = S ∪ {M} for M some “masked
state” outside the dictionary of tokens S, and takes:

pt(j|i) = α(t)δi(j) + (1− α(t))δM (j), i, j ∈ S̄ (10)
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for a monotone-decreasing, continuously differentiable noise scheduler α : [0, 1][0, 1] with α(0) = 1
and α(1) = 0. This choice of forward/noising process has been seen to outperform the uniform
diffusion process Schiff et al. (2024) as well as other choices of pt Austin et al. (2021) consistently
among applications. If corresponds to the coordinate-wise forward matrix Q̂t(j, i) = σ(t)δM (j)(1−
δM (i)), i ̸= j ∈ S̄ with σ(t) = − d

dt log(α(t)), and through equation 8 yields equation 1.

In the masked-diffusion setting, both the Discrete Flow Model and Discrete Diffusion Model frame-
work use the rate matrices for the conditional reversed process’ coordinates (Campbell et al. (2024)
Appendix F.1.):

←̂
Q

x0
i

t (j, i) = − α̇(1− t)

1− α(1− t)
δM (i)δx0

i
(j), i, j ∈ S̄.

The resulting conditional rate matrix generating
←
X

x0

t is then, for x ̸= y ∈ S̄L:

←
Q

x0

t (y, x) = − α̇(1− t)

1− α(1− t)

L∑
i=1

δM (xi)δx0
i
(yi)δy−i(x−i) (11)

with
←
Q

x0

t (x, x) = α̇(1−t)
1−α(1−t)

∑L
i=1 δM (xi).

C.5 ROLE OF THE ELBO

The training objective in general is obtained via the same methodology in both the Discrete Flow
and Discrete Diffusion Model framework - in fact this methodology can also be used for continuous
diffusion models and denoising processes described by more general Markovian dynamics Benton
et al. (2024).

We seek to minimize the KL divergence:

DKL(pdata||P θ
1 ) =

∑
x∈SL

pdata(x) log

(
pdata(x)

P θ
1 (x)

)
=

∑
x∈SL

pdata(x) log pdata(x)−
∑
x∈SL

pdata(x) log(P
θ
1 (x)).

The first term, the entropy of pdata is constant in θ, and so we turn our attention to finding an
“Evidence Based Lower Bound”

E(x0) ≤ log(P θ
1 (x

0))

for each fixed x0 ∈ SL.The loss that we seek to minimize will is then defined as:

LE := −
∑
x∈SL

pdata(x)E(x). (12)

Letting Px ∈ P (D([0, 1];SL)) denote the Law (on the Skorokhod space of all cádlág paths from

[0, 1] to SL) of
←
X

x0

and Pθ ∈ P (D([0, 1];SL)) the same but for Xθ, we have, by the data-processing
inequality (see, e.g. Budhiraja & Dupuis (2019) Lemma 2.4 (f)):

log(P θ
1 (x

0)) = −DKL(δx0 ||P θ
1 ) ≥ −DKL(Px0

||Pθ) := E(x0),

That is, in order to make sure the approximate reverse process has the desired terminal distribution,
by minimizing LE we attempt to make it so that the entire path of the approximate reverse process
matches that of the exact one.

E(x0) can be found via an application of Girsanov’s Theorem for Markov Jump processes (see e.g.
Theorem III.5.34 in Jacod & Shiryaev (2013) for a general result or Ren et al. (2024) Theorem 3.3

for the specific Markov Chain setting), and is expressed solely in terms of
←
Q

x0

, Dθ, and Pt(·; δx).
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In the masked diffusion setting, where Qθ is given by Qθ,mask from equation 2 and
←
Q

x0

is given by
equation 11, this expression is (Sahoo et al. (2024) Equation (10)):

Emask(x
0) = −

∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

 ∑
i:[Xt]i=M

log(Dθ
i,x0

i
(Xt))

 dt, (13)

with Pt as in equation 1. This is exactly ED from Proposition D.1.

D MATHEMATICAL DETAILS

D.1 COMPLETE MATHEMATICAL FORMULATION

In order to formulate P2 we begin by modifying the jump matrix for the approximate backwards
process (equation 2), introducing a new function Gθ : SL × S̄L[0, 1]L, which we refer to as the
planner. Gθ

j (y, x) approximates the likelihood that the j’th token in a partially denoised sequence
x ∈ S̄L should be (re)sampled given the conditional information about the rest of the sequence x and
of the clean data y as predicted by Dθ. In Section H.1, we discuss potential choices of planners and
how previous works fall into this general framework.

We next define F θ : S̄L × S̄L[0, 1]L by

F θ
j (y, x) := δM (xj)EY∼Dθ(x)[G

θ
j (Y

−j,yj , x)]

+ (1− δM (xj))EY∼Dθ(x)[G
θ
j (Y

−j,xj , x)]

where here we use the shorthand Y ∼ Dθ(x) to mean Y ∼ ⊗L
i=1D

θ
i,·(x).

Via our interpretation of the role of Gθ, F θ
j (y, x) gives the likelihood that the j’th position of x

should be (re)sampled given the information about the rest of the sequence x and the data’s j’th token
via averaging out the information provided about the rest of the data’s tokens from Dθ.

Finally, we define

D̂θ
i,yi(x) = Dθ

i,yi(x)δM (xi) +
Dθ

i,yi(x
−i,M )

1−Dθ
i,xi

(x−i,M )
(1− δM (xi)).

That is, when xi is not masked D̂θ
i,yi

(x) approximates the probability that the i’th token of x should
be unmasked to yi given the conditional information about the unmasked tokens in x, and when xi

is not masked, D̂θ
i,yi

(x) approximates the probability that i’th token of x should be resampled to a
value other than xi, given the conditional information about the unmasked tokens in x other than xi.

We now seek to modify Qθ,mask from equation 2 in a way so that F θ - by way of the planner Gθ -
plays the role of selecting which position should be unmasked/resampled and D̂θ plays the role of
choosing what it should be (re)sampled to.

For x ̸= y ∈ S̄L, we thus set:

Qθ
t (y, x) := −

α̇(1− t)

1− α(1− t)

L∑
i=1

F θ
i (y, x)D̂

θ
i,yi(x)δy−i(x

−i). (14)

For reference, we provide a computationally viable Gillespie sampling method Gillespie (1977; 1976)
which approximates samples from Xθ with jump matrix Qθ and provides intuition for the role of the
Planner is given by Algorithm D.5 in Appendix D.5.

Observing Algorithm D.5, we see that P2 allows for the planner Gθ to guide the denoising process
towards a more optimal path of denoising orders using the information from both the partially noised
sequence xt and the predicted clean sequence y from the denoiser, and further introduces the ability
to resample previously masked tokens using information from both the partially generated sequence
and the output of the denoiser.
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The interpretation of the Planner as a mechanism for guiding the denoising process toward an optimal
path is furthered by the following: Define P θ

1 ∈ P (S) by P θ
1 (x) = (Xθ

1 = x), where Xθ is the
CTMC with rate matrix given in Equation equation 14. Then we have an “Evidence Based Lower
Bound” E(x0) ≤ log(P θ

1 (x
0)) for each fixed x0 ∈ SL given by E(x0) = EMP (x

0) + EUP (x
0) +

ED(x0), where:

EMP (x
0) = −

∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

δM ([Xt]i)

× EY∼Dθ(Xt)
[log(Gθ

i (Y
−i,x0

i , Xt))]

]
dt

EUP (x
0) = −

∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

(1− δM ([Xt]i))

× EY∼Dθ(Xt)
[log(1−Gθ

i (Y
−i,x0

i , Xt))]

]
dt

ED(x0) = −
∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

δM ([Xt]i)

× log(Dθ
i,x0

i
(Xt))

]
dt.

Here Pt is defined per equation 1.

This ELBO offers a simple interpretation, recalling we seek to maximize the expected value of each
term with respect to x0 ∼ pdata. EMP (x

0) optimizes the role of the Planner as it pertains to masked
tokens in a partially denoised sequence. That is, as a mechanism for selecting the a viable masked
position to insert a “clean” token as suggested by Dθ. If Dθ suggests to unmask the coordinate i
to a value which is representative of the data distribution, then Gθ

i should be large so that the i’th
position is selected. EUP (x

0) optimizes the role of the Planner as it pertains to unmasked tokens
in a partially denoised sequence. That is, as a mechanism for selecting the an unmasked token to
resample via remasking and inserting back into Dθ. If the i’th token already contains a token which
is representative of the data distribution, then Gθ

i should be small, so that the i’th token remains in
the sequence. ED(x0) is the the ELBO used for the denoiser of a standard masked diffusion model
(see equation 13).

It is worth observing that E(x0) ≤ ED(xo), so our ELBO is necessarily a worse lower bound than
that arrived at via a standard masked diffusion model. One can observe that setting Gθ

i (y, x) = δM (x),
EMP (x) = EUP (x) = 0, and a standard masked diffusion model is recovered. However, the ELBO
is only a bound on the KL divergence between the true data distribution and the approximate one
(see the discussion in Appendix C.5). Moreover, our ELBO provides a mathematically-backed
methodology for assessing when a choice of pretrained model may serve as an effective planner for a
given denoiser. In Table 6, we show that planners ranging from 8M to 3B parameters have similar
ELBO and thus have similar generation performance (Figure 4). Lastly, it provides a methodology
for training a Planner for a given denoiser, or training both in tandem, in a principled way. Training
models for this specific purpose is an interesting avenue for future research.

D.2 A FAMILY OF PLANNERS: THE COMPLETE P2 SAMPLING STRATEGY

Here we introduce the P2 sampling strategy, which allows for controllability over the role of the
planner, exploitation of the information provided about all tokens in the sequence from Gθ and Dθ,
and guaranteed convergence of the sampling procedure to a fully unmasked sequence.

We decompose the planner into two components:

Gθ
j (y, x) = δM (xj)G

θ,M
j (y, x)

+ (1− δM (xj))(1−Gθ,U
j (y, x)).

That is, the “masked token planner” Gθ,M
j (y, x) predicts the liklihood that a masked token at the j’th

position should be unmasked, and the “unmasked token planner” Gθ,U
j (y, x) predicts the likelihood

that an unmasked token at the j’th position should be kept.
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We then employ a modified “top k” sampling strategy, which introduces the possibility of changing
multiple tokens per iteration and better exploits the information provided by the scheduler. We define
κ : {1, ..., L}{1, ..., L} to be any monotone non-decreasing function with κ(L) = L, which will
serve as an “unmasking scheduler” for how many tokens should be denoised at a given time step. In
particular, at the t’th iteration, κ(t) tokens are guaranteed to be unmasked in the partially generated
sequence.

We further introduce a stochasticity strength parameter η, and define the family of probability
measures:

G̃η
j (x, y) ∝ ηδM (xj)G

M
j (y, x) + (1− δM (xj))G

U
j (y, x) (15)

for η ≥ 0. Note that while the Planner Gθ
j determines if the j’th token is a valid candidate to change

(a masked token to an unmasked one or vice versa), G̃η
j determines whether the j’th token is valid to

be unmasked (or kept unmasked if it already is). As η increases, we will keep fewer unmasked tokens,
so the frequency of remasking increases. Tuning η allows us to control the stochasticity (frequency of
remasking) of the sampling process as proposed in DFM (Campbell et al., 2024), which is overlooked
in existing sampling strategies (Shi et al., 2024; Gong et al., 2024; Zheng et al., 2023; Wang et al.,
2024a;b; Liu et al., 2024).

Letting TopPosk(v) return the indices of the largest k values in a non-negative vector v, our sampling
algorithm is given in Algorithm D.7 in the Appendix. See also Figure 1 for a diagram exhibiting a
toy example of generation with P2 Sampling.

D.3 EQUIVALENCE OF MDMS WITH AOARMS

Here, for completeness, we recall the connection between Masked Diffusion Models and Any-Order
Autoregressive Models Uria et al. (2014); Hoogeboom et al. (2022) as described in Zheng et al.
(2024a); Ou et al. (2024). We start by providing a simplified derivation of the equivalence of the two
types of models’ sampling schemes.

We begin by obtaining the diagonals for the matrix equation 2. Recalling Dθ
i,yi

(x) = δxi(yi) if
xi ̸= M , and

∑N
yi=1 D

θ
i,yi

(x) = 1 if xi = M :

−
∑
y ̸=x

Qθ
t (y, x) =

α̇(1− t)

1− α(1− t)

L∑
i=1

δM (xi)
∑
yi ̸=xi

Dθ
i,yi

(x)

=
α̇(1− t)

1− α(1− t)

L∑
i=1

δM (xi)

N∑
yi=1

Dθ
i,yi

(x)

=
α̇(1− t)

1− α(1− t)

L∑
i=1

δM (xi).

Then, if one considers the effective jump chain’s transition probabilities as described in equation 7,
we have, for x ̸= y:

(Xθ,mask
τk+1

= y|Xθ,mask
τk

= x, τk = t) = (Xθ,mask
τk+1

= y|Xθ,mask
τy = x) =

∑L
i=1 δM (xi)D

θ
i,yi

(x)δy−i(x−i)∑L
i=1 δM (xi)

.

We note that this is zero when the Hamming distance dHAM (x, y) ̸= 1.
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Then, for any j ∈ {1, ..., N}:

([Xθ,mask
τk+1

]j ̸= [Xθ,mask
τk+1

]j |Xθ,mask
τk

= x, τk = t) =
∑

y∈S̄L:yj ̸=xj

([Xθ,mask
τk+1

]j = y|Xθ,mask
τk

= x)

=
∑

y∈S̄L:yj ̸=xj

∑L
i=1 δM (xi)D

θ
i,yi

(x)δy−i(x−i)∑L
i=1 δM (xi)

=
∑

yj ̸=xj

δM (xj)D
θ
j,yj

(x)∑L
i=1 δM (xi)

=
δM (xj)

∑N
yj=1 D

θ
j,yj

(x)∑L
i=1 δM (xi)

=
δM (xj)∑L
i=1 δM (xi)

and, for x such that xj = M :

([Xθ,mask
τk+1

]j = y′j |Xθ,mask
τk

= x, τk = t, [Xθ,mask
τk+1

]j ̸= [Xθ,mask
τk+1

]j)

=
([Xθ,mask

τk+1
]j = y′j , [X

θ,mask
τk+1

]j ̸= [Xθ,mask
τk+1

]j)|Xθ,mask
τk

= x, τk = t)

([Xθ,mask
τk+1 ]j ̸= [Xθ,mask

τk+1 ]j)|Xθ,mask
τk = x, τk = t)

=

∑L
i=1 δM (xi)

δM (xj)

∑
y∈S̄L:yj=y′

j ̸=xj

([Xθ,mask
τk+1

]j = y|Xθ,mask
τk

= x)

=
∑

y∈S̄L:yj=y′
j ̸=xj

L∑
i=1

δM (xi)D
θ
i,yi

(x)δy−i(x−i)

= δM (xj)D
θ
j,y′

j
(x)

= Dθ
j,y′

j
(x).

Defining for x ∈ S̄L, M(x) := {j ∈ {1, . . . , L} : xj = M}, the corresponding Gillespie sampling
scheme Gillespie (1977; 1976) for a standard masked diffusion model is thus as follows: [h] Gillespie
Sampler for Masked Diffusion Models
1: Initialize: x0 ← (M,M, . . . ,M), denoiser Dθ

2: for t = 1 : L do
3: Choose Random Coordinate for Unmasking:
4: Sample dimension d′ ∼ Unif

(
M(xt)

)
5: Denoise:
6: Sample yd′ ∼ Dθ

d′,·(xt)
7: [xt+1]d′ ← yd′
8: end for
9: return xL

Letting SL be the set of all permutations of {1, ..., L}, we then have:

(Xθ,mask
1 = x) =

1

L!

∑
σ∈SL

L∏
i=1

Dθ
σ(i),xσ(i)

(x−σ(≥i),M )

= Eσ∼Unif(SL)

[
(Xθ,mask

1 = x|σ)
]

where xσ(<i),M ∈ S̄L is x but with xσ(j) = M,∀j ≥ i. Here σ(i) represents the coordinate which
is unmasked at time τi. From this it is clear that with each unmasking, Dθ is gaining additional
conditional information about the sequence it is denoising, and could potentially benefit from
backtracking and remasking previously unmasked tokens.
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Moreover, in Ou et al. (2024), it is proved that the loss that Dθ is trained on (see equation 12 and
equation 13) is equivalent to:

Lmask(θ) = −Ex∼pdata

[
Eσ∼Unif(SL)

[
log

(
(Xθ,mask

1 = x|σ)
)]]

= Eσ∼Unif(SL)

[
DKL(pdata||(Xθ,mask

1 = ·|σ))
]
+H(pdata),

where H is the Shannon Entropy of pdata. This is minimized with value H(pdata) if and only if
(Xθ,mask

1 = ·|σ) = pdata,∀σ ∈ SL; that is, if every choice of unmasking order exactly recovers the
data distribution.

It becomes clear that if the training objective used for a Masked Diffusion Model was made uniformly
0, every choice of unmasking order would exactly recover the data distribution (the KL divergence
is 0 if and only if the distributions are equal - see e.g. Budhiraja & Dupuis (2019) Lemma 2.1). In
practice, however, Dθ is far from perfect (and even if it were, it is trained using samples form pdata,
so would just recover those samples). As such, not all such orders will be created equal - that is there
will be denoising orders σ, σ̂ ∈ SL such that

DKL(pdata||(Xθ,mask
1 = ·|σ)) >> DKL(pdata||(Xθ,mask

1 = ·|σ̂)).

This was observed empirically in Ou et al. (2024) Appendix G.4, Shih et al. (2022), and Li et al.
(2021) Section 6.

D.4 COMPARISON WITH DDPD

As it the most similar work to ours in the existing literature, here we provide a thorough comparison
with DDPD Liu et al. (2024). Given that our objective is to plan a denoising order assuming access
to a Masked Diffusion Model for our denoiser (as with DDPD-MaskD) and not to train a uniform
diffusion-based denoiser from scratch (as with DDPD-DFM-Uni), we focus on their framework in
the former setting.

Even with DDPD-MaskD, the framework uses a “uniform discrete diffusion” equation 9 as the
starting-point for their token-wise forward noising process, as opposed to the “masked diffusion”
forward noising process equation 10 used in our work. They modify the state space SL to S̃L, where
S̃ = S × {N,D}. Dor (y, z) ∈ S̃L, (yi, zi) denotes the pair describing the state yi ∈ S in of i’th
token and zi ∈ {N,D} denotes whether that token is noise (N) or data (D). They then modify the
forward noising process to:

pt((j, ζ)|i) = α(t)δ(i,D)(j, ζ) +
1− α(t)

S
δN (ζ), i, j ∈ S, ζ ∈ {N,D},

see Equation (17) therein.

Thus, their reference distribution π ∈ P (S̃L) is given by π = Unif(SL) ⊗ δNL , where NL ∈
{N,D}L consists of all N ’s, and the corresponding backwards processes’ SL marginal is initialized
at the Unif(SL) as opposed to δML as in our setting.

They approximate a resulting true backward process on SL’s rate matrix
←
Qt (given by Proposition

3.1 therein) with Qθ,DDPD
t given by:

Qθ,DDPD
t (y, x) = − α̇(1− t)

1− α(1− t)

L∑
i=1

Gθ,DDPD
i,N (x)EZ∼Gθ(x)[D

θ
i,yi

(xZ,−i,M )]δy−i(x−i)

where Dθ : S̄LP (S)L is a denosier for a masked diffusion model trained via the ELBO equation 13
as in equation 3. Here for x ∈ SL, z ∈ {N,D}L, xz,−i,M ∈ S̄L is obtained from x via:

xz
j =


M, zj = N

xj , zj = D, j ̸= i

M, j = i

.
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Gθ,DDPD : SLP ({N,D})L is another neural network with Gθ,DDPD
i,N (x) approximating the probability

that the i’th coordinate of x ∈ SL is noise, and is trained via equation 12 with E(x0) = EDDPD(x0)
given by:

EDDPD(x0) = EDDPD
P (x0) + EDDPD

D (x0)

EDDPD
P (x0) = −

∫ 1

0

α̇(t)

1− α(t)
E(X̃t,Zt)∼PDDPD

t (·|δ(x0,DL))

[ L∑
i=1

log
(
Gθ,DDPD

i,[Zt]i
(X̃t)

)]
dt

EDDPD
D (x0) = −

∫ 1

0

α̇(t)

1− α(t)
E(X̃t,Zt)∼PDDPD

t (·|δ(x0,DL))

[ L∑
i=1

δ[Zt]i=NEẐ∼Gθ,DDPD(X̃t)

[
log

(
Dθ

i,x0
i
(X̃Ẑ,−i,M

t )
)]]

dt

Pt((y, z)|δ(x0,DL)) := α(t)δ(x0,DL)(y, z) +
(1− α(t))

SL
δNL(z), y ∈ SL, z ∈ {N,D}L

Note that in the above ELBO, EDDPD
D is slightly modified from what which they present in Theorem

4.1. As written, they would take the expected value with respect to Gθ,DDPD inside the second log,
which requires 2L−1 function evaluations of Dθ. When the denoiser Dθ is given by that of a masked
diffusion, one should instead use the above, which can be readily arrived at the same proof with an
extra application of Jensen’s inequality.

Comparing this with our Proposition equation D.1, the comparison between DDPD and P2 becomes
evident: EDDPD

P (x0) is playing the role of EUP (x
0) + EMP (x

0) (that is, it yields the training
objective for the Planner) and EDDPD

D (x0) is playing the role of ED(x0) (that is, it yields the training
objective for the denoiser). However, we note the following key distinguishing factors:

1. In P2, ED is the same as the ELBO originally used to train the denoiser Dθ: that is, Dθ

has already be trained to maximize Ex0∼pdata [ED(x0)]. Meanwhile, EDDPD
D depends on the

output of Gθ,DDPD, increasing the importance of the role of planner in the quality of the
output of the generation. For this reason, DDPD must train an external Planner whose
model size is comparable to that of the denoiser - they are essentially asking the planner
to play a role akin to the denoiser in a uniform diffusion model. Meanwhile, due to the
“flipped” importance of the roles of the planner and denoiser in P2, we show that we can use
lightweight BERT models or even the denoiser itself as an effective Planner. See Table 5,
where we confirm DDPD’s inability to make use of such lightweight models.

2. In P2, we separate the Planner’s training objective into two components. This is natural
because our planner may use information both from the partially masked data Xt and
the output of the denoiser Y . Meanwhile, in DDPD, the Planner only has access to X̃t-
unmasked data perturbed by random flips of its tokens. Because DDPD’s generation process
is grounded in a uniform diffusion process, there is no ability to separate the Planner
into unmasked and masked components as we do in Section equation 3.2. In particular,
their framework does not allow for a general enough planner to introduce our stochasticity
strength parameter η and design an algorithm analogous to the P2 Sampler D.7.

The practical differences between DDPD and P2 are further elucidated by comparing their Gillespie
sampling strategy (Algorithm 1 therein) with ours (see Alg. D.5). For convenience, we reproduce it
here.

Letting Ĝθ,DDPD : SLP ({1, ..., L}) be given by Ĝθ,DDPD
j (x) =

Gθ,DDPD
j,N (x)∑L

j=1 Gθ,DDPD
j,N (x)

, DDPD’s Gillespie

sampling algorithm is given by Alg. D.4.

[!h] DDPD Sampler
1: init i← 0, x0 ∼ Unif(SL), planner Gθ,DDPD, denoiser Dθ, maximum steps T
2: for t = 1 : T do
3: Plan Sample dimension d′ ∼ Ĝθ,DDPD

· (xt)

4: Denoise Sample z ∼ Gθ,DDPD

5: Sample yd′ ∼ Dθ
d′,·(x

z,−i,M
t )

6: Update: [xt+1]d′ ← yd′

7: end for
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8: return xT

As is clear from Alg. D.4, in DDPD, the input to the Planner only depends on some unmasked,
randomly flipped sequence of tokens, and does not depend on the output of the denoiser, and the
input to the denoiser is entirely dependent on the output of the planner. Meanwhile, in P2, the Planner
may use the both the information about the partially unmasked sequence (whose unmasked tokens all
result from samples from the denoiser) and the output of the denoiser, and the input to the denoiser
only depends on the output of the planner insofar as it may choose to remask a single token.

D.5 DERIVING THE P2 GILLESPIE SCHEME ALG. D.5

Let {τk}k∈N be the jump times for the CTMC Xθ with rate matrix Qθ as described in Equation
equation 14 (see Appendix C.2). To derive a Gillespie sampling scheme, we need to find the transition
probabilities for the effective jump chain as described in equation 7. We first need to obtain the
diagonal entries for the jump matrix Qθ. We have for x ∈ S̄L:

−
∑
y ̸=x

Qθ
t (y, x) =

α̇(1− t)

1− α(1− t)

L∑
i=1

N∑
yi=1,yi ̸=xi

F θ
i,N (y, x)D̂θ

i,yi
(x)

=
α̇(1− t)

1− α(1− t)

L∑
i=1

[
δM (xi)

N∑
yi=1,yi ̸=xi

EZ∼Dθ(x)[G
θ
i (Z

−i,yi)]Dθ
i,yi

(x)

+
(1− δM (xi))

1−Dθ
i,xi

(x−i,M )

N∑
yi=1,yi ̸=xi

EZ∼Dθ(x)[G
θ
i (Z

−i,xi , x)]Dθ
i,yi

(x−i,M )

]

=
α̇(1− t)

1− α(1− t)

L∑
i=1

δM (xi)EZ∼Dθ(x)[G
θ
i (Z, x)] + (1− δM (xi))EZ∼Dθ(x)[G

θ
i (Z

−i,x, x)]

= Qθ
t (x, x).

Then for x ̸= y ∈ S̄L, k ∈ N , and t ∈ [0, 1]:

(Xθ
τk+1

= y|Xθ
τk

= x, τk = t) =

∑L
i=1 F

θ
i (y, x)D̂

θ
i,yi

(x)δy−i(x−i)∑L
i=1 δM (xi)EZ∼Dθ(x)[G

θ
i (Z, xi)] + (1− δM (xi))EZ∼Dθ(x)[G

θ
i (Z

−i,x, x)]
.

We note that this is zero when the Hamming distance dHAM (x, y) ̸= 1 and independent of t and k.

Then, for j ∈ {1, ..., N} and x, y, k, t as before:

([Xθ
τk+1

]j ̸= [Xθ
τk+1

]j |Xθ
τk

= x, τk = t)

=
∑

y∈S̄L:yj ̸=xj

([Xθ,mask
τk+1

]j = y|Xθ,mask
τk

= x)

=
∑

y∈S̄L:yj ̸=xj

∑L
i=1 F

θ
i (y, x)D̂

θ
i,yi

(x)δy−i(x−i)∑L
i=1 δM (xi)EZ∼Dθ(x)[G

θ
i (Z, x)] + (1− δM (xi))EZ∼Dθ(x)[G

θ
i (Z

−i,x, x)]

=

N∑
yj=1,yj ̸=xj

F θ
j (y, x)D̂

θ
j,yj

(x)∑L
i=1 δM (xi)EZ∼Dθ(x)[G

θ
i (Z, x)] + (1− δM (xi))EZ∼Dθ(x)[G

θ
i (Z

−i,x, x)]

=
δM (xj)EZ∼Dθ(x)[G

θ
j (Z, x)] + (1− δM (xj))EZ∼Dθ(x)[G

θ
j (Z

−j,xj , x)]∑L
i=1 δM (xi)EZ∼Dθ(x)[G

θ
i (Z, x)] + (1− δM (xi))EZ∼Dθ(x)[G

θ
i (Z

−i,xi , x)]

=: P (j, x)
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and for y′j ∈ S with y′j ̸= xj :

([Xθ
τk+1

]j = y′j |Xθ
τk

= x, τk = t, [Xθ
τk+1

]j ̸= [Xθ
τk+1

]j)

=
([Xθ

τk+1
]j = y′j , [X

θ
τk+1

]j ̸= [Xθ
τk+1

]j |Xθ
τk

= x, τk = t)

([Xθ
τk+1

]j ̸= [Xθ
τk+1

]j)|Xθ
τk

= x, τk = t)

=
∑

y∈S̄L:yj=y′
j ̸=xj

([Xθ
τk+1

]j = y′j |Xθ
τk

= x)

([Xθ
τk+1

]j ̸= [Xθ
τk+1

]j)|Xθ
τk

= x, τk = t)

=
F θ
j (x
−j,y′

j , x)D̂θ
j,y′

j
(x)

δM (xj)EZ∼Dθ(x)[G
θ
j (Z, x)] + (1− δM (xj))EZ∼Dθ(x)[G

θ
j (Z

−j,xj , x)]

=
δM (xj)EZ∼Dθ(x)[G

θ
j (Z

−j,y′
j , x)]Dθ

j,y′
j
(x) + (1− δM (xj))EZ∼Dθ(x)[G

θ
j (Z

−j,xj , x)]
Dθ

j,y′
j
(x−i,M )

1−Dθ
i,xi

(x−i,M )

δM (xj)EZ∼Dθ(x)[G
θ
j (Z, x)] + (1− δM (xj))EZ∼Dθ(x)[G

θ
j (Z

−j,xj , x)]

= δM (xj)
EZ∼Dθ(x)[G

θ
j (Z

−j,y′
j , x)]

EZ∼Dθ(x)[G
θ
j (Z, x)]

Dθ
j,y′

j
(x) + (1− δM (xj))

Dθ
j,y′

j
(x−i,M )

1−Dθ
i,xi

(x−i,M )

=: P̃ (j, x, y′j).

Thus, an exact Gillespie sampling scheme would be given by Gillespie (1977; 1976):

When the chain is in state x ∈ S̄L, sample a dimension d′ ∼ P̂ (·, x) to change, then sample a value
y ∼ P̃ (d′, x, ·) to change it to.

In practice it is impractical to approximate these expected values with respect to Z ∼ Dθ(x), as this
would require many function evaluations of the denoiser. However, assuming that the token space is
large, conditioning on the value of one coordinate should have little impact on the expected output of
the Planner over the entire sequence (see e.g. the discussion under Proposition 3.5. and Appendix
E.4 in Liu et al. (2024)). Given that Alg. D.5 is provided for the purpose of exposition and in practice
we make use of Alg. D.7 in sampling, we use this intuition to formally approximate:

P̃ (j, x, y′j) ≈ δM (xj)D
θ
j,y′

j
(x) + (1− δM (xj))

Dθ
j,y′

j
(x−i,M )

1−Dθ
i,xi

(x−i,M )

and

P (j, x) ≈
EZ∼Dθ(x)[G

θ
j (Z, x)]∑L

i=1 EZ∼Dθ(x)[G
θ
i (Z, x)]

≈ EZ∼Dθ(x)[Ĝj(Z, x)],

where : Ĝθ : SL × S̄LP ({1, ..., L}) is given by:

Ĝj(y, x) :=
Gθ

j (y, x)∑L
j=1 G

θ
j (y, x)

.

We then arrive at: [!h] Our Gillespie Sampler
1: Initialize: t← 0, x0 ← (M, . . . ,M), planner Gθ , denoiser Dθ , maximum steps T
2: for t = 1 : T do
3: Plan Sample y ∼ Dθ(xt)

4: Sample dimension d′ ∼ Ĝθ
· (y, xt)

5: Denoise
6: if [xt]d′ ̸= M then
7: [xt]d ←M
8: Resample yd′ ∼ Dθ

d′,·(xt)
9: [xt+1]d′ ← yd′

10: else
11: [xt+1]d′ ← yd′
12: end if
13: end for
14: return xT
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D.6 PROOF OF THE ELBO PROPOSITION D.1

As per the discussion in Section C.5, it suffices to find a lower bound on −DKL(Px0 ||Pθ), where

Px0

is the Law of the continuous time Markov chain
←
X

x0

with rate matrix
←
Q

x0

given by equation 11,
Pθ is the Law of the continuous time Markov chain Xθ with rate matrix Qθ given by equation 14,

and
←
X

x0

0 = Xθ
0 = ML. Via an application of Girsanov’s Theorem for CTMCs (see e.g. Theorem

III.5.34 in Jacod & Shiryaev (2013) for a general result or Ren et al. (2024) Theorem 3.3 for the
specific CTMC setting):

−DKL(Px0

||Pθ)

= −
∫ 1

0

EXt∼P1−t(·;δx0 )

[ ∑
y ̸=Xt

Qθ
t (y,Xt)−

←
Q

x0

(y,Xt) +
←
Q

x0

(y,Xt) log

←Qx0

(y,Xt)

Qθ
t (y,Xt)

]
dt

= −
∫ 1

0

EXt∼P1−t(·;δx0 )

[
−Qθ

t (Xt, Xt) +
←
Q

x0

(Xt, Xt) +
∑
y ̸=Xt

←
Q

x0

(y,Xt) log

←Qx0

(y,Xt)

Qθ
t (y,Xt)

]
dt

= −
∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

δM ([Xt]i)(1− EY∼Dθ(Xt)[G
θ
i (Y,Xt)])

− (1− δM ([Xt]i))EY∼Dθ(Xt)[G
θ
i (Y

−i,[Xt]i , Xt)] + δM ([Xt]i) log(F
θ
i (x

0, Xt)D̂
θ
i,x0

i
(Xt))

]
dt,

where in the third equality we have inserted the definitions of
←
Q

x0

and Qθ and reversed the role of
the time parameter t 7→ 1− t, and Pt is as in equation 1.

We consider this as 4 parts:

E1(x
0) := −

∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

δM ([Xt]i)(1− EY∼Dθ(Xt)[G
θ
i (Y,Xt)]

]
dt

E2(x
0) := −

∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

(1− δM ([Xt]i))
(
−EY∼Dθ(Xt)[G

θ
i (Y

−i,[Xt]i , Xt)]
)]

dt

E3(x
0) := −

∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

δM ([Xt]i) log(F
θ
i (x

0, Xt))

]
dt

E4(x
0) := −

∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

δM ([Xt]i) log(D̂
θ
i,x0

i
(Xt))

]
dt

Recalling that α̇(t) ≤ 0 for all t ∈ [0, 1] and Gθ
i (y, x) ∈ [0, 1] for all i ∈ {1, . . . , L}, y ∈ SL and

x ∈ S̄L, we see E1(x
0) is positive for all x0 ∈ SL, and artificially attempting to ensure that the rates

of the original CTMC and our modified one do not differ too much out of masked positions (see the
discussion of the “Rate Forcing Term” in Appendix C.2 of Campbell et al. (2024)). Hence we simply
bound it below by zero:

E1(x
0) ≥ 0,

because we are only interested in P θ
1 being close to pdata, not the entire trajectory of the chains Xθ

and
←
X being close.

For the E2(x
0) we note that, by definition of Pt, when [Xt]i ̸= M , it is equal to its initial value x0

i .
Along with the bound −z ≥ log(1− z),∀z ∈ [0, 1), this yields:

E2(x
0) ≥ −

∫ 1

0

α̇(t)

1− α(t)
EXt∼Pt(·;δx0 )

[ L∑
i=1

(1− δM ([Xt]i)) log(EY∼Dθ(Xt)[1−Gθ
i (Y

−i,x0
i , Xt)])

]
dt.
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Applying Jensen’s inequality to move the expected value with respect to Dθ(Xt) outside of the log
yields:

E2(x
0) ≥ EUP (x

0),∀x0 ∈ SL.

For E3(x
0) we note that, by definition, when [Xt]i = M , F θ

i (x
0, Xt) =

EY∼Dθ(Xt)[G
θ
j (Y

−i,x0
i , Xt)]. An application of Jensen’s inequality to Dθ(Xt) outside of

the log yields:

E3(x
0) ≥ EMP (x

0),∀x0 ∈ SL.

Finally, for E4(x
0), we note that, by definition, when [Xt]i = M , D̂θ

i,x0
i
(Xt) = Dθ

i,x0
i
(Xt), so

E4(x
0) = EMP (x

0),∀x0 ∈ SL.

This results in the desired bound.

D.7 THE P2 SAMPLER PSEUDOCODE

[h] P2 Sampler (Pytorch Implementation in Appendix Sec. E).
1: Initialize: t← 0, x0 ← (M, . . . ,M), planner Gθ , denoiser Dθ , scheduler K
2: for t = 1 : L do
3: Plan:
4: Sample y ∼ Dθ(xt)

5: UpdatePos← TopPosκ(t)
(
G̃θ
· (y, xt)

)
6: Denoise:
7: for j ∈ UpdatePos do
8: if [xt]j = M then
9: [xt]j ← yj

10: end if
11: end for
12: for j /∈ UpdatePos do
13: if [xt]j ̸= M then
14: [xt]j ←M
15: end if
16: end for
17: end for
18: return xL

E IMPLEMENTATION DETAILS

In Listing 1, we provide a self-contained PyTorch implementation of our Path-Planning Sampling
procedure. The code consists of three core components, each addressing a distinct step in the sampling
process:

1) topk lowest masking: Given a matrix of scalar scores, this function returns a boolean
mask that flags the “lowest-scoring” positions per row. The user can specify how many positions
should be re-masked by providing a cutoff len tensor. Internally, the function sorts the score
matrix and determines the threshold score for each row before comparing every score to this cutoff.

2) stochastic sample from categorical: This function draws samples from a categor-
ical distribution using Gumbel noise. It first applies Gumbel noise to the input logits (if a non-zero
temperature is specified), then computes the log-softmax to obtain token probabilities. The sampled
tokens and their corresponding log probabilities are returned.

3) path planning sampling: Positions initially set to the mask token id are iteratively
predicted and updated. At each iteration, we:

1. Compute model logits and identify positions that remain masked.
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2. Sample from the model outputs via stochastic sample from categorical.
3. Integrate a planner (if provided) to re-score predictions for currently unmasked positions,

giving users the flexibility to incorporate any additional guidance or constraints.
4. Construct a score and re-mask positions with the lowest scores. Fixed positions are

ignored by assigning them infinite scores so that they cannot be re-masked.
5. Scale the scores of unmasked positions by the factor η, which adjusts how aggressively new

tokens are updated.

The function continues for num steps, revealing high-confidence predictions and re-masking
uncertain positions. Finally, any remaining masks are replaced with the last sampled tokens. The key
parameters are:

• xt: The initial token matrix of shape [B,L], containing masked tokens.
• model: A callable mapping tokens to logits.
• tokenizer: Provides the special mask token id.
• num steps: Number of refinement iterations.
• tau: Temperature for controlling sampling noise.
• kappa fn: A schedule function in [0, 1] that dictates how many positions remain masked

vs. unmasked over time.
• eta: A multiplier for scores in unmasked positions.
• planner: An optional model for additional re-scoring.
• score type: Either ’confidence’ (uses log probabilities) or ’random’ (random

re-masking).

Listing 1: Path-Planning Sampling procedure in PyTorch
import torch

def topk_lowest_masking(scores, cutoff_len):
sorted_scores, _ = scores.sort(dim=-1)
threshold = sorted_scores.gather(dim=-1, index=cutoff_len)
return scores < threshold

def stochastic_sample_from_categorical(logits, temperature=1.0,
noise_scale=1.0):
logits = logits.double()
if temperature != 0.0:

gumbel = -torch.log(-torch.log(torch.rand_like(logits) + 1e-8) + 1e
-8)

logits = logits / temperature + noise_scale * gumbel
scores, tokens = logits.log_softmax(dim=-1).max(dim=-1)
return tokens, scores

@torch.inference_mode()
@torch.cuda.amp.autocast()
def path_planning_sampling(

xt,
model,
tokenizer,
num_steps,
tau=1.0,
kappa_fn=lambda t: t,
eta=1.0,
planner=None,
score_type=’confidence’

):
fix_mask = (xt != tokenizer.mask_token_id)
dt = 1.0 / num_steps

for step in range(1, num_steps + 1):
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t = step * dt
kappa_t = kappa_fn(t)
logits = model(xt).double()

last_mask = (xt == tokenizer.mask_token_id)
unmask_candidates = ˜last_mask & ˜fix_mask

x0, logp = stochastic_sample_from_categorical(logits, temperature=
tau)

if planner is not None:
planner_logits = planner(x0).double()
planner_logp = planner_logits.log_softmax(dim=-1).gather(-1, x0.

unsqueeze(-1)).squeeze(-1)
logits[unmask_candidates] = planner_logits[unmask_candidates]
logp[unmask_candidates] = planner_logp[unmask_candidates]

if score_type == ’confidence’:
score = logp

elif score_type == ’random’:
score = torch.rand_like(logp).log()

else:
raise ValueError("Invalid score_type.")

score = score.masked_fill(fix_mask, float(’inf’))
score[unmask_candidates] *= eta

num_to_mask = ((˜fix_mask).sum(dim=1, keepdim=True).float() * (1 -
kappa_t)).long()

mask = topk_lowest_masking(score, num_to_mask)
xt[mask] = tokenizer.mask_token_id

mask_to_x0 = last_mask & ˜mask
xt[mask_to_x0] = x0[mask_to_x0]

remaining_mask = (xt == tokenizer.mask_token_id)
xt[remaining_mask] = x0[remaining_mask]

return xt

F EXPERIMENTAL DETAILS

F.1 EXAMPLE OF LANGUAGE GENERATION TASK

We provide Table 3 consisting of examples for the five language generation tasks.

F.2 PROTEIN SEQUENCE GENERATION

Setup We compare our method with state-of-the-art protein sequence generation models, including
three discrete diffusion models—DPLM (Wang et al., 2024a), EvoDiff (Alamdari et al., 2024), and
ESM3 (Hayes et al., 2025)—and an autoregressive model, ProGen2 (Nijkamp et al., 2022), across
three model sizes: small, medium, and large. Additionally, we benchmark masked language models,
ESM2 (Lin et al., 2023), at three scales: 150M, 650M, and 3B parameters.

For our path-planning algorithm (P2), we vary the stochasticity strength from 1.0 to 2.0 in increments
of 0.1 and report optimal results. Baselines are evaluated with default sampling strategies. Since
ESM2 lacks a masked diffusion loss, it uses ancestral sampling. Each model generates 100 sequences
for sequence lengths in [200, 300, . . . , 800]. DPLM employs a sequence length matching the number
of sampling steps and a temperature of 0.9, with rejection-resampling disabled for fairness. ESM3 is
sampled with a temperature of 1, a cosine schedule, top-p = 1, and 500 steps. Special tokens are
removed to ensure valid amino acid sequences.
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Table 3: Examples from language understanding benchmarks.
Metric Question Answer
LAMBADA ”Again, he left that up to you. However, he was adamant in his

desire that it remain a private ceremony. He asked me to make
sure, for instance, that no information be given to the newspaper
regarding his death, not even an obituary. I got the sense that he
didn’t want anyone, aside from the three of us, to know that he’d
even .”

died

GSM8K Weng earns $12 an hour for babysitting. Yesterday, she just did
50 minutes of babysitting. How much did she earn?

10

TriQA The Dodecanese Campaign of WWII that was an attempt by
the Allied forces to capture islands in the Aegean Sea was the
inspiration for which acclaimed 1961 commando film?

The Guns of Navarone

ROCStories Morgan and her family lived in Florida. They heard a hurricane
was coming. (Story infills here...) They arrived and learned from
the news that it was a terrible storm. They felt lucky they had
evacuated when they did.

They decided to evacuate to a relative’s
house.

Code
from typing import List

def has_close_elements(numbers: List[float], threshold:
float) -> bool:

"""
Check if in given list of numbers, are any two numbers

closer
to each other than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0],

0.3)
True
"""
# Infill Code
if distance < threshold:

return True
return False

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:
distance = abs(elem - elem2)

Evaluation. Protein sequence generation quality is evaluated via protein folding models, using
ESMFold (Lin et al., 2023) as a proxy for structural stability. We extract three folding metrics:

• pLDDT (predicted Local Distance Difference Test): Measures local structural accuracy.
• pTM (predicted Template Modeling): Assesses global structural plausibility.
• pAE (predicted Alignment Error): Evaluates overall compactness.

A sequence can achieve high pLDDT while exhibiting poor global compactness (high pAE). To
ensure robust evaluation, we define foldability as the proportion of sequences satisfying pLDDT
> 80, pTM > 0.7, and pAE < 10. This metric effectively identifies low-quality sequences, such as
repetitive patterns (e.g., “ABABABAB”), which tend to have high pAE.

Beyond folding scores, we compute:

• Token entropy, excluding tokens not present in generated sequences.
• Sequence diversity, defined as 1− pairwise sequence identity within a batch. Since all

sequences in a batch share equal length, no sequence alignment is needed.

These metrics detect mode collapse, where models generate highly repetitive sequences.

G PROTEIN SEQUENCE GENERATION

G.0.1 TRAINING DETAILS OF THE 150M MDM.

We train a 150M mask diffusion model on protein sequences for the ablation of self-planning.
The 150M MDM is trained using the open-sourced DPLM code4. We use the same transformer
architecture as DPLM-150M as well as ESM2-150M. We train our MDM from scratch for 500k
steps with a total of 320K tokens in each iteration, which is achieved by multi-GPU and multi-node

4https://github.com/bytedance/dplm
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training with gradient accumulation. The training data is Uniref50, consisting of around 40M protein
sequences with 50% sequence-identity cutoff, namely, the sequences in uniref50 are at least higher
than 50% dissimilar. Uniref50 is widely used for training protein language models.

G.1 COMPUTING THE ELBO

The Evidence Lower Bound (ELBO) serves as the training objective of mask diffusion models and
can be used to assess how well the model fits the data. The ELBO experiments are conducted
on protein sequence generation tasks. We compute the negative ELBO for five planners, namely
ESM-8M, ESM-35M, ESM-150M, ESM-650M, and ESM-3B, alongside the self-planning ELBO,
using a weighted cross-entropy loss function to quantify reconstruction accuracy.

Dataset Preparation. We utilize sequences from the UniRef50 dataset, filtering to include only
test sequences with lengths shorter than 300 residues to align with the experiments in Figure 4 and
mitigate memory constraints. The dataset is loaded into a PyTorch DataLoader using a sequence
length of 1022 tokens and a maximum token budget of 60,000. For consistent evaluation, we run the
ELBO calculation over 20 independent simulations and report the average across these runs.

Masking Strategy. For each sequence, we randomly generate a mask ratio uniformly sampled from
the range [1/500, 1− 1/500]. Positions are masked based on this ratio, but masking is constrained to
avoid altering non-maskable tokens (e.g., special symbols). The masked tokens are replaced with a
designated mask token provided by the denoiser model.

Loss Calculation. To compute the ELBO, the denoiser and planner models predict the original
tokens for both masked and unmasked positions. The cross-entropy loss is calculated separately for
these categories. Both masked and unmasked loss values are weighted inversely by the mask ratio to
ensure probabilistic consistency in the evaluation. Each model is evaluated across 20 independent
simulations, and the average ELBO is reported to capture the robustness of the planners under
stochastic settings.

H ADDITIONAL RESULTS

H.1 PLUG-AND-PLAY PATH PLANNING SAMPLER

H.1.1 SELF-PLANNING WITH DENOISER-PREDICTED PROBABILITIES

We propose a self-planning mechanism by leveraging denoiser-predicted probabilities to guide
unmasking and remasking decisions. Within the P2 framework, the unmask planner and mask
planner are unified by setting GU

j (y, x) = GM
j (y, x) = Dθ

j,yj
(x), that is, the denoiser itself serves

as the planner. For mask positions, the denoiser is trained to predict tokens given the surrounding
context, and the predicted probabilities serve as confidence estimates for the correctness of token
predictions. This methodology aligns with established practices in the literature (Gong et al., 2024;
Chang et al., 2022; Zheng et al., 2023; Wang et al., 2024a;b). However, a concern arises for unmasked
positions, as these tokens act as context during training and are not directly supervised. This raises the
question: Are the predicted probabilities for unmask positions meaningful? Our empirical evaluation
demonstrates that, despite the absence of supervision for unmask positions, the ELBO (weighted
cross-entropy loss, see Prop. D.1) for unmasked tokens surpasses that of BERT, which explicitly trains
on both masked and unmasked tokens (see Table 6). Furthermore, ablating the denoiser-predicted
probabilities for unmasked positions by replacing them with uniformly sampled values results in
significant performance degradation (see Table 7). This evidence confirms that the probabilities for
unmask tokens are indeed informative, even without direct training. We hypothesize two key factors
behind this phenomenon. 1) During masked token prediction, the model inherently learns robust
representations of unmasked tokens for predicting the masked positions. 2) The model’s output layer
projects embeddings of both masked and unmasked tokens into a shared logits space. Consequently,
unmasked tokens can yield meaningful logits.
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H.1.2 BERT-PLANNING

In BERT-planning, we introduce a class of special planner BERT (Devlin et al., 2019), a bidirectional
language model trained to predict the correct tokens given the corrupted sequences (15% of tokens
masked and 1.5% of tokens uniformly flipped to other tokens). Despite such a simple training
objective, BERT learns to estimates the naturalness of a token with the predicted probabilities which
demonstrates wide application in zero-shot mutation prediction (Hie et al., 2022). Compared to
training a dedicated planner that is equal-size to denoiser as in DDPD (Liu et al., 2024), BERT is
more versatile, flexible in sizes and often available in common tasks such as text (Devlin et al., 2019;
Liu et al., 2019; Lan et al., 2019), protein Lin et al. (2023); Hayes et al. (2025); Wang et al. (2024a;b)
and RNA (Penić et al., 2024).

Let Bθ : SLP (S)L be a pretrained BERT model, so that Bθ
j,yj

(y) is assigning the probability that
the jth token in the sequence y is clean. In BERT planning we set unmask planner to be the BERT
GU

j (y, x) = Bθ
j,yj

(y) and mask planner to be the denoiser GM
j (y, x) = Dθ

j,yj
(x).

H.2 P2 GENERALIZES EXISTING SAMPLING METHODS

In Table 4, we show the existing sampling methods fit into our P2 framework with specific parameters.
Ancestral sampling disables the remasking by setting the Unmasked Planner (GU

j (y, x)) to always
output 1, i.e., the likelihood that an unmask token should be kept is always 1, and the mask planner
GM

j (y, x) functions as a uniform sampler as it randomly selects mask positions. Greedy ancestral
sampling improves open this by using the denoiser Dθ

j,yj
(x) as the mask planner GM

j (y, x). DFM
Sampling randomly selects positions, and enables remasking by introducing a tunable stochasticity
strength η. RDM functions identically to our self-planning by using the denoiser for both mask and
unmask planning but it omits the stochasticity control with the default stochasticity strength η = 1.
DDPD introduces external planners and purely relies on the planner for both mask and unmask
position planning with default stochasticity strength η = 1. See Appendix D.4 for further comparison
of P2 with DDPD.

Table 4: Generalization of Existing Sampling Methods within our P2 Framework. Mask Planner
(GM

j (y, x)) gives the likelihood that a mask token should be unmasked. Unmask Planner (GU
j (y, x))

gives the likelihood that an unmask token should be kept. Dθ
j,yj

(x) gives the prediction probability
of the denoiser at position j for token yj . Bθ(·) is a BERT. Gθ(·) is an external planner.

Method Remasking Planning Stochasticity Control Mask Planner (GM
j (y, x)) Unmask Planner (GU

j (y, x))
Ancestral (Shi et al., 2024; Sahoo et al., 2024) U(0, 1) 1
Greedy Ancestral (Gong et al., 2024) ✓ Dθ

j,yj
(x) 1

DFM Sampling (Campbell et al., 2024) ✓ U(0, 1) U(0, 1)
RDM Sampling (Zheng et al., 2023; Wang et al., 2024a;b) ✓ ✓ Dθ

j,yj
(x) Dθ

j,yj
(x)

DDPD (Liu et al., 2024) ✓ ✓ Gθ
j (y) Gθ

j (y)
Path Planning (Self-Planning, ours) ✓ ✓ ✓ Dθ

j,yj
(x) Dθ

j,yj
(x)

Path Planning (BERT Planner, ours) ✓ ✓ ✓ Dθ
j,yj

(x) Bθ
j,yj

(y)

H.3 THE DESIGN SPACE OF PATH PLANNING

Our Path Planning (P2) framework generalizes existing sampling strategies, including vanilla an-
cestral sampling, greedy ancestral sampling, RDM sampling, and DFM sampling, by incorporating
specific parameterizations. In Figure 3, we instantiate these sampling algorithms and evaluate their
performance on protein sequence generation, focusing on foldability (additional metric results are
provided in Appendix Figure 7).

Vanilla and greedy ancestral sampling employ a stochasticity strength of 0, effectively disabling
remasking, which results in poor performance. DFM sampling introduces tunable stochasticity,
leading to improved performance over ancestral sampling; however, it lacks trajectory planning, which
limits its effectiveness. RDM sampling, by contrast, enables remasking with a default stochasticity
strength of 1 and utilizes the denoiser’s confidence for self-planning, yielding better sampling quality.

P2 combines the advantages of these existing algorithms, offering both controllable stochasticity
strength and planning guidance. By tuning stochasticity strength, P2 can enhance RDM sampling
and optionally leverage an external BERT planner to further steer the sampling trajectory toward
generating high-quality sequences.
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Figure 3: The Design Space of P2 (See Appendix Figure 7 for more). P2 Generalizes existing
sampling algorithms with specific stochasticity strength and planner choice.

Figure 4: Ablation of the Planner Size: an 8M BERT planner functions similarly to a 3B BERT.
Self-planning performs better in a default temperature of 1. We sweep the temperature from 0.1 to
2.0 and plot the scaling between the resultant sequence entropy and the foldability. See Appendix
Figure 8 for more.

H.4 ABLATION OF PATH PLANNING

Table 5: Ablation of Sampling Strategies. Path planning (P2) outperforms existing sampling strategies,
including DDPD. The arrows indicate whether higher (↑) or lower (↓) values are better.

Sampling Algorithm pLDDT (↑) pTM (↑) pAE (↓) Foldability (%) (↑) Entropy (↑) Diversity (%) (↑)

Vanilla Ancestral 44.08 0.34 20.61 2.00 4.03 93.63
RDM Sampling 74.67 0.71 10.33 43.00 3.85 93.12
P2 + 8M BERT Planner 78.24 0.74 9.11 44.50 3.80 92.77
DDPD + 8M BERT Planner 46.51 0.24 23.20 0.25 0.31 51.69
Ancestral 52.67 0.46 17.64 7.75 3.98 93.42

In this section, we utilize the protein sequence generation task as an ablation benchmark to analyze
the implications of our Path Planning (P2) design choices. We experiment with the ESM2 (Lin et al.,
2023) family of protein language models, including versions with 8M, 35M, 150M, 650M, and 3B
parameters, for variants incorporating a BERT planner. For the denoiser, we train a 150M MDM
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Table 6: Comparison of negative ELBOs for Path Planning Planners and self-planning, averaged on
20 runs. Lower values (↓) indicate better ELBO. The ELBO is computed at default temperature 1,
corresponding to the star-annotation results in Figure 4.

Method Unmasked pos.-ELBO (↓) Masked pos.-ELBO (↓)
P2 + Planner ESM2-8M 22.5 13.4
P2 + Planner ESM2-35M 22.0 13.4
P2 + Planner ESM2-150M 21.8 13.4
P2 + Planner ESM2-650M 21.7 13.4
P2 + Planner ESM2-3B 21.6 13.4

P2 (self-planning) 15.7 13.4

Table 7: Ablation study of self-planning. We compare self-planning using denoiser-predicted
probabilities with a uniformly sampled probability baseline. finetuned MDM refers to MDM fine-
tuned from BERT (DPLM-150M (Wang et al., 2024a)), while tfs-MDM refers to MDM trained from
scratch.
Configuration pLDDT (↑) pTM (↑) pAE (↓) Foldability (↑) Entropy (↑) Diversity (↑)
finetuned MDM 82.62 0.72 9.15 63.00 3.40 93.05
finetuned MDM + Uniform 72.61 0.66 11.82 39.00 4.01 93.62

tfs-MDM 74.67 0.71 10.33 43.00 3.85 93.12
tfs-MDM + Uniform 59.88 0.52 15.57 20.00 4.00 93.57

from scratch, using the same architecture as ESM2-150M and DPLM-150M, for 500k steps with
approximately 320k tokens per step. Training details are provided in Appendix G.0.1.

Results. Table 5 demonstrates that our P2 approach consistently outperforms existing sampling
strategies across all folding metrics, while maintaining strong token entropy and sequence diversity.
Notably, results are further enhanced when an external BERT planner is utilized. To provide a
comparative perspective, we perform an apple-to-orange evaluation against a planner-based sampling
algorithm, DDPD, equipped with the same BERT planner. DDPD is prone to generating low-entropy,
repetitive sequences with poor foldability, as it relies exclusively on the planner to dictate both
unmasking and remasking. In contrast, P2 separates these responsibilities: remasking is delegated to
the BERT planner, while unmasking is guided by the denoiser itself. This decomposition mitigates
the planner’s bias and leverages the denoiser’s planning capabilities effectively.

In Figure 4, we ablate the size of the planner and evaluate foldability under varying temperatures
(entropy). Additional metric results are shown in Appendix Figure 8. Our findings reveal that an 8M
BERT planner is sufficient to guide a 150M MDM, achieving competitive performance relative to its
3B counterpart across a broad range of entropy values. Furthermore, the BERT planner demonstrates
superior scalability compared to the self-planning variant, preserving foldability under extreme high
and low temperature conditions.

Self-Planning Analysis. In our self-planning approach, we leverage the predicted probabilities from
unmasked positions to guide unmasking decisions. This raises a key question: Are the predicted
probabilities from unmasked tokens meaningful? We conducted an ablation study where we replaced
predicted probabilities for unmasked tokens with uniformly random values and performed the
experiments on two MDM variants: one trained from scratch and another fine-tuned from a BERT-
based model (DPLM-150M (Wang et al., 2024a)). The DPLM-150M was fine-tuned from ESM2,
which was pretrained to predict both masked and randomly mutated tokens, making it more likely to
inherit meaningful logits for unmasked positions. As shown in Table 7, randomizing unmasked token
probabilities leads to a substantial decline in performance across both variants. This finding confirms
that unmasked token logits are informative, despite the lack of direct supervision. It is also evidenced
by the ELBO from Proposition D.1 in 6 where self-planning displays an even better ELBO compared
with BERT planners, further validating its effectiveness.
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Figure 5: Top: Performance vs. Sampling Time (steps). Bottom: Running Time (left) and Speed
(right) vs. Sequence Length.

H.5 SAMPLING EFFICIENCY

Increasing the number of sampling steps generally enhances generative quality, albeit with in-
creased computational time. To evaluate the scaling efficiency, we benchmark three sampling
algorithms—ancestral sampling, P2 (self-planning), and P2 augmented with an 8M BERT plan-
ner—on the task of protein sequence generation. We measure the foldability across increasing
sampling steps in terms of elapsed time (benchmarked on NVIDIA A100 GPUs). In Figure 5 top,
P2 achieves superior foldability compared to ancestral sampling, while the inclusion of the external
BERT planner demonstrates exceptional scalability, particularly at higher sampling steps. In Figure 5
bottom, we further analyze inference efficiency by examining elapsed time and speed (tokens per
second) as a function of sequence length. P2 with self-planning maintains the same inference cost as
ancestral sampling, as it does not rely on an external model. Conversely, P2 with the BERT planner
doubles the number of sampling steps due to one additional BERT evaluation. However, since the
planner is a lightweight 8M model compared to the 150M MDM, the overhead is negligible. This
is evident in the figure, where the performance gap between P2 (self-planning) and P2 with the 8M
BERT planner becomes indistinguishable at higher sampling scales.

H.6 LANGUAGE GENERATION

It has been widely pointed out that the existing evaluation such as toy datasets and NLL in text
generation can be easily gamed to achieve low perplexity (Zheng et al., 2024b). In our evaluation,
we follow the language benchmarking from SMDM (Gong et al., 2024) and DiffuLLama (Nie et al.,
2024), and investigate the capabilities of MDMs in real-world evaluation language generation tasks
that have been largely overlooked in prior works (Austin et al., 2021; Lou et al., 2023; Sahoo et al.,
2024; Shi et al., 2024). We additionally provide the experiments of breaking the reverse curse in the
Appendix H.7.1.

Benchmarks. We consider TriviaQA (Joshi et al., 2017) to test the reading comprehension of
models and the last word completion task Lambada (Paperno et al., 2016)to test how models capture
long-range dependencies in text. These two tasks are measured by exact match accuracy, i.e., given a
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Table 8: Language generation benchmarks, including reading comprehension (TriQA), last word
completion task (LAMBADA), math reasoning (GSM8K), story infilling (ROCStories), and code
generation. Baseline results are adopted from (Nie et al., 2024; Gong et al., 2024). For the infilling
task, we use ROUGE-1/2/L score; for other tasks, we use the accuracy (%) metric. We employ P2
for the MDMs (1.1B) (Nie et al., 2024) and DiffuLLama (7B) (Nie et al., 2024) and show consistent
improvement.

Model TriQA (↑) LAMBADA (↑) GSM8K (↑) ROCStories (↑) Code (↑)
GPT2-S (127M) 4.0 25.9 44.8 (7.8/0.8/7.4) 1.6
DiffuGPT-S (127M) 2.0 45.0 50.2 13.7/1.4/12.6 0.3
SEDD-S (170M) 1.5 12.4 45.3 11.9/0.7/10.9 0.7
GPT2-M (355M) 6.7 37.7 50.7 (8.6/0.9/8.2) 2.6
DiffuGPT-M (355M) 3.8 60.5 52.6 18.7/2.7/17.0 2.9
SEDD-M (424M) 1.8 23.1 53.5 13.1/1.4/12.2 0.5
Plaid1B (1.3B) 1.2 8.6 32.6 12.1/1.1/11.2 0.1
TinyLlama (1.1B) - 43.22 - - -
GPT-2 (1.5B) - 44.61 - - -
Llama-2 (7B) 45.4 68.8 58.6 (11.6/2.1/10.5) 1.7
MDM (1.1B) - 52.73 58.5 - -
MDM (1.1B) + P2 - 52.88 60.9 - -
DiffuLLama (7B) 18.5 53.72 - 20.31/2.83/18.16 13.2
DiffuLLama (7B) + P2 18.8 54.80 - 25.44/7.10/23.41 17.6

prompt, we use MDMs to generate responses and calculate matching accuracy against the ground
truth. Additionally, we employ complex tasks such as GSM8K (Cobbe et al., 2021), grade school
math problem, to assess the math reasoning and story-infilling task using ROCStories (Mostafazadeh
et al., 2016) and evaluate using ROUGE score (Lin, 2004). To test the code infilling, we also adopted
Humaneval (Bavarian et al., 2022) single line infilling task, which is evaluated by pass@1 rate. We
employ Language Model Evaluation Harness framework (Biderman et al., 2024) for performance
assessment.

Baselines. We adopt the baselines and their results from previous works (Nie et al., 2024; Gong
et al., 2024) , including continuous diffusion model Plaid1B (1.3B) (Gulrajani & Hashimoto, 2023),
discrete diffusion model SEDD-S (170M), SEDD-M (424M) (Lou et al., 2023), MDM(1B) (Gong
et al., 2024), DiffuLLama(7B)(Nie et al., 2024), DiffuGPT-S (127M), DiffuGPT-M (355M)(Nie et al.,
2024), and autoregressive models GPT2-S (127M) , GPT2-M (355M),GPT-2 (1.5B) (Radford et al.,
2019), TinyLlama(1.1B) (Zhang et al., 2024) and Llama-2 (7B) (Touvron et al., 2023).

Setup. We equip existing mask diffusion models MDM (1.1B) and DiffuLLama (7B) with our
path planning and compare them with the default ancestral sampling results. For P2, we sweep the
stochasticity strength from 0 to 2.0 with a step size of 0.2 and report the best results.

Results. As shown in Table 8, equipping with P2, we consistently improve the generation performance
in the five benchmarks. In tasks that require more extensive global bidirectional reasoning, math
reasoning GSM8K story infilling ROCStories, and code generation, P2 consistently exhibits improved
performance by a large margin compared to the ancestral sampling. Compared to AR models that
rely solely on left-toright modeling capabilities, P2 presents impressive generation accuracy; in code
generation, where P2 achieves 17.6% pass@1 rate (vs. 1.7% of respective autoregressive model
Llama-2 (7B)). In math reasoning, P2 enables a 1.1B-parameter MDM to outperform 7B-parameter
Llama2 (60.9% vs. 58.5%). We attribute the success of P2 in complex language generation task to the
remasking that corrects potential mistakes made in previous steps and promotes MDMs to generate
robust answers.

H.7 ADDITIONAL LANGUAGE GENERATION TASKS

H.7.1 BREAKING THE REVERSE CURSE

Benchmark. Berglund et al. (2023) introduced the concept of the reverse curse, which refers to the
difficulty of ARMs in generalizing bidirectional relationships. Specifically, this occurs when a model
is trained on information in the form “A is B” but fails to infer the reverse relationship “B is A.” For
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Table 9: Results on breaking the reverse curse: Performance comparison of models on Description-
ToName and NameToDescription tasks. Metrics include accuracy (Acc.) and BLEU scores (BLEU)
for both same and reverse directions.

DescriptionToName NameToDescription
Same direction Reverse direction Same direction BLEU ↑ Reverse direction BLEU ↑

Acc. ↑ Acc. ↑ Acc. ↑ BLEU ↑ Acc. ↑ BLEU ↑
GPT3 (175B) 97 0 50 - 0 -
Llama-2 (13B) 99 0 - 74 - 19
T5 (3B) 100 0 47 87 0 20
MDM (1.1B) 97 92 49 76 37 67
MDM (1.1B) + Path Planning (P2) 96 93 48 78 36 68

example, a model trained on the fact “Valentina Tereshkova was the first woman to travel to space”
may not correctly answer the reverse question “Who was the first woman to travel to space?” This
limitation raises concerns about whether large language models genuinely possess logical reasoning
capabilities.

Baselines. We compare with the leading AR models including GPT3 (175B), Llama-2 (13B), and the
T5 consisting of both bidirectional encoder and unidirectional decoder, finetuned on the reverse curse
dataset. For the MDM baseline, We use the existing MDM (1.1B) from Gong et al. (2024) with its
default greedy ancestral sampling strategy.

Setup. It is observed in SMDM(Gong et al., 2024) that MDMs easily break the reverse curse,
displaying near-perfect reverse accuracy where ARs achieve 0 accuracy. We follow SMDM(Gong
et al., 2024) and evaluate MDMs on the same reverse curse dataset used by Berglund et al. (2023),
which consists of fictitious statements in the format “〈name〉 is 〈description〉” and the reversals. We
use the pretrained MDMs and baseline results from SMDM (Gong et al., 2024) which on these
statements and assess their performance using questions not seen during training. Following the
same protocol as (Berglund et al., 2023), we generate responses and report the exact match accuracy
and use the BLEU metric (Papineni et al., 2002) to evaluate the quality of name-to-description
generation (Lv et al., 2023).

results. As shown in Table 9, both the T5 model and ARMs achieve zero accuracy and low BLEU
scores with reverse queries. Equipping with P2, we successfully improve the accuracy of MDMs in
Reverse direction of task Description To Name and the BLEU metric of Name To Description in both
directions.

H.8 PROTEIN SEQUENCE GENERATION

Performance Across Length Categories. We analyze the performance of protein generation
models across various sequence lengths, ranging from 200 to 800 base pairs. Certain models, such as
ProGen, do not generate proteins of fixed lengths; therefore, we group results into length categories
to facilitate meaningful comparisons. As shown in Figure 6, the performance of these models varies
with length, highlighting their capabilities and limitations across diverse length categories.

H.8.1 DESIGN SPACE OF P2.

We explore the design space of our proposed P2 framework using key metrics, including pLDDT, pAE,
pTM, entropy, and diversity. As illustrated in Figure 7, P2 demonstrates a strong ability to balance
structural accuracy and diversity, underscoring its versatility and robustness in protein generation
tasks.

H.8.2 ABLATION STUDY ON THE PLANNER.

We investigate the impact of planner size on model performance through an ablation study. Figure 8
shows how varying the planner size affects key metrics such as pLDDT and diversity. These results
emphasize the importance of planner size in optimizing the quality and consistency of generated
sequences.
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Figure 6: Protein Sequence Generation Benchmark: Performance across length categories (200–800).

Figure 7: Design space of P2, characterized by pLDDT, pAE, pTM, entropy, and diversity metrics.
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Figure 8: Ablation study of planner size and its impact on protein generation performance.

H.8.3 INFERENCE-TIME SCALING: PERFORMANCE VS. SAMPLING TIME.

To evaluate the trade-off between inference time and performance, we investigate how sampling time
scales with model performance. These results will be detailed in future work, but they highlight the
scalability of our approach for efficient protein generation.

H.8.4 GENERATED PROTEIN SEQUENCES AND THEIR PREDICTED STRUCTURES.

We fold the protein sequences generated by our model using ESMFold and visualize their predicted
structures in Figures 9–12. For each length category—200, 300, 400, 500, 600, 700, and 800—we
display 15 representative proteins. These visualizations highlight the structural diversity and consis-
tency of the generated sequences, providing evidence of the model’s ability to predict biologically
plausible structures across diverse lengths.

H.8.5 RNA RDM TRAINING IMPLEMENTATION.

The RNA RDM follows the same discrete diffusion described in (Zheng et al., 2023). The RDM
was trained using a machine mounted with 4 A100 GPUs, each with 40GB memory. The training
implementation is otherwise identical to the second-stage fine-tuning described in (Wang et al.,
2024a), where we continued from a RiNALMo (Penić et al., 2024) checkpoint instead of ESM-2 (Lin
et al., 2023).

H.8.6 VISUALIZING THE PREDICTED STRUCTURES OF GENERATED RNA SEQUENCES.

We extend our analysis to RNA sequence generation by folding RNA sequences of 200 base pairs
using AlphaFold3 (Abramson et al., 2024). The predicted folding structures, visualized in Figures
13 and 14, highlight the diversity and consistency of the RNA structures generated by the model.
Particularly, predicted structures exhibit greater diversity as sequence length increases, as is observed
in nature, while their pLDDT’s mirroring those computed for natural sequences. We also include
the predicted secondary structures of generated RNAs in Figure 15. These results demonstrate
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Figure 9: Predicted structures of generated protein sequences (Group 1). Each panel represents
structures generated for specific length categories.
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Figure 10: Predicted structures of generated protein sequences (Group 2). Each panel corresponds to
different length categories.
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Figure 11: Predicted structures of generated protein sequences (Group 3). These structures illustrate
the diversity and robustness of the generation process.
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Figure 12: Predicted structures of generated protein sequences (Group 4). This group emphasizes
structures for the longest generated sequences.

the model’s ability to generate biologically plausible RNA sequences suitable for downstream
applications.

Figure 13: Predicted structures of additional generated RNA sequences (100 bps).
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Figure 14: Predicted structures of generated RNA sequences (200 bps). This figure showcases the
structural diversity of RNA sequences generated by the model as sequence length increases, which is
observed in nature.

Figure 15: Predicted secondary structures of generated RNA sequences of length 100 (top) and 200
bp (bottom). Predictions were made using ViennaRNA (Lorenz et al., 2011) and visualized with
forna (Kerpedjiev et al., 2015).
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