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Abstract

This study introduces a one-shot federated technique for medical imaging called1

FBPFT-VI, a Variational Inference parametric feature-transfer approach. Each2

client freezes an Attention-MobileNetV2 encoder to extract features, then fits a3

variational posterior over its class-conditional feature statistics and transmits only4

the posterior parameters. The server samples synthetic features from these poste-5

riors and trains a cosine classifier head, using Variational Inference to combine6

client contributions in a single aggregation round. Across multiple medical imag-7

ing benchmarks under IID and heterogeneous settings, FBPFT-VI improves the8

communication–accuracy trade-off.9

1 Introduction10

Federated learning (FL) enables collaborative model training without centralizing data by keeping raw11

samples on devices and exchanging only model updates with a server (Konecný et al., 2016; Kairouz12

et al., 2021). Although multi-round algorithms such as FedAvg and FedProx (McMahan et al., 2016;13

Li et al., 2020a) achieve strong performance, they incur heavy communication and synchronization14

costs, suffer from straggler and security issues, and increase the attack surface (Jhunjhunwala et al.,15

2024). One-shot FL mitigates these limitations by performing a single aggregation round (Guha16

et al., 2019; Wang et al., 2025), yet existing approaches based on knowledge distillation (Gong et al.,17

2021; Li et al., 2020b; Zhang et al., 2022; Jhunjhunwala et al., 2024) or neuron-matching/model-18

fusion (Ainsworth et al., 2022; Entezari et al., 2021; Choshen et al., 2022; Jin et al., 2022) remain19

sensitive to client heterogeneity and often depend on public data or exposed features. Recent progress20

in parametric feature transfer (PFT) (Beitollahi et al., 2024) addresses this by summarizing client21

feature distributions with compact probabilistic models for server-side synthetic training. We propose22

FBPFT-VI, a variational inference, one-shot FL framework in which each client fits a variational23

posterior over class-conditional features from a neural network. These posteriors capture epistemic24

uncertainty and transmit only variational parameters, preserving privacy and efficiency. The server25

then samples synthetic embeddings from the aggregated variational posteriors to train a cosine26

classifier head, achieving superior accuracy and robustness under IID and heterogeneous medical27

imaging scenarios1.28

2 Methodology29

We introduce a one-shot FL model that aggregates an encoder neural network once and trains only a
server-side cosine classifier on synthetic features, never sharing raw samples. Each client uk with a
local dataset Xk optimizes an embedding network fθk : RH×W×C → Rd so that normalized latent

1The acknowledgment section has been omitted for the double-blind review process and will be included in
the final version of the paper.
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Table 1: Comparative IID Performance (%) on Eight Datasets. The best results for each dataset are
highlighted in bold, and the second-best results are underlined.

Method Blood Derma Oct Path Tissue RSNA Diabetic ISIC

FedAvg (McMahan et al., 2016) 93.51 74.61 75.60 84.54 63.64 88.16 49.04 62.88

FedAvg(1) 13.74 66.88 25.00 5.86 32.07 78.65 35.60 38.05
DAFL (Chen et al., 2019) 7.13 66.43 25.00 7.63 11.55 50.55 22.63 14.51
DENSE (Zhang et al., 2022) 39.37 66.93 33.80 21.89 21.35 55.06 23.51 13.69
FedISCA(Kang et al., 2025) 87.99 70.12 70.20 84.18 61.90 85.34 40.08 48.39
E-FedISCA(Kang et al., 2025) 87.31 71.47 71.30 79.48 57.96 85.46 41.32 51.17

FBPFT-VI 88.86 67.38 81.20 88.34 57.64 84.49 49.54 68.99

features ẑ = z/∥z∥2 align with class proxies (Movshovitz-Attias et al., 2017). Specifically, with
classes proxies Pk = {p̂k,c}Cc=1 for client k and temperature τ > 0, the local objective for a sample
x with class y is

Lproxy(θk) = E(x,y)∼Xk

[
− log

exp{⟨ẑ, p̂k,c⟩/τ}∑C
c=1 exp{⟨ẑ, p̂k,y⟩/τ}

]
, ẑ =

fθk(x)

∥fθk(x)∥2
.

Our major novelty is to propose a variational inference to estimate the class proxies. To summarize30

local distributions without exposing per-example embeddings, each client fits per-class mean-field31

Gaussians in the feature space of fθ for class c, qk,c(z) = N (µk,c,Σk,c), Σk,c = Diag(σ2
k,c).32

To enable efficient stochastic optimization over the latent proxy distributions, we apply the repa-33

rameterization trick (Barros et al., 2024). Specifically, each proxy sample pk,c is obtained as34

pk,c = µk,c + σk,c ⊙ ϵ, where ϵ ∼ N (0, I). Let P be the client proxies and write the Boltzmann35

likelihood pθ(Xk | P) ∝ exp{−Lproxy(Xk)/α} with constant α > 0, the direct posterior inference36

is intractable (Kingma and Welling, 2022), so we adopt a server-as-prior strategy and minimize, for37

client uk, Lk({Pk, θk}; s) = Eqk,c

[
Lproxy(Xk)

]
+ αKL

(
qϕk

(P)∥N (0, I)
)
.38

After local optimization, each client k transmits its posterior parameters {µk,c,σk,c}Cc=1 to the39

server. Instead of directly averaging weights as in FedAvg, the server combines all received proxy40

distributions into a single multimodal global distribution qglobal(z | c) =
⋃K

k=1 qk,c(z), which41

represents the ensemble of client knowledge across heterogeneous models and data. From this global42

mixture, the server samples synthetic feature embeddings z̃∼qglobal(z | c) and uses them to train a43

one-layer cosine classifier head.44

3 Experimentation45

FL settings: We simulated an FL environment with five clients, each using a MobileNetV2 backbone46

with trainable convolutional layers and a 128-dimensional embedding space. Datasets were partitioned47

following (Kang et al., 2025) into three settings: (i) Dirichlet non-IID with α = 0.3, (ii)α = 0.6,48

and (iii) IID with 5 clients for balanced data. Each client trained locally for 8 epochs using Adam49

(lr=3×10−4), followed by 30 epochs of head fine-tuning (lr=10−3, weight decay=10−4). Variational50

inference with a diagonal Gaussian posterior was applied using 1500 steps (lr=5×10−3). Aggregation51

was performed in a single communication round, and the resulting probabilistic embeddings were52

used for evaluation.53

Results: Table 1 summarizes the IID, and our proposed FBPFT-VI outperformed existing FL54

baselines, achieving the best accuracy on six (out of eight) datasets. Thus, OCT and Path reached55

81.20% and 88.34%, respectively, surpassing FedISCA (Kang et al., 2025) and E-FedISCA. Besides,56

FedAvg if the standard multi-round version, while FedAvg(1) denotes its one-shot variant. Among the57

one-shot methods, FBPFT-VI achieved the highest overall performance, outperforming DAFL (Chen58

et al., 2019) and DENSE (Zhang et al., 2022). To evaluate robustness under non-IID data, we used59

Dirichlet distributions with α = 0.6 and α = 0.3, as shown in Table 2. As expected, accuracy60

decreased with stronger heterogeneity (smaller α). Under moderate heterogeneity (α = 0.6),61

FBPFT-VI achieved the best performance on OCT (79.40%) and Path (89.21%), while under high62

heterogeneity (α = 0.3) it surpassed all baselines across four (out of five) datasets. For model63

heterogeneity experiments (Table 3), we followed the setup of Kang et al. (2025), where clients used64
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Table 2: Classification accuracy (%) on five datasets with different heterogeneity levels. The best
results for each dataset are highlighted in bold, and the second-best results are underlined.

Dirichlet (α = 0.6) Dirichlet (α = 0.3)

Method Blood Derma Oct Path Tissue Blood Derma Oct Path Tissue

FedAvg (McMahan et al., 2016) 93.60 72.72 76.50 81.48 55.61 87.49 69.88 73.50 77.52 53.26

FedAvg(1) 18.24 66.88 25.00 5.86 32.07 16.92 10.97 25.00 5.86 32.07
DAFL (Chen et al., 2019) 7.13 66.88 34.40 14.97 39.15 7.13 13.62 25.00 18.64 45.00
DENSE (Zhang et al., 2022) 34.52 67.78 39.40 30.31 9.47 30.78 12.77 25.80 19.87 9.33
FedISCA (Kang et al., 2025) 82.90 69.83 68.60 82.92 53.04 46.59 15.91 60.50 79.25 51.00
E-FedISCA (Kang et al., 2025) 83.10 69.68 66.20 78.51 52.87 45.86 16.96 61.60 73.40 48.45

FBPFT-VI (Our model) 82.17 63.39 79.40 89.21 55.51 83.51 62.24 76.00 87.08 56.46

Table 3: Classification performance (%) across five datasets under the model heterogeneity. The best
results for each dataset are highlighted in bold, and the second-best results are underlined.

IID Dirichlet (α = 0.6) Dirichlet (α = 0.3)

Method Blood Derma Oct Path Tissue Blood Derma Oct Path Tissue Blood Derma Oct Path Tissue

DAFL (Chen et al., 2019) 7.13 65.69 25.00 15.72 35.66 7.13 67.21 37.10 28.15 39.54 7.13 13.47 45.30 29.68 19.54
DENSE (Zhang et al., 2022) 46.86 66.88 44.00 33.08 38.28 23.47 67.93 40.70 28.68 36.70 34.67 13.42 44.00 39.37 38.37
FedISCA (Kang et al., 2025) 87.96 71.17 70.00 83.02 61.74 73.43 69.23 64.80 82.73 51.95 44.20 16.61 62.00 72.26 43.80
E-FedISCA (Kang et al., 2025) 88.31 71.72 71.00 80.04 58.96 72.76 69.23 64.60 80.84 52.04 47.18 16.01 58.90 72.17 43.19

FBPFT-VI (Our model) 94.12 66.58 81.10 93.65 60.81 89.54 57.66 79.50 92.84 55.23 89.74 65.74 78.00 91.34 56.30

ResNet34, WRN-16-2, VGG16 (BN), and VGG8 (BN). We replaced ResNet18 with our MobileNet-65

Attention model for one client to represent architectural diversity better. Under this configuration,66

FBPFT-VI achieved superior accuracy across four (out of five) datasets, especially on Path (93.65%)67

and OCT (81.10%) in IID conditions, and maintained top performance even with strong heterogeneity68

(α = 0.3). These results indicate that our feature-based parameter fusion effectively integrates69

information from clients with different model capacities. Scalability analysis (Table 4) was conducted70

by increasing the number of clients from 5 to 20 under IID settings. Although accuracy decreased due71

to increased communication diversity, FBPFT-VI remained competitive. The two-shot variant further72

improved performance, for instance, achieving 82.50% on OCT (while keeping communication costs73

low).74

4 Conclusion75

This work presented FBPFT-VI, a variational one-shot FL framework for medical imaging that76

transfers variational inference class-conditional feature distributions instead of raw data. By model-77

ing client knowledge as variational posteriors and training a cosine classifier on sampled synthetic78

embeddings, FBPFT-VI achieves efficient, privacy-preserving aggregation while capturing epistemic79

uncertainty. Experiments on eight medical datasets show consistent improvements over both one-shot80

and two-round baselines under IID, non-IID, and heterogeneous settings, showing that Bayesian fea-81

ture modeling offers an effective trade-off between privacy, communication efficiency, and accuracy82

in federated medical learning.83

Table 4: Classification accuracy (%) of 20 clients across five datasets under IID settings. The best
results for each dataset are highlighted in bold, and the second-best results are underlined.

Method Blood Derma Oct Path Tissue

FedISCA (20 clients) 78.31 69.23 67.20 84.57 56.93
E-FedISCA (20 clients) 79.07 69.18 64.50 81.45 54.62
E-FedISCA (20 clients) 2-shot 86.23 69.48 69.80 83.19 58.57

FBPFT-VI (20 clients) 76.82 64.04 78.80 86.98 54.13
FBPFT-VI (20 clients) 2-shot 85.91 63.24 82.50 84.85 54.02
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