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Abstract

Recent studies find existing self-supervised001
speech encoders contain primarily acoustic002
rather than semantic information. As a re-003
sult, pipelined supervised automatic speech004
recognition (ASR) to large language model005
(LLM) systems achieve state-of-the-art results006
on semantic spoken language tasks by utilizing007
rich semantic representations from the LLM.008
These systems come at the cost of labeled009
audio transcriptions, which is expensive and010
time-consuming to obtain. We propose a task-011
agnostic unsupervised way of incorporating012
semantic information from LLMs into self-013
supervised speech encoders without labeled014
audio transcriptions. By introducing seman-015
tics, we improve existing speech encoder spo-016
ken language understanding performance by017
over 5% on intent classification, with modest018
gains in named entity resolution and slot filling,019
and spoken question answering FF1 score by020
over 2%. Our approach, which uses no ASR021
data, achieves similar performance as meth-022
ods trained on over 100 hours of labeled audio023
transcripts, demonstrating the feasibility of un-024
supervised semantic augmentations to existing025
speech encoders.026

1 Introduction027

Realizing artificial intelligence (AI) that can under-028

stand and respond to spoken language is a north029

star for many speech and natural language process-030

ing (NLP) researchers. A particularly effective031

framework for this is the encoder-decoder archi-032

tecture, where an encoder represents input audio033

signals as high-dimensional embeddings and a de-034

coder converts said embeddings to outputs for dif-035

ferent downstream tasks. Benchmarks for such036

systems include spoken language understanding037

(SLU), where intent, named entities, or slot values038

are predicted from input utterances (Yang et al.,039

2021; Bastianelli et al., 2020; Shon et al., 2022),040

and spoken question answering (SQA), where the041

start and end frames of an input audio passage an- 042

swering an input audio question are predicted (Lin 043

et al., 2022a). 044

A particularly notable setup of the encoder- 045

decoder framework is the universal representation 046

setup (Yang et al., 2021), where a shared self- 047

supervised speech encoder is pretrained upstream 048

once and frozen for all downstream tasks, then 049

a different lightweight decoder is fine-tuned on 050

each downstream task. This setup is appealing for 051

building speech systems as maintaining a separate 052

large specialized model for every task is not com- 053

putationally efficient. The universal representation 054

setup has been widely adopted in other areas of re- 055

search, such as computer vision (Goyal et al., 2019; 056

Ericsson et al., 2021) and natural language process- 057

ing (Rogers et al., 2020; Qiu et al., 2020), and pro- 058

duction when there are many downstream tasks or 059

domains (Molino et al., 2019). The current state-of- 060

the-art speech encoders under this setup are W2V2 061

and HUBERT (Yang et al., 2021; Baevski et al., 062

2020; Hsu et al., 2021), which are transformer- 063

based models trained with self-supervised learning 064

(SSL) on raw audio and have achieved impressive 065

performance on various tasks. 066

Recently, analytical works found SSL speech 067

encoders capture primarily acoustic, not semantic, 068

information (Pasad et al., 2021). Thus, researchers 069

proposed end-to-end systems (Chung et al., 2020b; 070

Kim et al., 2021; Qian et al., 2021; Le et al., 2022; 071

Seo et al., 2022; Lin et al., 2022a) that introduce se- 072

mantic information through large language models 073

(LLMs), such as ROBERTA (Liu et al., 2019) or 074

BART (Lewis et al., 2019), which are pretrained 075

to capture language semantics (Clark et al., 2019). 076

This is typically accomplished by the pipeline ap- 077

proach (Bastianelli et al., 2020), which passes au- 078

dio input through the SSL speech encoder, then 079

bridge module, then LLM. The bridge module con- 080

verts speech encoder embedding outputs into LLM 081

token inputs (Lugosch et al., 2019; Rao et al., 2021; 082
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Lin et al., 2022a; Seo et al., 2022).083

Unsupervised ASR models (ASR-U) (Liu et al.,084

2020b; Baevski et al., 2021; Liu et al., 2022)085

have also seen recent success. The state-of-the-art086

ASR-U model uses generative adversarial networks087

(GANs) (Goodfellow et al., 2020) to generate text088

transcription from input audio (Liu et al., 2022).089

Current works combining SSL speech encoders090

and LLMs do not satisfy the universal represen-091

tation framework, as they either (1) rely on ASR092

data on the downstream task, which is expensive093

to collect and maintain, (2) are not lightweight, re-094

quiring training the whole system end-to-end, or095

(3) are not general, as they do not consider a wide096

variety of downstream tasks (Lugosch et al., 2019;097

Rao et al., 2021; Lin et al., 2022a; Seo et al., 2022).098

Similarly, ASR-U was proposed for speech recog-099

nition and the focus is not improving SSL speech100

encoders (Baevski et al., 2021; Liu et al., 2022).101

We propose introducing Semantics into Speech102

Encoders, SSE, a task-agnostic unsupervised way103

of incorporating semantic information from LLMs104

into self-supervised speech encoders without la-105

beled audio transcriptions. Concretely, SSE adopts106

the pipeline approach to obtain semantic embed-107

dings, with an ASR-U bridge connector to extract108

information from LLMs. As ASR-U is inherently109

noisy, SSE introduces attention residual connec-110

tion (He et al., 2016; Vaswani et al., 2017) be-111

tween the speech encoder and LLM. SSE also ef-112

ficiently aligns the LLM with the speech encoder113

through adapter modules (Houlsby et al., 2019).114

SSE improves W2V2 (Baevski et al., 2020) and115

HUBERT (Hsu et al., 2021) on 3 SLU tasks across116

3 datasets, all under the universal representation117

setup. SSE also outperforms state-of-the art no-118

ASR method, DUAL (Lin et al., 2022a), in SQA.119

While recent works use ASR-U to augment120

existing speech encoders with phoneme-level121

LLMs (Feng et al., 2022; Meng et al., 2022; Shi122

et al., 2022; Hsu et al., 2022), subword-level LLMs123

contain much more pertinent and measurable se-124

mantic information (Clark et al., 2019). Other125

works in SQA rely on clustering to assign audio126

frames to frequent subword tokens, but this requires127

heavy finetuning on the downstream task (Lin et al.,128

2022a). To the best of our knowledge, we are129

the first to propose a task-agnostic SSL speech en-130

coder which directly interfaces with subword-based131

LLMs. We summarize our contributions below:132

• We propose using ASR-U components to aug-133

ment SSL speech encoders for generating sub- 134

word tokens with semantic information. 135

• The augmented SSL speech encoders can be 136

connected with LLMs seamlessly and yields 137

state-of-the-art performance under the univer- 138

sal representation setup. 139

• We demonstrate speech and text encoders can 140

be better interfaced with attention residual 141

connections and adapters. 142

2 Related Works 143

2.1 Self-Supervised Speech Encoders 144

SSL speech encoders (Liu et al., 2020a; Chung 145

et al., 2020a; Ling and Liu, 2020; Liu et al., 2021, 146

2020c; Chung et al., 2019; Baevski et al., 2019; 147

Schneider et al., 2019; Baevski et al., 2020; Hsu 148

et al., 2021) are trained to learn and reconstruct 149

pooled clustered representations of input audio 150

from the original audio. The intuition for this objec- 151

tive comes from linguistics, where speech can be 152

broken down into phoneme groups, where different 153

chunks of input audio represent different phoneme 154

groups. W2V (Schneider et al., 2019) trains a con- 155

volutional neural network model to reconstruct the 156

quantized cluster representations. W2V2 (Baevski 157

et al., 2020) uses transformers and a discrete code- 158

book quantization module. HUBERT (Hsu et al., 159

2021) improves W2V2 by disentangling the clus- 160

tering and SSL objectives and using a BERT-style 161

encoder (Devlin et al., 2018). The speech pro- 162

cessing universal performance benchmark (SU- 163

PERB) (Yang et al., 2021; Lin et al., 2022b; Tsai 164

et al., 2022) shows SSL speech encoders are the 165

most effective method for solving multiple down- 166

stream tasks with minimal fine-tuning. A recent 167

analytical work finds SSL speech encoders success- 168

fully encode acoustic information, but lack seman- 169

tic information (Pasad et al., 2021). 170

2.2 Large Language Models 171

In contrast to speech encoders, pretrained LLMs 172

are shown to capture rich semantic informa- 173

tion (Clark et al., 2019). These methods opti- 174

mize variants of the masked language modeling 175

(MLM) objective to train a large transformer model. 176

BERT (Devlin et al., 2018) uses MLM to learn a 177

transformer encoder. ROBERTA (Liu et al., 2019) 178

introduces dynamic masking and a larger text cor- 179

pus. BART (Lewis et al., 2019) supports genera- 180

tive modeling and adds a denoising objective, mak- 181
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ing it less susceptible to noisy text inputs. LONG-182

FORMER (Beltagy et al., 2020) is pretrained for183

long documents by increasing the document length184

limit during pretraining. LLMs have been success-185

fully integrated with speech models for specific186

semantic tasks (Chung et al., 2020b; Kim et al.,187

2021; Qian et al., 2021; Le et al., 2022; Seo et al.,188

2022; Lin et al., 2022a), but not under the universal189

representation framework.190

2.3 Task-Specific Speech Models191

Task-specific SLU systems outperform generic SSL192

speech encoders typically by using a LLM. These193

systems rely on ASR data to reliably interface the194

LLM. LUGOSCH (Lugosch et al., 2019) trains a195

LSTM bridge module to convert audio features into196

phonemes then text. CTI’s (Seo et al., 2022) bridge197

module uses ASR logits to compute a weighted198

average of token embeddings. In addition to im-199

proving the bridge module, other works attempt200

to also distill LLM embeddings into speech repre-201

sentations (Chung et al., 2020b; Cha et al., 2021;202

Kim et al., 2021; Agrawal et al., 2022). For op-203

timizing targeted metrics, researchers have also204

experimented with reinforcement learning (Rao205

et al., 2021). While combinations of these meth-206

ods achieve impressive performance, they do not207

satisfy the universal representation setup.208

2.4 Unsupervised ASR209

Recent work show the viability of unsupervised210

speech recognition. W2V2-U (Baevski et al., 2021)211

accomplished this by running Principal Component212

Analysis (PCA), k-means clustering, and mean213

pooling to convert W2V2 (Baevski et al., 2020) fea-214

tures into phoneme-granularity features, then trains215

a GAN model to output phoneme text from the216

post-processed model (Baevski et al., 2021). The217

state-of-the-art method for phoneme-level unsuper-218

vised ASR is W2V2-U2.0 (Liu et al., 2022) which219

directly trains a CNN to output phonemes from220

W2V2 features and uses a reconstruction loss to tie221

the input audio with corresponding generated text.222

Both methods use WFSTs to decode the phonemes223

into raw text. While there have been preliminary224

attempts (Feng et al., 2022; Meng et al., 2022) to225

use W2V2-U2.0 with phoneme language models1,226

we are the first to combine it with semantically-rich227

subword-based LLMs.228

1https://huggingface.co/voidful/phoneme_byt5

2.5 Adapters 229

Adapters are intermediary layers added to a large 230

pretrained encoder. Adapter weights are learned 231

during fine-tuning while the rest of the pretrained 232

model is frozen. Adapters serve the dual purpose 233

of efficient fine-tuning and preventing overfitting. 234

First used by computer vision researchers (Rebuffi 235

et al., 2017), adapters now enjoy much success in 236

the natural language processing community by ef- 237

ficiently tuning LLMs (Houlsby et al., 2019). In 238

particular, the multilingual speech translation com- 239

munity found that adapters can effectively align 240

SSL speech encoders and LLMs for spoken trans- 241

lation tasks (Li et al., 2020; Le et al., 2021). 242

3 Proposed Method 243

We propose to introduce semantics into SSL speech 244

encoders by using ASR-U to interface with LLMs. 245

Section 3.2 describes how to use ASR-U to link a 246

speech encoder with a LLM. Section 3.3 describes 247

how to combine both acoustic and semantic infor- 248

mation and deal with ASR transcriptions errors. 249

Finally, Section 3.4 describes how to align LLMs 250

with the speech encoder for downstream tasks. 251

3.1 Problem Setting 252

Following the universal representation frame- 253

work (Yang et al., 2021), our model consists of 254

a large speech encoder, E : X → Z , mapping in- 255

put audio, X ∈ X , to embeddings, Z ∈ Z , and a 256

light-weight task decoder, Dω : Z → Yω, mapping 257

embeddings to downstream task outputs, Yω ∈ Yω. 258

The speech encoder, E , is pretrained once, then 259

shared on all downstream tasks. The task decoder, 260

Dω, is fine-tuned on its respective task, ω ∈ Ω. 261

During fine-tuning, the majority of model weights 262

are frozen. This ensures the model can be effi- 263

ciently stored and deployed. 264

During pretraining, the speech encoder is trained 265

on unlabelled audio, X ∈ X , and unlabeled text, 266

Tu ∈ Tu. During finetuning, the model is trained 267

on the labelled downstream dataset, (X,Yω) ∈ 268

X × Yω. Notice, costly labelled ASR data is not 269

required during pretraining or finetuning. 270

3.2 Unsupervised Semantic Representation as 271

a Bridge 272

To incorporate semantic information into SSL 273

speech encoders, E : X → Z , we wish to lever- 274

age subword-based LLMs, M : S → Z , that 275

capture language semantics (Devlin et al., 2018; 276
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(a) SSE-BASE (b) SSE-TUNE

Figure 1: Depiction of the SSE. The blue component
is the speech encoder, W2V2L15, trained with SSL.
The green component is the bridge module trained with
a GAN objective. The orange component is the LLM,
BART, pretrained on a text corpus. The red components
are trained on the downstream task and lightweight.
Note, all non-red components are frozen during down-
stream fine-tuning.

Liu et al., 2019; Lewis et al., 2019; Beltagy et al.,277

2020). The major challenge is the mismatch of278

input spaces. Speech encoders take raw audio279

as input, X ∈ X . LLMs take subword tokens280

as input, S ∈ S. SSE uses W2V2-U2.0 (Liu281

et al., 2022) as a bridge module (Seo et al., 2022),282

B : Z → S , to convert speech encoder embedding283

output into LLM subword tokens in a pipelined284

approach, ESSE = E ◦ B ◦M.285

Following W2V2-U2.0, the bridge module, B286

uses a GAN (Goodfellow et al., 2020) to output287

phoneme sequences, P ∈ P , conditioned on in-288

put audio, X ∈ X . The GAN does not directly289

predict subword-level transcriptions, because sub-290

word barriers are not easily deducible from acoustic291

speech embeddings and requires implicitly learn-292

ing phoneme-to-subword mappings. Instead, the293

bridge module, B, uses a Weighted Finite State294

Transducer (WFST), W : P → S, which is fed295

known phoneme-to-subword mappings, to map296

the generator outputs into subword tokens. The297

generator, G : Z → P , and the discriminator,298

C : P → [0, 1], are both convolutional neural299

networks (CNNs). The GAN model is trained on300

the same regularized GAN objective as in W2V2-301

Model Component % of Parameters
SSE-BASE 90.40%

residual attention 0.73%
BART adapters 0.18%

downstream decoder 8.69%

Table 1: Comparing the parameter count of different
components of SSE-TUNE (W2V2L15). In total, there
are 505.3 million parameters. Notice, the decoder is
much more lightweight than the encoder. Residual at-
tention and adapters also introduce minimal parameter
overhead during finetuning.

U2.0 (Liu et al., 2022). 302

The vanilla version of our final model is com- 303

posed of (1) SSL speech encoder, E : X → Z pre- 304

trained on unlabelled audio data, (2) a CNN+WFST 305

bridge module, B = W ◦ G : Z → S, trained on 306

unlabelled text and audio data, and (3) a LLM, 307

M : S → Z , pretrained on unlabelled text data. 308

We also add an upsampling layer, U : Z → Z to 309

make the sequence length of the LLM output match 310

the speech encoder output, such that E and ESSE 311

share the same output space. 312

We choose the 15th layer of the W2V2 (Baevski 313

et al., 2020) as our speech encoder, as the last layers 314

overfit the self-supervised training objective hence 315

providing worse acoustic representations (Fan et al., 316

2020; Baevski et al., 2021; Pasad et al., 2021). We 317

choose BART (Lewis et al., 2019) as our LLM, as 318

it is trained to denoise noisy input subword tokens, 319

and we expect the bridge module to introduce some 320

noise. We call this version of our model SSE-BASE. 321

A depiction can be found in Figure 1a. 322

3.3 Combining Semantics and Acoustics with 323

Residual Attention 324

We hypothesize certain tasks may require more 325

acoustic information than others. For instance, 326

named entity recognition (NER) requires the model 327

to implicitly transcribe parts of the input speech, a 328

primarily acoustic task. Since the pipelined model 329

may suffer from transcription errors introduced by 330

ASR-U, naively using the pipelined approach in- 331

troduces an information bottleneck at the bridge 332

module. Hence, we propose adding a residual con- 333

nection (He et al., 2016) between SSE-BASE and 334

the speech encoder, E . 335

This can be done in two ways: (1) upsam- 336

pling semantic embeddings and concatenating 337

with speech embeddings, Z = [ZE ||U(ZM)], 338
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Model FSC-IC (Acc) SLURP-IC (Acc) SLURP-SF (F1) SLUE-NER (F1)

W2V2L24 95.28% 39.77% 36.48% 46.10%
W2V2L15 95.60% 49.97% 62.43% 78.77%
HUBERT 98.76% 58.11% 66.97% 82.88%

SSE-BASE 95.99% 55.28% 61.59% 79.62%
SSE-TUNE (W2V2L15) 98.71% 63.64% 64.48% 80.10%
SSE-TUNE (HUBERT) 99.44% 64.33% 68.82% 82.02%

Table 2: Experimental Results on FSC, SLURP, and SLUE datasets. We group the models by existing SSL
encoders and their semantically-enriched counterparts. Note, including semantics via LLMs consistently improves
downstream performance on both W2V2 and HUBERT. SLUE-NER relies on primarily semantic information.
Hence, while SSE-TUNE (W2V2L15) improves W2V2L15, HUBERT and SSE-TUNE (HUBERT) perform similarly.

Model
NMSQA

FF1 AOS
DUAL-64 39.0% 33.0%
DUAL-128 55.9% 49.1%
DUAL-512 17.3% 12.5%

SSE-BASE (ADAP) 57.20% 46.44%
SSE-BASE (ADAP) † 61.97% 54.73%

PIPELINE † 64.2% 57.1%

Table 3: Comparing unsupervised SQA models to su-
pervised PIPELINE model. † denotes the model uses
a LLM that was finetuned on the SQUAD-V1.1 text-
only QA dataset. We compare the baseline, DUAL, with
3 different number of clusters choices, to SSE-BASE
(ADAP) trained with either unlabeled audio or text.

or (2) using multihead attention (Vaswani et al.,339

2017) to merge the two embeddings, Z =340

[ZE ||MHA(ZE , ZM, ZM)], where ZE ∈ Z is the341

output of the W2V2L15 (Baevski et al., 2020) and342

ZM ∈ Z is the output of BART (Lewis et al.,343

2019). The former is a simpler but more naive344

method. The latter is more effective as the at-345

tention layers are able to learn the alignment be-346

tween speech and semantic embeddings. Notice,347

(2) introduces more learnable parameters to the348

finetuning-step, but we find the number of new pa-349

rameters inconsequential compared to the size of350

the lightweight decoder.351

3.4 Aligning Pretrained Text Model with352

Adapters353

Inspired by works from speech translation (Li et al.,354

2020; Le et al., 2021), we hypothesize that the LLM355

can easily be adapted for speech tasks through the356

use of adapters. We adopt the general recipe for357

adapters, where an adapter (Houlsby et al., 2019),358

composed of a LayerNorm and 2-layer ReLU neu-359

ral network, is added to the end of each feed for- 360

ward layer in the LLM and finetuned on down- 361

stream tasks. This introduces additional parame- 362

ters to finetuning, but we find the number of new 363

parameters inconsequential compared to the size of 364

the lightweight decoder. We call the model using 365

both residual attention and adapters SSE-TUNE, 366

and outline it in Figure 1b. 367

4 Experiments 368

4.1 Dataset 369

To show the effectiveness of introducing seman- 370

tics into speech encoders, we evaluate 3 SLU 371

tasks, intent classification (IC), slot filling (SF), 372

and named entity recognition (NER), and the SQA 373

task across 4 datasets: Fluent Speech Commands 374

(FSC) (Lugosch et al., 2019), Spoken Language 375

Understanding Resource Package (SLURP) (Bas- 376

tianelli et al., 2020), Spoken Language Understand- 377

ing Evaluation (SLUE) (Shon et al., 2022), and 378

Natural Multi-speaker Spoken Question Answering 379

(NMSQA) (Lin et al., 2022a), covering a wide va- 380

riety of speakers, microphones, and environments 381

4.2 Encoder Setup and Baselines 382

4.2.1 Spoken Language Understanding 383

To show SSE improves SSL speech encoders, we 384

augment two state-of-the art speech encoders un- 385

der the universal representation setup: W2V2 and 386

HUBERT. Following prior works that found inter- 387

mediary layers of W2V2 contain better representa- 388

tions (Pasad et al., 2021; Baevski et al., 2021), we 389

consider the 15th layer and the last layer of W2V2, 390

named W2V2L15 and W2V2L24 respectively. 391

As mentioned in Section 3, we show 2 ver- 392

sions of our model, SSE-BASE and SSE-TUNE. 393

The former uses the pipelined approach to con- 394
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Augmentation FSC-IC (Acc) SLURP-IC (Acc) SLURP-SF (F1) SLUE-NER (F1)

W2V2L15 95.60% 49.97% 62.43% 78.77%
SSE-BASE 95.99% 55.28% 61.59% 79.62%

SSE-BASE (Byt5) 95.80% 35.50% 59.15% 76.44%
SSE-BASE (T5lephone) 95.94% 41.19% 60.87% 77.88%

SSE-BASE (RES) 97.55% 59.59% 63.37% 79.66%
SSE-BASE (RESATT) 98.97% 62.39% 64.21% 80.04%

SSE-BASE (ADAP) 96.07% 60.28% 63.85% 79.97%
SSE-TUNE 98.71% 63.64% 64.48% 80.10%

Table 4: Ablation studies on choice of language model, residual attention, and adapters. By better representing
semantics, subword-based LLMs outperform phoneme- and unicode-based LLMs. Notice, both residual attention
and adapters are important. While SSE-BASE (RESATT) introduces slightly more parameters than SSE-BASE
(RES), it provides tangible performance improvement by better aligning the acoustic and semantic embeddings.

nect W2V2L15 with BART (Lewis et al., 2019)395

with no additional modifications. The latter intro-396

duces an attention residual connection and learn-397

able adapters to combine acoustics and semantics398

together and align the LLM with the speech en-399

coder respectively. We either connect the residual400

connection to the output of W2V2L15, yielding401

SSE-TUNE (W2V2L15), or to the output of HU-402

BERT, yielding SSE-TUNE (HUBERT).403

4.2.2 Spoken Question Answering404

To show the effectiveness of SSE, we compare405

it against DUAL (Lin et al., 2022a), the state-of-406

the-art SQA model which does not use ASR data.407

While both SSE and DUAL obtain frame-level to-408

kens from speech input, SSE uses ASR-U to obtain409

its tokens, whereas DUAL uses clustering. As a410

result, SSE’s output tokens exists in the LLM’s ex-411

isting vocabulary, whereas DUAL’s output tokens412

does not. Hence, DUAL must retrain the LLM on413

its output tokens.414

We compare DUAL to the closest analogous SSE415

model, which is SSE-BASE but with adapter layers,416

SSE-BASE (ADAP). Similar to DUAL, both meth-417

ods modify the LLM weights. Unlike DUAL, SSE-418

BASE (ADAP) is lightweight, tuning only around419

10% of the total parameters. To produces frame-420

level predictions, we remove the upsampling layer421

from SSE-BASE (ADAP). We choose W2V2L15422

as our speech model and BART as our LLM, as it423

is robust to ASR errors.424

We also show a PIPELINE model, which trains425

a W2V2 model on ASR data and a LONGFORMER426

LLM on text-only question answering data. It is427

worth noting that since evaluation is based on the428

frame-level, SSL speech encoders are not a baseline429

since they operate at the audio level. 430

4.3 Decoder Setup 431

To satisfy the universal representation setup, 432

we adopt lightweight SLU decoders from SU- 433

PERB (Yang et al., 2021). For IC, the decoder 434

is sum pooling followed by a multilayer perceptron 435

classifier trained with cross entropy loss. For the 436

SF and NER tasks, the decoder is recursive neural 437

network (RNN) that transcribes input audio into 438

text. The decoder identifies named entities or slot 439

values by surrounding them with named special 440

tokens and is trained with connectionist temporal 441

classification loss. For SQA, we adopt the same 442

decoder as DUAL (Lin et al., 2022a), which is a 443

linear layer classifying each subword embedding 444

as the start or end or neither of an answer span. 445

5 Results 446

5.1 Spoken Language Understanding 447

As seen in Table 2, SSE significantly improves 448

the SLU performance of both W2V2 and HU- 449

BERT, confirming that including semantic infor- 450

mation drastically improves existing SSL speech 451

encoder performance. Specifically, SSE-TUNE 452

(W2V2L15) improves W2V2L15 on all tasks. SSE- 453

TUNE (HUBERT) improves HUBERT on 3 out of 454

4 tasks, and is the best performing model over- 455

all. Comparing SSE-TUNE with SSE-BASE shows 456

residual attention and adapters effectively counter- 457

acts bridge module transcription errors. 458

The relative performance gain for IC is more 459

than SF or NER. Unlike IC, both SF and NER re- 460

quire the speech encoder to transcribe identified au- 461

dio snippets, and transcription is a primarily acous- 462
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tic task. Hence SF and NER require less seman-463

tic information than IC. Nevertheless, combining464

both acoustic and semantic information, as done465

by SSE-TUNE, provides the most consistent perfor-466

mance improvement, since the skip connection can467

learn which type of information is more needed.468

5.2 Spoken Question Answering469

As seen in Table 3, SSE outperforms recent unsu-470

pervised clustering-based approaches, DUAL. In471

contrast to DUAL’s HUBERT cluster tokens, SSE’s472

ASR-U tokens are better aligned with LLMs and473

share the same space. Thus, SSE can better uti-474

lizes pretrained LLMs. Furthermore, SSE does not475

require carefully tuning the number of HUBERT476

cluster counts, as the vocabulary size of the LLM477

is fixed and consistent with ASR-U.478

5.3 Ablation Study479

5.3.1 Choice of Language Model480

We find subword-based LLMs contain more infor-481

mation than phoneme-based LLMs (Clark et al.,482

2019). We empirically verify this by replac-483

ing our subword-based LLM, BART (Lewis484

et al., 2019), with popular character-based LLM,485

ByT5 (Xue et al., 2022), and phoneme-based LLM,486

T5lephone (Hsu et al., 2022) in SSE-BASE. As487

seen in Table 4, the subword-based LLM perform488

the best as each subword token is more seman-489

tically meaningful than a phoneme or character.490

We believe T5lephone outperforms the Byt5 as it491

has better robustness to ASR-U errors. Overall,492

subword-based LLMs are the best choice for em-493

bedding semantic information in transcribed text.494

5.3.2 Residual Attention and Adapters495

To more carefully analyze the affect of residual496

attention and adapters in SSE-TUNE, we run exper-497

iments on all SLU datasets with and without each498

component. We denote these two design choices499

as (ResAtt) and (Adap) respectively. As seen in Ta-500

ble 4, both components provide ample performance501

improvement over SSE-BASE.502

We also try the naive residual connection ap-503

proach described in Section 3.3 by directly concate-504

nating the LLM upsampled semantic embeddings505

to the speech embeddings. We call this approach506

SSE-BASE (RES). This method is less effective507

than SSE-BASE (RESATT) as it does not learn508

how to align speech and semantic embeddings, but509

still improves SSE-BASE, further validating our510

hypothesis that merging acoustic and semantic in- 511

formation is beneficial. 512

As seen in parameter breakdown for the SSE- 513

TUNE (W2V2L15) model in Table 1, the number 514

of new learnable parameters introduced by (Re- 515

sAtt) and (Adap) are unsubstantial compared to 516

the size of the lightweight downstream decoder. 517

Specifically, the downstream task decoder accounts 518

for 9.60% of the total model parameters. SSE- 519

TUNE introduces only 10.47% more parameters 520

than SSE-BASE during fine-tuning and 0.91% to 521

the total model parameter count, but often provides 522

significant performance improvement. 523

5.4 Comparison with Supervised ASR 524

Methods 525

To quantify the effect of transcription errors intro- 526

duced by the bridge module, we compute the word 527

error rate (WER) of the bridge connector in SSE- 528

TUNE, and compare it against standard W2V2 su- 529

pervised ASR models (Baevski et al., 2020) trained 530

on 10 minutes, 100 hours, and 960 hours of la- 531

beled ASR data. Table 5 confirms that less noisy 532

transcripts, transcripts with lower WER, correlates 533

with better downstream performance. The unsu- 534

pervised model, which uses 960 hours of unla- 535

belled data, can reach similar WER as a super- 536

vised model trained on 100 hours of labelled data, 537

indicating the effectiveness of the bridge module. 538

On SLURP and SLUE, the relative drop in WER 539

(> 20%) is substantially more than the relative 540

drop in downstream performance (< 5%), verify- 541

ing SSE-TUNE’s tolerance to noisy transcriptions. 542

The robustness to ASR errors come from our choice 543

of LLM, BART, which is trained to handle noisy 544

inputs, residual connection to acoustic embeddings, 545

and LLM alignment with adapters. 546

5.5 Comparison to Specialized SLU Models 547

To better quantify the performance improvement 548

introduced by SSE, we compare against 2 special- 549

ized SLU models that do not abide by the universal 550

representation framework: Kaldi+HerMiT, which 551

is a pipelined Kaldi ASR (Povey et al., 2011) and 552

HerMiT NLU (Vanzo et al., 2019) model reported 553

in the SLURP paper (Bastianelli et al., 2020), and 554

CTI (Seo et al., 2022), which is an end-to-end 555

pipelined W2V2 (Baevski et al., 2020) ASR and 556

ROBERTA (Liu et al., 2019) NLU model. To the 557

best of our knowledge, CTI is the state-of-the-art 558

SLU model. 559
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Bridge Module ASR data
FSC SLURP SLUE

WER IC Acc WER IC Acc SF F1 WER NER F1
W2V2-ASR 960h 9.19% 99.34% 45.83% 66.18% 65.62% 15.51% 80.58%
W2V2-ASR 100h 11.89% 99.10% 53.22% 63.20% 63.87% 17.70% 79.67%
W2V2-ASR 10h 59.06% 98.50% 74.77% 59.91% 63.42% 53.00% 79.76%
SSE-TUNE nothing 21.28% 98.71% 51.51% 63.64% 64.48% 31.22% 80.10%

Table 5: Analysis on WER of SSE’s bridge module. All models adopt the same speech encoder, LLM, residual
attention, and adapter components as SSE-TUNE (W2V2L15), but convert speech embeddings into subword tokens
in different ways. W2V2-ASR finetunes W2V2 with an ASR head using letter-based CTC with varying amounts of
ASR data. As seen in this table, ASR errors correlate with downstream performance. Hence, more accurate ASR-U
models or methods to alleviate ASR errors, such as residual attention, would greatly benefit SSE.

Model IC (Acc) SF (F1)
W2V2L15 49.97% 62.43%
HUBERT 58.11% 66.97%

SSE-TUNE (W2V2L15) 63.64% 64.48%
SSE-TUNE (HUBERT) 64.33% 68.82%

Kaldi+HerMiT 78.33% 70.84%
CTI 82.93% 71.12%

Table 6: Comparison with specialized SLU models not
under the universal representation setup, Kaldi+HerMiT
and CTI. Results are on the SLURP dataset.

In addition to unlabelled text, unlabelled au-560

dio, and downstream data, both Kaldi+HerMiT561

and CTI require 40 hours of downstream SLURP562

ASR data (Bastianelli et al., 2020). Kaldi+HerMiT563

requires an additional 24,000 hours of ASR564

data (Povey et al., 2016). CTI requires an addi-565

tional 960 hours of ASR data (Panayotov et al.,566

2015). Neither use lightweight fine-tuning. Thus,567

such specialized SLU models are less general, more568

expensive, and require much more data. As seen in569

Table 6, SSE helps bridge the gap between tailor-570

made models and more practical SSL speech en-571

coders. We believe ASR-U errors plays a major572

role in the remaining gap, as the ASR-supervised573

Kaldi+HerMiT and CTI models have WER of574

16.20% and 16.67% respectively, compared to575

SSE’s ASR-U bridge with a WER of 51.51%576

5.6 Representation Visualization577

To better see the impact of including semantic rep-578

resentations, we visualize the pooled audio snippet579

embedding for intent classification on SLURP-IC580

using t-distributed stochastic neighbor embedding581

(t-SNE) (Van der Maaten and Hinton, 2008). We582

denote the ground truth label of each audio snippet583

by the color of its pooled embedding. As seen in584

(a) W2V2L15 embeddings (b) SSE-TUNE embeddings

Figure 2: t-SNE visualizations of pooled audio snippet
embeddings for SLURP-IC. Each point corresponds
with one embedding. The color denotes the ground truth
class of the corresponding audio snippet. Subfigure 2a
and 2b shows SSE-TUNE is better at differentiating
intents by incorporating semantic information.

Figure 2, the clusters produced by semantic em- 585

beddings are more spread out and better separated 586

than those produced by just acoustic speech embed- 587

dings, indicating that SSE introduces new semantic 588

information that existing speech encoders lack. 589

6 Conclusion 590

We presented a compelling case for introducing 591

semantics into SSL speech encoders and an effec- 592

tive method of doing so. Our approach boosts the 593

performance of existing speech encoders on multi- 594

ple SLU and SQA tasks and datasets. We provide 595

reasoning for what tasks may benefit more or less 596

from incorporating semantics. Furthermore, our 597

approach is task agnostic and can augment any 598

existing SSL speech encoder. With SSE-TUNE, 599

we show merging acoustic and semantic informa- 600

tion and effectively aligning LLMs to the speech 601

encoder on downstream tasks can further boost per- 602

formance with minimal parameter overhead. As 603

it can generalize to many downstream tasks, SSE 604

provides an important step towards AI that can un- 605

derstand and respond to spoken language. 606
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A Appendix 925

A.1 ASR-U Bridge Training Objective Details 926

We adopt the same unsupervised training scheme 927

as W2V2-U2.0 (Liu et al., 2022). Specifically, 928

we train the generator, G, on GAN loss, Lgan, 929

a gradient penalty term, Lgp, for better conver- 930

gence, a smoothness penalty term, Lsp, to encour- 931

age consecutive speech segments to generate the 932

same phonemes, a phoneme diversity term, Lpd, 933

to diverse phoneme usage in output transcripts 934

by maximizing entropy, and a self-supervised re- 935

construction loss, Lss, to encourage the generated 936
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phonemes to match the input audio. The recon-937

struction term uses a separate linear head to classify938

each speech embedding into 1 of 64 clusters, ζt, ob-939

tained from running k-means on the Mel-frequency940

cepstral coefficient (MFCC) features of the input941

audio (Hsu et al., 2021; Liu et al., 2022). The final942

GAN training objective, minG maxC L, is summa-943

rized in Equation 1. The training procedure for944

the bridge module is outlined in Figure 3. Sim-945

ilar to W2V2-U2.0 (Baevski et al., 2021), SSE946

bridge models are trained on unlabelled audio and947

text from the Librispeech (Panayotov et al., 2015)948

dataset.949

Figure 3: Outline of W2V2-U2.0 training procedure.
The CNN module generates phoneme logits for the input
audio. The bridge connector is trained on the GAN
objective with reconstruction loss and regularization.
During inference, the generator and linear layer used for
reconstruction are discarded.

L = Lgan + λLgp + γLsp + ηLpd + δLss950

Lgan = E
Tu

[logC(Tu)] + E
X
[log(1− C(G(X))]951

Lgp = E
X,Tu

µ∼U(0,1)
µ′=1−µ

[(||∇C(µG(X) + µ′Tu|| − 1)2]952

Lsp =
∑

(pt,pt+1)∈G(X)

||pt − pt+1||2953

Lpd =
1

|B|
∑
S∈B

−HG(G(S))954

Lss = −
∑
t

logPG(ζt|X). (1)955

A.2 Hyperparameter Settings 956

A.2.1 Speech Encoder 957

We augment both W2V2 (Baevski et al., 2020) and 958

HUBERT (Hsu et al., 2021) by introducing seman- 959

tics. Specifically, we use the W2V2-Large LV-60 960

model and HUBERT-Large models, which are pre- 961

trained on just unlabelled audio and implemented 962

with the fairseq library (Ott et al., 2019). 963

A.2.2 Large Language Model 964

We use BART (Lewis et al., 2019) as our LLM 965

since it is pretrained to handle noisy input. In 966

our SLU experiments, we use BART-Base model, 967

which has lower computational overhead. For our 968

SQA experiments, we use BART-Large, since 969

SQA is a more challenging task. Note, unlike 970

baselines that train the whole LLM, SSE freezes 971

all weights in its LLM except adapters optionally, 972

hence SSE has lower overhead. All LLMs were 973

implemented using the huggingface library (Wolf 974

et al., 2019). 975

A.2.3 Residual Attention and Adapters 976

We choose the residual attention layer to be the 977

same dimension as our speech encoder, which is 978

1024 for both W2V2 (Baevski et al., 2020) and HU- 979

BERT (Hsu et al., 2021). We implement our general 980

recipe for adapters using the adapter-transformers 981

package (Pfeiffer et al., 2020) and pyTorch (Paszke 982

et al., 2019). 983

A.2.4 Bridge Connector 984

We follow the same hyperparameter settings re- 985

ported in the W2V2-U2.0 paper (Liu et al., 2022). 986

Specifically, we use a 2-layer CNN with stride 3. 987

The model is trained on unlabelled Librispeech- 988

960 (Panayotov et al., 2015) data for 100,000 989

epochs with a learning rate of 5e-5 and 3e-4 for the 990

generator and discriminator respectively. Decoding 991

is done using a WFST in the same way as W2V2- 992

U2.0 (Liu et al., 2022). Similar to W2V2-U2.0, 993

we pre-process the Librispeech-960 by removing si- 994

lences with an unsupervised model, but not during 995

fine-tuning or testing. We believe such techniques 996

could further improve performance, but leave it as 997

future work. The regularized GAN loss function 998

hyperparameters, as stated in Section A.1 are set to 999

1.0/1.5, 1.5/2.5, 0/3, and 0.3/0.5 for λ, γ, η, and 1000

δ respectively. 1001
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A.2.5 SLU Training Details1002

As mentioned in Section 4.3, we use the standard1003

decoders provided by SUPERB (Yang et al., 2021).1004

We ran a grid search on 5 settings for learning rate1005

on an exponential scale of 2 around the default set-1006

tings from SUPERB (Yang et al., 2021) and found1007

said default hyperparameters optimal. Specifically,1008

we set the learning rate to 1e− 4, 1e− 4, 2e− 4,1009

and 2e− 4 for FSC-IC, SLURP-IC, SLURP-SF,1010

and SLUE-NER respectively. All methods use the1011

AdamW (Loshchilov and Hutter, 2017) optimizer1012

with gradient clipping set to 1 for 200,000 total1013

steps to convergence. Validation performance is1014

used to pick the best model for all datasets except1015

SLUE, since SLUE test data is not publicly avail-1016

able.1017

A.2.6 SQA Training Details1018

As mentioned in Section 4.3, we use a frame-level1019

linear layer classification head as our decoder. We1020

follow DUAL’s (Lin et al., 2022a) default hyperpa-1021

rameter settings with a learning rate of 1e-4. We1022

train the models using the same warm-up and decay1023

strategies as DUAL with the AdamW (Loshchilov1024

and Hutter, 2017) optimizer for 5,000 steps to con-1025

vergence.1026

A.3 Training Setup and Time1027

All models were trained on a server with 8 Nvidia1028

Tesla V100 GPUs. The total training time for the1029

bridge module takes around a day. The total train-1030

ing time for downstream tasks take between half a1031

day and one day.1032

A.4 Dataset Details1033

As mentioned in Section 4.1, we evaluate SSE on1034

3 SLU tasks, intent classification (IC), slot filling1035

(SF), and named entity recognition (NER), and the1036

SQA task. The goal of IC is to classify the intent of1037

an input audio snippet. The goal of SF is to extract1038

certain attributes of a given intent from an audio1039

snippet. The goal of NER is to identify named1040

entities in an audio snippet. The goal of SQA is1041

to find the start and end frames of the answer in a1042

spoken passage given a spoken question.1043

A.4.1 FSC1044

The FSC dataset (Lugosch et al., 2019) is an IC1045

dataset for a smart home virtual assistant. The in-1046

put is a single audio file containing spoken English1047

commands and the output class is the intent of the1048

spoken command. The data was obtained through1049

Dataset # of Utterances # of Hours

FSC-train 23,132 14.7
FSC-dev 3,118 1.9
FSC-test 3,793 2.4

SLURP-train 50,628 40.2
SLURP-dev 8,690 6.9
SLURP-test 13,078 10.3
SLUE-train 5,000 14.5
SLUE-dev 1,753 5.0

Table 7: Dataset statistics for FSC, SLURP, and SLUE.
Note, for SLUE, only the train and dev splits are pub-
licly available, thus we evaluate on the dev set.

crowd-sourcing from 97 native and non-native En- 1050

glish speakers. In total, there are 31 intents. The 1051

number of utterances and hours of each split can 1052

be found in the Table 7. 1053

A.4.2 SLURP 1054

The SLURP dataset (Bastianelli et al., 2020) is an 1055

IC and SF dataset for an in-home personal robot 1056

assistant. The input is a single audio file containing 1057

spoken English commands and the output is the 1058

scenerio, action, and entities. In total, there are 18 1059

different scenarios, 46 different actions (IC), and 1060

56 different entities (SF). The data was collected 1061

from 177 native and non-native English speaking 1062

Amazon Mechanical Turk workers. The number 1063

of utterances and hours of each split can be found 1064

in Table 7. SLURP use both headsets and micro- 1065

phones with various placement configurations. 1066

1067

A.4.3 SLUE 1068

The SLUE dataset (Shon et al., 2022) is a NER 1069

dataset using European Parliament event record- 1070

ings. The input is a single audio file containing 1071

spoken English passages and the output are the 1072

named entities. There are in total 7 categories that 1073

were based on the OntoNotes Release 5.0 (Hovy 1074

et al., 2006) entity labels. The dataset was collected 1075

from the official European Parliament website. The 1076

number of utterances and hours of each split can 1077

be found in the Table 7. 1078

A.4.4 NMSQA 1079

The NMSQA dataset (Lin et al., 2022a) is a SQA 1080

dataset generated from a standard text question 1081

answering dataset, SQUAD-V1.1 2, using Amazon 1082

2A question answering dataset using Wikipedia articles
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Polly Text-to-Speech 3 for the train and dev split,1083

and 60 human speakers for the test set. NMSQA1084

contains 297.18 hours, 37.61 hours, and 2.67 hours1085

of train, dev, and test split audio respectively. We1086

follow DUAL (Lin et al., 2022a) by evaluating on1087

Frame-level F1 score (FF1) and Audio Overlapping1088

Score (AOS).1089

3https://aws.amazon.com/tw/polly
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