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Abstract—Deep learning has revolutionized medical imaging,
offering advanced methods for accurate diagnosis and treatment
planning. The BCLC staging system is crucial for staging
Hepatocellular Carcinoma (HCC), a high-mortality cancer. An
automated BCLC staging system could significantly enhance
diagnosis and treatment planning efficiency. However, we found
that BCLC staging, which is directly related to the size and
number of liver tumors, aligns well with the principles of the
Multiple Instance Learning (MIL) framework. To effectively
achieve this, we proposed a new preprocessing technique called
Masked Cropping and Padding(MCP), which addresses the
variability in liver volumes and ensures consistent input sizes.
This technique preserves the structural integrity of the liver,
facilitating more effective learning. Furthermore, we introduced
ReViT, a novel hybrid model that integrates the local feature
extraction capabilities of Convolutional Neural Networks (CNNs)
with the global context modeling of Vision Transformers (ViTs).
ReViT leverages the strengths of both architectures within the
MIL framework, enabling a robust and accurate approach for
BCLC staging. We will further explore the trade-off between
performance and interpretability by employing TopK Pooling
strategies, as our model focuses on the most informative instances
within each bag.

Index Terms—Medical Imaging, Hepatocellular Carcinoma,
BCLC staging, Convolutional Neural Network, Vision Trans-
former, Multiple Instance Learning

I. INTRODUCTION

HEPATOCELLULAR CARCINOMA (HCC) is a criti-
cal cancer type in medical research due to its high

mortality rate and complex treatment requirements. As the
most common type of primary liver cancer, HCC accounts
for a significant number of cancer-related deaths worldwide
[1]. The high mortality rate is largely attributed to late-stage
diagnosis and the limited effectiveness of current treatment

1 Graduate Institute of Communication Engineering, National Taiwan
University (NTU), Taipei 10617, Taiwan

2 Department of Computer Science and Information Engineering, NTU,
Taipei 10617, Taiwan

3 Institute of Applied Mathematical Sciences, NTU, Taipei 10617, Taiwan.
4 Division of Gastroenterology and Hepatology, Department of Internal

Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
5 Department of Electrical Engineering, NTU, Taipei 10617, Taiwan
6 Center for Advanced Computing and Imaging in Biomedicine, NTU,

Taipei 10617, Taiwan
7 Smart Medicine and Health Informatics Program, NTU, Taipei 10617,

Taiwan
∗ Corresponding author
This project is supported by the National Science and Technology Council,

the Ministry of Health and Welfare, and the Ministry of Education, Taiwan.
The grant numbers are MOST 110-2221-E-002-112-MY3, MOHW112-TDU-
B-221-124003, and 113L900701, respectively.

options [2]. Early and accurate staging of HCC is crucial
for determining the most appropriate therapeutic strategy and
improving patient outcomes.

In recent years, the application of deep learning in medical
imaging for liver cancer has increased significantly. Tra-
ditionally, convolutional neural networks (CNNs) [3] have
been employed for feature extraction, excelling in capturing
useful information from local neighborhoods. However, the
advent of Vision Transformers (ViTs) [4] introduced a new
paradigm, utilizing multi-head self-attention (MSA) blocks to
learn global dependencies within the image data.

The Barcelona Clinic Liver Cancer (BCLC) staging system
is pivotal in managing HCC [5]. It classifies patients based on
the number of tumors and the maximum diameter of the largest
tumor in the liver, aiding clinicians in planning appropriate
treatment strategies. Radiologists typically review each slice
of a patient’s CT scan to determine the number of tumors
and their maximum diameter, a process that is both time-
consuming and labor-intensive. An automated BCLC staging
system would significantly reduce the radiologists’ workload
and enhance efficiency.

Despite its potential benefits, research on automated BCLC
staging systems is scarce, resulting in a limited availability
of public datasets for this specific task. BCLC staging re-
quires comprehensive three-dimensional structural information
for accurate patient-level diagnosis. However, the scarcity of
3D CT images with patient-level labels poses a significant
challenge in developing reliable models. This highlights the
need for more robust studies to advance the field. Additionally,
3D abdominal CT images are large, and downscaling these
volumes can lead to significant information loss, which is
detrimental for BCLC staging. Segmentation models are often
used to extract the liver ROI, but resizing the ROI can
distort the images due to varying liver sizes among patients,
negatively impacting model training.

Multiple Instance Learning (MIL) [6] offers a promis-
ing solution for such challenges by treating an image as
a collection of instances and using pooling techniques to
aggregate instance-level information into a comprehensive bag
representation. To better align with the MIL framework and
preserve critical anatomical details, we propose a new data
preprocessing method, Masked Cropping and Padding (MCP),
specifically tailored for the BCLC staging task. This method
maintains the integrity of the liver features while ensuring



consistent input dimensions, thereby enhancing the model’s
ability to focus on the most informative instances.

Furthermore, inspired by the principles of MIL, we intro-
duce ReViT, a hybrid model designed for BCLC staging. Re-
ViT combines the local feature extraction capabilities of CNNs
with the global context modeling of ViTs within the MIL
framework. This integration provides a robust and accurate
approach to address the challenges of BCLC staging.

II. RELATED WORKS

A. Deep Learning in Liver Cancer Classification
Deep learning has significantly advanced liver cancer re-

search, particularly through the classification of liver cancer
using abdominal CT images. Most studies focus on 2D imag-
ing to identify and categorize focal liver lesions. A common
approach involves segmenting the liver region of interest
(ROI), masking, and resizing it to ensure consistent input
dimensions [7]–[10].

However, resizing might distort images due to varying
liver sizes, negatively impacting model training. Tailored pre-
processing methods are used to address this, especially for
tasks like the BCLC staging, which requires patient-level
predictions. Fu et al. [11], using the same dataset as ours, also
addresses a similar task but differs by ignoring the 3D structure
of the liver. It independently assigns patient-level labels to each
2D slice, potentially missing crucial 3D contextual informa-
tion. In this work, We maintain the 3D context to capture the
complete anatomical structure and provide a comprehensive
understanding of liver cancer.

B. Advances in CNN and ViT for Medical Imaging
In the realm of medical imaging, both Convolutional Neural

Networks (CNNs) [7], [12], [13] and Vision Transformers
(ViTs) [14] have made significant contributions. CNNs excel
at capturing local spatial features within images and are
recognized for their efficacy in both training and deployment,
rendering them optimal for real-time applications. Conversely,
CNNs may encounter difficulties in grasping long-range de-
pendencies. In contrast, ViTs demonstrate proficiency in learn-
ing long-range dependencies and capturing global context.
Nonetheless, ViTs can incur significant computational costs
during training and deployment, making them less conducive
to real-time applications.

Recent research [15]–[19] indicates that hybrid architectures
combining CNN and ViT layers effectively capitalize on the
strengths of both models, addressing the CNN’s deficiency
in capturing global contextual information and the ViT’s
tendency to miss local feature details. Swin-Transformer [20]
introduces a hierarchical architecture and a shifted window
mechanism, effectively capturing both long-range dependen-
cies and local interactions. MaxViT [21] integrates multi-axis
attention mechanisms, block and grid-based spatial attention,
combined with local and global convolutions, to effectively
capture both fine-grained details and broader contextual infor-
mation in images. Both have shown remarkable performance
across various visual tasks. However, our proposed ReViT
diverges from these approaches by not merely enhancing the
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Fig. 1. The workflow of the proposed BCLC staging system using ReViT.

CNN’s strengths within the transformer blocks. Instead, we
chose to integrate ResNet10 to ensure that the cube instances
encapsulate the detailed structures of the liver and tumors. This
approach leverages the self-attention and positional encoding
mechanisms of ViTs to implicitly learn critical features, such
as tumor size and count, specifically tailored to meet the
demands of the BCLC staging task.
C. Multiple Instance Learning

Multiple Instance Learning (MIL) is a paradigm well-suited
for scenarios where precise annotations are scarce. In the MIL
framework, an image is considered a ’bag’ containing multiple
’instances’ (patches or cubes). Many medical imaging studies
have adopted MIL, primarily focusing on 2D high-resolution
histopathology images [22]–[24]. However, recent efforts have
expanded its application to other areas. For instance, Araújo
et al. [25] explored various vision models within the MIL
framework to handle 2D dermoscopy and mammography
images, achieving more clinically relevant visualizations for
skin cancer and breast cancer, respectively. Han et al. [26]
proposed AD3D-MIL, extending MIL to 3D CT imaging
to enhance diagnostic capabilities by effectively leveraging
the 3D structural information inherent in these scans. This
approach employs CNN architectures combined with attention-
based MIL pooling to identify key instances within the data.
AD3D-MIL has been successfully applied for the automated
multi-class classification of COVID-19 from chest CT images,
distinguishing between common pneumonia, no pneumonia,
and COVID-19, thereby demonstrating its utility in com-
plex diagnostic scenarios. However, their method treats each
instance as independent, overlooking the inherent structural
relationships. In contrast, our proposed ReViT addresses this
limitation by first using a ResNet backbone to extract infor-
mative cube instance representations. These representations
are then fed into the ViT, which excels in capturing long-
range spatial interactions and leveraging positional encoding
to maintain the structural context. This integration ensures that
the model not only identifies key instances but also preserves
the spatial relationships crucial for accurate BCLC staging.

III. METHODS

A. Overall Framework
Our method, as illustrated in Figure 1, demonstrates the
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workflow of an automated BCLC staging system. The input
3D CT volume I is processed by the Segmentation Model S
to obtain the liver region ROI. After appropriate data prepro-
cessing, the liver ROI is fed into the Cube Encoder Block F
to extract liver features. Finally, we employ a MIL Pooling
Block at the final stage to explore the impact of different MIL
pooling strategies on performance and interpretability. In the
following subsections, we will further discuss each component
in detail.

1) Segmentation Model: Given a 3D CT volume I with
dimensions (H × W × D), where H , W , and D represent
the height, width, and depth of the volume respectively. The
segmentation model S processes the 3D CT volume I as input,
resulting in a segmented output liver mask Î = S(I). For this
task, we adopted the nnU-Net [27], which has demonstrated
promising performance across various medical image segmen-
tation tasks.

To simulate real-world conditions where clinicians do not
annotate the liver mask for each patient, we trained the
liver segmentation model on the publicly available MSD
[28] dataset. We then performed inference on two additional
datasets, TCIA-TACE-SEG and OP. The resulting liver mask
Î is used as the ROI for subsequent analysis. This approach
avoids noise from other organs in the entire 3D CT volume,
thereby forcing the model to learn the inherent features specif-
ically from the liver for the downstream classification task.

While BCLC staging is directly related to liver tumors,
we utilize the entire liver ROI for several reasons. Firstly,
the accuracy of liver area segmentation is typically higher
than that of tumor area segmentation. By focusing on the

liver ROI, we aim to mitigate the propagation of errors from
the segmentation model to the downstream BCLC staging
task. Additionally, BCLC staging considers whether there is
vascular invasion within the liver. Using the liver ROI enables
the model to capture such crucial information.

2) Cube Encoder Block: Within the MIL framework, the
Cube Encoder Block plays a crucial role. It processes the
liver ROI by dividing it into N ×N ×N cube instances. For
each cube instance, the Cube Encoder Block generates a rep-
resentation vector, capturing the essential features required for
subsequent analysis. Mathematically, this can be represented
as:

X = F (Î),

where X ∈ RN×N×N×C . Here, C denotes the number of
channels in the representation vector, which encapsulates the
learned features of each cube instance.

Next, we will introduce three distinct feature extraction
strategies implemented within the Cube Encoder Block: CNN
Encoder, ViT Encoder, and our proposed ReViT, and explain
how we integrate these strategies into the MIL framework.

CNN Encoder employs a series of 3D convolutional layers
to perform feature extraction, resulting in a final feature map
X . Each voxel in this feature map aggregates information
from its corresponding receptive field in the original image,
effectively capturing the characteristics of each cube instance
within the CT volume. The typical CNN-based approach in
classification tasks involves applying Global Average Pooling
to this final feature map, producing a single representation vec-
tor for the entire image. However, within the MIL framework,
other general pooling methods can be used to aggregate the
instance-level features into a comprehensive bag representa-
tion, as illustrated in Figure 2.

ViT Encoder, in contrast, treats each cube instance as a
token, utilizing self-attention mechanisms to capture global
context. This process is facilitated by the linear embedding
function, which converts each cube instance into a token that
the ViT can process. This mechanism allows the model to un-
derstand long-range dependencies and interactions within the
liver ROI, effectively leveraging global contextual information
for more accurate analysis. In the standard ViT architecture, a
learnable class (CLS) token is prepended to the sequence of
tokens. This CLS token is connected to the classification head
to obtain the final image classification, effectively harnessing
information from all cubes. However, to better align with
the MIL framework, we remove the CLS token and utilize
each individual token directly for the MIL Pooling Block, as
illustrated in Figure 3.

ReViT is a hybrid approach (see Figure 1) that combines
the strengths of both methods: the CNN Encoder serves as the
Cube Embedding Block for the ViT Encoder, first extracting
features of each cube instance, which are then fed into the ViT
Encoder as tokens. This integration leverages the detailed local
feature extraction capability of CNNs and the global contextual
understanding provided by ViTs. The ResNet backbone allows
the model to learn informative cube instance representations
early, effectively capturing the features of both tumors and



the liver. Subsequently, the ViT utilizes positional encoding
along with a series of multi-head self-attention mechanisms
to capture the spatial relationships among the cube instances.
This approach ensures that the model not only maintains
fine-grained local details but also understands the broader
contextual information, aligning with the requirements of the
BCLC staging task. Incorporating these mechanisms enhances
the interactions among cube instances, providing a more com-
prehensive and nuanced feature representation and ultimately
improving diagnostic accuracy and robustness.

However, both the Global Average Pooling in CNNs and
the CLS token in ViTs share a similar concept: they aggregate
information across the entire input space to form a bag
representation. This approach assumes that all input parts are
equally relevant to the task. Therefore, in the next section,
we will introduce the design of the MIL Pooling Block and
explore other MIL pooling strategies beyond Global Average
Pooling, which provide different perspectives on aggregating
instance-level information within the input.

3) MIL Pooling Block: After we use the Cube Encoder
Block to conduct a series of feature extractions, we ob-
tain a bag of cube instance representations, capturing the
essential features of localized regions within the liver ROI.
Mathematically, this set of representations can be denoted as
X ∈ RN×N×N×C , where N ×N ×N represents the number
of cube instances and C is the number of features per instance.
Flattening X yields Z, where Z = {z1, z2, . . . , zN3} and each
zi is a row vector in RC , representing the features of the i-th
cube instance. This transformation facilitates the application
of various pooling strategies within the MIL framework.

Next, we implement two MIL strategies, including Global
Average Pooling and TopK Pooling, to explore their impact
on performance and interpretability.

Global Average Pooling aggregates the features by com-
puting the mean of all instance representations, providing a
balanced view of the entire liver ROI. Mathematically, if the
set of instance features is {z1, z2, . . . , zN3}, then the average
pooling can be represented as:

Zavg =
1

N3

N3∑
i=1

zi.

This method assumes that all regions within the liver con-
tribute equally to the final diagnosis, which can be beneficial
for capturing a holistic understanding but may dilute the
impact of the most critical features.

In contrast, TopK Pooling targets the most diagnostically
informative instances by selecting the top-k instances with the
highest activation values from the feature map and averaging
them. Specifically, if we denote the top-k highest-activating
instance features as {z(1), z(2), . . . , z(k)}, where z(i) represents
the i-th highest activation, then the TopK Pooling can be
represented as:

Ztop-k =
1

k

k∑
i=1

z(i).

This approach aims to highlight the most significant regions
within the liver, forcing the model to base the final bag
representation on only a few of the most critical instances.

After applying the selected pooling strategy, the pooled
representation Zpool,n is passed through a softmax classifier
to obtain the final predicted probabilities for each class:

ŷn = softmax(WZpool,n + b),

where ŷn is the predicted probability vector for the n-th
bag. This prediction will be used in conjunction with the
corresponding ground truth label to compute the loss function
during model training.

In our experiments, we will further analyze these strategies
to provide a comprehensive understanding of their effects on
the BCLC staging task.

B. Loss Function

In this study, we employ the Cross-Entropy Loss function
for our multi-class classification task, which involves three
classes corresponding to the BCLC staging system. This
loss function effectively measures the difference between the
predicted probabilities and the ground truth labels.

Let ŷ represent the predicted probability distribution over
the three BCLC stages, and let y be the ground truth label.
The Cross-Entropy Loss L is defined as:

L = − 1

N

N∑
n=1

3∑
i=1

yn,i log(ŷn,i),

where yi is the ground truth probability for class i (1 for the
true class, 0 for the others), and ŷi is the predicted probability
for class i. Minimizing this loss function during training
enhances the model’s accuracy in predicting the correct BCLC
stage.

IV. EXPERIMENT SETTING

A. Datasets
The scarcity of datasets specifically curated for BCLC

staging poses a significant challenge. To address this, we
utilized two distinct datasets: (1) TCIA-TACE-Seg and (2) OP,
initially compiled for different purposes, resulting in varying
distributions. We combined these datasets to enhance model
training and facilitate comprehensive performance compari-
son. Below, we introduce these datasets and summarize their
distributions in Table I.

1) TCIA-TACE-Seg: We collected 105 multiphasic abdom-
inal CT images from the open dataset TCIA [29], specifically
from patients who underwent transarterial chemoembolization
(TACE) for HCC at the University of Texas MD Anderson
Cancer Center between 2002 and 2012. This open dataset was
initially designed to leverage radiomics techniques to predict
whether patients would be TACE-susceptible or refractory.
However, since the clinical data includes BCLC staging labels
as determined by clinical experts, we used this dataset for the
automated BCLC staging models. To ensure consistency with
the OP dataset, we only used the portal venous (PV) phase
images from this dataset.



2) OP: This in-house dataset consists of 147 abdominal
CT images annotated with BCLC staging by clinical physi-
cians. The dataset, spanning from 2015 to 2021, focuses on
clinical experts’ evaluation of HCC patients deemed eligible
for surgical operations. The CT images were acquired during
the PV phase, which is typically the most informative phase
for radiologists to identify the precise location of HCC. This
phase allows for the accurate measurement of tumor size and
count, which are critical for determining the BCLC stage.

B. Data Preprocessing

In the datasets mentioned above, all 3D CT volumes have
dimensions of 512× 512×S, where S represents the number
of slices varying across volumes. For instance, in the TCIA-
TACE-Seg dataset, S ranges from 25 to 98, with spacing
between 2.5 to 5.0 mm. In the OP dataset, S ranges from 5 to
77, with spacing between 2.0 to 5.0 mm. To address potential
noise from variable spacing during training, we resampled
each CT volume to a consistent voxel size of 1.5×1.5×1mm3

and filtered out some outlier images to maintain data quality
and consistency. Additionally, following Tang et al. [20], we
clipped the intensity values of the original CT volume to the
range of [−21, 189] Hounsfield Units (HU) and normalized
them to the range of [0, 1] using the mean and standard
deviation from the training set.

Some studies [7], [10], [30] utilized a method called Resized
Masking, where the liver mask predicted by the segmentation
model was used to directly mask the original CT volume.
Given the original CT volume dimensions of 512×512×512,
the size was too large for practical processing. To standardize
the input size for the model, these masked volumes were
resized to fixed dimensions of 128 × 128 × 128. However,
this resizing led to significant information loss and distortion
of the liver structures, adversely affecting the model’s training
performance and accuracy.

Due to the complexity and variability in BCLC staging,
the MIL framework is particularly well-suited for this task.
The MIL approach enables the model to partition the liver
region into numerous cube instances, focusing on instances
containing critical diagnostic information such as tumor pres-
ence and characteristics. To optimize the input data for MIL,
we developed a new preprocessing technique termed MCP.

We crop a bounding box around the liver based on the
liver mask. To address the variability in liver volumes among
patients, we apply symmetric padding to ensure any cropped
liver image smaller than 192 × 192 × 192 is padded to these
standardized dimensions. This padding technique ensures the
liver remains centrally located within the padded volume. We
then implement central cropping to trim any excess regions
from the padded images, resulting in a uniform size for all
liver images. This preprocessing approach preserves the liver’s
structural integrity and ensures consistent input sizes across all
samples, enhancing the learning process. By maintaining this
standardized size, the method better fits the MIL framework,
allowing the model to focus on the most informative instances
within each bag and improving the accuracy and robustness
of BCLC staging.

TCIA OP
Train Test Total Train Test Total

Patients number 59 40 99 87 58 145
Age(years)
<40 1 1 2 4 3 7
41-50 3 4 7 10 10 20
51-60 14 7 21 26 13 39
61-70 12 12 24 27 19 46
≥ 70 29 16 45 20 13 33
Gender
Male 38 26 64 73 48 121
Female 21 14 35 14 10 24
BCLC stage
A 6 5 11 46 30 76
B 14 9 23 33 22 55
C 39 26 65 8 6 14
Tumor Size(cm)
0-3 6 5 11 22 15 37
3-5 9 6 15 27 24 51
>5 17 7 24 38 19 57
NaN 27 22 49 0 0 0

TABLE I
DISTRIBUTION OF THE TCIA-TACE-SEG AND OP DATASETS

C. Implementation Details

We implemented all the models using PyTorch and trained
them on an NVIDIA A100 GPU. Given the small size of
the dataset, we split the data into a 60:40 ratio for training
and testing. We performed 100 bootstrapping iterations on the
test set to ensure robust evaluation. This helped estimate the
performance metrics with higher confidence and reduce the
variance in the results. We used a learning rate of 1e-4 and a
batch size of 4 for training. We also employed the Stochastic
Gradient Descent (SGD) optimizer to iteratively update the
model parameters. Since CNN-based models tend to perform
stably with SGD, and ReViT shares similar characteristics, we
adopted SGD as our primary optimizer. For the ViT model, we
selected a cube size of (32, 32, 32) to process the input data,
allowing the model to generate N = 6 × 6 × 6 instances for
subsequent analysis. Additionally, recognizing the imbalance
in class distribution, we utilized a balanced sampler to ensure
that each class contributed equally during training.
D. Baselines

We validated various models based on different design
paradigms to establish a comparative foundation for evaluating
our proposed method.

ResNet10 [3] is a convolutional neural network that em-
ploys residual connections to facilitate the training of deep
networks by mitigating the vanishing gradient problem. Ad-
ditionally, we also utilized AD3D-MIL [26], a model that
incorporates the principles of MIL specifically tailored for 3D
medical imaging tasks. It enhances the capability to handle
3D CT volumes by treating each volume as a bag of instances
and focusing on the most informative regions.

Swin-Transformer [20] employs shifted windows for self-
attention, allowing the model to efficiently capture local
and global features. This approach reduces computational
complexity while retaining the benefits of transformers and
mimicking the properties of CNNs. We utilized the encoder
from Swin-UNETR and initialized the Swin Transformer in
our setup using the pretrained weights from Swin-UNETR.

MaxViT [21] combines the strengths of CNNs and trans-
formers through a multi-scale, multi-stage design. It captures
both local and global spatial interactions using a four-stage



hierarchical structure with distinct self-attention mechanisms.
This design enhances its ability to model long-range depen-
dencies while maintaining computational efficiency. For the
MaxViT model, we used the small variant without pre-trained
weights.
E. Performance Metrics

We evaluated all baseline models using standard perfor-
mance metrics, including Macro-F1, Recall, Precision, and
Accuracy. These metrics were chosen to provide a compre-
hensive assessment of each model’s ability to accurately diag-
nose BCLC staging and to compare the performance across
different approaches. Macro-F1 is particularly important in
our evaluation because it provides a balanced measure of
performance across all classes. We aim to ensure that our
models are robust and reliable in accurately staging BCLC for
all patients, thereby supporting more equitable and effective
clinical decision-making.

V. RESULTS & DISCUSSIONS

A. Performance Comparison of Different Preprocessing Meth-
ods and Models

In this study, we comprehensively evaluated various pre-
processing methods and models for BCLC staging using 3D
abdominal CT images. The results, summarized in Table
II, compare the Resized Masking and MCP methods across
different models, including ResNet10, Swin-Transformer, and
a hybrid ReViT model.

The Resized Masking method provided a straightforward
approach to standardizing input sizes. However, despite its
simplicity, this method resulted in relatively suboptimal per-
formance. The primary reason for this is likely the significant
loss of information and distortion caused by resizing the CT
volumes from their original dimensions to a smaller, fixed size.
This loss of crucial anatomical details adversely affects the
model’s ability to make accurate predictions, highlighting the
limitations of this preprocessing technique.

In contrast, the MCP method demonstrated markedly su-
perior performance. Inspired by the MIL framework, this
approach involves preserving the original liver features by
employing symmetric padding and central cropping to stan-
dardize the input size. By maintaining the anatomical integrity
of the liver and focusing on the ROI, this method effec-
tively mitigates the issues of information loss and distortion.
Both the ResNet10 and Swin-Transformer models showed an
overall improvement in performance with this preprocessing
technique, indicating its effectiveness in enhancing model
capabilities.

Our proposed hybrid ReViT model exhibited the best per-
formance among all the tested models and preprocessing
methods. This can be attributed to several key observations.
First, we noticed that the AD3D-MIL model, which introduces
the concept of MIL, performed better than the purely CNN-
based ResNet10. This improvement underscores the value of
MIL by focusing on the most informative instances. How-
ever, the BCLC staging task critically depends on accurately
assessing the size and number of tumors in specific regions,

a requirement that places a high premium on detailed local
feature extraction.

In this context, Transformer-based models, with their self-
attention mechanisms, provide superior global context infor-
mation, which is crucial for comprehensive image analysis.
Among the Transformer-based models, the Swin-Transformer,
which employs a shifted window self-attention mechanism,
effectively mimics the properties of CNNs, enabling it to
excel in capturing both local and global features. The superior
performance of the Swin-Transformer over MaxViT highlights
the importance of strong local feature learning capabilities
for generating accurate cube instance embeddings in BCLC
staging tasks.

Given these findings, our ReViT model, which combines
the local feature extraction strengths of CNNs with the global
context modeling abilities of Vision Transformers, stands out.
ReViT’s ability to integrate these complementary strengths re-
sults in a more accurate and robust analysis, thereby achieving
the best performance among the models evaluated in our study.
B. Impact of Pooling Strategies on Model Performance

In Table III, we compared the performance of ResNet10,
ViT, and our proposed ReViT model under different MIL
pooling strategies. Specifically, we examined Global Average
Pooling and TopK Pooling (K = 25%) to understand their
impact on model performance.

Aggregating information from fewer instances is anticipated
to result in a decline in model performance. Our findings
support this expectation, as the TopK Pooling strategy gen-
erally leads to a performance drop. However, if the model can
maintain performance using only the top-k most important
instances, it indicates a strong capability to learn effective
cube representations. This proficiency in filtering out less
informative instances while preserving overall performance
enhances both the accuracy and interpretability of the model.
The motivation for using TopK Pooling lies in its potential
to focus on the most relevant features, and we will further
discuss the trade-off between performance and explainability
in subsequent sections.

The experimental results show that the Macro-F1 score of
ResNet10 decreased by 12% after applying TopK Pooling,
while ViT experienced a 13% drop. In contrast, our pro-
posed the ReViT model was able to maintain comparable
performance even after discarding most instances during the
aggregation process. These findings indicate that ResNet10’s
feature extraction without considering the global spatial inter-
actions between cubes negatively impacts the BCLC staging
task. On the other hand, ViT’s use of only a single 3D
convolution layer for linear projection limits its ability to learn
local features effectively, resulting in suboptimal cube instance
representations.

Our hybrid ReViT model, however, successfully addresses
these limitations by combining the local feature extraction
strengths of CNNs with the global context modeling capa-
bilities of Vision Transformers. This integration allows ReViT
to create more robust and informative cube instance represen-
tations, thereby maintaining high performance even with the



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT PREPROCESSING METHOD

Preprocessing Methods Models Params Macro-F1 Recall Precision Accuracy

Resized Masking [10] ResNet10 14.36 M 0.534 ± 0.050 0.535 ± 0.057 0.540 ± 0.048 0.541 ± 0.063
Swin-Transformer 18.85 M 0.565 ± 0.048 0.583 ± 0.073 0.580 ± 0.032 0.592 ± 0.068

MCP

ResNet10 14.36 M 0.538 ± 0.089 0.567 ± 0.080 0.556 ± 0.111 0.575 ± 0.091
Swin-Transformer 18.85 M 0.580 ± 0.103 0.594 ± 0.095 0.595 ± 0.118 0.604 ± 0.097
AD3D-MIL [26] 0.32 M 0.553 ± 0.103 0.573 ± 0.102 0.557 ± 0.113 0.582 ± 0.106
MaxViT [21] 68.49 M 0.561 ± 0.086 0.587 ± 0.076 0.573 ± 0.098 0.595 ± 0.091
ReViT (Ours) 64.82 M 0.634 ± 0.103 0.646 ± 0.096 0.637 ± 0.109 0.655 ± 0.104

TABLE III
IMPACT OF DIFFERENT MIL POOLING METHOD ON PERFORMANCE

Models Pooling Methods Macro-F1 Recall Precision Accuracy Decrease (%)
Macro-F1 Accuracy

ResNet10 Avg. 0.538 ± 0.089 0.567 ± 0.080 0.556 ± 0.111 0.575 ± 0.091 - -
TopK. 0.471 ± 0.078 0.560 ± 0.064 0.522 ± 0.261 0.576 ± 0.093 -12.45 0.17

ViT Avg. 0.593 ± 0.096 0.615 ± 0.088 0.604 ± 0.112 0.624 ± 0.100 - -
TopK. 0.514 ± 0.075 0.582 ± 0.065 0.572 ± 0.159 0.593 ± 0.087 -13.3 -5.0

ReViT (Ours) Avg. 0.634 ± 0.103 0.646 ± 0.096 0.637 ± 0.109 0.655 ± 0.104 - -
TopK. 0.633 ± 0.100 0.640 ± 0.099 0.635 ± 0.102 0.642 ± 0.103 -0.16 -1.98

TopK Pooling strategy. Additionally, ReViT’s design fits well
within the MIL framework, effectively handling the BCLC
staging task by focusing on the most informative instances.

C. Impact of Pooling Strategies on Model Explainability
Despite ReViT’s superior performance with Global Average

Pooling, it fails to provide visualizations that align with
clinical relevance (see Figure 4). Therefore, in this ablation
study, we will explore the impact of varying TopK ratios on
model performance, as shown in Table IV.

Our findings show that Global Average Pooling, despite
yielding high-performance metrics, produces visualizations
that lack clinical relevance. This happens because the model,
when trained to consider a large number of instances simul-
taneously, dilutes the impact of key instances. Conversely,
TopK Pooling, by limiting the number of instances considered,
allows the model to concentrate on the most critical regions.
This approach directs the model’s attention specifically to-
wards liver tumors rather than the entire liver region, resulting
in visualizations that align more closely with clinical insights
and physician expectations.

These results highlight the trade-off between model per-
formance and interpretability when using the TopK Pooling
strategy with ReViT. While reducing K can lead to a drop in
overall performance metrics, the ability of TopK Pooling to en-
hance the model’s focus on critical tumor regions demonstrates
a significant advantage in clinical applications. In particular,
our experiments and the heatmaps show that a K value
of 25% strikes the best balance between maintaining model
performance and improving interpretability. This suggests that
TopK Pooling can improve the practical utility of the model
by making its predictions more aligned with clinical needs,
even at the expense of some performance loss.

VI. CONCLUSION

In this study, we introduced ReViT, a hybrid model that
combines the strengths of CNNs and ViTs for BCLC staging

Fig. 4. Comparison of Grad-CAM heatmaps generated with different K
values. The visualizations demonstrate that when K = 25%, the model’s
attention aligns most closely with clinically relevant regions as identified by
physicians, focusing effectively on the liver tumors (see red arrows).
of HCC using 3D abdominal CT images. Leveraging the
MIL framework, ReViT effectively handles the complexity
and variability inherent in medical imaging tasks. The MCP
technique preserves the liver’s structural integrity, ensuring
consistent input sizes. Coupled with the MIL framework and
TopK Pooling strategy, this method enables ReViT to focus
on the most informative liver regions, enhancing clinical
relevance and providing clearer visualizations. Our results
demonstrate that ReViT outperforms traditional CNN-based
and Transformer-based models. The combination of local fea-



TABLE IV
IMPACT OF VARYING PROPORTIONS OF SELECTED INSTANCES ON PERFORMANCE

Models TopK Macro-F1 Recall Precision Accuracy Decrease (%)
Macro-F1 Accuracy

ReViT (Ours)

K=100% 0.634 ± 0.103 0.646 ± 0.096 0.637 ± 0.109 0.655 ± 0.104 - -
K=50% 0.601 ± 0.094 0.626 ± 0.083 0.622 ± 0.106 0.635 ± 0.098 -5.21 -3.05
K=25% 0.633 ± 0.100 0.640 ± 0.010 0.635 ± 0.102 0.642 ± 0.103 -0.16 -1.98
K=12.5% 0.609 ± 0.096 0.632 ± 0.092 0.624 ± 0.108 0.639 ± 0.097 -3.94 -2.44

ture extraction from CNNs and global context modeling from
ViTs allows ReViT to maintain robust performance even with
fewer instances, enhancing both accuracy and explainability.
Future work will focus on expanding the dataset size to further
improve model performance and generalizability, aiming to
enhance clinical outcomes and diagnostic accuracy.
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