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Abstract

Optimal allocation of scarce resources is a com-
mon problem for decision makers faced with
choosing a limited number of locations for in-
tervention. Spatiotemporal prediction models
could make such decisions data-driven. A recent
performance metric called fraction of best possi-
ble reach (BPR) measures the impact of using a
model’s recommended size K subset of sites com-
pared to the best possible top-K in hindsight. We
tackle two open problems related to BPR. First,
we explore how fo rank all sites numerically given
a probabilistic model that predicts event counts
jointly across sites. Ranking via the per-site mean
is suboptimal for BPR. Instead, we offer a bet-
ter ranking for BPR backed by decision theory.
Second, we explore how fo train a probabilistic
model’s parameters to maximize BPR. Discrete
selection of K sites implies all-zero parameter
gradients which prevent standard gradient train-
ing. We overcome this barrier via advances in
perturbed optimizers. We further suggest a train-
ing objective that combines likelihood with a BPR
constraint to deliver high-quality top-K rankings
as well as good forecasts for all sites. We demon-
strate our approach on two where-to-intervene
applications: mitigating opioid-related fatal over-
doses for public health and monitoring endan-
gered wildlife.

1. Introduction

Statistical machine learning methods for spatiotemporal
forecasting can play a vital role in high-stakes applications
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from mitigating overdoses in public health (Marks et al.,
2021b) to forest fire management (Cheng & Wang, 2008)
to wildlife monitoring (Golden et al., 2022; Hefley et al.,
2017). Across these domains, there is a pressing need for
predictive models that can make accurate predictions of
near-term future events at fine spatiotemporal resolutions.
Such models can enable inform data-driven decisions about
how to allocate limited resources to maximize utility.

In this work, we seek to help decision-makers select where
to intervene. Given historical data for a fixed set of S candi-
date spatial sites, we develop models that can recommend a
specific subset of given size K for some action or interven-
tion. We think of hyperparameter K as setting the budget
for interventions. In an ideal world, decision-makers could
afford interventions in all .S’ sites. However, when resource
constraints allow only K sites to receive interventions, a de-
cision selecting a specific K-of-S subset is required. While
such decisions may often be heuristic in current practice,
we hope to offer data-driven solutions.

With this goal in mind, choosing a sensible performance
metric is critical to assessing which models have real-world
utility. Common metrics such as squared error or absolute
error are not well matched to where-to-intervene decisions
because they treat all sites equally. Recent work on over-
dose forecasting has suggested a metric termed the fraction
of best possible reach, or BPR (Heuton et al., 2022; 2024).
BPR measures a ratio of event counts. The numerator sums
over the model’s recommended K sites, while the denomi-
nator sums over the best possible K selected in hindsight.
This type of evaluation has been used in a preregistered
trial (Marshall et al., 2022) for assessing forecasts of opioid
overdoses in Rhode Island, as well as a follow-up feasabil-
ity study (Allen et al., 2023). BPR is applicable to many
where-to-intervene problems beyond public health.

While some publications have reported BPR in evaluations,
we suggest that a natural goal would be for this perfor-
mance metric to inform two other key parts of data-driven
decision-making: model-based ranking and model training.
By ranking, we mean that given fixed model parameters,
the knowledge of BPR as the metric of interest should im-
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pact the numerical score assigned to each site to determine
the top K. By training, we mean how to update model pa-
rameters to achieve high BPR. This paper contributes new
methods for solving both ranking and training problems
when BPR is the preferred metric.

Our work overcomes several technical barriers. The first
barrier is in ranking. Given a fixed probabilistic model,
determining how to compute a per-site score, which will
later be sorted to find the top K, is not obvious. It may be
tempting to use the model’s per-site mean, but decision the-
ory suggests not all loss functions recommend the per-site
mean as the best estimator (Berger, 2013; Murphy, 2022).
As a relatively new metric, the problem of how to assign a
numerical ranking to sites for optimal BPR decision-making
is currently open. We contribute a tractable ranking method
that is provably best for a reasonable bound on BPR. We
further show how the score function estimator (Kleijnen &
Rubinstein, 1996; Mohamed et al., 2020) can be used to cal-
culate gradients of this ranking with respect to parameters.

The second barrier prevents training parameters to improve
BPR. First-order gradient descent is a common, effective
algorithm we would like to use. However, gradients of
BPR with respect to parameters are problematic. While
small changes to parameters induce some changes to per-
site scores, only changes large enough to move a site into or
out of the top-K ranked sites will adjust BPR. Thus, gradi-
ents of BPR with respect to parameters will be zero almost
everywhere, preventing gradient methods from ever moving
beyond subpar initial parameters. To fix this, we leverage
recent advances in perturbed optimizers (Abernethy et al.,
2016; Berthet et al., 2020) to yield effective and efficient
gradient estimation for BPR. Our team explored this idea for
optimizing BPR alone in earlier non-archival work (Heuton
et al., 2023); this paper offers an expanded treatment with
more accessible presentation, while addressing two more
barriers.

The final barrier is designing a training objective to achieve
applied goals. We find that optimizing BPR alone can lead
to predictions with far lower likelihood than conventional
training. This raises concerns about overall model quality
and generalization. To address this, we pose a constrained
optimization problem to maximize likelihood subject to a
BPR quality constraint. This combined objective delivers
quality top-K recommendations and good forecasts for all
sites. Our objective is reminiscent of past additive combi-
nations of a regression loss and decision loss (Kao et al.,
2009). Unlike that work, ours pursues non-convex losses
and directly enforces decision quality via constraints.

We ultimately contribute methods for how-to-rank and how-
to-train when making where-to-intervene decisions. Using
these tools, a variety of models can be directly optimized
to make effective top K site recommendations. We demon-

strate these contributions first on synthetic data, where we
reveal how off-the-shelf methods without our innovations
can be suboptimal for decision-making. We further eval-
uate against alternatives on two applications: mitigating
opioid-related fatal overdoses and monitoring endangered
birds. We hope our contributions spark interest in where-
to-intervene problems in the methodological community
and also lead to effective deployments of data-driven top-K
decision-making in public health and beyond.

Related work. The application of machine learning to
decision-making problems is widely studied in operations
research literature (Bertsimas & Kallus, 2020; Sadana et al.,
2025), including the problem of how to train a model for
downstream decision-making (Mandi et al., 2024). We re-
view several model training approaches later in Sec. 4.

Other researchers have used decision-aware objectives to
solve limited resource allocation problems. Chung et al.
(2022) study how to allocate essential medicines in Sierra
Leone across hospital sites. Gupta et al. (2024) pursue a
where-to-intervene task in urban planning, selecting where
to build speed humps to reduce pedestrian injuries. Our
work differs in its focus on the BPR metric, our hybrid
decision-aware objective that preserves likelihood, and eval-
uations that forecast the future given the recent past.

Throughout this paper, a recurring takeaway is that conven-
tional training based on maximizing likelihood can yield
suboptimal decision-making for BPR, especially when fore-
casting models are misspecified. In this vein, our work
shares similar goals as direct loss minimization (Wei et al.,
2021) and loss-calibrated methods (Lacoste—Julien et al.,
2011). We are inspired by the way these works combine task-
specific losses and decision theory to improve probabilistic
models. Others have extended loss-calibration to neural
nets (Cobb et al., 2018) and to continuous actions (KuSmier-
czyk et al., 2019). Yet a tractable and scalable recipe that
prioritizes top- K where-to-intervene decision-making is not
an immediate next step from this work.

2. Technical Background and Problem Setup

Notation. Mathematically, some of our notation follows
Sander et al. (2023). Function TOPKMASK takes as input a
vector r of length S and an integer K. It produces a binary
vector of length S with exactly K entries equal to 1. Each 1
entry corresponds to a value in the top K largest entries of
the input vector. The s-th entry of the output is

1 ifRANK(r)s < K

0 otherwise

ToPKMASK(r, K), = { ;D

Here, function RANK provides a numerical ranking (largest-
to-smallest) from 1 to .S for each entry of an S-dimensional
input vector. The function TOPKIDS acts on the same input
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Figure 1: Visual overview of our approach and contributions to the how to rank and how to train open problems.

as TOPKMASK, but return the size K set of integer indices
corresponding to top K values.

Problem definition. We wish to probabilistically model
events that occur across S distinct spatial sites over time.
At each site, indexed by s, we can observe a non-negative
scalar count or value y; > 0. We assume that larger y,
corresponds to greater value in intervention at site s. In
our public health applications, y, represents counts of fatal
opioid-related overdoses. In our later wildlife monitoring
case study, ys counts how often a rare animal appears. At
each time ¢, we stack all observations into a vector y;, € R®.
We assume that the true data-generating distribution for
each vector y; given past history does not change over time,
including between the training and test periods.

We denote our joint model for this vector as pg (y:), where
model parameter vector ¢ defines the density over r.v. y;.
We assume that explicitly evaluating this pdf and sampling
values of y; are both feasible. Given these assumptions, our
framework is quite flexible: the vector ¢ could represent the
weights of a neural network or the coefficients of a logistic
regression or a Bayesian hierarchical model.

Given a training set of 7' times, our model family in general
factorizes p(y1.7) = Hthl Pe(Yt|Y1:t—1)- To ease notation
throughout, we omit conditioning on past history or other
exogenous features. So py(y;) below should be read as
equal to py (yi|y1:.—1) for models with such dependencies.

Our goal is to use this probabilistic model to solve a where-
to-intervene decision making problem. We primarily intend
to use the model to numerically rank all S sites, then select
the top K sites in this ranking for near-future intervention.

Definition of BPR. At current time ¢, we evaluate a model
@’s ability to select a top- K subset of sites for intervention
before time t+1. Let R be the model’s recommended subset

of K sites among all S sites. For the rest of this section, let
y € R® be the vector of observations at the target time ¢ + 1
(we skip time subscripts on y to keep notation simple). The
vector y is not available when the decision of R is made.
Following Heuton et al. (2022), we define BPR as:

ZSER Ys

BPR(R,y) = .
ZsGTOPKIDS(y,K) Ys

@

Both terms in this fraction can only be evaluated in hind-
sight, after the vector y is realized at time ¢ 4 1. The numer-
ator counts how many events the model’s recommendation
would reach. The denominator counts how many events a
perfect oracle with knowledge of the future could reach on
the same budget of K sites. Overall, we interpret BPR as the
fraction of events of interest the current model’s selection R
would reach compared to perfect knowledge of the future.
Higher BPR indicates a better model for choosing where to
intervene. BPR’s best value is 1.0, its worst is 0.0.

Ranking sites. Given a fixed model ¢ and target time, the
ranking problem is how to assign numerical values to all
S sites so that if the top K sites are assigned to R, we
reap high BPR scores. We need to define a ranking vector
r € RS of numerical scalar scores for all S sites. Higher 7
values indicate greater priority for site s.

Suppose we have a loss function L(r,y) (not necessarily
related to BPR) that produces a scalar value indicating the
overall quality of taking an “action” r and then realizing
outcome y. Lower values of L indicate better decisions. A
natural framework for making decisions about actions (Mur-
phy, 2022) is to minimize the expected loss:

r* = argminEyp, [L(r, y)] (€

As a simplistic example, if the loss is defined as the sum of
squared errors, £(r,y) = 325 (ry — y,)2, the optimal ac-

s=1



Decision-Aware Training of Spatiotemporal Forecasting Models

tion is provably the per-site mean: 7y = [, [y,]. Similarly,
for the loss that sums up absolute errors, the optimal action
is the per-site median (Schwertman et al., 1990; Balkus,
2024). We tackle defining an optimal ranking for BPR.

To pose our ranking problem formally, we need to convert
the higher-is-better BPR metric into a lower-is-better loss
that depends on r. Define negative BPR loss as

y - TOPKMASK(r, K)
y - TOPKMASK(y, K) '

L (r,y) = “
This way of writing the loss with dot products of top-K
binary vectors is equivalent to —BPR(ToPKIDS(r, K),y).

Connection to 0-1 knapsack. Given a fixed y vector, the
problem of selecting K sites to minimize LBPR can reduce to
the canonical 0-1 knapsack problem (Dantzig, 1957) where
each site s would have value y, and weight 1, and the budget
constraint allows just K of all S sites. Our how-to-rank
contribution solves a more general problem: how to set r
when y is not given but must be forecasted by our model.

In Sec. 3 below, we show how analysis of tractable bounds of
the loss in Eq. (4) suggests a high-quality ranking function
r*(¢) for BPR. This ranking is usable across different model
families, as long as the model py allows generating many
samples of events y. Later in Sec. 4, we show how to train
parameters ¢ with gradient descent to yield better top-K
decisions as judged by BPR.

3. Methods for Ranking

Loose bound justifies per-site mean ranking. A natural
first guess for ranking is the per-site mean: 7 = £, [y]. We
can show this is justifiable way to minimize expected loss
on a simplistic upper bound on BPR. Assume there exists an
upper limit U such that for all s, we can guarantee U > y;.
The sum over any K entries of vector ¢ in the denominator
of BPR is then bounded by K - U. Plugging this bound into
the minimize expected loss problem and simplifying with
linearity of expectations yields

Ep, Y]

r* ¢+ argmin — i - TOPKMASK(r, K)  (5)

<BPR(r,y)

Many solutions exist: any vector r* that satisfies
ToPKMASK(r*, K) = ToPKMASK(E,,[y], K) can be
an argmin. One valid solution here is the per-site mean
7(¢) = E,, [y]. However, this solution is optimal for a
potentially quite loose bound on BPR that approximates the
denominator with the constant K - U.

Tighter bound suggests the ratio estimator for rank-
ing. Instead of bounding with constant K - U, we can up-
per bound the denominator in Eq. (4) by summing over

all S terms instead of the top K: ZseTOPKIDS(y) ys <

Zle ys = 1 -y. This bound is tighter when the sum
of all entries is less than K - U, which is typically true
of sparse y vectors in our applications. Our how-to-rank
problem then becomes

argmin — By p, [ly'A o TOPKMASK(r, K) (6)
. }

<BPR(7,y)

Again, we solve via any vector r* whose top-K binary vector
TOPKMASK(r*, K) equals TOPKMASK(E,, [%], K).
One valid solution is the expected ratio of vector y to its

sum, which we nickname the ratio estimator

y 1 M y(m)
|~ = ¢
1.y} T O

m=1

"6 =By |

This ranking is distinct from the per-site mean: there exist
fixed models ¢ where the ratio estimator and the per-site
mean would select different subsets of the same S sites. See
App. B for concrete cases where the ratio estimator earns
BPR 2.5x to 5x higher than the per-site mean, even when
all estimators know the true data-generating model.

When exact computation of this expectation is not easy, we
recommend a Monte Carlo approximation using M samples
{y(™1M_| drawn iid from pg, as in Eq. (7). This is a
stochastic estimator; rankings can differ across repeat trials
if M is not large enough.

4. Methods for Training

We now consider various ways to train the parameters of our
probabilistic model on a training set that covers 7" distinct
time periods indexed by ¢.

4.1. Maximum likelihood (ML) estimation

Conventional training would maximize the likelihood, or
equivalently minimize negative log likelihood (NLL):

TN () = — S0 log o (we). ®)

We assume py is differentiable, so solving for a point es-
timate ¢ is possible via gradient descent. If we add an
optional prior term log p(¢) to enforce an inductive bias or
control over-fitting, this is known as MAP estimation.

If the model is well-specified and training set size 7' is large
enough, this is a reliable strategy to estimate ¢. We could
then use the ranking methods from Sec. 3 for where-to-
intervene decisions. However, popular wisdom reminds us
that “all models are wrong” in some way for real-world data.
As we will show in later experiments, fitting a misspeci-
fied model via ML estimation can produce ¢ that deliver
suboptimal BPR, even using the optimal ranking for that ¢.
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4.2. Direct loss minimization for BPR

Inspired by the broad goal of direct loss minimization (Wei
et al., 2021), another approach would be to find parameters
that minimize our BPR-specific decision making loss LEFR,
In this strategy, we seek ¢ values that minimize

T¥R(G) = T LPR(ry(9), wn), ©)
Here, for 7*(¢) we use the ratio estimator in Eq. (7).

To train with modern gradient methods, we’d need to com-
pute the gradient V4 J = Zt Vgrs - V., L. However,
technical difficulties arise with each term in this chain rule
expansion. Below, we propose practical estimators for each
term that overcome these difficulties.

Gradient V,r,. The difficulty here is differentiating
through the expectation in Eq. (7), especially when y is
a discrete random variable (integer counts in our later over-
dose or wildlife applications). We use the score function
trick (Mohamed et al., 2020), popularized by Ranganath
et al. (2014) yet dating back decades (Kleijnen & Rubin-
stein, 1996), sometimes also called REINFORCE (Williams,

1992). We can draw M samples yt(m) ~ pg, then compute

Zyt

V¢7't
m=1 1.

Vologps(y:).  (10)

This estimator can reuse the M i.i.d. samples already used
to evaluate r; in a forward pass. This is easy to implement
for any model py where sampling and evaluating the pdf is
feasible, as we have assumed. We use automatic differentia-
tion to compute V4 log pe (y:).

A downside of this estimator is high variance. We miti-
gate this with large M values, though future work may use
control variates (Ranganath et al., 2014; Mohamed et al.,
2020) or try other estimators for gradients of discrete expec-
tations (Maddison et al., 2017; Dimitriev & Zhou, 2021).

Gradient V,, L;. For losses L defined in terms of ToP-
KMASK binary vectors, like BPR, it is difficult to compute
useful gradients because this loss is flat almost everywhere
with respect to the input rankings r. To overcome this bar-
rier, we leverage recent advances in perturbed optimization
(Berthet et al., 2020), also referred to as stochastic smooth-
ing (Abernethy et al., 2016). A recent computer vision
method (Cordonnier et al., 2021) shows how these ideas en-
able selecting a top-K set of patches from a high-resolution
image for downstream prediction. We adapt this top-K ap-
proach to spatiotemporal forecasting for intervention.

Concretely, Cordonnier et al. (2021) obtain tractable J-
sample Monte Carlo estimates of both the top-K indica-
tor vector b = TOPKMASK(r, K') and the Jacobian V,.b
needed for backpropagation. First, we draw J indepen-
dent samples of a standard Gaussian noise vector of size .S:

z; ~ N(0,Is). Then, we compute

b=1437 bi(r), bi(r)=
V.b=-L 7 OUTER(b;(r), z)). (11)

TOPKMASK(T + 02;).

The Jacobian V,.b is an S x S matrix, where entry j, k gives
the scalar derivative 2 a . The conceptual justification for the
Jacobian estimator comes from Abernethy et al. (2016) and
Berthet et al. (2020). Noise level o > 0 is a hyperparameter
that sets the strength of stochastic smoothing. It must be
carefully selected in practice to add enough noise so that
indicators b; change for different samples z;, but not too
much noise so the b; preserve the signal in 7.

Putting our score-function trick and perturbed optimizer
estimators together, we compute the overall gradient of loss
at index ¢ as a product of individual estimators: Vg4L; =
V¢riVe, b:Vy, L. We compute the last term Vy, Ly via
automatic differentiation.

Armed with this gradient estimator, we can pursue direct
minimization of JBFR via stochastic gradient descent meth-
ods. Stochasticity here comes from both M score function
samples and J perturbation samples. For convenience and
reliability, we use all 7" records in the training set in every
estimate, avoiding minibatching over time.

We assume the true data-generating distribution is un-
changed across train and test time periods. If this does
not hold, objectives that just average over ¢ as in Eq. (9)
may have disadvantages. Instead we could upweight later ¢,
or minimize out-of-sample error as in Gupta et al. (2024).

Other methods for decision-aware training. Our approach
to direct BPR optimization here is an example of decision-
aware or decision-focused training. In the taxonomy of
Mandi et al. (2024), our approach is in the family of differ-
entiable perturbed optimizers. Other work instead pursues
surrogate losses. The SPO+ method (Elmachtoub & Gri-
gas, 2022) finds a convex surrogate for the “smart predict
then optimize” optimization problem. The perturbed gradi-
ent (PG) method (Huang & Gupta, 2024) develops a more
sophisticated surrogate, with theory and experiments sug-
gesting utility even with misspecified models. In both cases,
surrogate bounds make SGD-based learning tractable for a
wide set of optimization tasks, including our knapsack-like
BPR problem but also other tasks like shortest path finding.

Downsides of only fitting BPR. When models are misspec-
ified, directly estimating ¢ to minimize 7R should yield
better BPR than some ¢’ fit via conventional loss 7N, and
better BPR means better decisions. However, probabilistic
forecasts of near-future outcomes y,,1 produced by BPR-
trained ¢ have questionable utility. Nothing in the JBPR
objective makes pg accurately reconstruct even the train
set y1.7; only relative ranking of sites matters. Even with
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high-quality decisions, a model which produces unlikely
forecasts may be difficult to interpret or verify.

4.3. Decision-aware maximum likelihood

To jointly achieve the goals of good top-K decisions and
accurate forecasts across all sites, we propose to find param-
eters that solve a constrained optimization problem:

T
argmin — Z logpy(ye), stgi(ep) <0Vie,  (12)

t=1
where g;(¢) = € + LP*R(r.(¢), y1).

Here, ¢ is a desired lower bound on a tolerable BPR for
the decision task. Function g;(¢) checks if the constraint
is satisfied at time ¢, returning a non-positive value when
BPR; > € and a positive value otherwise. A feasible so-
lution ¢ must deliver BPR as good or better than € on the
provided training set. Practitioners can set € to achieve a de-
sired minimum value for BPR. For example, if BPR below
60% was unworkable to stakeholders, set € = 0.6 to enforce
0.6 < BPR, recalling by definition BPR = — LBPR,

We call this combined objective decision-aware ML estima-
tion, or DAML. If the model is well-specified and training
data are plentiful, DAML should deliver the same param-
eters as ML estimation when € is low enough. However,
when the model is misspecified and ¢ is higher than the BPR
delivered by ML-estimated ¢, we argue DAML’s constraint
will produce better top-K decisions than ML alone, trading
lower likelihood for higher BPR. Compared to direct mini-
mization of JB'R, DAML can deliver similar BPR but more
accurate forecasts of y for all sites. Additionally including
the ML objective offers the ability to include an optional
prior term log p(¢) to incorporate any prior knowledge.

To solve in practice, we use the penalty method (Chong &
Zak, 2013) to convert to an unconstrained loss:

TPAME ()= ST Amax(g:(¢),0) — log ps(ye). (13)

This DAML formulation makes estimating ¢ via gradient
descent possible. Here, A > 0 is a nuisance hyperparameter
that must be tuned. When the constraint is not satisfied,
larger \ values force gradient updates to move parameters
further in directions that might satisfy the constraint. In
practice, we set A such that both components of the loss are
of similar magnitude during early training.

Implementation. Pseudocode for DAML training is pro-
vided in the supplement (Alg. A.1). There are several key
hyperparameters. First, M and J are the number of Monte
Carlo samples used during training to estimate gradients
via the score function trick and perturbed optimizer method.
Setting M and J larger produces lower variance estimates,
but at the cost of runtime and memory. Consequently, we

recommend setting M and J as high as affordable. We
found setting both to 100 worked for tasks in Sec. 5.

Proper selection of o, the standard deviation of the Gaussian
noise in the perturbed estimator, is also vital. If too small,
estimated gradients will be zero; too large will swamp out
any data-driven signal for learning. In practice, we found
that o values a bit smaller than the largest elements of rating
r*(¢) worked well. Because our ratio estimator produces
values between 0 and 1, we set o between 103 and 10~ L.

S. Experiments and Results

Decision-aware training can benefit a variety of models in
diverse problem domains. The subsections below cover toy
and real applications. On each task, we fit models using
all three training approaches from Sec. 4: ML estimation,
BPR optimization, and DAML. We wish to verify common
hypotheses throughout: (i) ML training can yield suboptimal
top-K decisions; (ii) direct optimization of BPR improves
this at the expense of likelihood; (iii) our DAML allow
navigating tradeoffs between likelihood and BPR.

Common setup. In each task below, for a fixed task-specific
K we first train models for ML and BPR. Using their final
BPR values as guidelines, we select a suitable range of €
values for DAML and fit each one, intending to explore in-
termediate points on the two-objective Pareto frontier (Costa
& Lourenco, 2015). When training each objective, we run
many random initializations to convergence across a range
of learning rates and other hyperparameters (see App. C.2
for details). We keep the model ¢ from one run that best
achieved its objective on a validation set, early stopping
as needed. A model’s ultimate top-K rankings can have
some stochasticity. Thus, later figures show estimated dis-
tributions of BPR across 1000 trials of a M =1000 sample
Monte Carlo estimate of r(¢) after training is completed.

5.1. Synthetic Data

We begin with an illustrative synthetic case study chosen to
highlight the trade-offs that decision-aware training allows
a modeler to make when working with misspecified models.

Task. We create a synthetic dataset of S = 7 sites over
T = 500 times. Integer data y;s is generated i.i.d over
time from a quantized Gaussian with site-specific mean
and small constant variance. The first six sites have means
evenly spaced between 10 and 60; the last site has a large
mean of 100. Fig. 2 (top left) shows the training data.

Model. To show the benefits of our framework, we fo-
cus on a misspecified model. In particular, we model each
site with a L-component positive Gaussian mixture model,
with global mean and variance parameters and site-specific
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Figure 2: Synthetic 1D data: learned models and Pareto frontier. Left Row I: histograms of y, values by site (circled numbers). Sites
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Likelihood vs. BPR tradeoft frontier for final models delivered by different training objectives.

component frequencies:

Pos(ys) = S0 oo - N (ysle, 03) (14)

Here ¢ = {u1.1,01.1,m1.51:}. We reparameterize to
unconstrained real values to make gradient-based learning
possible: see App. D for details.

With L=7 components, the model would be well-specified
and could recover the true data-generating process. How-
ever, we focus on misspecification, so we fit with L=2
components. This will hurt likelihood performance, as sites
with distinct true means will need to use common means.
However, we wish to show that solid top-K decision-making
can still happen even with such severe misspecification.

Experiment setup. We use BPR with K = 5 for this task.
For reproducible details, including all hyperparameters, see
App. D. We only report training set metrics here for simplic-
ity; later tasks assess generalization to test data.

Results and analysis. From results in Fig. 2, we draw
several conclusions. First, training to optimize NLL alone
delivers subpar BPR for this task. Second, optimizing for
BPR alone yields much better BPR values, suggesting that
even this mispecified model can deliver much better top-K
decision making than the off-the-shelf ML solution. How-
ever, BPR alone yields nonsensical likelihood values, as
nothing in the objective forces ¢ to be good at modeling
the outcomes y, only at relative ranking of the S sites. In
Fig. 2, we see how our DAML hybrid objective allows a
user to traverse the Pareto frontier of likelihood and BPR
by enforcing a desired threshold on minimum BPR. As the
desired minimum BPR threshold € increases, we can sweep
the tradeoff between likelihood and BPR. Ultimately, our
DAML yields the best high-likelihood, high-BPR solutions
in the top-right corner of the Pareto plot.

5.2. Opioid-related Overdose Forecasting

Motivation. The ongoing opioid overdose epidemic in
the United States has incurred over 500,000 deaths in the
past decade, with more than 80,000 fatal opioid-related
overdoses in 2023 alone (Ahmad et al., 2025). Possible
evidence-based interventions to mitigate overdose fatali-
ties include overdose education and nalaxone distribution.
Scarce resources require local decision makers to allocate
these interventions to small areas that are high-risk (Allen
et al., 2024), with co-incident education and support for
proper follow-through. Public health agencies could use
forecasting to help allocate limited resources towards the
goal of harm reduction.

Several efforts have developed small-area forecasting mod-
els of opioid-related events (Marks et al., 2021b; Neill &
Herlands, 2018; Bauer et al., 2023). A preregistered trial for
overdose reduction in Rhode Island (Marshall et al., 2022)
used BPR-like metrics to evaluate the top-/ predictions
of conventionally-trained models. This past work does not
rank or train to improve BPR, as we do.

Datasets. We study the capabilities of different methods on
two datasets of historical opioid-related overdose mortality.
Our IRB provided a Not Human Subjects Research determi-
nation for analysis of this decedent data. The first dataset,
MA Fatal Overdoses, covers opioid-related overdose deaths
in the state of Massachusetts from 2001-2021. This dataset
is publicly available upon request from the MA Registry
of Vital Records and Statistics. The second dataset, Cook
County IL Fatal Overdoses, tracks opioid-involved overdose
deaths in the greater Chicago area between 2015 and 2022.
This is an open dataset obtained via the public website of
the Cook County Medical Examiner Case Archive (Cook
County, IL, 2014-present).
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Figure 3: Pareto frontier of best possible reach (BPR, x-axis) and log likelihood (LL, y-axis) for real-world tasks. Higher is better on
both axes. Each panel how the final models estimated by different training methods score on the test set of a forecasting task defined in
Sec. 5. To capture the stochasticity of BPR due to our sampling-based ranking estimator, for each model we show an estimated density for
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tasks, our proposed decision-aware ML (DAML) delivers better top-K decisions as measured by BPR than ML estimation. DAML also
delivers likelihood comparable to ML methods and much better than directly optimizing BPR. In the Cranes dataset, the DAML objective
surprisingly offers better BPR than the BPR-only objective, although the magnitude of this difference is small and perhaps due to the

small-scale and sparsity of this dataset.

We follow previous evaluations of these datasets in Heuton
et al. (2024). Each dataset was processed to a common for-
mat of fatal overdose counts per time and spatial unit. For
the spatial units, we chose census tracts. Each tract by de-
sign contains a mean population of 4000 people, a scale that
allows capturing variation in overdoses at the neighborhood
level. For temporal binning, we picked calendar years to
reflect the frequency at which health agencies might enact
policy changes. Summary facts are in Tab. C.1.

Task. Our forecasting task is to predict the next year’s count
of opioid-related fatal overdoses in each census tract. For
MA’s S=1620 tracts, we train on data from 2011-2018, tune
hyperparameters on validation data from 2019, and test on
2020 and 2021. For Cook County IL’s S=1328 tracts, we
train on data from 2015-2019, tune on 2020, and test on
2021 and 2022. These splits follow Heuton et al. (2024).

Given a trained model, we assess heldout likelihood over all
sites as well as BPR with =100 to measure the model’s
where-to-intervene ranking. A K'=100 budget was selected
to reflect realistic public health budgets, and is similar to
values used in other studies (Marshall et al., 2022).

Model. A recent benchmark (Heuton et al., 2024) compared
many models designed for fatal overdose forecasting, includ-
ing neural architectures with attention (Ertugrul et al., 2019)
and more classical statistical models. A top-performing
model is negative binomial mixed-effects regression (Marks
et al., 2021a). The generative model can be expressed as

Yst ~ NegBin(pis¢, q), (15)
log(,ust) = ﬁO + ﬁTXst + bOs + blst-

Here, count y,; is modeled as a Negative Binomial, where

the log of the number of successes to stop at g is a lin-

ear function of feature vector x,; as well as a site-specific
intercept bys and site-specific b;s weight on time ¢. The
parameter ¢ is a probability of success shared by all sites.

Feature vector x; includes tract s’s overdose gravity, a
recent average of opioid-related overdose deaths in tracts
spatially near to s, as well as measures of sociological vul-
nerability. See App. C.2.1 for details.

The overall parameters to estimate during training are
¢ = {q, Bo, B,bo1.s,b1,1.5}. To make constrained param-
eters amenable to gradient descent, we employ suitable
one-to-one transforms to unconstrained spaces. Random
effect weights b are regularized via a prior that assumes a
zero-mean Normal distribution with learnable covariance
parameters. Full details are provided in App. E.

Competitor methods. We compare to two other decision-
aware methods discussed above: Perturbed Gradient (PG)
(Huang & Gupta, 2024) and SPO+ (Elmachtoub & Grigas,
2022), as implemented in PyEPO software (Tang & Khalil,
2024). To be fair, each uses the same model py, the ratio
estimator to rank sites, and the gradient of this estimator in
Eq. (10). We conduct a hyperparameter search over learning
rate (and perturbation noise for PG), selecting the model
with the best loss value on validation data.

Setup. We followed the common setup described above. For
reproducible details specific to overdose tasks, see App. C.2.

Results. Results on test data for both MA and Cook County
IL tasks are shown in Pareto frontier plots in Fig. 3. For both
datasets, we see that ML training yields suboptimal top-K
decisions. Direct optimization of BPR can improve BPR,
though gains on test data over ML vary (+0.04 on Cook
County; less than +0.01 on MA). Direct BPR and surrogate
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loss (SPO+, PG) solutions can yield much worse likelihood,
as expected. The surrogate loss methods provide lower
quality decisions than the DAML and direct BPR approach.
Our DAML approach provides better top-K decisions than
the ML approach, with no visible decay in likelihood.

5.3. Endangered Bird Forecasting

Motivation. In the 1940s, whooping cranes were almost
completely extinct in the U.S., with only 20 existing in the
wild (Cannon, 1996). Thanks to efforts over the years to
preserve their population, there are roughly 650 wild cranes
today. This key species is still listed as endangered in 2025.

A major flock of cranes, known as the Aransas-Wood pop-
ulation, winters at the Aransas National Wildlife Refuge
(ANWR) along the Gulf Coast of Texas (Vartanian, 2023),
while spending summers north in Canada. Ecologists wish
to actively monitor this population. Regular aerial sur-
veys of the Texas wintering region have been conducted
for decades (Taylor et al., 2015). Using binned spatiotem-
poral data of sighting counts over time from these surveys,
we wish to offer data-driven forecasts of where cranes may
be found. This could help conservationists decide where
to send future human monitors or where to place K fixed-
location cameras to efficiently track population health.

Data. We use raw data from Taylor et al. (2015), which
digitized decades of aerial surveys of ANWR that marked
individual crane sightings on paper maps. We processed this
ANWR TX Cranes data into a common format of sighting
counts over time and space, selecting bin sizes to support
our goal of using the top-K sites to improve monitoring.
Quality cameras or binoculars that could be used to track
cranes can reasonably capture a 1.5 meter tall whooping
crane in a 250-meter radius. Therefore, for spatial units,
we divided the ANWR into 1338 boxes, each 500 meters
per side. For temporal binning, we use 2 month periods.
This choice catches seasonal variation, but avoids how finer
scales might burden staff to move cameras too often.

Task. The experiment on these data was trained on years
2002-2006, validated on 2007-2008, and tested on 2009-
2010. In this context, a "year" represents one wintering
season; winter 2010 means the winter that began in October
2010 and ended in April 2011. We choose K = 50 for this
task. This is an estimate of how many sites scientists might
reasonably monitor every two months on a limited budget.

Models. The same negative binomial mixed-effect model
was used as in Sec. 5.2. Features x; for site s at time ¢
include historical bird counts at s, the latitude and longitude
of the site’s centroid, time of year, and the overall time.

Setup. We followed the common setup described above.
See reproducible details in App. C.3.

Results. From results in Fig. 3 (right panel), we find that
optimizing NLL or BPR alone will yield poor results in
the other metric. In this case, direct optimization of BPR
results in the best top-K decisions, but dramatically worse
likelihood. Our DAML models improve BPR by up to 0.05
over conventional ML training with only modest decay in
likelihood. Our DAML and direct BPR objectives also de-
liver better BPR than previous decision-aware methods (PG,
SPO+). This is even after providing smarter initializations
to these methods, as we found their training had trouble im-
proving on our common random initialization of ¢, perhaps
due to this task’s much sparser y values.

6. Discussion

We have addressed two open challenges related to top-K re-
source allocation problems guided by the best possible reach
(BPR) performance metric. We provided a ranking strategy
that can outperform simple per-site means. We posed a train-
ing objective that strives for high likelihood across all sites
while ensuring top-K decisions meet a stakeholder-specified
quality level. Our experimental evaluations suggest our ap-
proach can better manage tradeoffs in likelihood and BPR
than conventional training methods or previous decision-
aware methods.

There are several limitations to this study. We focused on
showing the tradeoffs between likelihood and BPR for a
fixed model family in each task without comparing a wide
variety of possible models. Only one type of model misspec-
ification is considered each in the synthetic and real-world
experiments; perhaps decision-aware objectives are more or
less different to maximum likelihood estimates depending
on the kind of model misspecification. Our evaluations use
fixed K values and do not explore sensitivity to K or other
hyperparameters. Practitioners may need multiple metrics to
assess overall utility; focusing myopically on BPR may not
always be wise. Additionally, our framework assumes any
site with large outcome y; is a better candidate for interven-
tion. Future work could explore data-driven site selection
that considers how site-specific attributes might make some
interventions more or less effective.

Looking forward, we hope to see applications of these
ideas inform public health, wildlife conservation, and other
where-to-intervene decision-making problems across the
private and public sectors. We also hope that future method-
ological work could scale up to much larger problems
(S > 2000,T > 20) as we found that our current experi-
ments tested the limits of commodity GPUs.
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Appendix

This appendix includes additional experimental results and information for understanding and reproducing experiments.

Reproducible code used for all experiments is included in an open-source repository:

https://github.com/tufts-ml/decision-aware—topk/
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A. Pseudocode for Training

Algorithm A.1 Decision-aware ML training

Input:

{y¢}i&_, train data, each y; € R‘;O

*¢ € RP: parameter vector for model

* M: int num MC samples for score func estimator

*J: int num MC samples for stochastic smoothing estimator

*o > 0 : float stddev of stochastic smoothing estimator

*c € (0,1) : Desired minimum BPR value. Will try to enforce constraint BPR > e.

*A > 0 : Strength multiplier when constraint is violated.
Output: Trained model parameter ¢

Procedure:
1: while not converged do
22 VT« 0 /I P x 1 vector to store grad wrt params
3: fortimet € {1,2,...7} do
4: {ymIM_ | ~ pg // M Monte Carlo (MC) samples
5 T A7 om 1y,;z‘n /IS x 1 ranking vector via MC
6.
7 b; + TOPKMASK(r¢)
8 L?PR — _m(yt . bt) // Scalar 1OSS, -BPR
9: gPPR «— € + LBPR /] Scalar. Negative if BPR > ¢ is satisfied.
10: TER «+ Amax(gP*R,0) // Scalar ultimate loss for BPR
11:
12: Vore < 15 >om Ve log ps(yi™)] 1y;{” /I P x S matrix, score func. est. of V4
13 {zh ~ N0 Is)
14: Vi < 24 ‘jlzl OUTER(TOPKMASK(r; + 02;), Z;) /1S x S matrix, perturbed estimate of V., b;
15: Vi, TEPR —/\myt -1[gPPR > 0] /'S x 1 vector, nonzero if constraint unsatisfied.
16: Vo TER < (Vyre) (Vi be) (Ve, TEPR) /Il P x 1 vector
17:
18: TN —log py(yr) // Scalar ultimate loss for NLL
19: VoI +— =V, log pys(yt)
20:
21: VoI — VaoT + V¢\7tNLL + V¢g7tBPR
22:  end for
23: ¢ < GRADDESCENTUPDATE(¢, V4.7) // Use steepest descent or Adam or ...
24: end while
25: return ¢
B. Ranking Demo for BPR

B.1. Justification for ratio estimator

In the text, we propose the ratio estimator for ranking locations: » = E[z%-] and justify its use by demonstrating that it is
a better bound on our decision loss BPR than the mean estimator. However, a natural question is, why not use a ranking
estimator which more closely resembles BPR, such as r = E|
the ratio estimator in expectation, and will select the same top-K locations. Accordingly, we use the ratio estimator for its

improved computational speed and simplicity.
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B.2. Demo experiment

To gain understanding about the problem of ranking to optimize the fraction of best possible reach (BPR) performance
metric, here we present detailed analysis of a toy problem with S = 9 sites. We’ll assume the true data-generating process
for each site is completely known throughout and that each site can be modeled independently of other sites.
9
p(y10) = [ p(vs) (16)

s=1

For each site, we select from 3 possible site-specific model archetypes, nicknamed type A, type B, and type C.
e sites #1, #2, and #3 are each iid with type A PMF
o sites #4, #5, and #6 are each iid with type B PMF

e gites #7, #8, and #9 are each iid with type C PMF

Each type’s PMF function over the non-negative integers is defined in the table below.

Type A Type B Type C
0.0 ify;=0 0.35 ifys =10 0.90 ifys=10
plys) =< 1.0 ify, =7 p(ys) =< 0.65 ify, =10 p(ys) =< 0.10 ifys = 80
0.0 otherwise 0.0  otherwise 0.0  otherwise
Mean 7.0 6.5 8.0
Median 7.0 10.0 0.0

We have now defined the joint PMF p(y;.9) over the 9 sites.

We can compare two possible ways to compute a numerical ranking of the S = 9 sites:
* Mean estimator, which computes the per-site mean: r = E[y]

* Ratio estimator, which computes the expectation of y normalized by its sum: r = E[%}

For each possible ranking strategy, we repeated BPR calculations over 10000 trials. To ensure accuracy of Monte Carlo
estimates, we average over M = 50000 samples to estimate the expectation defining each 7.

Results are provided in the table below. We have two key findings. First, our proposed ratio estimator can select very
different sites than the per-site mean, even when both estimators have access to the true data-generating model. Using
K = 3, our estimator would select all type-A sites as the top 3; in contrast the per-site mean would select all type-C sites
(#7-9). Second, this can produce very different BPR values. Even in this simple example, we see an absolute difference in
BPR of over 0.4 between the different rankings at K = 1 and over 0.39 at K = 3, which is a huge shift for a metric that is
bounded between 0.0 and 1.0.

BPR fraction of trials each site in top K=3 of r
K=1 K=3 K=6 | A#l A#2 A#3 B# B#5 B#6 C#] C# C#9
mean 1 = E[y] 0.107 0.231 0.636 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0

ratio r:E[%] 0.538 0.625 0.810 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

These results can be replicated via scripts provided in the code repository.
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# Spatial Sites Temporal Scale Outcomes y Features
Count of
1620 Census 20 years, . . SVI, Past Deaths,
MA Fatal Overdoses Tracts 2001-2021 opioid-related Location, Time
fatal overdoses
Cook County IL 1328 Census 8 years, ocoil:)Iilé—(;ilate d SVI, Past Deaths,
Fatal Overdoses Tracts 2015-2022 p Location, Time
fatal overdoses
Aransas TX 1338 boxes, each 60 years, Count of bll’d. Past O.bSCrVE.ltIOIlS,
) 1952-2011 (last 10 | spotted in aerial Location, Time,
Whooping Cranes 500mx500m
years used) survey Month

Table C.1: Comparison of Real datasets, in terms of number of spatial sites S, temporal scales, outcomes y, and features.

ANWR TX Cranes MAE RMSE BPR-50 Cook County IL Overdose MAE RMSE BPR-100
Last timestep 0.24 1.04 0.27 Last timestep 1.07 1.66 0.76
Avg over 10 025 0.78 0.38 Avg over 5 0.99 1.58 0.80
Chance decision,y =0 0.15 0.79 0.05 Chance decision, § = 0 1.37 2.46 0.20
EpiGNN 0.38 0.70 0.06 EpiGNN 1.33  2.03 0.32
PG 1.03 4285 0.35 PG 5.65 17.03 0.80
SPO+ 0.15 0.83 0.18 SPO+ 1.25 2.38 0.74
NLL Only 0.35 1.14 0.38 NLL Only 1.03 1.58 0.78
DAML (e = 1) 9.08 35.89 0.39 DAML (e = 1) 1.12 1.84 0.80
BPR Only 40495 40495 0.41 BPR Only 7031 152.72 0.82
(a) ANWR TX Cranes 2009-2010. (b) Cook County IL 2021-2022.

Table C.2: Performance comparison between different model families for error-based and decision metrics. The top 2 rows represent
simple historical baselines: using either the previous timestep alone, or an average over a larger amount (10 bi-months for the crane
dataset, and 5 years for Cook County). Next, the Chance decision model chooses spatial locations by random chance, and uses all 0’s for
predicted ¢ in MAE and RMSE calculations. Despite the simplicity, this is a competitive model on the error-based metrics due to sparsity.
It outperforms all others on MAE on the Cranes dataset. Next is EpiGNN, a spatiotemporal forecasting model based on graph neural
networks, trained to minimize RMSE. Although this model has the best performing RMSE on the crane dataset, it makes poor top-K
decisions on both. Finally, the last three rows show different ways to train the negative binomial mixed effects regression model in 14.
NLL Only trains to maximize likelihood alone (8), BPR Only is our direct-loss minimization trained to maximize BPR alone (9), and
DAML (13) is our hybrid loss that allows a user to explore the pareto frontier between likelihood and BPR-K.

C. Experimental Details and Results from Real-World Data
C.1. Results on alternative models and metrics

C.2. Opioid-related Overdose Forecasting Results

C.2.1. FEATURES

The feature vector x; for site s and time ¢ includes:

* Latitude and Longitude of the centroid of the census tract s
e The current timestep ¢

* Overdose gravity, an weighted average of the prior year’s overdose deaths in all contiguous tracts. We construct
the feature in the same way as (Marks et al., 2021a). Note that the original paper describes a weighted average
over all regions within a radius, but the provided code uses only immediately contiguous locations. We follow the
implementation from the code.

» Covariates from the Social Vulnerability Index (SVI) (CDC ATSDR, 2022). These covariates are available as 5-year
estimates for every census tract in the United States and are updated every 2 years. The SVI measures report the
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percentile ranking of every census tract according to 4 themes: Socioeconomic, Household Composition & Disability,
Minority Status & Language, and Housing Type & Transportation. We use 5 variables: each tract’s ranking in each of
the four themes as well as its composite ranking.

* We include 5 temporal lags: the number of fatal opioid-related overdoses in tract s in each of the past 5 years.

C.2.2. HYPERPARAMETER RANGES

Hyperparameter ranges explored include:

e Perturbation noise: 0.1,0.01, and 0.001.

e Adam step size: 0.1,0.01, and 0.001.

* Number of samples for score function trick estimator: 100
* Number of samples for perturbation estimator: 100

* BPR constraint e: 5 possible values of the penalty threshold: 1.0, for a threshold that always encourages better BPR, as
well as 4 values selected to be around the best BPR obtained on the training data.

e Multiplier on the penalty for DAML: 30. This value was chosen so that the BPR and likelihood components were
roughly the same magnitude after 100 epochs of training.

For each location, training objective (likelihood, direct loss minimization, and DAML), as well as for each threshold for
the hybrid model, we selected the model based on validation dataset performance. For the maximum likelihood model
and direct BPR models we picked the model that best maximized their respective objective. For the DAML models, we
found that given the larger number of hyperparameter configurations, small amount of validation data, and BPR’s sensitivty,
selected a model based on BPR lead to overfitting. To ameliorate this, we chose the model with the highest likelihood
provided that the BPR was greater than a given threshold. Because models failed to meet the target ¢, we chose the BPR
of the maximum likelihood model on the validation dataset as our threshold. If no models met this threshold, we selected
the maximum BPR model. For the We did this by evaluating the validation performance every 10 epochs, and saving a
checkpoint for the model with the lowest loss on validation data.

C.3. Endangered Bird Forecasting Results

C.3.1. FEATURES

The feature vector x; for site s and time ¢ includes the following variables: the past 5 count values at site s, latitude &
longitude of site s’s centroid, an enumerated timestep indicating time passed at ¢ since the starting timestamp of the dataset,
and a monthly indicator variable. The dataset includes three bimonthly periods per wintering season: Oct 20-Dec 24,
Dec 25-Feb 27,and Feb 28-Apr 30. The monthly indicator received a value of 1, 2, or 3, respectively, depending
on which set of months an observation spanned.

C.3.2. HYPERPARAMETER RANGES

The same hyperparameter and model selection was performed on Whooping Crane data as the opioid experiment in Section
C.2.

D. Experimental Details and Results from Synthetic Data

Model details. As explained in the main paper, we use a mixture of L. = 2 Gaussian distributions where each is truncated
to the positive reals. We give each of the S locations their own mixture weights 7, ; where 212:1 mey = Lland mg; > 0.
Our model for an individual location is then:

2
P(ys) = ot Ni(yslpu, of) (17)

=1
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Our parameter vector ¢ then consists of the set of all 1, 0y and 7, ;. We have that both y; and o; should be positive, as
we are modeling positive counts and standard deviation is defined to positive. To accomplish this, we transform these
variables using the softplus function when performing gradient based learning. Additionally, we constrain o; > 0.2 to avoid
degeneracy. Finally, to make a valid pdf, we have that the mixture weights must sum to one: ZZL:1 ms,1 = 1. To enforce this,
we transform unconstrained variables using the softmax transform. This creates an subtle issue with model identifiability, as
there are many unconstrained values that will lead to similar weights, but we do not find that this impacts our ability to train
models effectively to achieve good likelihood or good BPR with the appropriate objective.

Training Procedures. We seek to train 7 models: one that optimizes only for model log likelihood, one that optimizes only
BPR-5, and 5 models penalized to achieve certain threshold values of BPR. Each model is given 20 random initializations of
the model parameters. We use a learning step-size of 0.1. For models with BPR in the objective, we try a perturbation noise
of both 0.01 and 0.05, with 500 samples. In the hybrid models, we use A = 30, selected so that the likelihood term and the
BPR penalty term are on the same order of magnitude after several epochs of training.

Tradeoffs between likelihood and BPR when L=2. If this model had L = 7 components, it would be well-specified and
recover the true data generating process. However, with only 2 components, it is forced to group locations with distant mean
values, which will come at a cost to likelihood and predictive capability as assessed by BPR.

For this example, we will consider BPR-5 as our decision making metric. A model that correctly ranks the top-5 locations
will achieve perfect BPR. Our misspecified model is capable of this by learning 2 distinct mean values i, one higher than
the other. As long as the mixture weights for the top-5 locations 74 assign all probability to the high component, and the
mixture weights for the bottom 2 locations assign all probability to the low component, the model will have perfect BPR.

However, this is not what the model with the best possible likelihood looks like. To maximize likelihood, a model will
assign the 6 low locations to one component, and the one high location to another, as in Fig. 2.

Our hybrid objective DAML can explore the Pareto frontier between maximizing for likelihood and BPR-5. By including
more locations into the high-valued component, BPR-5 will increase as log likelihood slightly decreases. Our hybrid
objective formulation allows us to control this tradeoff by specifying the threshold at which the penalty term takes effect.

Results. Results are shown in Figure 2 in the main paper. Here we see the ability of the hybrid Decision-aware object to
traverse the Pareto frontier between the best possible likelihood and BPR. The lowest threshold of 0.5 is trivially satisfied by
the maximum likelihood model. The highest threshold of 1.0 is only satisfied by perfect BPR, while the 3 intermediate
thresholds were chosen to explore the solution frontier that is possible by including or excluding a particular component
from one of the learned mixtures. We see that by using the decision-aware training objective, we can maximize BPR while
still obtaining a highly likely model.

E. Model for Negative Binomial Mixed-Effects

Here we provide further detail on the model described in Eq. (15).

For some elements of the parameters ¢, we have a prior that informs point estimation in MAP fashion. The random effects
are assumed to follow a multivariate normal prior

()~ ((0) =) w

where the covariance matrix X is parameterized as:
g, [2) pPO001
Y= 9 (19)

Here, o is the standard deviation of the random intercepts, o is the standard deviation of the random slopes, and p is the
correlation between the random intercepts and slopes, where —1 < p < 1. We pack these hyperparameters into a separate
vector ) = {09, 01, p}.

Transforming to unconstrained parameters. To ensure parameter constraints are satisfied throughout gradient descent
optimization, we employ invertible transformations that map constrained domains to unconstrained spaces. We reparam-
eterize the correlation coefficient p € (—1, 1) using u + arctanh(p), allowing u to be optimized over R while ensuring
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p = tanh(u) remains within its valid bounds. For the strictly positive parameters o, o1 > 0, we optimize unconstrained
parameters £, & € R and apply the softplus transformation o; < In(1+e%), which guarantees positivity while maintaining
smoothness. Similarly, for the probability parameter g € (0, 1), we optimize an unconstrained parameter ¢ € R and apply
the sigmoid transformation q < 1/(1 + e~¢). During gradient descent, we optimize these unconstrained parameters, and
transformed to the constrained version during forward sampling or pdf evaluation of the model.

MAP estimation. Together, the parameters ¢ and hyperparameters n comprise this model. Both are point estimated to
maximize the MAP objective. Thus, what is marked in the paper as NLL optimization is really best viewed as MAP or
penalized NLL estimation, where the loss is

J(p,n) = —logp(yr.7|) — logp(¢|n) (20

Similarly, when we fit this model with DAML, the above loss is what is minimized subject to the BPR constraint.
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