
G4SATBench: Benchmarking and Advancing SAT
Solving with Graph Neural Networks

Zhaoyu Li1,2, Jinpei Guo4, Xujie Si1,2,3
1University of Toronto, 2Vector Institute, 3Mila, 4Shanghai Jiao Tong Univeristy

{zhaoyu, six}@cs.toronto.edu, mike0728@sjtu.edu.cn

Abstract

Graph neural networks (GNNs) have recently emerged as a promising approach for1

solving the Boolean Satisfiability Problem (SAT), offering potential alternatives to2

traditional backtracking or local search SAT solvers. However, despite the growing3

volume of literature in this field, there remains a notable absence of a unified4

dataset and a fair benchmark to evaluate and compare existing approaches. To5

address this crucial gap, we present G4SATBench, the first benchmark study that6

establishes a comprehensive evaluation framework for GNN-based SAT solvers.7

In G4SATBench, we meticulously curate a large and diverse set of SAT datasets8

comprising 7 problems with 3 difficulty levels and benchmark a broad range of9

GNN models across various prediction tasks, training objectives, and inference10

algorithms. To explore the learning abilities and comprehend the strengths and11

limitations of GNN-based SAT solvers, we also compare their solving processes12

with the heuristics in search-based SAT solvers. Our empirical results provide13

valuable insights into the performance of GNN-based SAT solvers and further14

suggest that existing GNN models can effectively learn a solving strategy akin to15

greedy local search but struggle to learn backtracking search in the latent space.16

1 Introduction17

The Boolean Satisfiability Problem (SAT) is a crucial problem at the nexus of computer science,18

logic, and operations research, which has garnered significant attention over the past five decades.19

To solve SAT instances efficiently, modern SAT solvers have been developed with backtracking20

(especially with conflict-driven clause learning, a.k.a. CDCL) or local search (LS) heuristics that21

effectively exploit the instance’s structure and traverse its vast search space [4]. However, designing22

such heuristics remains a highly non-trivial and time-consuming task, with a lack of significant23

improvement in recent years. Conversely, the recent rapid advances in graph neural networks24

(GNNs) [23, 27, 41] have shown impressive performances in analyzing structured data, offering a25

promising opportunity to enhance or even replace modern SAT solvers. As such, there have been26

massive efforts to leverage GNNs to solve SAT over the last few years [16, 19].27

Despite the recent progress, the question of how (well) GNNs can solve SAT remains unanswered.28

One of the main reasons for this is the variety of learning objectives and usage scenarios employed in29

existing work, making it difficult to evaluate different methods in a fair and comprehensive manner.30

For example, NeuroSAT [34] predicts satisfiability, QuerySAT [30] constructs a satisfying assignment,31

NeuroCore [33] classifies unsat-core variables, and NSNet [28] predicts marginal distributions of all32

satisfying solutions to solve the SAT problem. Moreover, most previous research has experimented on33

different datasets that vary in a range of settings (e.g., data distribution, instance size, and dataset size),34

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.

which leads to a lack of unified and standardized datasets for training and evaluation. Additionally,35

some work [2, 35, 42] has noted the difficulty of re-implementing prior approaches as baselines,36

rendering it arduous to draw consistent conclusions about the performance of peer approaches. All of37

these issues impede the development of GNN-based solvers for SAT solving.38

To systematically quantify the progress in this field and facilitate rapid, reproducible, and generalizable39

research, we propose G4SATBench, the first comprehensive benchmark study for SAT solving with40

GNNs. G4SATBench is characterized as follows:41

• First, we construct a large and diverse collection of SAT datasets that includes instances from distinct42

sources and difficulty levels. Specifically, our benchmark consists of 7 different datasets from 343

benchmark families, including random instances, pseudo-industrial instances, and combinatorial44

problems. It not only covers a wide range of prior datasets but also introduces 3 levels of difficulty45

for each dataset to enable fine-grained analyses.46

• Second, we re-implement various GNN-based SAT solvers with unified interfaces and configuration47

settings, establishing a general evaluation protocol for fair and comprehensive comparisons. Our48

framework allows for evaluating different GNN models in SAT solving with various prediction49

tasks, training objectives, and inference algorithms, encompassing the diverse learning frameworks50

employed in the existing literature.51

• Third, we present baseline results and conduct thorough analyses of GNN-based SAT solvers,52

providing a detailed reference of prior work and laying a solid foundation for future research. Our53

evaluations assess the performances of different choices of GNN models (e.g., graph constructions,54

message-passing schemes) with particular attention to some critical parameters (e.g., message-55

passing iterations), as well as their generalization ability across different distributions.56

• Lastly, we conduct a series of in-depth experiments to explore the learning abilities of GNN-based57

SAT solvers. Specifically, we compare the training and solving processes of GNNs with the58

heuristics employed in both CDCL and LS-based SAT solvers. Our experimental results reveal59

that GNNs tend to develop a solving heuristic similar to greedy local search to find a satisfying60

assignment but fail to effectively learn the backtracking heuristic in the latent space.61

We believe that G4SATBench will enable the research community to make significant strides in under-62

standing the capabilities and limitations of GNNs for solving SAT and facilitate further development63

in this area. Our codebase is available at https://github.com/zhaoyu-li/G4SATBench.64

2 Related Work65

SAT solving with GNNs. Existing GNN-based SAT solvers can be broadly categorized into two66

branches [16]: standalone neural solvers and neural-guided solvers. Standalone neural solvers utilize67

GNNs to solve SAT instances directly. For example, a stream of research [6, 34, 21, 7, 35] focuses on68

predicting the satisfiability of a given formula, while several alternative approaches [1, 2, 30, 26, 42]69

aim to construct a satisfying assignment. Neural-guided solvers, on the other hand, integrate GNNs70

with modern SAT solvers, trying to improve their search heuristics with the prediction of GNNs.71

These methods typically train GNN models using supervised learning on some tasks such as unsat-72

core variable prediction [33, 38], satisfying assignment prediction [44], glue variable prediction [17],73

and assignment marginal prediction [28], or through reinforcement learning [43, 24] by modeling the74

entire search procedure as a Markov decision process. Despite the rich literature on SAT solving with75

GNNs, there is no benchmark study to evaluate and compare the performance of these GNN models.76

We hope the proposed G4SATBench would address this gap.77

SAT datasets. Several established SAT benchmarks, including the prestigious SATLIB [20] and78

the SAT Competitions over the years, have provided a variety of practical instances to assess the79

performance of modern SAT solvers. Regrettably, these datasets are not particularly amenable for80

GNNs to learn from, given their relatively modest scale (less than 100 instances for a specific domain)81

or overly extensive instances (exceeding 10 million variables and clauses). To address this issue,82

2

https://github.com/zhaoyu-li/G4SATBench

Random
Problems

SR

3-SAT

Pseudo-
industrial
Problems

CA

PS

Combinatorial
Problems

𝑘-Clique

𝑘-Domset

𝑘-Vercov

Datasets

LCG*

VCG*

Graphs

NeuroSAT

GCN

GGNN

GIN

Models

Satisfiability

Satisfying
Assignment

Unsat-core
Variable

Tasks

Unsupervised

Supervised

Training
Objectives

Multiple
Predictions

Standard
Readout

Clustering
Decoding

Inference
Algorithms

Figure 1: Framework overview of G4SATBench.

researchers have turned to synthetic SAT instance generators [34, 25, 14, 37], which allow for the83

creation of a flexible number of instances with customizable settings. However, most of the existing84

datasets generated from these sources are limited to a few domains (less than 3 generators), small in85

size (less than 10k instances), or easy in difficulty (less than 40 variables within an instance), and86

there is no standardized dataset for evaluation. In G4SATBench, we include a variety of synthetic87

generators with carefully selected configurations, aiming to construct a broad collection of SAT88

datasets that are highly conducive for training and evaluating GNNs.89

3 Preliminaries90

The SAT problem. In propositional logic, a Boolean formula is constructed from Boolean variables91

and logical operators such as conjunctions (∧), disjunctions (∨), and negations (¬). It is typical to92

represent Boolean formulas in conjunctive normal form (CNF), expressed as a conjunction of clauses,93

where each clause is a disjunction of literals, which can be either a variable or its negation. Given a94

CNF formula, the SAT problem is to determine if there exists an assignment of boolean values to its95

variables such that the formula evaluates to true. If this is the case, the formula is called satisfiable;96

otherwise, it is unsatisfiable. For a satisfiable instance, one is expected to construct a satisfying97

assignment to prove its satisfiability. On the other hand, for an unsatisfiable formula, one can find a98

minimal subset of clauses whose conjunction is still unsatisfiable. Such a set of clauses is termed the99

unsat core, and variables in the unsat core are referred to as unsat-core variables.100

Graph representations of CNF formulas. Traditionally, a CNF formula can be represented using101

4 types of graphs [4]: Literal-Clause Graph (LCG), Variable-Clause Graph (VCG), Literal-Incidence102

Graph (LIG), and Variable-Incidence Graph (VIG). The LCG is a bipartite graph with literal and103

clause nodes connected by edges indicating the presence of a literal in a clause. The VCG is formed104

by merging the positive and negative literals of the same variables in LCG. The LIG, on the other105

hand, only consists of literal nodes, with edges indicating co-occurrence in a clause. Lastly, the VIG106

is derived from LIG using the same merging operation as VCG.107

4 G4SATBench: A Comprehensive Benchmark on GNNs for SAT Solving108

The goal of G4SATBench is to establish a general framework that enables comprehensive comparisons109

and evaluations of various GNN-based SAT solvers. In this section, we will delve into the details of110

G4SATBench, including its datasets, GNN models, prediction tasks, as well as training and testing111

methodologies. The overview of the G4SATBench framework is shown in Figure 1.112

4.1 Datasets113

G4SATBench is built on a diverse set of synthetic CNF generators. It currently consists of 7114

datasets sourced from 3 distinct domain areas: random problems, pseudo-industrial problems, and115

combinatorial problems. Specifically, we utilize the SR generator in NeuroSAT [34] and the 3-SAT116

generator in CNFGen [25] to produce random CNF formulas. For pseudo-industrial problems, we117

employ the Community Attachment (CA) model [14] and the Popularity-Similarity (PS) model [15],118

3

which generate synthetic instances that exhibit similar statistical features, such as the community and119

the locality, to those observed in real-world industrial SAT instances. For combinatorics, we resort120

to 3 synthetic generators in CNFGen [25] to create SAT instances derived from the translation of121

k-Clique, k-Dominating Set, and k-Vertex Cover problems.122

In addition to the diversity of datasets, G4SATBench offers distinct difficulty levels for all datasets to123

enable fine-grained analyses. These levels include easy, medium, and hard, with the latter representing124

more complex problems with increased instance sizes. For example, the easy SR dataset contains125

instances with 10 to 40 variables, the medium SR dataset contains formulas with 40 to 200 variables,126

and the hard SR dataset consists of formulas with variables ranging from 200 to 400. For each easy127

and medium dataset, we generate 80k pairs of satisfiable and unsatisfiable instances for training, 10k128

pairs for validation, and 10k pairs for testing. For each hard dataset, we produce 10k testing pairs.129

It is also worth noting that the parameters for our synthetic generators are meticulously selected130

to avoid generating trivial cases. For instance, we produce random 3-SAT formulas at the phase-131

transition region where the relationship between the number of clauses (m) and variables (n) is132

m = 4.258n+58.26n−2/3 [10], and utilize the v vertex Erdős-Rényi graph with an edge probability133

of p =
(
v
k

)−1/(v2) to generate k-Clique problems, making the expected number of k-Cliques in a134

graph equals 1 [5]. To provide a detailed characterization of our generated datasets, we compute135

several statistics of the SAT instances across difficulty levels in G4SATBench. For more information136

about the generators we used and the dataset statistics, please refer to Appendix A.137

4.2 GNN Baselines138

		𝑐! 		𝑐" 		𝑐#

		𝑥! 		𝑥" 		𝑥#

VCG*

		𝑐! 		𝑐" 		𝑐#

		𝑥! 	¬𝑥! 		𝑥" 	¬𝑥" 		𝑥# 	¬𝑥#

LCG*

Figure 2: LCG* and VCG* of the CNF for-
mula (x1∨¬x2)∧(x1∨x3)∧(¬x1∨x2∨x3).

Graph constructions. It is important to note that139

traditional graph representations of a CNF formula140

often lack the requisite details for optimally construct-141

ing GNNs. Specifically, the LIG and VIG exclude142

clause-specific information, while the LCG and VIG143

fail to differentiate between positive and negative144

literals of the same variable. To address these lim-145

itations, existing approaches typically build GNN146

models on the refined versions of the LCG and VCG encodings. In the LCG, a new type of edge is147

added between each literal and its negation, while the VCG is modified by using two types of edges148

to indicate the polarities of variables within a clause. These modified encodings are termed the LCG*149

and VCG* respectively, and an example of them is shown in Figure 2.150

Message-passing schemes. G4SATBench enables performing various hetergeneous message-151

passage algorithms between neighboring nodes on the LCG* or VCG* encodings of a CNF formula.152

For the sake of illustration, we will take GNN models on the LCG* as an example. We first define a153

d-dimensional embedding for every literal node and clause node, denoted by hl and hc respectively.154

Initially, all these embeddings are assigned to two learnable vectors h0
l and h0

c , depending on their155

node types. At the k-th iteration of message passing, these hidden representations are updated as:156

h(k)
c = UPD

(
AGG
l∈N (c)

({
MLPl

(
h
(k−1)
l

)})
, h(k−1)

c

)
,

h
(k)
l = UPD

(
AGG
c∈N (l)

({
MLPc

(
h(k−1)
c

)})
, h

(k−1)
¬l , h

(k−1)
l

)
,

(1)

where N (·) denotes the set of neighbor nodes, MLPl and MLPc are two different multi-layer per-157

ceptions (MLPs), UPD(·) is the update function, and AGG(·) is the aggragation function. Most158

GNN models on LCG* use Equation 1 with different choices of the update function and aggre-159

gation function. For instance, NeuroSAT employs LayerNormLSTM [3] as the update function160

and summation as the aggregation function. In G4SATBench, we provide a diverse range of GNN161

models, including NeuroSAT [34], Graph Convolutional Network (GCN) [23], Gated Graph Neural162

Network (GGNN) [27], and Graph Isomorphism Network (GIN) [41], on the both LCG* and VCG*.163

More details of these GNN models are included in Appendix B.164

4

4.3 Supported Tasks, Training and Testing Settings165

Prediction tasks. In G4SATBench, we support three essential prediction tasks for SAT solving:166

satisfiability prediction, satisfying assignment prediction, and unsat-core variable prediction. These167

tasks are widely used in both standalone neural solvers and neural-guided solvers. Technically, we168

model satisfiability prediction as a binary graph classification task, where 1/0 denotes the satisfia-169

bility/unsatisfiability of the given SAT instance ϕ. Here, we take GNN models on the LCG* as an170

example. After T iterations of message passing, we obtain the graph embedding by applying mean171

pooling on all literal embeddings, and then predict the satisfiability using an MLP followed by the172

sigmoid function σ:173

yϕ = σ
(

MLP
(

MEAN
(
{h(T)

l , l ∈ ϕ}
)))

. (2)

For satisfying assignment prediction and unsat-core variable prediction, we formulate them as binary174

node classification tasks, predicting the label for each variable in the given CNF formula ϕ. In the175

case of GNNs on the LCG*, we concatenate the embeddings of each pair of literals hl and h¬l to176

construct the variable embedding, and then readout using an MLP and the sigmoid function σ:177

yv = σ
(

MLP
([

h
(T)
l , h

(T)
¬l

]))
. (3)

Training objectives. To train GNN models on the aforementioned tasks, one common approach is178

to minimize the binary cross-entropy loss between the predictions and the ground truth labels. In179

addition to supervised learning, G4SATBench supports two unsupervised training paradigms for180

satisfying assignment prediction [1, 30]. The first approach aims to differentiate and maximize the181

satisfiability value of a CNF formula [1]. It replaces the ¬ operator with the function N(a) = 1− a182

and uses smooth max and min functions to replace the ∨ and ∧ operators. The smooth max and min183

functions are defined as follows:184

Smax(x1, x2, . . . , xd) =

∑d
i=1 xi · exi/τ∑d

i=1 e
xi/τ

, Smin(x1, x2, . . . , xd) =

∑d
i=1 xi · e−xi/τ∑d

i=1 e
−xi/τ

, (4)

where τ ≥ 0 is the temperature parameter. Given a predicted soft assignment x = (x1, x2, . . . , xn),185

we evaluate its satisfiability value S(x) using the smoothed version of logical operators and minimize186

the following loss function:187

Lϕ(x) =
(1− S(x))

κ

(1− S(x))
κ
+ S(x)κ

. (κ ≥ 1 is a predefined constant) (5)

The second unsupervised loss is defined as follows [30]:188

Vc(x) = 1−
∏
i∈c+

(1− xi)
∏
i∈c−

xi, Lϕ(x) = − log
(∏
c∈ϕ

Vc(x)
)
= −

∑
c∈ϕ

log (Vc(x)) , (6)

where c+ and c− are the sets of variables that occur in the clause c in positive and negative form189

respectively. Note that these two losses reach the minimum only when the prediction x is a satisfying190

assignment, thus minimizing such losses could help to construct a possible satisfying assignment.191

Inference algorithms. In addition to using the standard readout process like training, G4SATBench192

offers two alternative inference algorithms for satisfying assignment prediction [34, 2]. The first193

method performs 2-clustering on the literal embeddings to obtain two centers ∆1 and ∆2 and then194

partitions the positive and negative literals of each variable into distinct groups based on the predicate195

||xi −∆1||2 + ||¬xi −∆2||2 < ||xi −∆2||2 + ||¬xi −∆1||2 [34]. This allows the construction of196

two possible assignments by mapping one group of literals to true. The second approach is to employ197

the readout function at each iteration of message passing, resulting in multiple assignment predictions198

for a given instance [2].199

Evaluation metrics. For satisfiability prediction and unsat-core variable prediction, we report the200

classification accuracy of each GNN model in G4SATBench. For satisfying assignment prediction,201

we report the solving accuracy of the predicted assignments. If multiple assignments are predicted202

for a SAT instance, the instance is considered solved if any of the predictions satisfy the formula.203

5

5 Benchmarking Evaluation on G4SATBench204

In this section, we present the benchmarking results of G4SATBench. To ensure a fair comparison,205

we conduct a grid search to tune the hyperparameters of each GNN baseline. The best checkpoint for206

each GNN model is selected based on its performance on the validation set. To mitigate the impact207

of randomness, we use 3 different random seeds to repeat the experiment in each setting and report208

the average performance. Each experiment is performed on a single RTX8000 GPU and 16 AMD209

EPYC 7502 CPU cores, and the total time cost is approximately 8,000 GPU hours. For detailed210

experimental setup and hyperparameters, please refer to Appendix C.1.211

5.1 Satisfiability Prediction212

Evaluation on the same distribution. Table 1 shows the benchmarking results of each GNN213

baseline when trained and evaluated on datasets possessing identical distributions. All GNN models214

exhibit strong performance across most easy and medium datasets, except for the medium SR dataset.215

This difficulty can be attributed to the inherent characteristic of this dataset, which includes satisfiable216

and unsatisfiable pairs of medium-sized instances distinguished by just a single differing literal. Such217

a subtle difference presents a substantial challenge for GNN models in satisfiability classification.218

Among all GNN models, the different graph constructions do not seem to have a significant impact on219

the results, and NeuroSAT (on LCG*) and GGNN (on VCG*) achieve the best overall performance.220

Table 1: Results on the datasets of the same distribution.
Graph Method Easy Datasets Medium Datasets

SR 3-SAT CA PS k-Clique k-Domset k-Vercov SR 3-SAT CA PS k-Clique k-Domset k-Vercov

LCG*

NeuroSAT 96.00 96.33 98.83 96.59 97.92 99.77 99.99 78.02 84.90 99.57 96.81 89.39 99.67 99.80
GCN 94.43 94.47 98.79 97.53 98.24 99.59 99.98 69.39 82.67 99.53 96.16 85.72 99.16 99.74
GGNN 96.36 95.70 98.81 97.47 98.80 99.77 99.97 71.44 83.45 99.50 96.21 81.20 99.69 99.83
GIN 95.78 95.37 98.14 96.98 97.60 99.71 99.97 70.54 82.80 99.49 95.80 83.87 99.61 99.62

VCG*
GCN 93.19 94.92 97.82 95.79 98.72 99.54 99.99 66.35 83.75 99.49 95.48 82.99 99.42 99.89
GGNN 96.75 96.25 98.77 96.44 98.88 99.68 99.98 77.12 85.11 99.57 96.48 83.63 99.62 98.92
GIN 96.04 95.71 98.47 96.95 97.33 99.59 99.98 73.56 85.26 99.49 96.55 89.41 99.38 99.80

Evaluation across different distributions. To assess the generalization ability of GNN models, we221

evaluate the performance of NeuroSAT (on LCG*) and GGNN (on VCG*) across different datasets222

and difficulty levels. As shown in Figure 3 and Figure 4, NeuroSAT and GGNN struggle to generalize223

effectively to datasets distinct from their training data in most cases. However, when trained on the SR224

dataset, they exhibit better generalization performance across different datasets. Furthermore, while225

both GNN models demonstrate limited generalization to larger formulas beyond their training data,226

they perform relatively better on smaller instances. These observations suggest that the generalization227

performance of GNN models for satisfiability prediction is influenced by the distinct nature and228

complexity of its training data. Training on more challenging instances could potentially enhance229

their generalization ability.230

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

94.19 90.82 93.38 93.99 67.22 83.77 91.79

60.89 96.16 50.03 65.75 50.39 50.00 50.00

50.02 50.02 98.80 47.38 50.00 53.33 55.08

59.55 90.45 62.35 96.33 50.82 50.00 50.00

50.00 50.00 49.20 50.00 98.66 54.36 69.20

50.11 50.00 38.46 50.39 49.57 99.74 64.20

50.00 49.93 33.98 50.00 53.57 54.20 99.99

NeuroSAT on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

78.40 78.61 68.12 85.04 50.00 81.73 80.37

51.35 84.67 50.00 43.20 50.00 50.00 50.00

50.00 50.00 99.50 50.00 50.00 50.00 50.00

50.02 82.06 50.00 96.89 50.00 60.44 50.52

50.00 50.00 42.78 50.00 89.39 51.24 71.08

50.02 50.00 50.13 52.78 50.00 99.67 58.09

50.00 50.00 49.60 46.36 50.00 51.77 99.96

NeuroSAT on medium datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

96.62 94.55 75.13 96.25 50.68 59.97 58.53

55.24 96.38 52.33 56.93 59.30 49.94 52.84

50.00 50.45 98.69 50.04 49.95 49.94 58.72

81.22 65.88 79.29 96.80 50.00 50.00 50.00

50.16 49.92 67.72 52.99 98.88 50.00 50.00

50.02 49.95 50.00 49.98 50.42 99.72 62.83

50.00 50.00 50.00 49.62 50.00 53.13 99.98

GGNN on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

77.70 80.98 93.41 89.33 50.00 50.38 50.00

50.61 85.78 62.80 51.80 51.62 46.91 52.48

50.01 50.00 99.50 66.55 50.00 50.00 50.00

57.80 50.00 98.64 96.53 50.00 50.00 50.00

49.99 50.00 50.00 41.22 73.63 50.00 50.00

50.03 50.00 50.06 69.50 50.00 99.52 65.73

50.01 50.05 52.60 50.72 49.77 50.29 99.92

GGNN on medium datasets

Figure 3: Results across different datasets. The x-axis denotes testing datasets and the y-axis denotes
training datasets.

Due to the limited space, Figure 4 exclusively displays the performance of NeuroSAT and GGNN231

on the SR and 3-SAT datasets. Comprehensive results on the other five datasets, as well as the232

experimental results on different massage passing iterations, are provided in Appendix C.2.233

6

easy medium hard

easy

medium

94.19 65.56 54.82

95.39 78.40 62.11

NeuroSAT on the SR dataset
easy medium hard

easy

medium

96.16 74.98 66.08

93.27 84.67 83.30

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

96.62 65.23 53.90

95.48 77.70 61.69

GGNN on the SR dataset
easy medium hard

easy

medium

96.38 80.20 76.76

94.99 85.78 83.60

GGNN on the 3-SAT dataset

Figure 4: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

5.2 Satisfying Assignment Prediction234

Evaluation with different training losses. Table 2 presents the benchmarking results of each GNN235

baseline across three different training objectives. Interestingly, the unsupervised training methods236

outperform the supervised learning approach across the majority of datasets. We hypothesize that this237

is due to the presence of multiple satisfying assignments in most satisfiable instances. Supervised238

training tends to bias GNN models towards learning a specific satisfying solution, thereby neglecting239

the exploration of other feasible ones. This bias may compromise the models’ ability to generalize240

effectively. Such limitations become increasingly apparent when the space of satisfying solutions is241

much larger, as seen in the medium CA and PS datasets. Additionally, it is noteworthy that employing242

UNS1 as the loss function can result in instability during the training of some GNN models, leading243

to a failure to converge in some cases. Conversely, using UNS2 loss demonstrates strong and stable244

performance across all datasets.245

Table 2: Results on the datasets of the same distribution with different training losses. The top and
bottom 7 rows represent the results for easy and medium datasets, respectively. SUP denotes the
supervised loss, UNS1 and UNS2 correspond to the unsupervised losses defined in Equation 5 and
Equation 6, respectively. The symbol "-" indicates that some seeds failed during training. Note that
only satisfiable instances are evaluated in this experiment.

Graph Method SR 3-SAT CA PS k-Clique k-Domset k-Vercov

SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2

LCG*

NeuroSAT 88.47 82.30 79.79 78.39 80.23 80.59 0.27 82.17 89.34 39.18 89.23 88.79 66.30 88.34 63.43 69.61 96.74 98.85 85.15 99.36 99.73
GCN 83.74 73.09 77.02 70.34 74.79 75.31 0.17 75.30 82.41 39.66 82.75 84.89 63.85 82.60 86.17 59.29 97.50 97.55 76.83 99.16 99.28
GGNN 84.13 76.39 78.75 72.87 76.55 76.42 0.29 78.13 84.08 38.82 84.44 86.29 60.80 84.60 87.12 68.36 97.49 98.06 82.06 - 99.34
GIN 83.81 81.45 80.39 73.99 78.47 76.24 0.20 78.44 85.15 39.13 85.31 85.43 56.85 84.48 85.11 68.93 96.99 97.43 81.49 99.28 99.38

VCG*
GCN 83.38 84.19 78.00 76.60 84.42 79.23 14.98 76.64 83.79 51.48 85.88 83.06 56.27 85.28 86.91 66.32 97.62 96.74 78.67 - 93.51
GGNN 86.30 87.16 81.00 77.96 88.97 79.32 15.11 76.32 83.12 47.67 86.85 87.17 66.86 86.31 87.48 66.42 - 98.42 82.61 - 99.52
GIN 84.61 89.56 83.27 79.23 87.65 81.72 17.81 83.28 86.03 48.92 91.21 85.65 66.07 86.12 88.09 67.67 - - 81.01 99.38 99.41

LCG*

NeuroSAT 34.97 25.00 37.25 20.07 30.40 41.61 0.00 35.45 70.83 3.64 60.28 71.03 56.61 41.45 32.48 52.09 95.06 96.18 74.77 67.44 95.99
GCN 13.19 13.76 19.21 8.87 20.50 24.58 0.00 30.20 54.04 1.45 45.16 56.29 55.36 61.82 66.33 43.50 92.86 94.89 67.83 - 93.84
GGNN 14.15 16.55 21.18 7.96 22.84 25.68 0.00 28.12 50.66 2.33 44.89 57.96 52.35 54.29 68.91 49.07 - 92.26 69.21 66.37 94.30
GIN 15.36 18.60 22.17 9.66 21.38 24.93 0.00 35.76 57.81 2.02 43.43 57.62 53.07 44.60 66.32 44.39 93.3 93.82 70.59 55.59 95.69

VCG*
GCN 20.59 9.21 22.44 12.48 17.00 29.53 0.44 39.04 48.99 2.29 35.99 55.46 46.09 25.90 68.62 46.96 - 92.68 69.15 - 96.46
GGNN 28.04 27.72 33.37 16.46 29.65 35.95 0.56 48.13 49.93 3.12 51.73 65.11 44.26 48.92 56.43 51.01 - - 71.97 - 95.23
GIN 26.73 26.48 31.97 14.64 26.86 35.81 0.64 44.06 63.84 3.38 58.03 64.66 55.47 56.97 67.78 46.98 - 95.28 69.40 - 96.96

In addition to evaluating the performance of GNN models under various training loss functions, we246

extend our analysis to explore how these models perform across different data distributions and under247

various inference algorithms. Furthermore, we assess the robustness of these GNN models when248

trained on noisy datasets that include unsatisfiable instances in an unsupervised fashion. For detailed249

results of these evaluations, please refer to Appendix C.3.250

5.3 Unsat-core Variable Prediction251

Evaluation on the same distribution. The benchmarking results presented in Table 3 exhibit252

the superior performance of all GNN models on both easy and medium datasets, with NeuroSAT253

consistently achieving the best results across most datasets. It is important to note that the primary254

objective of predicting unsat-core variables is not to solve SAT problems directly but to provide255

valuable guidance for enhancing the backtracking search process. As such, even imperfect predictions256

- for instance, those with a classification accuracy of 90% - have been demonstrated to be sufficiently257

effective in improving the search heuristics employed by modern CDCL-based SAT solvers, as258

indicated by previous studies [33, 38].259

We also conduct experiments to evaluate the generalization ability of GNN models on unsat-core260

variable prediction. Please see appendix C.4 for details.261

7

Table 3: Results on the datasets of the same distribution. Only unsatisfiable instances are evaluated.
Graph Method Easy Datasets Medium Datasets

SR 3-SAT CA PS k-Clique k-Domset k-Vercov SR 3-SAT CA PS k-Clique k-Domset k-Vercov

LCG*

NeuroSAT 90.76 94.43 83.69 86.20 99.93 95.80 94.47 90.07 99.65 85.73 88.53 99.97 97.90 99.10
GCN 89.17 94.35 82.89 85.32 99.93 95.74 94.43 88.11 99.65 85.71 87.70 99.96 97.89 99.10
GGNN 90.02 94.38 83.59 86.03 99.93 95.79 94.46 89.05 99.65 85.69 87.95 99.96 97.89 99.09
GIN 89.29 94.33 83.71 85.97 99.93 95.81 94.47 88.85 99.65 85.71 87.92 99.96 97.89 99.09

VCG*
GCN 88.57 94.34 83.17 85.27 99.93 95.79 94.46 88.17 99.65 85.70 87.37 99.96 97.90 99.09
GGNN 89.57 94.37 83.50 85.84 99.93 95.81 94.49 88.84 99.65 85.68 88.03 99.98 97.90 99.10
GIN 89.50 94.35 83.23 85.69 99.93 95.79 94.47 89.51 99.65 85.72 88.13 99.96 97.89 99.10

6 Advancing Evaluation on G4SATBench262

To gain deeper insights into how GNNs tackle the SAT problem, we conduct comprehensive com-263

parative analyses between GNN-based SAT solvers and the CDCL and LS heuristics in this section.264

Since these search heuristics aim to solve a SAT instance directly, our focus only lies on the tasks of265

(T1) satisfiability prediction and (T2) satisfying assignment prediction (with UNS2 as the training266

loss). We employ NeuroSAT (on LCG*) and GGNN (on VCG*) as our GNN models and experiment267

on the SR and 3-SAT datasets. Detailed experimental settings are included in Appendix D.268

6.1 Comparison with the CDCL Heuristic269

Evaluation on the clause-learning augmented instances. CDCL-based SAT solvers enhance270

backtracking search with conflict analysis and clause learning, enabling efficient exploration of the271

search space by iteratively adding “learned clauses” to avoid similar conflicts in future searches [36].272

To assess whether GNN-based SAT solvers can learn and benefit from the backtracking search (with273

CDCL) heuristic, we augment the original formulas in the datasets with learned clauses and evaluate274

GNN models on these clause-learning augmented instances.275

Table 4 shows the testing results on augmented SAT datasets. Notably, training on the augmented276

instances leads to significant improvements in both satisfiability prediction and satisfying assignment277

prediction. These improvements can be attributed to the presence of "learned clauses" that effectively278

modify the graph structure of the original formulas, thereby facilitating GNNs to solve them with279

relative ease. However, despite the augmented instances being easily solvable using the backtracking280

search within a few search steps, GNN models fail to effectively handle these instances when trained281

on the original instances. These findings suggest that GNNs may not explicitly learn the backtracking282

search heuristic when trained for satisfiability prediction or satisfying assignment prediction.283

Table 4: Results on augmented datasets. Values
inside/outside parentheses denote the results of
models trained on augmented/original instances.

Task Method Easy Datasets Medium Datasets

SR 3-SAT SR 3-SAT

T1 NeuroSAT 100.00 (96.78) 100.00 (96.06) 100.00 (84.57) 96.78 (84.85)
GGNN 100.00 (97.66) 100.00 (95.46) 100.00 (84.01) 96.29 (85.80)

T2 NeuroSAT 85.05 (83.28) 83.50 (81.04) 51.95 (45.51) 39.00 (16.52)
GGNN 85.35 (83.42) 81.56 (79.99) 44.18 (40.09) 34.67 (14.75)

Table 5: Results using contrastive pretraining.
Values in parentheses denote the difference be-
tween the results without pretraining.

Task Method Easy Datasets Medium Datasets

SR 3-SAT SR 3-SAT

T1 NeuroSAT 96.68 (+0.68) 96.23 (-0.10) 78.31 (+0.29) 85.02 (+0.12)
GGNN 96.46 (-0.29) 96.45 (+0.20) 76.34 (-0.78) 85.17 (+0.06)

T2 NeuroSAT 80.54 (+0.75) 79.71 (-0.88) 36.42 (-0.83) 41.23 (-0.38)
GGNN 80.66 (-0.34) 79.23 (-0.09) 33.44 (+0.07) 36.39 (+0.44)

Evaluation with contrastive pretraining. Observing that GNN models exhibit superior perfor-284

mance on clause-learning augmented SAT instances, there is potential to improve the performance of285

GNNs by learning a latent representation of the original formula similar to its augmented counterpart.286

Motivated by this, we also experiment with a contrastive learning approach (i.e., SimCLR [8]) to287

pretrain the representation of CNF formulas to be close to their augmented ones [11], trying to embed288

the CDCL heuristic in the latent space through representation learning.289

The results of contrastive pretraining are presented in Table 5. In contrast to the findings in [11],290

our results show limited performance improvement through contrastive pretraining, indicating that291

GNN models still encounter difficulties in effectively learning the CDCL heuristic in the latent space.292

This observation aligns with the conclusions drawn in [9], which highlight that static GNNs may fail293

8

to exactly replicate the same search operations due to the dynamic changes in the graph structure294

introduced by the clause learning technique.295

6.2 Comparison with the LS Heuristic296

Evaluation with random initialization. LS-based SAT solvers typically begin by randomly ini-297

tializing an assignment and then iteratively flip variables guided by specific heuristics until reaching298

a satisfying assignment. To compare the behaviors of GNNs with this solving procedure, we first299

conduct an evaluation of GNN models with randomized initial embeddings in both training and300

testing, emulating the initialization of LS SAT solvers.301

Table 6: Results using random initialization. Val-
ues in parentheses denote the difference between
the results with learned initialization.

Task Method Easy Datasets Medium Datasets

SR 3-SAT SR 3-SAT

T1 NeuroSAT 97.24 (+1.24) 96.44 (+0.11) 77.29 (-0.91) 84.85 (-0.05)
GGNN 96.78 (+0.03) 96.38 (+0.13) 76.97 (-0.15) 85.80 (+0.69)

T2 NeuroSAT 79.09 (-0.70) 80.79 (+0.20) 37.27 (+0.02) 40.75 (-0.86)
GGNN 80.10 (-0.90) 79.83 (+0.51) 32.85 (-0.52) 36.59 (+0.64)

The results presented in Table 6 demonstrate that302

using random initialization has a limited impact303

on the overall performances of GNN-based SAT304

solvers. This suggests that GNN models do not305

aim to learn a fixed latent representation for each306

formula in SAT solving. Instead, they have devel-307

oped a solving strategy that effectively exploits308

the inherent graph structure of each SAT instance.309

Evaluation on the predicted assignments. Under random initialization, we further analyze the310

solving strategies of GNNs by evaluating their predicted assignments decoded from the latent space.311

For the task of satisfiability prediction, we employ the 2-clustering decoding algorithm to extract312

the predicted assignments from the literal embeddings of NeuroSAT at each iteration of message313

passing. For satisfying assignment prediction, we evaluate both NeuroSAT and GGNN using multiple-314

prediction decoding. Our evaluation focuses on three key aspects: (a) the number of distinct predicted315

assignments, (b) the number of flipped variables between two consecutive iterations, and (c) the316

number of unsatisfiable clauses associated with the predicted assignments.317

0 20 40 60 80 100 120
Message passing iteration T

25

50

75

100

125

150

175

Nu
m

be
r o

f d
ist

in
ct

 a
ss

ig
nm

en
ts

NeuroSAT
GGNN
NeuroSAT*
easy SR dataset
easy 3-SAT dataset
medium SR dataset
medium 3-SAT dataset

(a) #Distinct predicted assignments.

0 20 40 60 80 100 120
Message passing iteration T

100

101

Nu
m

be
r o

f f
lip

pe
d

va
ria

bl
es

NeuroSAT
GGNN
NeuroSAT*
easy SR dataset
easy 3-SAT dataset
medium SR dataset
medium 3-SAT dataset

(b) #Flipped variables

0 20 40 60 80 100 120
Message passing iteration T

100

101

Nu
m

be
r o

f u
ns

at
isf

ia
bl

e
cla

us
es

NeuroSAT
GGNN
NeuroSAT*
easy SR dataset
easy 3-SAT dataset
medium SR dataset
medium 3-SAT dataset

(c) #Unsatisfible clauses.

Figure 5: Results on the predicted assignments with the increased message passing iteration T .
NeuroSAT* refers to the model trained for satisfiability prediction.

As shown in Figure 5, all three GNN models initially generate a wide array of assignment predictions318

by flipping a considerable number of variables, resulting in a notable reduction in the number of319

unsatisfiable clauses. However, as the iterations progress, the number of flipped variables diminishes320

substantially, and most GNN models eventually converge towards predicting a specific assignment321

or making minimal changes to their predictions when there are no or very few unsatisfiable clauses322

remaining. This trend is reminiscent of the greedy solving strategy adopted by the LS solver323

GSAT [32], where changes are made to minimize the number of unsatisfied clauses in the new324

assignment. However, unlike GSAT’s approach of flipping one variable at a time and incorporating325

random selection to break ties, GNN models simultaneously modify multiple variables and potentially326

converge to a particular unsatisfied assignment and find it challenging to deviate from such a prediction.327

It is also noteworthy that despite being trained for satisfiability prediction, NeuroSAT* demonstrates328

similar behavior to the GNN models trained for assignment prediction. This observation indicates that329

GNNs also learn to search for a satisfying assignment implicitly in the latent space while performing330

satisfiability prediction.331

9

7 Discussions332

Limitations and future work. While G4SATBench represents a significant step in evaluating333

GNNs for SAT solving, there are still some limitations and potential future directions to consider.334

Firstly, G4SATBench primarily focuses on evaluating standalone neural SAT solvers, excluding the335

exploration of neural-guided SAT solvers that integrate GNNs with search-based SAT solvers. It also336

should be emphasized that the instances included in G4SATBench are relatively small compared to337

most practical instances found in real-world applications, where GNN models alone are not sufficient338

for solving such large-scale instances. Future research could explore techniques to effectively leverage339

GNNs in combination with modern SAT solvers to scale up to real-world instances. Secondly,340

G4SATBench benchmarks general GNN models on the LCG* and VCG* graph representations341

for SAT solving, but does not consider sophisticated GNN models designed for specific graph342

constructions in certain domains, such as Circuit SAT problems. Investigating domain-specific GNN343

models tailored to the characteristics of specific problems could lead to improved performance in344

specialized instances. Lastly, all existing GNN-based SAT solvers in the literature are static GNNs,345

which have limited learning ability to capture the CDCL heuristic. Exploring dynamic GNN models346

that can effectively learn the CDCL heuristic is also a potential direction for future research.347

Conclusion. In this work, we present G4SATBench, a groundbreaking benchmark study that348

comprehensively evaluates GNN models in SAT solving. G4SATBench offers curated synthetic349

SAT datasets sourced from various domains and difficulty levels and benchmarks a wide range of350

GNN-based SAT solvers under diverse settings. Our empirical analysis yields valuable insights into351

the performances of GNN-based SAT solvers and further provides a deeper understanding of their352

capabilities and limitations. We hope the proposed G4SATBench will serve as a solid foundation for353

GNN-based SAT solving and inspire future research in this exciting field.354

References355

[1] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve Circuit-SAT: An356

unsupervised differentiable approach. In International Conference on Learning Representations357

(ICLR), 2019.358

[2] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. PDP: A general neural framework359

for learning constraint satisfaction solvers. arXiv preprint arXiv:1903.01969, 2019.360

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint361

arXiv:1607.06450, 2016.362

[4] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of Satisfiability, volume 185.363

IOS press, 2009.364

[5] Béla Bollobás and Paul Erdös. Cliques in random graphs. In Mathematical Proceedings of the365

Cambridge Philosophical Society, 1976.366

[6] Benedikt Bünz and Matthew Lamm. Graph neural networks and boolean satisfiability. arXiv367

preprint arXiv:1702.03592, 2017.368

[7] Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting propositional369

satisfiability via end-to-end learning. In AAAI Conference on Artificial Intelligence (AAAI),370

2020.371

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework372

for contrastive learning of visual representations. In International Conference on Machine373

Learning (ICML), 2020.374

[9] Ziliang Chen and Zhanfu Yang. Graph neural reasoning may fail in certifying boolean unsatisfi-375

ability. arXiv preprint arXiv:1909.11588, 2019.376

10

[10] James M. Crawford and Larry D. Auton. Experimental results on the crossover point in random377

3-SAT. Artificial Intelligence, 1996.378

[11] Haonan Duan, Pashootan Vaezipoor, Max B. Paulus, Yangjun Ruan, and Chris J. Maddison.379

Augment with care: Contrastive learning for combinatorial problems. In International Confer-380

ence on Machine Learning (ICML), 2022.381

[12] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.382

arXiv preprint arXiv:1903.02428, 2019.383

[13] ABKFM Fleury and Maximilian Heisinger. Cadical, kissat, paracooba, plingeling and treen-384

geling entering the sat competition 2020. SAT COMPETITION, 2020.385

[14] Jesús Giráldez-Cru and Jordi Levy. A modularity-based random SAT instances generator. In386

International Joint Conference on Artificial Intelligence (IJCAI), 2015.387

[15] Jesús Giráldez-Cru and Jordi Levy. Locality in random SAT instances. In International Joint388

Conference on Artificial Intelligence (IJCAI), 2017.389

[16] Wenxuan Guo, Junchi Yan, Hui-Ling Zhen, Xijun Li, Mingxuan Yuan, and Yaohui Jin. Machine390

learning methods in solving the boolean satisfiability problem. arXiv preprint arXiv:2203.04755,391

2022.392

[17] Jesse Michael Han. Enhancing SAT solvers with glue variable predictions. arXiv preprint393

arXiv:2007.02559, 2020.394

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-395

passing human-level performance on imagenet classification. In IEEE International Conference396

on Computer Vision (ICCV), 2015.397

[19] Sean B Holden et al. Machine learning for automated theorem proving: Learning to solve SAT398

and QSAT. Foundations and Trends® in Machine Learning, 14(6):807–989, 2021.399

[20] Holger H Hoos and Thomas Stützle. SATLIB: An online resource for research on SAT.400

Workshop on Satisfiability (SAT), 2000.401

[21] Sebastian Jaszczur, Michał Łuszczyk, and Henryk Michalewski. Neural heuristics for SAT402

solving. arXiv preprint arXiv:2005.13406, 2020.403

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-404

tional Conference on Learning Representations (ICLR), 2015.405

[23] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional406

networks. In International Conference on Learning Representations (ICLR), 2017.407

[24] Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can q-learning with graph408

networks learn a generalizable branching heuristic for a SAT solver? In Advances in Neural409

Information Processing Systems (NeurIPS), 2020.410

[25] Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals. Cnfgen: A generator of411

crafted benchmarks. In Theory and Applications of Satisfiability Testing (SAT), 2017.412

[26] Min Li, Zhengyuan Shi, Qiuxia Lai, Sadaf Khan, and Qiang Xu. Deepsat: An eda-driven413

learning framework for SAT. arXiv preprint arXiv:2205.13745, 2022.414

[27] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence415

neural networks. In International Conference on Learning Representations (ICLR), 2016.416

[28] Zhaoyu Li and Xujie Si. NSNet: A general neural probabilistic framework for satisfiability417

problems. In Advances in Neural Information Processing Systems (NeurIPS), 2022.418

11

[29] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann419

machines. In International Conference on Machine Learning (ICML), 2010.420

[30] Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs421

Kozlovics. Goal-aware neural SAT solver. In International Joint Conference on Neural Networks422

(IJCNN), 2022.423

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,424

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas425

Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,426

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,427

high-performance deep learning library. In Advances in Neural Information Processing Systems428

(NeurIPS), 2019.429

[32] Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving hard430

satisfiability problems. In National Conference on Artificial Intelligence (AAAI), 1992.431

[33] Daniel Selsam and Nikolaj S. Bjørner. Guiding high-performance SAT solvers with unsat-core432

predictions. In Theory and Applications of Satisfiability Testing (SAT), 2019.433

[34] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.434

Dill. Learning a SAT solver from single-bit supervision. In International Conference on435

Learning Representations (ICLR), 2019.436

[35] Zhengyuan Shi, Min Li, Sadaf Khan, Hui-Ling Zhen, Mingxuan Yuan, and Qiang Xu. Satformer:437

Transformers for SAT solving. arXiv preprint arXiv:2209.00953, 2022.438

[36] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional439

satisfiability. IEEE Transactions on Computers, 1999.440

[37] Volodymyr Skladanivskyy. Minimalistic round-reduced sha-1 pre-image attack. SAT RACE,441

2019.442

[38] Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Mi-443

ikkulainen. Neurocomb: Improving SAT solving with graph neural networks. arXiv preprint444

arXiv:2110.14053, 2021.445

[39] Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. Drat-trim: Efficient checking and446

trimming using expressive clausal proofs. In Theory and Applications of Satisfiability Testing447

(SAT), 2014.448

[40] Ben Wieland and Anant P. Godbole. On the domination number of a random graph. The449

Electronic Journal of Combinatorics, 2001.450

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural451

networks? In International Conference on Learning Representations (ICLR), 2019.452

[42] Zhiyuan Yan, Min Li, Zhengyuan Shi, Wenjie Zhang, Yingcong Chen, and Hongce Zhang.453

Addressing variable dependency in gnn-based SAT solving. arXiv preprint arXiv:2304.08738,454

2023.455

[43] Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. In456

Advances in Neural Information Processing Systems (NeurIPS), 2019.457

[44] Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang.458

Nlocalsat: Boosting local search with solution prediction. In International Joint Conference on459

Artificial Intelligence (IJCAI), 2020.460

12

Checklist461

1. For all authors...462

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s463

contributions and scope? [Yes]464

(b) Did you describe the limitations of your work? [Yes] See Section 7.465

(c) Did you discuss any potential negative societal impacts of your work? [N/A]466

(d) Have you read the ethics review guidelines and ensured that your paper conforms to467

them? [Yes]468

2. If you are including theoretical results...469

(a) Did you state the full set of assumptions of all theoretical results? [N/A]470

(b) Did you include complete proofs of all theoretical results? [N/A]471

3. If you ran experiments (e.g. for benchmarks)...472

(a) Did you include the code, data, and instructions needed to reproduce the main experi-473

mental results (either in the supplemental material or as a URL)? [Yes] See Section 1.474

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they475

were chosen)? [Yes] See Section 5, Appendix C.1, and Appendix D.476

(c) Did you report error bars (e.g., with respect to the random seed after running experi-477

ments multiple times)? [N/A]478

(d) Did you include the total amount of compute and the type of resources used (e.g., type479

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.480

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...481

(a) If your work uses existing assets, did you cite the creators? [Yes]482

(b) Did you mention the license of the assets? [N/A]483

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]484

(d) Did you discuss whether and how consent was obtained from people whose data you’re485

using/curating? [N/A]486

(e) Did you discuss whether the data you are using/curating contains personally identifiable487

information or offensive content? [N/A]488

5. If you used crowdsourcing or conducted research with human subjects...489

(a) Did you include the full text of instructions given to participants and screenshots, if490

applicable? [N/A]491

(b) Did you describe any potential participant risks, with links to Institutional Review492

Board (IRB) approvals, if applicable? [N/A]493

(c) Did you include the estimated hourly wage paid to participants and the total amount494

spent on participant compensation? [N/A]495

13

	Introduction
	Related Work
	Preliminaries
	G4SATBench: A Comprehensive Benchmark on GNNs for SAT Solving
	Datasets
	GNN Baselines
	Supported Tasks, Training and Testing Settings

	Benchmarking Evaluation on G4SATBench
	Satisfiability Prediction
	Satisfying Assignment Prediction
	Unsat-core Variable Prediction

	Advancing Evaluation on G4SATBench
	Comparison with the CDCL Heuristic
	Comparison with the LS Heuristic

	Discussions

