
On PI Controllers for Updating
Lagrange Multipliers in Constrained Optimization

Motahareh Sohrabi * † Juan Ramirez * † Tianyue H. Zhang † Simon Lacoste-Julien † ‡ Jose Gallego-Posada †

Abstract
Constrained optimization offers a powerful frame-
work to prescribe desired behaviors in neural net-
work models. Typically, constrained problems
are solved via their min-max Lagrangian formula-
tions, which exhibit unstable oscillatory dynam-
ics when optimized using gradient descent-ascent.
The adoption of constrained optimization tech-
niques in the machine learning community is cur-
rently limited by the lack of reliable, general-
purpose update schemes for the Lagrange mul-
tipliers. This paper proposes the νPI algorithm
and contributes an optimization perspective on La-
grange multiplier updates based on PI controllers,
extending the work of Stooke et al. (2020). We
provide theoretical and empirical insights explain-
ing the inability of momentum methods to address
the shortcomings of gradient descent-ascent, and
contrast this with the empirical success of our pro-
posed νPI controller. Moreover, we prove that
νPI generalizes popular momentum methods for
single-objective minimization. Our experiments
demonstrate that νPI reliably stabilizes the mul-
tiplier dynamics and its hyperparameters enjoy
robust and predictable behavior.

1. Introduction
The need to enforce complex behaviors in neural network
models has reinvigorated the interest of the machine learning
community in constrained optimization techniques. Recent
applications include fairness (Cotter et al., 2019; Zafar et al.,
2019; Fioretto et al., 2020; Hashemizadeh et al., 2024), spar-
sity (Gallego-Posada et al., 2022), active learning (Elenter
et al., 2022), reinforcement learning (Stooke et al., 2020;
Farahmand & Ghavamzadeh, 2021) and model quantization
(Hounie et al., 2023).

* Equal contribution. † Mila—Quebec AI Institute and DIRO,
Université de Montréal. ‡ Canada CIFAR AI Chair. Correspon-
dence to: Juan Ramirez <juan.ramirez@mila.quebec>.

Workshop on Foundations of Reinforcement Learning and Con-
trol at the 41 st International Conference on Machine Learning,
Vienna, Austria. Copyright 2024 by the author(s).

0 2000
Steps

10 10

10 5

100

||λt − λ ∗ ||2

0 2000
Steps

0.5

0.0

0.5

1.0
Violation for constraint 64

0 2000
Steps

0.00

0.25

0.50

0.75

Multiplier for constraint 64

GA α= 7.0e− 3

GA + Dual Restarts α= 1.6e− 3

Adam α= 3.8e− 4

Polyak β= − 0.3, α= 7.0e− 3

 νPI p = 70, i=1.1

Figure 1: Dynamics for different dual optimizers on a hard-
margin SVM problem (Eq. (12)). Amongst the tested meth-
ods, νPI is the only method to successfully converge to
the optimal dual variables. Each optimizer uses the best hy-
perparameters found after a grid-search aiming to minimize the
distance to the optimal λ∗ after 5.000 steps. For improved readabil-
ity, the plot shows the first 3.000 steps. Constraint 64 corresponds
to a support vector. All methods achieved perfect training accuracy.

Algorithmic approaches based on the Lagrangian min-max
representation of the original constrained optimization prob-
lem (Boyd & Vandenberghe, 2004, §5) are commonly pre-
ferred in the context of neural networks since (i) they are
amenable to inexact, gradient-based optimization (Bert-
sekas, 2016, §5.2), (ii) making it easy to incorporate con-
straints into existing pipelines for unconstrained optimiza-
tion (Cotter et al., 2019; Gallego-Posada & Ramirez, 2022),
and (iii) they do not require special structure in the objec-
tive or constraint functions (such as convexity or efficient
projection onto the feasible set (Nocedal & Wright, 2006)).

Despite their wider applicability, solving Lagrangian prob-
lems involving neural networks is challenging as it simulta-
neously entails the difficulties of nonconvex optimization on
large-scale models (Bottou et al., 2018), and the potential for
instability and oscillations due to the adversarial min-max
nature of the Lagrangian (Stooke et al., 2020).

1

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Lagrangian problems are commonly optimized using some
variant of gradient-descent ascent (GDA) (Arrow et al.,
1958). Despite local convergence results in idealized set-
tings (Lin et al., 2020; Zhang et al., 2022), the optimiza-
tion dynamics of GDA typically exhibit instabilities, over-
shoot or oscillations (Platt & Barr, 1987; Gidel et al., 2019a;
Stooke et al., 2020; Gallego-Posada et al., 2022).

Alleviating the shortcomings of GDA on Lagrangian prob-
lems is an important step towards widespread adoption con-
strained optimization in deep learning. Recently, Stooke
et al. (2020) proposed a solution based on a PID controller
(Åström & Hägglund, 1995) for updating the Lagrange mul-
tipliers in safety-constrained reinforcement learning prob-
lems. Our manuscript expands on their work by providing
an optimization-oriented analysis of νPI (Algo. 1), a re-
lated PI controller that incorporates an exponential moving
average on the error signal.

Fig. 1 illustrates how our proposed νPI controller success-
fully dampens the oscillations on a hard-margin SVM task,
achieving fast convergence to the optimal Lagrange mul-
tipliers. In contrast, a wide range of popular methods for
single-objective minimization exhibit unstable, oscillatory
dynamics and fail to converge in this task. See §5.1 for
further details on this experiement.

Contributions: 1⃝We introduce the νPI algorithm (§4) and
prove that νPI generalizes popular momentum methods like
POLYAK and NESTEROV (Thm. 1), as well as traditional PI
controllers. 2⃝We provide conceptual insights explaining
how νPI improves the dynamics of the Lagrange multipliers:
§4.3 presents a qualitative analysis of the updates executed
by the νPI algorithm in contrast to gradient ascent; in §4.4
we study the spectral properties of the continuous-time sys-
tem. 3⃝ In §4.5, we provide a heuristic to tune the new hy-
perparameter κp of the νPI algorithm; we also demonstrate
that it has a monotonic effect in the damping of oscillations.
4⃝ Our experiments on hard-margin SVMs, sparsity tasks

using ResNets, and algorithmic fairness demonstrate that
νPI leads to improved stability and convergence.

Code: github.com/motahareh-sohrabi/nuPI

Scope: Due to the highly specialized techniques used for
training neural networks (Dahl et al., 2023), in this work
we concentrate on iterative schemes that do not modify the
optimization protocol used on the model parameters. In
other words, we restrict our attention to update schemes on
the Lagrange multipliers only, which allows us to reuse the
same optimizer choices for the (primal) model parameters
as used in the unconstrained setting.

2. Related Works
Constrained optimization. We are interested in Lagrangian
methods (Arrow et al., 1958) that allow tackling general

(nonconvex) constrained optimization problems with dif-
ferentiable objective and constraints. Classical constrained
optimization (Nocedal & Wright, 2006; Bertsekas, 2016)
techniques include projection methods (Bertsekas, 1976),
barrier methods (Dikin, 1967), and methods of feasible di-
rections (Frank & Wolfe, 1956; Zoutendijk, 1960). These
approaches usually make assumptions on the structure of the
problem, such as convexity of the objective or constraints,
the existence of an efficient projection operator onto the
feasible set, or access to a linear minimization oracle. Such
assumptions restrict their applicability to deep learning tasks.
Other popular techniques such as penalty methods (Nocedal
& Wright, 2006) and the method of multipliers (Bertsekas,
1975), apply to general nonconvex problems, but are outside
the scope of this work.

Min-max optimization. The Lagrangian formulation of
a nonconvex constrained optimization problem leads to a
nonconvex concave min-max problem. Under idealized as-
sumptions, gradient descent-ascent has local convergence
guarantees for said problems (Lin et al., 2020), but may
exhibit oscillations (Platt & Barr, 1987; Gidel et al., 2019b).
Under stronger assumptions, extragradient (Korpelevich,
1976) and the optimistic gradient method (Popov, 1980)
converge at a nearly optimal rate (Mokhtari et al., 2020a).
These methods, as well as POLYAK with negative momen-
tum (Gidel et al., 2019a) and PID controllers (Stooke et al.,
2020), have been shown to dampen the oscillations of
GDA. However, negative momentum may be suboptimal
for strongly convex-strongly concave min-max problems
(Zhang & Wang, 2021).

Our work focuses on the dynamics of Lagrangian games.
We provide insights on why popular techniques for mini-
mization may exacerbate oscillations and overshoot, and
why PI controllers can be effective at damping oscillations.
Our proposed method νPI is a generalization of both (nega-
tive) momentum and the optimistic gradient method.

PID controllers and optimization. An et al. (2018) stud-
ied PID control for training machine learning models by
considering the negative loss gradient as the error signal to
the controller. PID controllers have been shown to general-
ize gradient descent (Hu & Lessard, 2017) and momentum
(Recht, 2018). Stooke et al. (2020); Casti et al. (2023) have
highlighted the effectiveness of controllers at optimizing
constrained optimization tasks.

In this work, we propose a PI-like update rule for the dual
variables in a Lagrangian min-max game. We prove our
algorithm generalizes momentum methods and we provide
conceptual insights to support the empirical effectiveness
of PI controllers in reducing oscillations and overshoot in
the constrained optimization dynamics. In Appx. A, we
elaborate on the distinctions between our work and existing
research on PID controllers for optimization.

2

https://github.com/motahareh-sohrabi/nuPI

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

3. Lagrangian Optimization
Consider a constrained optimization problem with m in-
equality and n equality constraints, represented by functions
g : X → Rm and h : X → Rn, respectively:

min
x
f(x) subject to g(x) ≤ 0 and h(x) = 0. (1)

We do not make any assumptions on the functions f , g,
and h beyond almost-everywhere differentiability. We refer
to the values of g and h as the constraint violations. In
particular, we are interested in optimization problems where
x corresponds to the parameters of a neural network, leading
to objective and constraint functions that may be nonconvex.
This typically precludes the use of “classical” constrained
optimization methods, as those discussed in §2.

The Lagrangian min-max problem associated with the con-
strained optimization problem in Eq. (1) is given by:

min
x

max
λ≥0,µ

L(x,λ,µ) ≜ f(x) + λ⊤g(x) + µ⊤h(x), (2)

where λ and µ are vectors of Lagrange multipliers asso-
ciated with the inequality and equality constraints, respec-
tively. Eq. (2) constitutes a nonconvex-concave zero-sum
game between x (known as the primal player) and {λ,µ}
(known as the dual player). We are interested in algorithmic
approaches that identify saddle points of the Lagrangian
L(x,λ,µ) as these correspond to constrained optima.

In general, Lagrangian-based approaches do not constitute
feasible methods (i.e. visiting only feasible iterates). We
judge a method’s success based on its asymptotic feasibility,
or at the end of a pre-determined optimization budget.

Simultaneous updates. The simplest algorithm to solve the
problem in Eq. (2) is simultaneous gradient descent-ascent
(GDA) (Arrow et al., 1958):

µt+1 ← µt + ηdual∇µL(xt,λt,µt) = µt + ηdual h(xt){
λ̂t+1 ← λt + ηdual∇λL(xt,λt,µt) = λt + ηdual g(xt)

λt+1 ← ΠRm
+
(λ̂t+1) = max

(
0, λ̂t+1

)
xt+1 ← xt − ηprimal∇xL(xt,λt,µt),

where the middle two equations execute a projected gradient-
ascent step enforcing the non-negativity of the multipliers λ.

To simplify notation, we will group the dual variables as
θ = [λ,µ]

⊤ and the constraints c(x) = [g(x),h(x)]
⊤

which yields the concise Lagrangian problem:

min
x

max
θ∈Rm

+ ×Rn
L(x,θ) ≜ f(x) + θ⊤c(x) (3)

Note that the primal update direction∇xL is a linear com-
bination of the objective and constraint gradients—which
can be efficiently computed using automatic differentiation,

without storing∇f and J c1 separately. On the other hand,
∇θL = c(x), and thus the GDA update on the multipliers
corresponds to the integration (i.e. accumulation) of the
constraint violations over time. We highlight that the cost
of updating the Lagrange multipliers is typically negligible
relative to the cost of computing f and c.

Alternating updates. Prior work has demonstrated the
advantages of alternating updates in min-max optimiza-
tion: Zhang et al. (2022) established that alternating GDA
achieves a near-optimal local convergence rate for strongly
concave-strongly convex problems (strictly better than si-
multaneous GDA); Gidel et al. (2019b) showed that alter-
nating GDA leads to bounded iterates on smooth bilinear
games, as opposed to divergence for simultaneous updates.
Besides the improved convergence and stability benefits,
alternating updates are particularly suitable for Lagrangian
games from a computational standpoint due to the linear
structure of the Lagrangian with respect to the dual variables.
Concretely, consider the alternating update scheme:{
θ̂t+1 ← θt + ηdual∇θL(xt,θt) = θt + ηdual c(xt)

θt+1 ← ΠRm
+ ×Rn(θ̂t+1)

xt+1 ← xt − ηprimal∇xL(xt,θt+1)

= xt − ηprimal (∇f(xt) + J c(xt)θt)

(4)

The alternating updates in Eq. (4), only require computing
f(xt) and c(xt) once, just as when performing simultane-
ous updates. In a general zero-sum game, where L(xt,θt)
does not decouple as in the Lagrangian case, the second part
of the alternation might require re-evaluating L(xt,θt+1)
entirely. However, note that thanks to the affine structure
of L with respect to θ, the update on x can be calculated
efficiently without having to re-evaluate f or c.

These theoretical and practical advantages motivate our de-
cision to concentrate on alternating update schemes like
Eq. (4) for solving the problem in Eq. (3) in what follows.

Practical remarks. In practice, updates on the primal vari-
ables require more sophisticated methods (with intricate hy-
perparameter tuning) than the plain gradient descent update
presented in Eq. (4) to achieve good performance, including
any number of highly specialized procedures developed for
training neural networks (Dahl et al., 2023).

Moreover, for certain applications, a training pipeline de-
signed to minimize a single, unconstrained objective might
be in place. In these cases, it is desirable to develop up-
date schemes for the Lagrange multipliers that allow for
seamlessly incorporating constraints into the model devel-
opment pipeline without having to engineer from scratch a
new recipe for training the model.

1J f ≜
[
∇f1 · · · ∇fp

]
∈ Rd×p denotes the (transpose)

Jacobian matrix of a function f : Rd → Rp.

3

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

In this paper, we concentrate on different update schemes
for the Lagrange multipliers and assume that a well-tuned
optimizer for the model parameters is available.

Shortcomings of gradient ascent. As mentioned previ-
ously, gradient ascent (GA) on the Lagrange multipliers
corresponds to accumulating the observed constraint viola-
tions over time. For simplicity, let us concentrate on a single
inequality constraint c(x). Whenever the constraint is being
violated (resp. satisfied), the violation is positive c(x) > 0
(resp. negative) and thus the value of the corresponding mul-
tiplier is increased (resp. decreased) by ηdualc(x). Recall
that the projection step ensures that the inequality multipli-
ers remain non-negative.

Therefore, the value of the multiplier depends on the entire
optimization trajectory through the value of the observed
violations. In particular, after a long period of infeasibility,
the value of the multiplier will be large, biasing the gradient
∇xL towards reducing the violation and thus improving the
feasibility of the model.

An insufficient increase of the multiplier will cause the
constraint to be ignored, while an excessively large value of
the multiplier will lead the constraint to be enforced beyond
the prescribed constraint level. The latter behavior can also
occur if the multiplier fails to decrease sufficiently fast once
the constraint is satisfied. Repeated cycles of insufficient or
excessive change in the multiplier manifest in ignoring or
overshooting, thus forming oscillations. See Figs. 1 and 2
for illustrations of these behaviors.

0 100 200
Epoch

0

50

V
io

la
tio

n

0 100 200
Epoch

0.0

2.5

5.0

M
ul

tip
lie

r

GA GA + Dual Rest. Polyak β= 0.3 νPI p = 16.0

Figure 2: Constraint dynamics for GA, POLYAK and νPI
in a sparsity task (§5.3). Constrained optimal solutions
for this problem lie at the boundary of the feasible set. The
excessive growth in the value of the multiplier for GA causes
the constraint to overshoot into the interior of the feasible set.
The improved multiplier updates of the νPI algorithm
remove the overshoot in the constraint and multiplier.

In short, an ideal update rule for the multiplier would behave
adaptively, based on the observed violations throughout
the execution of the optimization. This begs the question
of whether existing adaptive optimization such as POLYAK,
NESTEROV and ADAM would reliably resolve these issues.
Sections 4 and 5 provide a negative answer to this question.

Dual restarts. Gallego-Posada et al. (2022) proposed an

approach to mitigate the overshoot in inequality constraints
called dual restarts: once a constraint is strictly satisfied, its
associated dual variable is reset to zero. This corresponds to
a best response (in game-theoretic terms) of the dual player.
Dual restarts prevent excessive enforcement of constraints,
which can degrade the achieved objective function value.

However, dual restarts are not suitable for general con-
strained optimization problems since they rely on deter-
mining the satisfaction of the constraint exactly. Constraint
estimates may (wrongly) indicate strict feasibility due to
(i) stochasticity in their estimation, (ii) numerical precision
errors making active constraints appear strictly feasible, or
(iii) a “temporary” strict satisfaction of the constraint. Fig. 1
illustrates the undesirable dynamics caused by dual restarts
when applied to an SVM task in which the support vectors
correspond to strictly active inequality constraints.

In §4, we show that νPI mitigates the overshoot of inequal-
ity constraints, with additional benefits: (i) controllable de-
gree of overshoot (governed by the κp hyperparameter), (ii)
compatibility with equality (and strictly feasible inequality)
constraints, and (iii) damping of multiplier oscillations.

4. νPI Control for Constrained Optimization
Following Stooke et al. (2020), we consider the learning of
an optimal feasible model solving Eq. (1) as a dynamical
system. Thus, we can think of the update rule for the mul-
tipliers as a control algorithm that aims to steer the system
toward feasibility. We emphasize that we are not trying to
control general dynamical systems, but rather systems that
arise from partial, inexact minimization (e.g. gradient-based
updates) on a min-max Lagrangian game. In other words,
we assume that xt−1 7→ xt is updated so as to minimize the
current Lagrangian L(· ,θt). Figure 3 illustrates the control
pipeline we consider throughout this work.

Lagrangian dynamics
approx. argmin

x
L(x,λt,µt) ≜

f(x) + λ⊤
t g(x) + µ⊤

t h(x)

Constraint
measurement

Inequality Controller
λ̂t+1 = νPI (λt, g(xt),λ0)

Equality Controller
µt+1 = νPI (µt, h(xt),µ0)

Projection
≥ 0

xt

λ̂t+1λt+1

µt+1

h(xt)

+

g(xt)

+

Error
h(xt)− 0

Target
level:0

−

Error
g(xt)− 0

Target
level:0
−

Figure 3: νPI control pipeline for updating the Lagrange
multipliers in a constrained optimization problem. We con-
sider the update on the primal variables as a black-box procedure
that receives the multipliers λt and primal variables xt−1 as input,
and returns an updated xt. The multiplier update is executed by
the controller, using the constraint violations as the error signal.

4

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

An assumption entailed by the control perspective in Fig. 3
is that an increase (resp. decrease) in the control variable
(the Lagrange multipliers θt) leads to a decrease (resp. in-
crease) in the controlled quantity (the constraint violations
c(xt)). This assumption holds for constrained optimization
problems since an increase in the multipliers leads the pri-
mal minimization of the Lagrangian to focus on reducing the
value of the constraints (as mentioned during the discussion
of gradient descent-ascent dynamics in §3).

Note that our black-box assumption on the nature of the
primal update allows for an arbitrary choice of optimizer
for minimizing L(· ,θt). After obtaining an updated primal
iterate xt, the new constraint violations g(xt) and h(xt)
are measured and used as the error signals for the inequality-
and equality-constraint controllers, yielding updated multi-
pliers θt+1. The projection block ensures the non-negativity
of the multipliers for inequality constraints.

4.1. νPI algorithm

Our main algorithmic contribution is the multiplier update
scheme presented in Algo. 1. This is a simple generalization
of a PI controller (i.e. a PID controller (Åström & Hägglund,
1995) with κd = 0) by including an exponential moving
average (of the error signal) in the proportional term. Indeed,
the traditional PI controller is recovered when ν = 0.

Algorithm 1 νPI update

Args: EMA coefficient ν, proportional (κp) and integral
(κi) gains; initial conditions ξ0 and θ0.
1: Measure current system error et
2: ξt ← νξt−1 + (1− ν)et ▷ for t ≥ 1

3: θt+1 ← θ0 + κpξt + κi
∑t
τ=0 eτ

The νPI update can be equivalently expressed in terms of a
recursive update (see Lemma 2 in Appx. B) as:

θ1 = θ0 + κie0 + κpξ0 (5)
θt+1 = θt + κiet + κp (ξt − ξt−1) for t ≥ 1. (6)

4.2. Connections to optimization methods

When the error signal corresponds to the negative gradi-
ent of a cost function et = −∇ft, Algo. 1 has straight-
forward equivalences with common minimization methods
(see Appx. B). For example, νPI (ν = 0, κp = 0, κi) is
equivalent to GD (α = κi) (Stooke et al., 2020; Lessard
et al., 2016; An et al., 2018). When ν = 0 and κp = κi = α,
νPI recovers a single-player version of the OPTIMISTICGRA-
DIENT (OG) method (Popov, 1980), with step-size α. When
ν = 0, but κp and κi are allowed to differ, νPI coincides
with the generalized OG studied by Mokhtari et al. (2020b).
Since we use νPI for updating the multipliers, we phrase
the updates in Algo. 1 based on a maximization convention.

Moreover, our proposed algorithm νPI generalizes pop-
ular momentum methods such as POLYAK—also known
as HEAVYBALL—(Polyak, 1964) and NESTEROV (Nesterov,
1983).2 This connection, stated formally in Thm. 1, will
allow us to understand (§4.3) why traditional momentum
methods are insufficient to address the shortcomings of gra-
dient ascent for Lagrangian optimization.

We take advantage of the UNIFIEDMOMENTUM (α, β, γ)
framework introduced by Shen et al. (2018) to concisely de-
velop a joint analysis of POLYAK(α, β) = UM(α, β, γ = 0)
and NESTEROV(α, β) = UM(α, β, γ = 1).

Algorithm 2 UNIFIEDMOMENTUM update (Shen et al., 2018)

Args: step-size α, momentum coefficient β, interpolation
factor γ ∈

[
0, 1

1−β

]
; initial conditions ϕ0 = 0 and θ0.

1: Measure current system error et
2: ϕt+1 ← βϕt + αet
3: θt+1 ← θt + ϕt+1 + βγ (ϕt+1 − ϕt)

Theorem 1. [Proof in Appx. B.] Under the same initializa-
tion θ0, UNIFIEDMOMENTUM(α, β ̸= 1, γ) is a special case
of the νPI algorithm with the hyperparameter choices:

ν ← β ξ0 ← (1− β)e0 (7)

κi ←
α

1− β
κp ← −

αβ

(1− β)2
[1− γ(1− β)] . (8)

Table 2 in Appx. B summarizes the connections we have es-
tablished between νPI and existing methods. We emphasize
that the exponential moving average in νPI is a crucial com-
ponent to obtain the generalization of momentum methods.

2 0
p

0.5

1.0

1.5

2.0

2.5

i

0.5

0.0

0.5

 ν

p0.6 0.4 0.20.0 0.2
ν= β 1.0

0.5
0.0

0.5

i

0.0

0.5

1.0

ν= 0

Polyak(α, β)

Figure 4: Left: Hyperparameter choices from Thm. 1 for
which νPI (ν, κp, κi) realizes POLYAK(α = 1

2 , β) and NES-
TEROV(α = 1

2 , β). Right: The right plot zooms on the range
−1 ≤ β ≤ 0.25. POLYAK comprises a limited surface in
the (ν, κp, κi) space, leaving configurations outside this
surface unexplored. Note how positive (resp. negative)
values of β result in negative (resp. positive) values of κp,
colored in red (resp. blue). Colored paths correspond to differ-
ent values of α. The dashed curves match between both plots.

Fig. 4 visually emphasizes the greater generality of νPI com-
pared to POLYAK and NESTEROV, presented in Thm. 1. Note

2We consider a variant of the Nesterov method that uses a
constant momentum coefficient.

5

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

that the κp coefficient changes between POLYAK and NES-
TEROV, while the κi coefficient coincides. Formally,

κPOLYAK
p = − αβ

(1− β)2
, κNESTEROV

p = − αβ2

(1− β)2
≤ 0. (9)

Moreover, κNESTEROV
p is non-positive, regardless of β. In con-

trast, a negative momentum value β < 0 induces a positive
κPOLYAK
p . This observation is in line with the benefits of using

a negative POLYAK momentum coefficient (for both players)
in adversarial games presented by Gidel et al. (2019a).

4.3. Interpreting the updates of νPI

Consider the execution of νPI (ν, κp, κi) and GA(α = κi)
at time t.3 The relative size between these updates is:

∆νPI

∆GA
≜
θνPI
t+1 − θt
θGA
t+1 − θt

=
1

1− ψ

[
1− ψξt−1

et

]
, (10)

where ψ ≜ κp(1−ν)
κi+κp(1−ν) . Fig. 5 illustrates the behavior of the

relative size of updates of νPI compared to GA. The left plot
displays νPI with κp > 0 and ν = 0. The right plot shows
the νPI-equivalent of POLYAK with positive momentum.4.

Consider the colored regions present in the left plot of Fig. 5:

Mode A When ξt−1 < et, the current violation is greater
than the historical violation average (right region). νPI
algorithm increases the multiplier faster than GA. When
et < 0 (left region), the primal iterate is feasible and the
νPI algorithm agrees with GA in decreasing the multiplier,
but does so much faster (with a factor above 1

1−ψ).

Mode B When et ∈ [ψξt−1, ξt−1], the constraint violation
has improved compared to the historical average but is still
infeasible. In this case, νPI increases the multiplier more
slowly than GA, consistent with the perceived improvement
in the violation.

Mode C When et ∈ [0, κξt−1], the primal iterate is still
infeasible. However, the νPI algorithm determines that
the constraint improvement is large enough to warrant a
decrease in the multiplier. Note that in this case, GA would
have continued increasing the multiplier.

In all of these cases, the νPI optimizer can be seen as exe-
cuting proactively by considering how the current constraint
violation compares to the historical estimates. This proac-
tive behavior allows the method to increase the multiplier
faster than GA when the constraint satisfaction is degrading,
and reduce the multiplier faster than GA whenever sufficient
improvement has been made.

3It is sufficient to consider a single scalar multiplier since the
updates of both algorithms decouple across constraints/multipliers.

4The case of POLYAK with negative momentum resembles the
left plot of Fig. 5 See Appx. C for further details.

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

νPI(κi, κp > 0, ν = 0) νPI(κi, κp < 0, ν)=POLYAK(α, β > 0)

Figure 5: Comparing the update of νPI relative to GA. νPI
increases the multipliers faster than GA when the con-
straint violation is large, enhancing convergence speed;
and proactively decreases them near the feasible set, pre-
venting overshoot. The blue, yellow, and red regions correspond
to cases in which the updates performed by the νPI algorithm are
faster, slower, or in the opposite direction than those of GA, re-
spectively. This plot illustrates the case ξt−1 > 0.

In stark contrast, Fig. 5 (right) shows a setting in which
κi and κp have been chosen according to Thm. 1 for β =
ν = 0.3, i.e. using positive Polyak momentum. In this
case, the algorithm would produce stronger increases of the
multiplier whenever feasibility is improved, while weaker
increases are executed whenever feasibility worsens. This
counter-intuitive behavior may be the cause of oscillations
and overshoot underlying the failure of positive momentum
methods in Lagrangian games.

4.4. Oscillator dynamics

The continuous-time dynamics of gradient-descent/νPI-
ascent on an equality-constrained problem can be character-
ized by the second-order differential equations (see Thm. 4): ẍ = −

(
∇2f +

∑
c′

µc′∇2hc′

)
ẋ− Jhµ̇ (11a)

µ̈ = κiJh⊤ẋ+ κpJh⊤ẍ+ κpΞ, (11b)

where Ξ =
[
ẋ⊤∇2h1ẋ, . . . , ẋ

⊤∇2hcẋ
]⊤ ∈ Rc.

In Appx. D we present the spectral analysis for the La-
grangian system associated with an equality-constrained
quadratic program. In particular, we demonstrate how the
continous-time νPI algorithm can modify the eigenvalues
of the system and transition between divergent, oscillatory,
critically damped and overdamped behaviors. We show how
these regime changes are controlled by the κp hyperparam-
eter. Moreover, critical damping may require a non-zero
value of κp, and is thus not achievable by GA.

4.5. Practical remarks

In practice, we suggest the initial condition ξ0 = e0, as it
ensures that the first step of νPI matches that of gradient

6

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

10 4 10 2 100

Multiplier step-size

10 12

10 8

10 4

100

104

||λ∞ − λ ∗ ||2
Polyak β = -0.5
Polyak β = 0.7
GA
GA + Dual Restarts
νPI p = 1
νPI p = 10
νPI p = 70
Adam

10 4 10 2 100

i

50

0

50

100

p

log10 (||λ∞ − λ ∗ ||2)

10−10

10−5

100

Figure 6: SVM experiment (§5.1). Left: Step-size sensitivity plot. Right: κp and κi sensitivity plot for νPI. Without
a κp of at least one, none of the methods converge to the optimal dual variable. Higher κp values allow for choosing
higher and broader range of κi’s. The x-axis of the left plot represents κi for the νPI parameter and α, the step-size, for the other
optimizers. In the right plot, the gray color shows the runs exceeding a distance of 103 to λ∗.

ascent. In cases where the constraints can be evaluated
without noise, we suggest a default value of ν = 0. This
leaves only the additional hyperparameter κp to be tuned
(besides the “step-size” κi). We highlight that the main
benefits of the νPI algorithm remain even when ν = 0.
However, ν can be useful for filtering noise in the constraint
measurement, as shown in our fairness experiments in §5.2.

There is a predictable monotonic behavior of the damping of
the system as the κp coefficient increases. This is illustrated
in Fig. 9 in §5.3 for a sparsity task. As a side effect, higher
values of κp make the tuning of the κi coefficient easier, as
seen in Fig. 6 in §5.1. As a heuristic to tune νPI, we suggest
considering a large initial κp value (so that its influence on
the optimization dynamics is significant), and then try a grid
of κi values. A good starting place is a grid of κi values
around a suitable step-size for gradient ascent.

5. Experiments
In this section, we present an empirical comparison between
νPI and a series of baseline optimization methods popu-
lar for minimization. We consider gradient ascent, gradient
ascent with positive (Polyak, 1964; Nesterov, 1983) and neg-
ative (Gidel et al., 2019a) momentum, and ADAM (Kingma
& Ba, 2014). The goal of our experiments is to highlight the
flexibility of νPI and its ability to mitigate oscillations and
overshoot when used to optimize Lagrange multipliers.

Our implementations use PyTorch (Paszke et al., 2019) and
the Cooper library for Lagrangian constrained optimization
(Gallego-Posada & Ramirez, 2022).

5.1. Hard-margin SVMs

We consider solving a hard-margin linear SVM problem via
its associated Lagrangian formulation. While specialized
QP solvers exist to find solutions for this task, we consider

the Lagrangian formulation in order to illustrate the dynam-
ics of the multipliers in a simple machine learning task.
These experiments show how standard methods for mini-
mization produce oscillations on the multipliers, which have
detrimental effects on convergence. Consider

min
w
∥w∥2/2 s.t. yi(w⊤xi + b) ≥ 1 for i ∈ [m], (12)

where {(xi, yi)}mi=1 are labeled training datapoints, and w
and b are the parameters of the SVM classifier.

We perform binary classification on two linearly separable
classes from the Iris dataset (Fisher, 1988). We apply al-
ternating GDA updates on the Lagrangian associated with
Eq. (12), with a fixed optimizer for the primal variables. For
details on our SVM experiments, see Appx. F.1.

Multiplier dynamics. Fig. 1 shows the oscillations on
the multiplier in all of the baselines. In these tasks, all of
the methods that do not diverge achieve perfect training
and validation accuracy. However, among the methods we
experiment with, the only method capable of achieving zero
constraint violation is the νPI algorithm. In contrast to all
baselines, νPI dampens the oscillations and converges to
the optimal multiplier value.

Sensitivity analysis. Fig. 6 (left) illustrates the robustness
of νPI to the choice of κi. The considered baselines fail
to converge to the ground truth multiplier value, across a
wide range of step-sizes. For these baselines, small step-size
choices avoid divergence but do not lead to recovering the
optimal Lagrange multipliers, while large step-sizes increase
the oscillations. In contrast, introducing a κp term of more
than 1 results in convergence for some step-sizes within the
selected range (see the νPI curves). Moreover, increasing
κp to a higher value broadens the range of step-sizes that
lead to convergence, and enables the use of bigger step-size
values that converge. This behavior can be observed more
extensively in the heatmap of Fig. 6 (right).

7

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

5.2. Fairness

We consider a classification task under statistical parity
constraints, as described in Cotter et al. (2019). This leads
to the following constrained optimization problem:

min
w
L(w) s.t. P(ŷ = 1 | g) = P(ŷ = 1), ∀g ∈ G (13)

where L(w) is the loss of model w, ŷ is the model predic-
tion, and G represents the set of protected groups in the
dataset. The constraints require the probability of positive
prediction to be equal across all groups.

Model and data. We train binary classifiers on the Adult
dataset (Becker & Kohavi, 1996). Groups correspond to the
intersection of race (2 values) and gender (5 values), leading
to 10 constraints. We use an MLP with two 100-dimensional
hidden layers. Our experimental setup is similar to those
of Zafar et al. (2019) and Cotter et al. (2019). However, in
our setting, non-convexity precludes the use of specialized
solvers (as done by Zafar et al. (2019)) and requires iterative
optimization approaches.

Optimization configuration. We train the model using
ADAM (α = 10−2) with a batch size of 512. To mitigate
the noise in the estimation of the constraint satisfaction, we
update the multipliers once every epoch, using the exact
constraint measurement over the entire training set.

Results. Figure 7 includes training curves for experiments
with GA and νPI applied to the Lagrange multipliers. We
report two of the multipliers, the model accuracy, and the
maximum constraint violation (in absolute value).

For this task, gradient ascent is a strong baseline as it suc-
cessfully reduces the violation of the constraints. Both
GA and νPI (ν = 0.99) significantly improve compared
to an unconstrained baseline which achieves a maximum
violation of 20% (not shown in Fig. 7 for readability).

νPI (ν = 0) runs exhibit unstable multiplier dynamics as the
noise of the constraints is amplified by the proportional term.
During our experiments, we observed that when ν = 0,
larger κp values lead to noisier multipliers and unstable
optimization. In contrast, νPI (ν = 0.99) reduces the
maximum violation faster and achieves better training
accuracy (92.4% vs 89%).

All experiments reach a final maximum violation of around
1.7%. We hypothesize that it is not possible to decrease
this value further (while carrying out stochastic updates on
the primal variables) since the constraint gradients may be
misaligned across mini-batches.

Multiplier dynamics. As can be seen in the evolution of
multipliers 2 and 7 shown in Fig. 7, νPI yields multipliers
that stabilize at their limiting values faster than those of GA.

0 250 500
0.85

0.90

Tr
ai

n
A

cc
ur

ac
y

0 250 500
0

10

M
ax

 V
io

la
tio

n

0 250 500
Epoch

0.2

0.0

M
ul

tip
lie

r 2

0 250 500
Epoch

0.1

0.0

M
ul

tip
lie

r 7

GA α= 0.03 νPI p = 1, ν= 0 νPI p = 5, ν= 0.99

Figure 7: Dynamics of νPI compared to GA for the fair-
ness task in Eq. (13). νPI has faster convergence in the
multiplier value and achieves a better training accuracy
than GA. All dual optimizers use a step-size (κi for νPI) of 0.03.
Results are aggregated across five seeds.

5.3. Sparsity

We consider the problem of learning models under inequal-
ity L0-sparsity constraints (Louizos et al., 2018; Gallego-
Posada et al., 2022). See Appx. F.2 for further background.

min
w,ϕ∈Rd

Ez|ϕ [L(w ⊙ z | D)] s.t.
Ez|ϕ[∥z∥0]

#(w)
≤ ϵ (14)

When using GA updates for the multipliers, Gallego-Posada
et al. (2022) observe a tendency of the model to “overshoot”
into the feasible region and become significantly less dense
than the prescribed level. Since a reduction in model density
corresponds to a reduction in capacity, this overshoot may
have a detrimental effect on the performance of the model.

Our experiments explore the effect of νPI on the sparsity-
constrained task, and compare it with dual restarts (Gallego-
Posada et al., 2022, §3). Our results show that νPI allows
for fine-grained control over overshoot, thus enabling the
sparse model to retain as much performance as possible.

Experiment configuration and hyperparameters. We
consider classifying CIFAR-10 (Krizhevsky, 2009) images
with ResNet-18 (He et al., 2016) models. To highlight the
ease-of-use of νPI, our setup remains as close as possible
to Gallego-Posada et al. (2022): we apply output channel
sparsity on the first layer of each residual block in the model,
and re-use the authors’ choice of optimizer and step-size for
ϕ. Our sparsity experiments consider ν = 0.

Global and layer-wise settings. We present sparsity experi-
ments with either 1⃝ one global constraint on the sparsity of
the entire model, or 2⃝multiple constraints, each prescribing
a maximum density per layer.

8

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

The metrics reported in this section are aggregated across
5 seeds. Experimental details for this task can be found in
Appx. F.2. For comprehensive experimental results across
multiple sparsity levels, and ablations on the use of momen-
tum and ADAM for updating the multipliers, see Appx. G.1.

Results. Fig. 8 shows how gradient ascent and positive
and negative momentum values consistently yield runs that
overshoot into becoming overly sparse. The extra reduction
in capacity results in a loss in performance. In contrast,
νPI consistently recovers feasible solutions, with minimal
overshoot. While dual restarts do not incur in overshoot,
they produce slightly infeasible solutions.

20 30
Global Density (%)

96.0

96.5

97.0

97.5

A
cc

ur
ac

y
(%

)

Train

20 30
Global Density (%)

86.0

87.0

Validation

Polyak β = -0.5
GA

Polyak β = -0.3
GA + Dual Restarts

Polyak β = 0.3
νPI p = 14.4

Polyak β = -0.5
GA

Polyak β = -0.3
GA + Dual Restarts

Polyak β = 0.3
νPI p = 14.4

Figure 8: CIFAR10 trade-off plot for global sparsity under a
30% density target. νPI successfully achieves the desired
sparsity while achieving the highest train accuracy. The
shaded region is the feasible set. As higher density correlates to
higher train accuracy, overshooting to a lower density is undesir-
able. All optimizers use the same step-size.

Fig. 9 consists on an ablation on the κp value. We observe
that by increasing the hyper-parameter, overshoot is reduced,
eventually turning into undershoot (which leads to infeasible
solutions). Since the density of the model is monotonically
tied to the choice of κp, tuning νPI for this task can be done
via bisection search, without the need to consider a grid
(which is usually required for tuning the step-size).

Table 1 shows sparsity experiments with layer-wise sparsity
targets. Gradient ascent and momentum methods overshoot
and the degree of overshoot differs significantly across lay-
ers. In contrast, GA with dual restarts and νPI mitigate
overshoot and produce constraints spanning a narrow range
of values. This highlights the robustness of νPI as the κp
coefficient did not need to be tuned separately per constraint.

Multiplier dynamics. Figure 2 shows the training dynamics
for a global sparsity constraint and its multiplier under a
30% density target. We observe that GA and POLYAK quickly
lead to overshoot into the feasible set, but manage to regain
some model capacity as training progresses. GA with dual

20 30
Global Density (%)

96

96

97

98

A
cc

ur
ac

y
(%

)

Train

20 30
Global Density (%)

86

87

88

Validation

Figure 9: Ablation of κp values for νPI on CIFAR10. An
increasing κp leads to more damping and less overshoot.
Target density is 30%. The shaded region is the feasible set.

restarts sets the value of the multiplier to zero as soon as
feasibility is achieved, thus preventing an incursion of the
constraint into the feasible set. νPI produces well-behaved
multipliers and successfully avoids constraint overshoot.

Table 1: CIFAR10 results for layer-wise sparsity under a
30% density target. GA and momentum methods overshoot
to different values for each constraint. νPI achieves the
desired sparsity on all layers while achieving the highest
train accuracy. All dual optimizers use the same step-size.

Method Accuracy Violation
Train Test Min Max Range

Polyak β = −0.5 91.9 83.6 -26.5 -7.9 18.9
Polyak β = −0.3 92.1 83.4 -27.1 -6.7 20.6
Polyak β = 0.3 91.9 82.5 -26.3 -2.3 24.0
GA 92.0 84.1 -27.8 -5.2 22.0
GA + Dual Restarts 95.0 85.3 -0.0 1.2 1.2
Ours - νPI κp = 8.0 95.1 86.2 -1.7 0.1 1.8

6. Conclusion
Previous work has highlighted that employing PID con-
trollers on the multipliers in Lagrangian constrained opti-
mization problems reduces oscillation and overshoot. In
this paper, we consider νPI, a variant of a PI controller that
generalizes various popular methods for optimization. We
complement previous work by providing insights justifying
why PI controllers are desirable for Lagrangian optimiza-
tion. Moreover, we highlight some intuitions as to why
momentum methods fail in this context. While we focus
our efforts on constrained optimization, our results indicate
that νPI may improve the dynamics of linear players in
general min-max games. Investigating the behavior of νPI
on non-linear players is left as a direction of future work.

9

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Impact Statement
Constrained optimization offers tools for reliably enforc-
ing properties on machine learning models. It is, therefore,
applicable for enhancing safety, robustness, and fairness
in AI models. By integrating constraints into the model
development process, rather than retrofitting safety mea-
sures as afterthoughts, we advocate for a paradigm shift
towards building models that are inherently secure “by de-
sign.” We intend our fairness experiments as a conceptual
illustration of the potential for positive impact of constrained
approaches in the development of machine learning models.

Our paper presents insights into the robustness of algorithms
for constrained optimization, and highlights νPI as a reli-
able tool for training models with constraints. Thus, our
work lays the groundwork for practitioners to adopt and
implement constrained approaches confidently in diverse
real-world applications.

Acknowledgements
This research was partially supported by an IVADO PhD Ex-
cellence Scholarship, the Canada CIFAR AI Chair program
(Mila), the NSERC Discovery Grant RGPIN2017-06936
and by Samsung Electronics Co., Ldt. Simon Lacoste-Julien
is a CIFAR Associate Fellow in the Learning in Machines
& Brains program.

This research was enabled in part by compute resources,
software, and technical help provided by Mila.

We would like to thank Ioannis Mitliagkas for useful discus-
sions during the development of this work.

Reproducibility Statement
We provide our code,5 including scripts to replicate the ex-
periments in this paper. §4.5 presents some considerations
when using the νPI algorithm in practice. Experimental
details, as well as the hyper-parameters used in our experi-
ments, are included in Appx. F. Our implementations use
the open-source libraries PyTorch (Paszke et al., 2019) and
Cooper (Gallego-Posada & Ramirez, 2022).

References
An, W., Wang, H., Sun, Q., Xu, J., Dai, Q., and Zhang, L.

A PID Controller Approach for Stochastic Optimization
of Deep Networks. In CVPR, 2018. (Cit. on p. 2, 5, 14)

Arrow, K., Hurwicz, L., and Uzawa, H. Studies in Linear
and Non-linear Programming. Stanford University Press,
1958. (Cit. on p. 2, 3)

5https://github.com/motahareh-sohrabi/nuPI

Åström, K. and Hägglund, T. PID Controllers. International
Society for Measurement and Control, 1995. (Cit. on p.
2, 5)

Becker, B. and Kohavi, R. Adult. UCI Ma-
chine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20. (Cit. on p. 8,
24)

Bertsekas, D. On the Method of Multipliers for Convex
Programming. IEEE transactions on automatic control,
1975. (Cit. on p. 2)

Bertsekas, D. Nonlinear Programming. Athena Scientific,
2016. (Cit. on p. 1, 2)

Bertsekas, D. P. On the Goldstein-Levitin-Polyak Gradient
Projection Method. IEEE Transactions on automatic
control, 1976. (Cit. on p. 2)

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization Meth-
ods for Large-Scale Machine Learning. SIAM Review, 60
(2):223–311, 2018. (Cit. on p. 1)

Boyd, S. Stanford ENGR108: Introduction to applied lin-
ear algebra: 2020: Lecture 53-VMLS CSTRD nonlin-
ear LS, 2021. URL https://youtu.be/SM ZieyKicU?si=
PWNMr7vxMQkhFBbf&t=815. (Cit. on p. 21)

Boyd, S. and Vandenberghe, L. Convex Optimization. Cam-
bridge University Press, 2004. (Cit. on p. 1)

Casti, U., Bastianello, N., Carli, R., and Zampieri, S. A
Control Theoretical Approach to Online Constrained Op-
timization. arXiv preprint arXiv:2309.15498, 2023. (Cit.
on p. 2, 14)

Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., and
Huq, A. Algorithmic decision making and the cost of
fairness. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017. (Cit. on p.
24)

Cotter, A., Jiang, H., Gupta, M. R., Wang, S., Narayan,
T., You, S., and Sridharan, K. Optimization with Non-
Differentiable Constraints with Applications to Fairness,
Recall, Churn, and Other Goals. JMLR, 2019. (Cit. on p.
1, 8, 24)

Dahl, G. E., Schneider, F., Nado, Z., Agarwal, N., Sastry,
C. S., Hennig, P., Medapati, S., Eschenhagen, R., Kasim-
beg, P., Suo, D., Bae, J., Gilmer, J., Peirson, A. L., Khan,
B., Anil, R., Rabbat, M., Krishnan, S., Snider, D., Amid,
E., Chen, K., Maddison, C. J., Vasudev, R., Badura, M.,
Garg, A., and Mattson, P. Benchmarking Neural Network
Training Algorithms. arXiv:2306.07179, 2023. (Cit. on
p. 2, 3)

10

https://github.com/motahareh-sohrabi/nuPI
https://youtu.be/SM_ZieyKicU?si=PWNMr7vxMQkhFBbf&t=815
https://youtu.be/SM_ZieyKicU?si=PWNMr7vxMQkhFBbf&t=815

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Dikin, I. I. Iterative Solution of Problems of Linear and
Quadratic Programming. In Doklady Akademii Nauk.
Russian Academy of Sciences, 1967. (Cit. on p. 2)

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness Through Awareness. In Innovations in Theo-
retical Computer Science, 2012. (Cit. on p. 24)

Elenter, J., NaderiAlizadeh, N., and Ribeiro, A. A La-
grangian Duality Approach to Active Learning. In
NeurIPS, 2022. (Cit. on p. 1)

Farahmand, A.-M. and Ghavamzadeh, M. PID Accelerated
Value Iteration Algorithm. In ICML, 2021. (Cit. on p. 1)

Fioretto, F., Van Hentenryck, P., Mak, T. W. K., Tran, C.,
Baldo, F., and Lombardi, M. Lagrangian Duality for
Constrained Deep Learning. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, 2020. (Cit. on p. 1)

Fisher, R. A. Iris. UCI Machine Learning Repository, 1988.
DOI: https://doi.org/10.24432/C56C76. (Cit. on p. 7, 22)

Frank, M. and Wolfe, P. An Algorithm for Quadratic Pro-
gramming. Naval Research Logistics Quarterly, 1956.
(Cit. on p. 2)

Gale, T., Elsen, E., and Hooker, S. The State of Sparsity in
Deep Neural Networks. arXiv:1902.09574, 2019. (Cit.
on p. 23)

Gallego-Posada, J. and Ramirez, J. Cooper: a toolkit
for Lagrangian-based constrained optimization.
https://github.com/cooper-org/cooper,
2022. (Cit. on p. 1, 7, 10, 22)

Gallego-Posada, J., Ramirez, J., Erraqabi, A., Bengio, Y.,
and Lacoste-Julien, S. Controlled Sparsity via Con-
strained Optimization or: How I Learned to Stop Tuning
Penalties and Love Constraints. In NeurIPS, 2022. (Cit.
on p. 1, 2, 4, 8, 23, 24)

Gidel, G., Askari, R., Pezeshki, M., LePriol, R., Huang, G.,
Lacoste-Julien, S., and Mitliagkas, I. Negative Momen-
tum for Improved Game Dynamics. In AISTATS, 2019a.
(Cit. on p. 2, 6, 7, 19, 20, 23)

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and Lacoste-
Julien, S. A Variational Inequality Perspective on Gener-
ative Adversarial Networks. In ICLR, 2019b. (Cit. on p.
2, 3)

Hashemizadeh, M., Ramirez, J., Sukumaran, R., Farnadi,
G., Lacoste-Julien, S., and Gallego-Posada, J. Balancing
Act: Constraining Disparate Impact in Sparse Models. In
ICLR, 2024. (Cit. on p. 1)

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In CVPR, 2016. (Cit.
on p. 8, 23)

Hounie, I., Elenter, J., and Ribeiro, A. Neural Networks
with Quantization Constraints. In ICASSP, 2023. (Cit. on
p. 1)

Hu, B. and Lessard, L. Control Interpretations for First-
Order Optimization Methods. In American Control Con-
ference, 2017. (Cit. on p. 2, 14)

Kingma, D. and Ba, J. Adam: A Method for Stochastic
Optimization. In ICLR, 2014. (Cit. on p. 7, 23)

Korpelevich, G. M. The extragradient method for finding
saddle points and other problems. Matecon, 1976. (Cit.
on p. 2)

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. Technical report, University of Toronto,
Toronto, Ontario, 2009. (Cit. on p. 8)

Lessard, L., Recht, B., and Packard, A. Analysis and De-
sign of Optimization Algorithms via Integral Quadratic
Constraints. SIAM Journal on Optimization, 26(1):57–95,
2016. (Cit. on p. 5)

Lin, T., Jin, C., and Jordan, M. On Gradient Descent Ascent
for Nonconvex-Concave Minimax Problems. In ICML,
2020. (Cit. on p. 2)

Loshchilov, I. and Hutter, F. SGDR: Stochastic Gradient
Descent with Warm Restarts. In ICLR, 2017. (Cit. on p.
23)

Louizos, C., Welling, M., and Kingma, D. P. Learning
Sparse Neural Networks through L0 Regularization. In
ICLR, 2018. (Cit. on p. 8, 23, 28)

Maddison, C. J., Mnih, A., and Teh, Y. W. The Concrete Dis-
tribution: A Continuous Relaxation of Discrete Random
Variables. In ICLR, 2017. (Cit. on p. 23)

Mokhtari, A., Ozdaglar, A. E., and Pattathil, S. Convergence
Rate of O(1/k) for Optimistic Gradient and Extragradient
Methods in Smooth Convex-Concave Saddle Point Prob-
lems. SIAM Journal on Optimization, 2020a. (Cit. on p.
2)

Mokhtari, A., Ozdaglar, A. E., and Pattathil, S. A Unified
Analysis of Extra-gradient and Optimistic Gradient Meth-
ods for Saddle Point Problems: Proximal Point Approach.
In AISTATS, 2020b. (Cit. on p. 5)

Nesterov, Y. E. A method of solving a convex programming
problem with convergence rate o\bigl(kˆ2\bigr). In Dok-
lady Akademii Nauk, volume 269, pp. 543–547. Russian
Academy of Sciences, 1983. (Cit. on p. 5, 7)

11

https://github.com/cooper-org/cooper

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Nocedal, J. and Wright, S. J. Numerical Optimization.
Springer, 2006. (Cit. on p. 1, 2)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurIPS,
2019. (Cit. on p. 7, 10, 22)

Platt, J. C. and Barr, A. H. Constrained Differential Opti-
mization. In NeurIPS, 1987. (Cit. on p. 2)

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964. (Cit. on p.
5, 7)

Popov, L. D. A modification of the Arrow-Hurwicz method
for search of saddle points. Mathematical notes of the
Academy of Sciences of the USSR, 28:845–848, 1980.
(Cit. on p. 2, 5)

Recht, B. The Best Things in Life Are Model Free. arg min,
blog: https://archives.argmin.net/2018/04/19/pid/, 2018.
(Cit. on p. 2)

Shen, L., Chen, C., Zou, F., Jie, Z., Sun, J., and Liu, W. A
Unified Analysis of AdaGrad with Weighted Aggregation
and Momentum Acceleration. In IEEE TNNLS, 2018.
(Cit. on p. 5)

Stooke, A., Achiam, J., and Abbeel, P. Responsive Safety
in Reinforcement Learning by PID Lagrangian Methods.
In ICML, 2020. (Cit. on p. 1, 2, 4, 5, 14, 18)

Zafar, M. B., Valera, I., Gomez-Rodriguez, M., and Gum-
madi, K. P. Fairness Constraints: A Flexible Approach
for Fair Classification. JMLR, 2019. (Cit. on p. 1, 8, 24)

Zhang, G. and Wang, Y. On the Suboptimality of Nega-
tive Momentum for Minimax Optimization. In AISTATS,
2021. (Cit. on p. 2)

Zhang, G., Wang, Y., Lessard, L., and Grosse, R. B.
Near-optimal Local Convergence of Alternating Gradient
Descent-Ascent for Minimax Optimization. In AISTATS,
2022. (Cit. on p. 2, 3)

Zoutendijk, G. Methods of Feasible Directions: A Study in
Linear and Non-linear Programming. Elsevier Publishing
Company, 1960. (Cit. on p. 2)

12

https://archives.argmin.net/2018/04/19/pid/

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Appendix

Table of Contents
A Further discussion on prior works using PID controls in optimization 14

B Connections between νPI and momentum methods 14

C Interpreting the updates of νPI 16

D Analysis of continuous-time νPI dynamics as an oscillator 18
D.1 Oscillator dynamics of GD/νPI flow . 18

D.2 Dynamics of GD/νPI flow for a constrained quadratic program . 19

E Illustrative 2D nonconvex problem 21

F Experimental details 22
F.1 Linear SVM experiments . 22

F.2 Sparsity experiments . 23

F.3 Fairness experiments . 24

G Comprehensive results on the sparsity task 24
G.1 Global . 24

G.2 Layer-wise . 24

H Additional Experiments 27
H.1 Dynamics . 27

H.2 Ablation on the value of κp . 29

H.3 ADAM . 30

H.4 Momentum . 31

13

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

A. Further discussion on prior works using PID controls in optimization
• In Stooke et al. (2020), the authors focus almost exclusively on applying PID control to constrained reinforcement

learning. The authors do not explore the optimization aspects of PID-based updates for Lagrange multipliers, which
are the main focus of our work. Our key theoretical contribution (Thm. 1) shows that νPI provides a generalization
of momentum-based optimization techniques. Note that the controller considered by Stooke et al. (2020) is unable
to generalize momentum methods. Thanks to the unifying framework provided by Thm. 1, we provide insights to
understand why momentum fails at Lagrangian optimization tasks (Fig. 5). Moreover, our experiments encompass
linear SVMs, sparsity, and fairness tasks, and are not restricted to reinforcement learning.

• An et al. (2018) propose directly updating the parameters of a neural network using a PID controller (for unconstrained
minimization only). Their approach has not been widely adopted by the deep learning community, possibly due to the
highly specialized training procedures that have been developed for training neural networks. Although connected due
to their use of PID control, this paper is not directly relevant to our work as we limit our scope to not modifying the
optimization protocol for the (primal) model parameters.

• The work of Casti et al. (2023) focuses on the theoretical aspects of using PID control for problems with linear
constraints. Their analysis is not directly applicable to our setting since we are interested in general machine learning
applications involving nonconvex constraints.

• Hu & Lessard (2017) present control interpretations of first-order optimization methods and show how worst-case
convergence rates of optimization algorithms can be derived from a control theoretical perspective. The idea of
examining a possible connection between our νPI algorithm and other momentum methods was inspired by this work.

B. Connections between νPI and momentum methods

Table 2: Classical optimization methods as instances of νPI (ν, κp, κi; ξ0).

Algorithm ξ0 κp κi ν

UNIFIEDMOMENTUM(α, β, γ) (1− β)e0 − αβ

(1− β)2
[1− γ(1− β)] α

1− β
β

POLYAK(α, β) (1− β)e0 − αβ

(1− β)2
α

1− β
β

NESTEROV(α, β) (1− β)e0 − αβ2

(1− β)2
α

1− β
β

PI e0 κp κi 0

OPTIMISTICGRADIENTASCENT(α) e0 α α 0

νPI(ν, κp, κi) in practice 0 κi κp ν

GRADIENTASCENT(α) – 0 α 0

Lemma 2. The νPI (ν, κp, κi; ξ0) algorithm can be equivalently expressed as the recursion:

θ1 = θ0 + κie0 + κpξ0 (15a)
ξt = νξt−1 + (1− ν)et (15b)

θt+1 = θt + κiet + κp(1− ν) (et − ξt−1) for t ≥ 1 (15c)

Proof of Lemma 2. For t ≥ 1, we have:

θt+1−θt
(νPI3)
= κpξt+κi

t∑
τ=0

eτ −κpξt−1−κi
t−1∑
τ=0

eτ = κiet+κp(ξt− ξt−1)
(νPI2)
= κiet+κp(1− ν)(et− ξt−1) (16)

14

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Lemma 3. The UNIFIEDMOMENTUM(α, β, γ;ϕ0 = 0) algorithm can be expressed as the single-parameter recurrence:

θ1 = θ0 + α(1 + βγ)e0 (17a)
θt+1 = θt + αet + β(θt − θt−1) + αβγ (et − et−1) for t ≥ 1. (17b)

Proof of Lemma 3.

ϕ1
(UM2)
= β��ϕ0 + αe0 = αe0 (18a)

θ1
(UM3)
= θ0 + ϕ1 + βγ (ϕ1 −��ϕ0) = θ0 + α(1 + βγ)e0. (18b)

θt+1
(UM3)
= θt + ϕt+1 + βγ (ϕt+1 − ϕt) (19a)

(UM2)
= θt + βϕt + αet + βγ (βϕt + αet − βϕt−1 − αet−1) (19b)
= θt + βϕt + αet + βγ (β(ϕt − ϕt−1) + α(et − et−1)) (19c)
= θt + αet + β [ϕt + γβ(ϕt − ϕt−1)] + αβγ(et − et−1) (19d)

(UM3)
= θt + αet + β (θt − θt−1) + αβγ(et − et−1). (19e)

Theorem. 1 Under the same initialization θ0, UNIFIEDMOMENTUM(α, β ̸= 1, γ;ϕ0 = 0) is a special case of νPI
(ν, κp, κi; ξ0) with the following hyperparameter choices:

ν = β κp = −
αβ

(1− β)2
[1− γ(1− β)] κi =

α

1− β
ξ0 = (1− β)e0 (20)

Proof of Thm. 1. We want to find values of ν, κp, κi and ξ0 such that the sequence of iterates produced by νPI (ν, κp, κi; ξ0)
satisfies Eq. (17b). For t ≥ 2 we have:

θt+1 − θt
(17b)
= αet + β(θt − θt−1) + αβγ (et − et−1) (21a)

κiet + κp (ξt − ξt−1)
(15c)
= αet + β (κiet−1 + κp (ξt−1 − ξt−2)) + αβγ (et − et−1) (21b)

et (κi − α− αβγ) + et−1 (−βκi + αβγ) + κp [ξt − ξt−1 − β (ξt−1 − ξt−2)] = 0 (22)

Several applications of the definition of ξt (line 2 in Algo. 1) give:

ξt − ξt−1 − β (ξt−1 − ξt−2) = (1− ν) [et − ξt−1]− βξt−1 + βξt−2 (23)
= (1− ν)et − (1 + β − ν)ξt−1 + βξt−2 (24)
= (1− ν)et − (1 + β − ν) [νξt−2 + (1− ν)et−1] + βξt−2 (25)
= (1− ν)et − (1− ν)(1 + β − ν)et−1 + (1− ν)(β − ν)ξt−2 (26)

Thus we can re-arrange to get:

[
et et−1 ξt−2

]  κi + (1− ν)κp − α(1 + βγ)
−βκi − (1− ν)(1 + β − ν)κp + αβγ

(1− ν)(β − ν)κp

 = 0 (27)

Therefore, from both algorithms coincide when the following system of equations is satisfied:

κi + (1− ν)κp = α(1 + βγ) (28a)
βκi + (1− ν)(1− ν + β)κp = αβγ (28b)

(1− ν)(β − ν)κp = 0 (28c)

15

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

For β ̸= 1, the solution to this system is given by:

ν ← β κi ←
α

1− β
κp ← −

αβ

(1− β)2
[1− γ(1− β)] (29)

Finally, we choose the initial condition ξ0 that ensures that the first two steps of the algorithms match (at t = 0 and
t = 1). The first iterate of νPI is given by θ1 = θ0 + κie0 + κpξ0 as per Eq. (15a). Meanwhile, the first iterate of
UNIFIEDMOMENTUM is given by:

θ1
(17a)
= θ0 + α(1 + βγ)e0

(29)
= θ0 + (κi + (1− β)κp)e0 = θ0 + κie0 + (1− β)κpe0 (30)

Therefore, setting ξ0 ← (1− β)e0 makes both algorithms match in their first step at t = 0.

The second iterate from UNIFIEDMOMENTUM is θ2 = θ1 + αβ [1− γ(1− β)] e0 + α [1− γ(1− β)] e1. On the other hand,
the second iterate of νPI is θ2 = θ1 + (κi + κp(1− ν))e1 − κp(1− β)ξ0. It is easy to see that, given the hyperparameter
choices outlined above, both algorithms match at t = 1.

An induction argument yields the equivalence between the algorithms.

C. Interpreting the updates of νPI
Consider the execution of the algorithms νPI (ν, κp, κi) and GA(α = κi) at time t, with updates given by:

θνPI
t+1 = θt + κiet + κp(1− ν)(et − ξt−1) (31)

θGA
t+1 = θt + κiet (32)

Let ψ =
κp(1−ν)

κi+κp(1−ν) . Note that whenever κp and κi are non-negative, ψ ∈ [0, 1]. The ratio between these updates is:

∆νPI

∆GA
=
θνPI
t+1 − θt
θGA
t+1 − θt

=
κiet + κp(1− ν)(et − ξt−1)

κiet
= 1+

κp(1− ν)
κi

− κp(1− ν)
κi

ξt−1

et
=

1

1− ψ

[
1− ψξt−1

et

]
. (33)

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

Figure 10: Comparing the update of νPI relative to GA, for different hyper-parameter configurations of νPI. Left: νPI
is configured to recover POLYAK(β = −0.4). Updates exhibit dampening similar to that of νPI (ν = 0, κp = 1, κi = 1).
Middle: νPI (ν = 0, κp = 1, κi = 1) corresponding to a PI controller. νPI increases the multipliers faster than
GA when the constraint violation is large, enhancing convergence speed; and proactively decreases them near the
feasible set, preventing overshoot. Right: νPI is configured to recover POLYAK(β = 0.3). We observe an increased
eagerness to increase the multipliers as progress toward feasibility occurs. This increases the chances of overshoot and
subsequent oscillations. The blue, yellow, and red regions correspond to cases in which the updates performed by the νPI algorithm
are faster, slower, or in the opposite direction than those of GA, respectively. This plot illustrates the case ξt−1 > 0. The middle and right
figures presented here are the same as those in Fig. 5. We include them here for the reader’s convenience.

PI (Fig. 10, middle). We consider νPI (ν = 0, κp = 1, κi = 1), which recovers PI(κp = 1, κi = 1). The update of the PI
optimizer relative to GA is as follows:

16

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

1. Mode A When either et ≥ ξt−1 or et ≤ 0, the relative update exceeds one and thus the PI controller update can be
seen as eager compared to gradient ascent.

(a) When et ≥ ξt−1, the constraint has historically been infeasible and the current violation indicates an increase in
infeasibility. In this case, PI not only increases the value of the multiplier but does so more strongly than GA. This
proactive behavior serves to counteract the infeasibility increase.

(b) When et ≤ 0, the constraint has been satisfied despite historical infeasibility (ξt−1 > 0). Here, the PI controller
decreases the multiplier much more than GA. This serves to prevent overshoot into the feasible region.

2. Mode B In the range 0 < ψξt−1 ≤ et ≤ ξt−1, the constraint at step t (i) is not satisfied, (ii) it is smaller than the
historical EMA of violations ξt−1, but not significantly (not beyond a factor of ψ). In this case, the PI controller
proactively exerts friction by having a smaller update than GA. This reduces the risk of overshoot under the assumption
that the primal variables continue to make progress toward feasibility.

3. Mode C In the optimistic phase, where 0 ≤ et ≤ κξt−1, the PI controller’s update goes in the opposite direction to that
of GA: ∆νPI

∆GA ≤ 0. This corresponds to a scenario where the constraint made significant progress toward feasibility
relative to the historic violation EMA. While GA would increase the multiplier in this case (since gt > 0), PI decreases
the value of the multiplier. This is useful to prevent overshoot since significant progress toward feasibility is an indicator
that the multiplier is already exerting sufficient pressure for the constraints to be satisfied.

Negative momentum (Fig. 10, left). We consider POLYAK (β = −0.4) as a realization of νPI, following Thm. 1. We observe
similar behavior to that of νPI (ν = 0, κp = 1, κi = 1), in the middle figure of Fig. 10. Note that the current illustration
assumes an equal value of the “optimizer state” ξt−1 between the momentum and non-momentum cases. However, the value
of ξt will be different depending on the momentum coefficient as β = ν also influences the update of ξ (see Algo. 1).

Positive momentum (Fig. 10, right). The right plot of Fig. 10 considers POLYAK (β = 0.3) as a realization of νPI, following
Thm. 1. We observe significantly different behavior compared to the left and middle plots.

1. Mode A When infeasibility is reduced, the algorithm is eager to increase the multiplier more than GA. This is a
counter-intuitive operation of the algorithm considering that the current value of the multiplier can apply sufficient
pressure to improve the constraint satisfaction. Increasing the multiplier further can lead to a higher risk of overshoot.

2. Mode B Consider the cases in which infeasibility increases (et ≥ ξt−1), or the constraints suddenly become (suffi-
ciently) strictly feasible et ≤ ψξt−1 ≤ 0. These cases induce frictioned updates with the same sign as GA, but of
smaller magnitude.

3. Mode C When the primal player is feasible, positive momentum would result in an increase of the multiplier; going
against the update of GA, which would decrease the multiplier. In this context, increasing the multiplier is unreasonable
since the current value of the multiplier is already sufficient to achieve feasibility.

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

Figure 11: Effect of κp in the update of νPI relative to GA. When κp approaches 0, νPI recovers GA (a constant function
y = 1 for the relative update). A larger κp leads to a wider “optimistic” region (in red) where νPI decreases the
multiplier to prevent overshooting despite the constraint being violated. We use κi = 1 and ν = 0 and κp of 0.2, 0.7 and 1.3,
respectively.

17

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Ablation on the influence of κp. Figure 11 presents three configurations of κp for a νPI (ν = 0, κp, κi = 1) optimizer. We
display κp at 0.2, 0.7 and 1.3, respectively. As κp → 0, νPI is equivalent to GA. This is confirmed by the relative updates
between νPI and GA converging to a constant function y = 1. As κp increases in the middle and right plots of Fig. 11,
the asymptote at 1/(1− ψ) moves further away from 1, and the width of the “optimistic” region (Mode C) increases. In
other words, as κp grows, the threshold for “sufficient improvement” is relaxed and the optimizer is more prone to decrease
the multipliers upon improvements in constraint violation. This leads to a more “cautious” behavior from the algorithm:
the multiplier is decreased earlier when the problem approaches the feasible region, which prevents overshooting but with
potentially slower convergence. One can monotonically control for the convergence and overshoot behaviors by adjusting
the κp value, see Fig. 9 in §5.3.

D. Analysis of continuous-time νPI dynamics as an oscillator
In this section, we examine the spectral properties of the gradient-descent/νPI flow dynamics presented in Algo. 3. We
extend the analysis of Stooke et al. (2020) (which only considers the dynamics of x) to also consider λ.

Consider a constrained optimization problem with equality constraints h. The GD/νPI flow corresponds to a continuous-time
dynamical system in which the primal player implements gradient descent on the Lagrangian, and the dual player implements
νPI ascent. This is formalized in Algo. 3.

Algorithm 3 Continuous-time gradient descent/νPI

Args: proportional (κp) and integral (κi) gains for νPI flow
1: ẋ = −∇f(x)− Jh(x)µ
2: µ̇ = κih(x) + κpḣ(x)

Thm. 4 characterizes the GD/νPI flow in Algo. 3 in terms of a second-order dynamical system. Note that this relationship
holds for any constrained problem where the objective and constraints have second derivatives. Appx. D.2 analyzes the
resulting dynamical system for a quadratic program with linear equality constraints.

D.1. Oscillator dynamics of GD/νPI flow

Theorem 4. The dynamics of Algo. 3 can be characterized by the following system of second-order differential equations,
with initial conditions x(0) = x0, µ(0) = µ0, ẋ(0) = −∇f(x0)− Jh(x0)µ0, and µ̇(0) = κih(x0) + Jh(x0)ẋ(0):

ẍ = −

(
∇2f +

∑
c′

µc′∇2hc′

)
︸ ︷︷ ︸

Φ

ẋ− Jhµ̇ (34a)

µ̈ = κiJh⊤ẋ+ κpJh⊤ẍ+ κpΞ (34b)

where Ξ =
[
ẋ⊤∇2h1ẋ, . . . , ẋ

⊤∇2hcẋ
]⊤ ∈ Rc.

This can be concisely represented in matrix form as:[
In×n 0n×c
−κpJh⊤ Ic×c

] [
ẍ
µ̈

]
+

[
Φ Jh

−κiJh⊤ 0c×c

] [
ẋ
µ̇

]
+

[
0
−βΞ

]
= 0. (35)

Or, equivalently: [
ẍ
µ̈

]
+

[
Φ Jh

Jh⊤ (κpΦ− κiI) κpJh⊤Jh

] [
ẋ
µ̇

]
+

[
0
−βΞ

]
= 0. (36)

Proof of Thm. 4. We start by computing the time derivatives of the objective gradient and constraint Jacobian:

d

dt
[∇f] =

∑
j

∂(∇f)
∂xj

dxj
dt


i

= ∇2f ẋ
d

dt
[Jh] =

[
∇2h1ẋ ∇2h2ẋ . . . ∇2hC ẋ

]
(37)

18

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Therefore, the second order dynamics for x are given by:

ẍ =
d

dt
[−∇f(x)− Jh(x)µ] = − d

dt
[∇f]− Jhµ̇− d

dt
[Jh]µ (38a)

= −∇2f ẋ− Jhµ̇−
∑
c′

µc′∇2hc′ ẋ (38b)

= −

(
∇2f +

∑
c′

µc′∇2hc′

)
︸ ︷︷ ︸

Φ

ẋ− Jhµ̇ (38c)

The second order dynamics for µ are given by:

µ̈ =
d

dt

[
κih+ κpJh⊤ẋ

]
= αḣ+ κpΞẋ+ κpJh⊤ẍ, (39)

where Ξ is defined as:

Ξ ≜
d

dt

[
Jh⊤] ẋ =

[
ẋ⊤∇2h1ẋ ẋ⊤∇2h2ẋ . . . ẋ∇2hcẋ

]⊤
. (40)

D.2. Dynamics of GD/νPI flow for a constrained quadratic program

Let H ∈ Rn×n be positive semi-definite and consider the convex quadratic program with c linear constraints:

min
x

1

2
x⊤Hx+ c⊤x subject to Ax− b = 0. (41)

The Lagrangian min-max game associated with the problem in Eq. (41) is given by:

L(x,µ) =
1

2
x⊤Hx+ c⊤x+ µ⊤(Ax− b) =

1

2
x⊤Hx+ c⊤x+ µ⊤Ax− µ⊤b. (42)

The linearity of the constraints in Eq. (41) implies Jh = A⊤ and ∇2gc′ = 0 for c′ ∈ [c], thus Φ = H and Ξ = 0.
Therefore, we obtain a homogeneous system of second-order differential equations with constant coefficients:[

ẍ
µ̈

]
+

[
H A⊤

A (κpH − κiI) κpAA⊤

]
︸ ︷︷ ︸

U

[
ẋ
µ̇

]
= 0. (43)

A simple state transformation z = [x,µ, ẋ, µ̇]
⊤ and ż = [ẋ, µ̇, ẍ, µ̈]

⊤ yields:

ż = −
[
0 I
0 U

]
z = −

0(n+c)×(n+c) I(n+c)×(n+c)

0(n+c)×(n+c)

[
H A⊤

A (κpH − κiI) κpAA⊤

] z (44)

Therefore, this 2(n + c)-dimensional linear system has zero as an eigenvalue with algebraic multiplicity n + c, and the
remaining eigenvalues correspond to the spectrum of −U .

When the matrix H is zero, we recover the smooth bilinear games considered by Gidel et al. (2019a, Eq. 18) in their study
of negative momentum. In this case, the matrix U looks like:

−U = −
[

0 A⊤

−κiA κpAA⊤

]
(45)

It is easy to see that large enough values of κp cause the eigenvalues of the matrix to have negative real parts, and thus make
the system converge. However, if κp = 0 (i.e. gradient descent-ascent), the eigenvalues of this matrix are either 0 or pure

19

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

imaginary. This fact is in line with existing results in the literature on the lack of convergence gradient descent-ascent on
bilinear games (Gidel et al., 2019a).

Case of one-variable and one constraint. It is instructive to analyze the spectrum of U in the case of a problem with a
one-dimensional primal variable and a single constraint (and thus one multiplier). In this case, U and its eigenvalues take
the form:

−U = −
[

h a
a (κph− κi) κpa

2

]
λ =

−
(
h+ κpa

2
)
±
√
(h+ κpa2)

2 − 4a2κi

2
(46)

As before, the eigenvalues of this matrix depend on the choice of κp. This is illustrated in Fig. 12.

4 2 0 2 4
p

4

2

0

2

R
ea

l p
ar

t

4 2 0 2 4
p

1.0

0.5

0.0

0.5

1.0

Im
ag

in
ar

y
pa

rt

Eigenvalue 1 Eigenvalue 2

Figure 12: Eigenvalues for Eq. (41) as a function of κp in the one-dimensional case. A positive value of κp (denoted by ⋆)
achieves critical damping (i.e. equal convergence rate for both dimensions). This plot uses h = 1, a = −1 and κi = 1.

Note that when the discriminant of Eq. (46) is zero, both eigenvalues match (and must thus be real). When this occurs and
both eigenvalues are negative, the system converges and does so at the same rate in both dimensions. This is akin to the
notion of critical damping from the control theory literature.

The values of κp that make the discriminant zero are κ∗p =
−h±2|a|√κi

a2 , leading to the eigenvalues λ(κ∗p) =
−(h+κ∗

pa
2)

2 =
∓a√κi. These values of κ∗p are marked with ⋆ and × in Fig. 12. Note that out of the two values of κp producing matching
eigenvalues, only the choice κ∗p > 0 yields a convergent system.

More generally, depending on κp, the system exhibits different behaviors:

• Divergence. In the red regions, the system diverges; in light red region, this happens together with oscillations. Note
how all the divergent configurations use a negative value of κp. The fuchsia cross (×) denotes the value of κp for which
both dimensions diverge at the same rate.

• Underdamping. In the yellow region, the system is underdamped and converges with oscillations. Interestingly, this
system admits some negative values of κp (of sufficiently small magnitude) while remaining convergent.

• Critical damping. The fuchsia star (⋆) shows the κp value that makes both dimensions of the system converge at
the same rate. Note that this critical damping regime is achieved at a strictly positive value of κp, and thus is not
achievable by gradient ascent.

• Overdamping. In the blue region, the system is convergent without oscillations but overdamped since the dimension
corresponding to the black eigenvalue converges more slowly.

20

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

E. Illustrative 2D nonconvex problem
We demonstrate the behavior of νPI on the two-dimensional, nonconvex, equality-constrained problem in Eq. (47). This
problem was proposed by Boyd (2021). The setting is simple enough to allow for visualizing the optimization paths of each
optimization variable and multiplier, while also being challenging due to nonconvexity.

min
x=(x1,x2)

f(x) ≜

∥∥∥∥[x1 + e−x2

x21 + 2x2 + 1

]∥∥∥∥2
2

subject to h(x) ≜ x1 + x31 + x2 + x22 = 2. (47)

0 2
x1

1

0

1

2

x
2

Optimization trajectory

2

0

5

9

2

0 1000
Step

10

8

6

4

2

0

Multiplier

0 1000
Step

0

500

1000

1500

Cumulative distance to λ ∗
GA α = 0.005 GA α = 0.010 νPI p = 1 νPI p = 3 νPI p = 5

0 1000
Step

5

10

15

20

Loss

0 1000
Step

2

1

0

1

2

3

Constraint violation

Figure 13: Optimization trajectories for different algorithms on a 2D nonconvex equality-constrained minimization problem.
νPI runs use ν = 0 and κi = 0.01. The light gray ⋆ marks the unconstrained optimum, while the black ⋆ marks the constrained optimum.
Level sets correspond to the objective function (solid) and constraint (dashed).

GA trajectories. In Fig. 13, GA trajectories are initially drawn toward the direction of the unconstrained optimum since
multipliers grow slowly at first. As training progresses, the constraint plays a more significant role. With a step-size that is
too small (α = 0.005), the trajectory does not converge to the global optimum. In contrast, the system reaches the global
constrained optimum point when employing a larger step-size (α = 0.01). This is achieved while incurring in oscillations.
The phase change from not converging with a small step-size, to converging with oscillations indicates that GA is not
suitable for obtaining critical damping when solving the problem.

νPI trajectories. The three blue trajectories in Fig. 13 show different behaviors of νPI: underdamping (light blue, κp = 1),
almost-critical damping (κp = 3) and overdamping (dark blue, κp = 5). Note the monotonic effect of κp on the damping of
the system. νPI provides the flexibility to obtain different levels of constraint overshoot, and can achieve feasibility and
convergence at different speeds. This added flexibility leads to enhanced control over the dynamics of the system relative to
GA, thus enabling applications of νPI to safety-sensitive tasks.

0 2
x1

2

1

0

1

x
2

Optimization trajectory

2

0

5 9

2
0 500

Step

20

15

10

5

0

5

Multiplier

0 500
Step

0

200

400

600

800

1000

Cumulative distance to λ ∗
νPI ν = 0.1 νPI ν = 0.5 νPI ν = 0.7 νPI ν = 0.9 νPI ν = 0.95

0 500
Step

6

8

10

12

14

Loss

0 500
Step

2

1

0

1

2

Constraint violation

Figure 14: Optimization trajectories for the νPI algorithm under different choices of ν. νPI runs use κi = 0.01 and κp = 10.

Ablation on ν. In Fig. 14, we zoom in on the effect of ν for fixed choices of κp and κi. A ν closer to 0 tends towards PI,
whereas a ν closer to one gives more importance to historical constraint violations. We observe that a larger ν behaves

21

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

qualitatively similar to positive momentum: the multiplier tends to increase faster if the constraint is not satisfied for a
period of time. In this example, this leads to oscillations as shown for ν = 0.95. Since this problem is deterministic, using a
non-zero ν does not show any advantage. Our fairness experiments showcase an application where ν > 0 is beneficial.

F. Experimental details
Our implementation use PyTorch 2.0.0 (Paszke et al., 2019) and the Cooper library for Lagrangian constrained optimization
(Gallego-Posada & Ramirez, 2022). Our code is available at: https://github.com/motahareh-sohrabi/nuPI.

F.1. Linear SVM experiments

In our experiment with linear SVMs, we focus on two linearly separable classes from the Iris dataset (Fisher, 1988). We
select 100 instances from the Iris setosa and Iris versicolor species, which are two linearly separable classes. Each data point
in this dataset has four features. We selected 70% of data for training and the rest for validation. This gives the algorithm 70
Lagrange multipliers to learn.

We know that a unique λ∗ exists in our experiments. The linearly independent constraint qualification (LICQ) holds for the
selected data, so the Karush-Kuhn-Tucker (KKT) conditions imply the existence and uniqueness of λ∗ at the constrained
optimum x∗. All of the methods that do not diverge achieve perfect training and validation accuracy in this task.

Experiment configuration and hyperparameters. Throughout all of the experiments, we fixed the primal optimizer and
only changed the dual optimizer. The primal optimizer is gradient descent with momentum, with a step size of 10−3 and
momentum of 0.9.

10 4 10 2 100

i

50

0

50

100

p

ν=−0.5

Polyak
Nesterov

10 4 10 2 100

i

50

0

50

100
ν= 0.0

10 4 10 2 100

i

50

0

50

100
ν= 0.9

10−10

10−5

100

log10 (||λ∞ − λ ∗ ||2)

Figure 15: Distance to optimal Lagrange multipliers for different selections of parameter ν in νPI algorithm. We also show
where the equivalent κp and κi parameters for NESTEROV(α, β = ν) and POLYAK(α, β = ν) lie according to Thm. 1 for
different values of α. The νPI algorithm with ν = 0 can give the highest number of converging step-sizes. While
negative ν = 0.5 induces a range of converging step-sizes as well, there is no value of κi that the algorithm converges
for ν = 0.9. The gray color shows the runs exceeding a distance of 103 to λ∗.

Different values of the parameter ν in νPI algorithm. We examine how changing the parameter ν in the Algo. 1 can
affect the convergence of the SVM task with different choices of κi and κp. Fig. 15 shows how νPI behaves when choosing
a negative, zero and positive value of ν. While ν = −0.5 can lead to a converging algorithm for some step-sizes, ν = 0.0
offers a wider range of converging step-sizes. There is no choice of step-size for which the νPI algorithm with a positive
value of ν = 0.9 converges to λ∗.

Relationship between momentum and νPI algorithms. Thm. 1 suggests that Polyak and Nesterov momentum algorithms
can be instantiated using a specific choice of κi and κp in the Algo. 1. In Fig. 15 we show where POLYAK(α, β) and
NESTEROV(α, β) lie for a choice of α’s and with β = ν. For each pair of (αi, β), we calculate the value of κi and κp that
recover POLYAK(αi, β) and NESTEROV(αi, β) according to Thm. 1.

22

https://github.com/motahareh-sohrabi/nuPI

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

• When β = ν = 0 there is no momentum and both POLYAK and NESTEROV reduce to gradient ascent. Therefore, all of
the dots indicating momentum methods lie in the κp = 0 line for the middle plot of Fig. 15.

• A positive β = ν = 0.9 (Fig. 15, right) corresponds to a common momentum choice in minimization problems. We
can see how there is no step-size value for which POLYAK or NESTEROV converge in this task. This observation supports
the claim of Gidel et al. (2019a) on the ineffectiveness of positive momentum for convergence in games.

• A negative β = ν = −0.5 leads to convergence for some choices of step-size. However, these do not correspond
to what POLYAK and NESTEROV can achieve. This is consistent with our observation in Fig. 6 (left), indicating the
necessity of adding a (positive) κp term to the optimizer in order to achieve convergence. This highlights the benefits
of the increased generality of νPI.

Moreover, we observe that POLYAK with negative momentum achieves a positive κp while all momentum choices for
NESTEROV lead to negative κp values. This further supports the experimental results of Gidel et al. (2019a), where
POLYAK is used when they want to experiment with negative momentum. Our hypothesis is that negative momentum
with Polyak is successful in games because it can induce a positive κp.

F.2. Sparsity experiments

Background. Louizos et al. (2018) propose a re-parameterization of models that allows applying L0-norm regularization on
their weights. They propose the use of stochastic gates z that indicate whether each parameter is active or not, where z
follows a hard-concrete distribution parameterized by ϕ. Employing the re-parameterization trick allows the computation of
gradients of the L0-norm of the model with respect to ϕ. Gallego-Posada et al. (2022) formulate a constrained optimization
problem that prescribes the desired sparsity of the model as a constraint.

min
w,ϕ∈Rd

Ez|ϕ [L(w ⊙ z | D)] s.t.
Ez|ϕ[∥z∥0]

#(w)
≤ ϵ, (48)

where x are the parameters of the model, L is an ERM objective, and D is a dataset. The constraint is normalized with the
total number of parameters of the model #(·), so that the constraint level ϵ ∈ [0, 1] corresponds to the maximum allowed
proportion of active parameters. For details on the re-parameterization, and a closed form expression for Ez|ϕ[∥z∥0], see
Louizos et al. (2018); Gallego-Posada et al. (2022).

Hard-concrete distribution. The L0-norm re-parameterization proposed by Louizos et al. (2018) considers a hard-concrete
distribution for the stochastic gates of the model. The hard-concrete distribution is based on a stretched and clamped concrete
distribution (Maddison et al., 2017). Similar to Louizos et al. (2018); Gallego-Posada et al. (2022), we choose a temperature
of 2/3 for the concrete distribution, and a stretching interval of [−0.1, 1.1].

Architecture. We consider ResNet-18 (He et al., 2016) models with basic residual blocks for our sparsity experiments,
which have a total of approximately 11.2 million parameters. Following Louizos et al. (2018) and Gallego-Posada et al.
(2022), we employ output feature map sparsity on the first convolutional layer of each residual block, whereas the following
convolutional layer and the residual connection are kept to be fully dense. The first convolutional layer of the model and the
linear output layer are also kept fully dense. This model counts with 8 sparsifiable convolutional layers.

Choice of sparsity levels. Although Gallego-Posada et al. (2022) consider up to 80% structured sparsity (20% density) for
ResNet-18 models, Gale et al. (2019) indicate that it is possible to train ResNet-50 models with structured sparsity of up to
95% (5% density or less), without incurring on a catastrophic loss on model accuracy. Therefore, we consider sparsity levels
of between 30% and 90% (70% and 10% density, respectively).

Primal optimization. We consider an optimization pipeline for the model that incorporates standard techniques used to
train L0-sparse ResNet-18 models on CIFAR10. For the weights of the model, we use SGD with a momentum of 0.9, an
initial learning rate of 0.01, and a cosine annealing learning rate scheduler (Loshchilov & Hutter, 2017).

We initialize the gates with a droprate init of 0.01, effectively yielding a fully dense model at initialization. Akin to
Gallego-Posada et al. (2022), we use ADAM (Kingma & Ba, 2014) with a step-size of 8 · 10−4 to optimize the ϕ parameters
of the stochastic gates. When applying L2-norm regularization on the parameters, we detach the contribution of the gates as
recommended by Gallego-Posada et al. (2022).

Dual optimization. For sparsity experiments, we consider ν = 0. Since the constraint is deterministic given the state
of the model (it does not need to be estimated from mini-batches), we consider the use of an EMA to not be crucial for

23

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

this task. Unless otherwise stated, we use a dual step-size of 8 · 10−4 for all dual optimizer choices (as was provided by
Gallego-Posada et al. (2022)). We decide against tuning the dual step-size separately for each optimizer to highlight the
flexibility of νPI: given a step-size that was tuned to yield good results for GA, νPI may produce better-behaved dynamics.

All of our sparsity experiments use a batch size of 128 and are over 200 epochs.

F.3. Fairness experiments

Dataset. In this experiment we consider the adult dataset (Becker & Kohavi, 1996), pre-processed following Zafar et al.
(2019). The raw data comprises eight categorical and six continuous attributes. After processing, the data is comprised of
50-dimensional sparse feature vectors. The train and test sets consist of 30,162 and 15,060 samples, respectively.

Background. We consider a fairness task under the disparate impact constraint (Zafar et al., 2019) shown in Eq. (13).
This constraint is also known as statistical parity and demographic parity (Corbett-Davies et al., 2017; Dwork et al., 2012).
We consider two sensitive attributes in the adult dataset: sex, denoted as A1 = {male, female}, and race, denoted as
A2 = {White, Black, Asian-Pac-Islander, Amer-Indian-Eskimo, Other}. Equation (13) entails the intersection of both
attributes, leading to |A1| × |A2| = 10 constraints.

Architecture and primal optimization. We train a 2-hidden-layer neural network with hidden sizes of (100, 100) similar
to the experimental setup of Cotter et al. (2019). In order to choose the primal optimizer hyperparamters, we trained the
unconstrained problem and chose the parameters of the run with the highest training accuracy. We fixed this primal optimizer
across our constrained experiments to be ADAM (α = 10−2).

Dual optimization. We chose the best step-size for GA aimed at minimizing training accuracy, while ensuring that the
maximum violation achieves the lowest possible value. This lead to a dual step-size of α = 0.03. We then fixed this value as
the κi parameter of νPI and ran a grid search to find the best κp. The grid search for κp considered (logarithmically spaced)
values in [0.01, 100]. The best results were found with κp = 5.

Due to the noise in the constraints, we also experimented with the effect of ν on the optimization dynamics. We tried ν
values of 0.0, 0.5, 0.9, 0.95, and 0.99. We noticed that higher values of ν can improve the learning dynamics, with the best
results achieved at 0.99. Setting ν = 0 results in noisy Lagrange multipliers, which lead to unstable optimization. This is
illustrated in Fig. 7.

G. Comprehensive results on the sparsity task
In this section we provide extensive experiment results for our sparsity experiments, complementing §5.3. We conducted
experiments with global and layer-wise sparsity targets, at ϵ = 70%, 50%, 30%, 10% density levels. The shaded region of
our plots corresponds to the feasible set. “Relative violations” are computed by dividing the absolute constraint violations
by the target density.

G.1. Global

For global sparsity experiments (Figs. 16 to 19 and Tables 3 to 6), we observe a general trend for models that overshoot
into becoming excessively sparse to achieve a lower training performance. This insight is also generally true for validation
accuracy. In particular, gradient ascent and momentum methods consistently exhibit overshoot, whereas νPI and gradient
ascent with dual restarts do not overshoot and achieve good final performance. Dual restarts generally produce (slightly)
infeasible solutions. Note that at ϵ = 10%, negative momentum runs do not overshoot, but positive momentum runs do.

G.2. Layer-wise

We perform layer-wise sparsity experiments with ϵ = 10%, 30%, 50%, 70% density targets (Tables 7 to 10). We observe a
similar trend to global sparsity experiments: GA and momentum methods overshoot, while νPI and GA with dual restarts
reliably achieve feasible solutions, with small levels of overshoot. Moreover, we observe that the violations of νPI and
GA with dual restarts span a small range of values relative to other methods. This highlights the robustness of νPI since the
κp coefficient did not need to be tuned independently for each constraint.

24

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

60 70
Global Density (%)

98.0

98.2

98.4

A
cc

ur
ac

y
(%

)

Train

60 70
Global Density (%)

87.8

88.0

88.2

88.4

88.6

Validation

Polyak β= − 0.5

GA
Polyak β= − 0.3

GA + Dual Restarts
Polyak β= 0.3

νPI p = 9.6

Polyak β= − 0.5

GA
Polyak β= − 0.3

GA + Dual Restarts
Polyak β= 0.3

νPI p = 9.6

Figure 16: CIFAR10 trade-off plot for global sparsity under a 70% density target. νPI successfully achieves the desired
sparsity while achieving the highest train accuracy. The shaded region is the feasible set. As higher density correlates to higher
train accuracy, overshooting to a lower density is undesirable. All optimizers use the same step-size. This figure is the same as Fig. 8. We
repeat it here for the reader’s convenience.

Table 3: CIFAR10 results for global sparsity under a 70% density target. νPI successfully achieves the desired sparsity
while achieving the highest train accuracy. The results in this table correspond to those in Fig. 16. As higher density correlates to
higher train accuracy, overshooting to a lower density is undesirable. All optimizers use the same step-size.

Method Train Acc. Test Acc. Violation Relative Violation

Polyak β = −0.5 98.1 ± 0.06 88.2 ± 0.30 -13.8 ± 0.09 -19.7 ± 0.13
Polyak β = −0.3 98.1 ± 0.09 88.2 ± 0.32 -13.5 ± 0.43 -19.3 ± 0.61
Polyak β = 0.3 98.0 ± 0.04 88.1 ± 0.22 -11.4 ± 0.39 -16.3 ± 0.55
GA 98.0 ± 0.11 88.2 ± 0.43 -12.6 ± 0.48 -18.0 ± 0.69
GA + Dual Restarts 98.2 ± 0.01 88.3 ± 0.31 1.4 ± 0.07 2.0 ± 0.10
Ours - νPI κp = 9.6 98.3 ± 0.09 88.5 ± 0.20 0.1 ± 0.01 0.1 ± 0.02

40 50
Global Density (%)

97.0

97.5

98.0

A
cc

ur
ac

y
(%

)

Train

40 50
Global Density (%)

87.0

87.5

88.0

88.5

Validation

Polyak β= − 0.5

GA
Polyak β= − 0.3

GA + Dual Restarts
Polyak β= 0.3

νPI p = 9.6

Polyak β= − 0.5

GA
Polyak β= − 0.3

GA + Dual Restarts
Polyak β= 0.3

νPI p = 9.6

Figure 17: CIFAR10 trade-off plot for global sparsity under a 50% density target.

25

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Table 4: CIFAR10 results for global sparsity under a 50% density target. The results in this table correspond to those in Fig. 17.

Method Train Acc. Test Acc. Violation Relative Violation

Polyak β = −0.5 97.2 ± 0.15 87.8 ± 0.26 -17.0 ± 0.17 -34.0 ± 0.34
Polyak β = −0.3 97.1 ± 0.11 87.4 ± 0.36 -17.1 ± 0.33 -34.2 ± 0.66
Polyak β = 0.3 97.0 ± 0.04 87.6 ± 0.17 -16.0 ± 0.59 -32.1 ± 1.18
GA 97.0 ± 0.10 87.9 ± 0.18 -17.0 ± 0.36 -33.9 ± 0.72
GA + Dual Restarts 97.9 ± 0.07 88.3 ± 0.36 2.0 ± 0.09 3.9 ± 0.18
Ours - νPI κp = 9.6 98.0 ± 0.09 88.1 ± 0.35 0.2 ± 0.03 0.3 ± 0.05

20 30
Global Density (%)

96.0

96.5

97.0

97.5

A
cc

ur
ac

y
(%

)

Train

20 30
Global Density (%)

86.0

86.5

87.0

87.5

Validation

Polyak β= − 0.5

GA
Polyak β= − 0.3

GA + Dual Restarts
Polyak β= 0.3

νPI p = 14.4

Polyak β= − 0.5

GA
Polyak β= − 0.3

GA + Dual Restarts
Polyak β= 0.3

νPI p = 14.4

Figure 18: CIFAR10 trade-off plot for global sparsity under a 30% density target.

Table 5: CIFAR10 results for global sparsity under a 30% density target. The results in this table correspond to those in Fig. 18.

Method Train Acc. Test Acc. Violation Relative Violation

Polyak β = −0.5 96.2 ± 0.07 87.4 ± 0.39 -13.8 ± 0.13 -45.9 ± 0.43
Polyak β = −0.3 96.1 ± 0.11 86.5 ± 0.57 -13.8 ± 0.11 -45.9 ± 0.36
Polyak β = 0.3 95.8 ± 0.13 86.4 ± 0.26 -13.8 ± 0.09 -46.0 ± 0.31
GA 95.9 ± 0.11 86.4 ± 0.52 -13.9 ± 0.11 -46.3 ± 0.36
GA + Dual Restarts 97.0 ± 0.11 87.6 ± 0.26 1.3 ± 0.22 4.4 ± 0.73
Ours - νPI κp = 14.4 97.4 ± 0.08 87.4 ± 0.27 -0.2 ± 0.11 -0.7 ± 0.38

Table 6: CIFAR10 results for global sparsity under a 10% density target. The results in this table correspond to those in Fig. 19.

Method Train Acc. Test Acc. Violation Relative Violation

Polyak β = −0.5 94.6 ± 0.17 85.2 ± 0.93 0.7 ± 0.13 7.0 ± 1.31
Polyak β = −0.3 94.3 ± 0.06 84.7 ± 0.71 0.2 ± 0.14 2.0 ± 1.39
Polyak β = 0.3 92.6 ± 0.10 81.9 ± 0.77 -2.1 ± 0.08 -21.4 ± 0.82
GA 93.8 ± 0.20 81.9 ± 2.68 -0.9 ± 0.09 -9.0 ± 0.93
GA + Dual Restarts 94.3 ± 0.08 85.5 ± 0.59 0.4 ± 0.03 3.5 ± 0.35
Ours - νPI κp = 1.6 94.1 ± 0.08 83.4 ± 1.83 -0.2 ± 0.14 -1.6 ± 1.44

26

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

8 10
Global Density (%)

93.0

94.0
A

cc
ur

ac
y

(%
)

Train

8 10
Global Density (%)

80.0

82.0

84.0

86.0

Validation

Polyak β= − 0.5

GA
Polyak β= − 0.3

GA + Dual Restarts
Polyak β= 0.3

νPI p = 1.6

Polyak β= − 0.5

GA
Polyak β= − 0.3

GA + Dual Restarts
Polyak β= 0.3

νPI p = 1.6

Figure 19: CIFAR10 trade-off plot for global sparsity under a 10% density target.

Table 7: CIFAR10 results for layer-wise sparsity under a 70% density target. GA and momentum methods overshoot to
different values for each constraint. νPI achieves the desired sparsity on all layers while achieving the highest train
accuracy. As higher density correlates to higher train accuracy, overshooting to a lower density is undesirable. All optimizers use the
same step-size. This table is the same as Table 1. We repeat it here for the reader’s convenience.

Method Accuracy Violation Relative Violation
Train Test Min Max Range Min Max Range

Polyak β = −0.5 91.9 ± 0.18 83.6 ± 1.40 -26.5 ± 0.81 -7.9 ± 0.86 18.9 ± 1.31 -37.8 ± 1.15 -11.4 ± 1.22 27.0 ± 1.87
Polyak β = −0.3 92.1 ± 0.07 83.4 ± 1.44 -27.1 ± 0.73 -6.7 ± 0.38 20.6 ± 0.92 -38.8 ± 1.05 -9.6 ± 0.55 29.4 ± 1.31
Polyak β = 0.3 91.9 ± 0.20 82.5 ± 1.50 -26.3 ± 0.82 -2.3 ± 0.69 24.0 ± 0.88 -37.5 ± 1.17 -3.2 ± 0.99 34.3 ± 1.26
GA 92.0 ± 0.08 84.1 ± 1.97 -27.8 ± 0.49 -5.2 ± 0.39 22.0 ± 0.56 -39.6 ± 0.70 -7.4 ± 0.55 31.4 ± 0.80
GA + Dual Restarts 95.0 ± 0.22 85.3 ± 0.61 -0.0 ± 0.00 1.2 ± 0.28 1.2 ± 0.28 -0.0 ± 0.00 1.8 ± 0.40 1.8 ± 0.40
Ours - νPI κp = 8.0 95.1 ± 0.06 86.2 ± 0.46 -1.7 ± 0.27 0.1 ± 0.04 1.8 ± 0.29 -2.4 ± 0.38 0.2 ± 0.06 2.5 ± 0.42

Table 8: CIFAR10 results for layer-wise sparsity under a 50% density target. As higher density correlates to higher train accuracy,
overshooting to a lower density is undesirable. All optimizers use the same step-size.

Method Accuracy Violation Relative Violation
Train Test Min Max Range Min Max Range

Polyak β = −0.5 87.5 ± 0.17 80.2 ± 2.65 -32.6 ± 0.95 -15.9 ± 0.80 16.4 ± 1.31 -65.1 ± 1.89 -31.7 ± 1.59 32.9 ± 2.61
Polyak β = −0.3 87.7 ± 0.21 80.3 ± 2.13 -29.5 ± 0.69 -15.4 ± 0.81 13.6 ± 1.23 -59.1 ± 1.38 -30.8 ± 1.62 27.2 ± 2.46
Polyak β = 0.3 87.4 ± 0.21 79.7 ± 3.18 -30.9 ± 0.66 -14.1 ± 0.25 16.9 ± 0.70 -61.8 ± 1.33 -28.3 ± 0.49 33.9 ± 1.40
GA 87.6 ± 0.12 77.5 ± 3.14 -29.7 ± 1.02 -14.2 ± 0.60 14.7 ± 1.15 -59.4 ± 2.04 -28.3 ± 1.20 29.4 ± 2.30
GA + Dual Restarts 92.8 ± 0.07 83.5 ± 0.81 -0.0 ± 0.01 1.0 ± 0.46 1.0 ± 0.46 -0.0 ± 0.02 1.9 ± 0.92 1.9 ± 0.93
Ours - νPI κp = 8.0 93.2 ± 0.06 83.6 ± 0.87 -1.5 ± 0.13 0.1 ± 0.08 1.6 ± 0.19 -2.9 ± 0.26 0.2 ± 0.16 3.2 ± 0.37

H. Additional Experiments
In this section, we include additional experimental results on the sparsity-constrained task. We analyze the dynamics of
the multiplier throughout training in Appx. H.1, and conduct ablation studies on κp for νPI, the momentum coefficients of
POLYAK and NESTEROV, and the step-size of ADAM.

H.1. Dynamics

The dynamics shown in Fig. 20 illustrate the change of the constraint violation and multipliers throughout optimization. We
observe that GA, POLYAK, and ADAM quickly lead to overshoot into the feasible region, leading to overly sparse models.

27

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Table 9: CIFAR10 results for layer-wise sparsity under a 30% density target. As higher density correlates to higher train accuracy,
overshooting to a lower density is undesirable. All optimizers use the same step-size.

Method Accuracy Violation Relative Violation
Train Test Min Max Range Min Max Range

Polyak β = −0.5 81.8 ± 0.19 63.5 ± 18.58 -25.2 ± 1.54 -17.0 ± 0.37 8.4 ± 1.73 -84.1 ± 5.12 -56.8 ± 1.23 28.0 ± 5.77
Polyak β = −0.3 82.1 ± 0.54 63.3 ± 8.65 -25.1 ± 1.15 -16.4 ± 0.38 8.7 ± 0.91 -83.5 ± 3.84 -54.7 ± 1.27 29.0 ± 3.04
Polyak β = 0.3 81.8 ± 0.32 72.7 ± 3.36 -25.1 ± 2.12 -17.5 ± 0.24 7.4 ± 2.12 -83.6 ± 7.07 -58.5 ± 0.79 24.8 ± 7.07
GA 81.8 ± 0.44 72.7 ± 4.40 -24.8 ± 1.11 -17.0 ± 0.60 8.5 ± 1.22 -82.5 ± 3.69 -56.7 ± 1.99 28.2 ± 4.07
GA + Dual Restarts 89.7 ± 0.23 82.9 ± 2.59 -0.0 ± 0.00 0.9 ± 0.33 0.9 ± 0.33 -0.0 ± 0.01 3.0 ± 1.10 3.0 ± 1.10
Ours - νPI κp = 12.0 89.8 ± 0.11 82.0 ± 2.45 -0.3 ± 0.13 0.3 ± 0.03 0.6 ± 0.12 -0.8 ± 0.42 1.0 ± 0.11 2.1 ± 0.39

Table 10: CIFAR10 results for layer-wise sparsity under a 10% density target. As higher density correlates to higher train
accuracy, overshooting to a lower density is undesirable. All optimizers use the same step-size.

Method Accuracy Violation Relative Violation
Train Test Min Max Range Min Max Range

Polyak β = −0.5 71.3 ± 0.61 61.0 ± 9.50 -10.0 ± 0.14 -5.9 ± 0.47 4.0 ± 0.48 -100.0 ± 1.36 -58.7 ± 4.74 40.5 ± 4.83
Polyak β = −0.3 70.9 ± 0.60 49.5 ± 16.33 -10.0 ± 0.01 -5.9 ± 0.60 4.1 ± 0.60 -100.0 ± 0.11 -58.9 ± 5.97 41.1 ± 5.95
Polyak β = 0.3 69.2 ± 0.71 56.3 ± 15.05 -10.0 ± 0.02 -6.7 ± 0.06 3.3 ± 0.08 -100.0 ± 0.15 -67.3 ± 0.65 32.7 ± 0.79
GA 71.0 ± 0.32 49.6 ± 11.1 -10.0 ± 0.19 -6.1 ± 0.25 3.9 ± 0.42 -100.0 ± 1.91 -61.2 ± 2.54 38.8 ± 4.24
GA + Dual Restarts 83.1 ± 0.27 73.1 ± 4.87 -0.0 ± 0.00 1.6 ± 0.14 1.6 ± 0.14 -0.0 ± 0.02 16.1 ± 1.39 16.1 ± 1.40
Ours - νPI κp = 12.0 81.4 ± 0.39 42.8 ± 14.54 -1.9 ± 0.34 0.9 ± 0.46 3.2 ± 0.72 -19.1 ± 3.41 9.3 ± 4.62 31.7 ± 7.17

As training progresses however, these methods move closer to the boundary of the feasible region, reversing the initial
overshoot. This recovery is most notorious for ADAM, whose multiplier decreases quickly after feasibility. GA with dual
restarts sets the value of the multiplier to zero as soon as feasibility is achieved, thus preventing an incursion into the feasible
set. νPI produces well-behaved multipliers and successfully avoids constraint overshoot.

0 50 100 150 200
Epoch

0

20

40

60

V
io

la
tio

n

0 50 100 150 200
Epoch

0

2

4

6

8

M
ul

tip
lie

rs

GA
GA + Dual Restarts
Polyak β= − 0.3

Polyak β= 0.3

Penalized λ p = 16
200 = 0.75

Adam η= 0.0008

νPI p = 16.0

νPI p = 20.0

Figure 20: Dynamics plot for global sparsity under a 30% density target.

Note that for this sparsity task, it is reasonable to expect that the constraint is active at the constrained optimum since more
model capacity correlates with better performance. However, note that νPI is the only method that provides a non-zero
estimate of the Lagrange multiplier. The usefulness of Lagrange multiplier estimates is highlighted in Fig. 21.

Figure 21 considers unconstrained L0-regularization experiments. We use the final value of the multipliers corresponding to
νPI (κp = 16) and νPI (κp = 20) runs as the (fixed) penalty coefficient for 200 epochs in the penalized formulation of the
problem, akin to Louizos et al. (2018). We also include an experiment using the multiplier estimate from GA(equal to zero).

28

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

0 50 100 150 200
Epoch

0

20

40

60

V
io

la
tio

n

Penalized λGA200 = 0 Penalized λ p = 16
200 = 0.75 Penalized λ p = 20

200 = 0.85

Figure 21: Dynamics plot for global sparsity under a 30% density target.

Unsurprisingly, the run with the multiplier of zero leads to 100% density, since the sparsity penalty does not exert any
influence during training. In contrast, the runs with the νPI multiplier estimates not only lead to sparse models but are
also very close to the desired model density by the end of training. This is remarkable since the problem we are solving is
nonconvex, and optimal Lagrange multiplier values may not even exist.

H.2. Ablation on the value of κp

In this section, we fix κi for νPI and ablate on the hyperparameter κp for two sparsity levels. The results are presented in
Fig. 22 and Tables 11 and 12.

40 50
Global Density (%)

97.0

97.5

98.0

A
cc

ur
ac

y
(%

)

Train

40 50
Global Density (%)

87.5

88.0

88.5

Validation

p = 0.0

p = 4.0

p = 14.4

p = 0.008

p = 8.0

p = 16.0

p = 0.08

p = 9.6

p = 20.0

p = 0.8

p = 12.0

p = 24.0

p = 0.0

p = 4.0

p = 14.4

p = 0.008

p = 8.0

p = 16.0

p = 0.08

p = 9.6

p = 20.0

p = 0.8

p = 12.0

p = 24.0

20 30
Global Density (%)

96.0

96.5

97.0

97.5

A
cc

ur
ac

y
(%

)

Train

20 30
Global Density (%)

86.0

87.0

88.0

Validation

p = 0.0

p = 4.0

p = 14.4

p = 0.008

p = 8.0

p = 16.0

p = 0.08

p = 9.6

p = 20.0

p = 0.8

p = 12.0

p = 24.0

p = 0.0

p = 4.0

p = 14.4

p = 0.008

p = 8.0

p = 16.0

p = 0.08

p = 9.6

p = 20.0

p = 0.8

p = 12.0

p = 24.0

Figure 22: Ablation on trade-offs achievable by νPI under global density targets of 50% (top) and 30% (bottom).

29

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

We see that a larger κp leads to more damping and less overshoot. Note that there is a strong correlation between training
accuracy and model density. Hence, it is important to be able to control overshoot in sparsity constraints and take advantage
of the maximum allowed density for the sake of accuracy. There is a range of κp that can achieve such desired sparsity. The
same trend roughly extends to validation accuracy (with some caveats due to generalization errors).

Table 11: Ablation on the κp hyperparameter for a CIFAR10 task with a global density target of ϵ = 50%. κp monotonically
controls the degree of damping and constraint overshoot.

νPI κp Train Acc. Test Acc. Violation Relative Violation

0 97.0 ± 0.10 87.9 ± 0.18 -17.0 ± 0.36 -33.9 ± 0.72
0.008 97.1 ± 0.06 87.4 ± 0.23 -16.6 ± 0.14 -33.2 ± 0.28
0.08 97.0 ± 0.09 87.7 ± 0.29 -16.2 ± 0.42 -32.4 ± 0.84
0.8 97.3 ± 0.07 87.7 ± 0.19 -13.8 ± 0.13 -27.5 ± 0.27
4 97.8 ± 0.10 88.1 ± 0.28 -3.3 ± 0.23 -6.5 ± 0.46
8 97.9 ± 0.06 88.2 ± 0.39 0.4 ± 0.03 0.9 ± 0.06

9.6 98.1 ± 0.07 88.1 ± 0.18 0.1 ± 0.02 0.2 ± 0.04
12 98.0 ± 0.05 87.7 ± 0.14 0.1 ± 0.01 0.2 ± 0.03

14.4 98.0 ± 0.08 88.2 ± 0.17 0.4 ± 0.02 0.7 ± 0.05
16 98.1 ± 0.02 88.3 ± 0.28 0.7 ± 0.02 1.5 ± 0.04
20 98.1 ± 0.05 87.9 ± 0.31 2.0 ± 0.03 4.0 ± 0.07
24 98.1 ± 0.05 88.3 ± 0.15 3.6 ± 0.03 7.2 ± 0.06

Table 12: Ablation on the κp hyperparameter for a CIFAR10 task with a global density target of ϵ = 30%.

νPI κp Train Acc. Test Acc. Violation Relative Violation

0 95.9 ± 0.11 86.4 ± 0.52 -13.9 ± 0.11 -46.3 ± 0.36
0.008 96.0 ± 0.08 86.4 ± 0.27 -13.7 ± 0.13 -45.7 ± 0.43
0.08 95.9 ± 0.10 86.9 ± 0.25 -13.7 ± 0.18 -45.6 ± 0.59
0.8 96.1 ± 0.07 87.2 ± 0.35 -13.1 ± 0.13 -43.6 ± 0.45
4 96.4 ± 0.17 87.2 ± 0.62 -8.7 ± 0.16 -28.9 ± 0.54
8 96.9 ± 0.10 87.6 ± 0.33 -4.0 ± 0.10 -13.3 ± 0.32

9.6 97.1 ± 0.12 87.5 ± 0.45 -3.0 ± 0.18 -10.1 ± 0.60
12 97.3 ± 0.04 87.5 ± 0.28 -1.6 ± 0.11 -5.3 ± 0.37

14.4 97.4 ± 0.08 87.4 ± 0.27 -0.2 ± 0.11 -0.7 ± 0.38
16 97.5 ± 0.11 87.9 ± 0.32 0.8 ± 0.17 2.8 ± 0.57
20 97.6 ± 0.12 88.1 ± 0.38 3.3 ± 0.11 10.9 ± 0.36
24 97.8 ± 0.06 87.9 ± 0.41 5.7 ± 0.11 19.0 ± 0.36

H.3. ADAM

We also experimented with a range of learning choices for ADAM to explore their effect on constraint satisfaction and
overshoot. The results are shown in Fig. 23, and Tables 13 and 14.

We observe that the influence of ADAM’s learning on the constraint overshoot is not monotonic. When the step-size is small,
ADAM runs do not satisfy the constraint at the end of training. As the step-size increases, satisfaction is achieved together
with varying degrees of overshoot into the feasible region. A range of larger step-sizes that lie at the sweet spot of almost
exact constraint satisfaction.

The sensitivity and non-monotonicity of the step-size make the tuning of the step-size hyperparameter for ADAM challenging.
Note that we restricted our experiments to the default EMA coefficients for ADAM following PyTorch: β1 = 0.9 and
β2 = 0.999.

30

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

45 50
Global Density (%)

92.0

94.0

96.0

98.0

A
cc

ur
ac

y
(%

)

Train

45 50
Global Density (%)

80.0

85.0

Validation

η= 1e− 05

η= 1e− 03

η= 8e− 05

η= 8e− 03

η= 1e− 04

η= 1e− 02

η= 8e− 04

η= 8e− 02

η= 1e− 05

η= 1e− 03

η= 8e− 05

η= 8e− 03

η= 1e− 04

η= 1e− 02

η= 8e− 04

η= 8e− 02

30 40 50
Global Density (%)

87.5

90.0

92.5

95.0

97.5

A
cc

ur
ac

y
(%

)

Train

30 40 50
Global Density (%)

82.0

84.0

86.0

88.0

Validation

η= 1e− 05

η= 1e− 03

η= 8e− 05

η= 8e− 03

η= 1e− 04

η= 1e− 02

η= 8e− 04

η= 8e− 02

η= 1e− 05

η= 1e− 03

η= 8e− 05

η= 8e− 03

η= 1e− 04

η= 1e− 02

η= 8e− 04

η= 8e− 02

Figure 23: Ablation on the density-accuracy trade-offs achievable by ADAM under global density targets of 50% (top) and
30% (bottom).

Table 13: Ablation on the step-size hyperparameter for ADAM on a CIFAR10 task with a global density target of ϵ = 50%.

Adam η Train Acc. Test Acc. Violation

1 · 10−5 98.52 88.17 2.02
8 · 10−5 97.97 88.62 -7.30
1 · 10−4 97.81 88.32 -6.70
8 · 10−4 97.36 87.68 -0.99
1 · 10−3 97.23 87.49 -0.08
8 · 10−3 95.52 86.65 0.04
1 · 10−2 95.25 85.89 0.01
8 · 10−2 90.45 77.04 -0.02

H.4. Momentum

We carried out similar ablations on the momentum coefficient of POLYAK and NESTEROVusing both positive and negative
values. The results are shown in Fig. 24, and Tables 15 and 16. We observe significant overshoot into the feasible region for
all attempted values, compared to the desired target density of 30%.

31

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Table 14: Ablation on the step-size hyperparameter for ADAM on a CIFAR10 task with a global density target of ϵ = 30%.

Adam η Train Acc. Test Acc. Violation

1 · 10−5 98.32 88.46 21.66
8 · 10−5 97.05 87.65 -6.94
1 · 10−4 96.99 88.01 -6.34
8 · 10−4 96.40 87.36 -2.61
1 · 10−3 96.35 86.71 -1.53
8 · 10−3 94.74 86.31 -0.88
1 · 10−2 94.55 85.52 -0.73
8 · 10−2 87.78 81.41 -5.45

20 30
Global Density (%)

94.0

94.5

95.0

95.5

96.0

A
cc

ur
ac

y
(%

)

Train

20 30
Global Density (%)

85.0

86.0

87.0

Validation

β= − 0.9

β= − 0.1

β= 0.5

β= − 0.7

β= 0.0

β= 0.7

β= − 0.5

β= 0.1

β= 0.9

β= − 0.3

β= 0.3

β= − 0.9

β= − 0.1

β= 0.5

β= − 0.7

β= 0.0

β= 0.7

β= − 0.5

β= 0.1

β= 0.9

β= − 0.3

β= 0.3

20 30
Global Density (%)

94.5

95.0

95.5

96.0

A
cc

ur
ac

y
(%

)

Train

20 30
Global Density (%)

84.0

85.0

86.0

87.0

Validation

β= − 0.9

β= − 0.1

β= 0.5

β= − 0.7

β= 0.0

β= 0.7

β= − 0.5

β= 0.1

β= 0.9

β= − 0.3

β= 0.3

β= − 0.9

β= − 0.1

β= 0.5

β= − 0.7

β= 0.0

β= 0.7

β= − 0.5

β= 0.1

β= 0.9

β= − 0.3

β= 0.3

Figure 24: Trade-off plot under a 30% global density target for NESTEROV (top) and POLYAK (bottom) momentum.

32

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Table 15: Ablation on the momentum hyperparameter for NESTEROV on a CIFAR10 task with a 30% global density target.

Nesterov β Train Acc. Test Acc. Violation

-0.9 96.21 87.28 -13.36
-0.7 96.19 87.23 -13.67
-0.5 96.01 86.93 -13.93
-0.3 96.16 86.75 -13.71
-0.1 95.95 86.15 -13.88
0.0 95.79 86.42 -13.78
0.1 95.84 86.47 -14.05
0.3 95.79 86.61 -13.64
0.5 95.75 86.72 -14.02
0.7 95.39 86.69 -14.44
0.9 94.04 84.89 -17.20

Table 16: Ablation on the momentum hyperparameter for POLYAK on a CIFAR10 task with a 30% global density target.

Polyak β Train Acc. Test Acc. Violation

-0.9 96.21 87.64 -13.36
-0.7 96.31 87.29 -13.71
-0.5 96.13 87.18 -13.82
-0.3 95.99 86.96 -14.10
-0.1 96.02 87.29 -13.50
0.0 95.79 86.42 -13.78
0.1 96.10 86.55 -14.21
0.3 95.72 86.52 -14.00
0.5 95.74 87.10 -14.03
0.7 95.46 85.81 -14.63
0.9 94.39 83.96 -17.02

33

	
	Introduction
	Related Works
	Lagrangian Optimization
	PI Control for Constrained Optimization
	PI algorithm
	Connections to optimization methods
	Interpreting the updates of PI
	Oscillator dynamics
	Practical remarks

	Experiments
	Hard-margin SVMs
	Fairness
	Sparsity

	Conclusion
	Appendix

	 Appendix
	Further discussion on prior works using PID controls in optimization
	Connections between PI and momentum methods
	Interpreting the updates of PI
	Analysis of continuous-time PI dynamics as an oscillator
	Oscillator dynamics of GD/PI flow
	Dynamics of GD/PI flow for a constrained quadratic program

	Illustrative 2D nonconvex problem
	Experimental details
	Linear SVM experiments
	Sparsity experiments
	Fairness experiments

	Comprehensive results on the sparsity task
	Global
	Layer-wise

	Additional Experiments
	Dynamics
	Ablation on the value of p
	Adam
	Momentum

