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ABSTRACT

While the scaling laws of large language models (LLMs) training have been exten-
sively studied, optimal inference configurations of LLMs remain underexplored.
We study inference scaling laws and compute-optimal inference, focusing on the
trade-offs between model sizes and generating additional tokens with different in-
ference strategies. As a first step towards understanding and designing compute-
optimal inference methods, we studied cost-performance trade-offs for inference
strategies such as greedy search, majority voting, best-of-n, weighted voting, and
two different tree search algorithms, using different model sizes and compute bud-
gets. Our findings indicate smaller models (e.g., Llemma-7B) can outperform
larger models given the same computation budgets, and that smaller models paired
with advanced inference algorithms yield Pareto-optimal cost-performance trade-
offs. For instance, the Llemma-7B model, equipped with our novel tree search
algorithm, consistently outperforms Llemma-34B with standard majority voting
on the MATH benchmark across all FLOPs budgets. We hope these findings con-
tribute to a broader understanding of inference scaling laws for LLMs.
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Figure 1: Inference scaling laws exhibited for Pythia (Biderman et al., 2023) models and GSM8K
test error. We evaluate the error rate (lower is better) of models using various sizes and numbers of
sampled solutions for weighted majority voting. Left: the error rate for each model size decreases
steadily as inference-compute increases, and converges at the end. Right: the optimal model size
(shown as stars for R , and 2*7 FLOPs) varies based on the inference-time compute budget.
For instance, smaller models are compute-optimal at and FLOPs. Both axes are log scale.
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1 INTRODUCTION

Scaling laws of neural networks (Hestness et al., 2017; Rosenfeld et al., 2019) have been established
across a range of domains, including language modeling (Kaplan et al., 2020; Hoffmann et al., 2022;
OpenAl, 2023), image modeling (Henighan et al., 2020; Yu et al., 2022; Peebles & Xie, 2023), video
modeling (Brooks et al., 2024), reward modeling (Gao et al., 2023), and board games (Jones, 2021).
These studies have demonstrated how model performance is influenced by both the size of the model
and the amount of training computation. However, there is limited knowledge on how varying the
compute during inference affects model performance after the model has been trained.

To improve the task performance of large language models (LLMs), inference techniques typically
involve additional computation as a performance maximization step at inference time (Nye et al.,
2021; Wei et al., 2022; Wang et al., 2022b; Yao et al., 2023; Chen et al., 2024b; Pfau et al., 2024).
The computational cost of these techniques must be taken into account for compute-optimal infer-
ence. For example, a Monte Carlo Tree Search (MCTS) method (Jones, 2021) may improve task
performance, but potentially require much more compute than simply sampling solutions multiple
times. Generally speaking, we need a comprehensive understanding of how various inference-time
methods (e.g., best-of-n, majority voting (Wang et al., 2022a; Li et al., 2023)) trade off between
performance and cost. To improve our understanding, this paper presents a thorough empirical
evaluation with careful analysis over various configurations of representative LLMs and inference
algorithms.

Specifically, we explore how to select an optimal size for the language model and an effective infer-
ence strategy (e.g., greedy search, majority voting, best-of-n, weighted voting, and their tree-search
variants) to maximize performance (i.e., accuracy) with a given compute budget. We control the
inference computation (FLOPs) of a fixed model by generating more tokens through the language
model', sampling further candidate solutions, and ranking them with a reward model. We analyze
the performance of fine-tuned models of various sizes given different inference FLOPs on mathe-
matical reasoning benchmarks (e.g., GSMS8K test set (Cobbe et al., 2021a) and MATHS00 test set
(Hendrycks et al., 2021b; Lightman et al., 2023b)). Our experiments cover several model families,
including general-purpose LLMs (e.g., Pythia (Biderman et al., 2023) & Mistral (Jiang et al., 2023))
as well as math-specialized ones (e.g., Llemma (Azerbayev et al., 2023)).

Our results on Pythia (Fig. 1) illustrate how performance scales with increased inference compute
across various model sizes. Typically, increasing the compute budget leads to higher accuracy until
the accuracy reaches saturation. As the compute budget increases, smaller models initially perform
better than larger ones, but once the accuracy of the smaller models saturates, the larger models
have favorable performance. The right panel of Figure 1 demonstrates that the optimal model size
for inference varies with different levels of computation. However, in real-world deployment, the
available computation is typically much lower than the point where the accuracy of relatively small
models saturates and larger models begin to show their advantage (as shown in Figure 4, where the
7B model outperforms the 34B model until 128 Llemma 7B solutions are sampled). This indicates
that relatively smaller models could be more compute-optimal for inference.

We analyse the asymptotic behaviour of sampling and voting-based inference strategies, showing
their convergence upper bound and rate of convergence. Given a dataset, the accuracy of the lan-
guage model will ultimately saturate to a fixed limit which is determined by the output probabilities
assigned by the model, exhibiting exponential convergence speed through sampling and voting. This
implies that, without an oracle verifier, simple strategies like sampling cannot achieve perfect ac-
curacy even with an infinite number of samples, leading to diminishing returns. Therefore, this
highlights the necessity for more sophisticated inference algorithms.

We have also found that the commonly-used MCTS method does not perform well with weighted
voting, as it often yields many unfinished solutions, hence having less effective votes. To address this
issue, we propose a novel tree search algorithm, REward BAlanced SEarch (REBASE), which pairs
well with weighted voting and achieves a Pareto-optimal trade-off between accuracy and inference
compute. The key idea of REBASE is to use a node-quality reward to control node expansion, which
eliminates the need for explicit rollouts while ensuring enough candidate solutions for voting.

"Following Uesato et al. (2022), we refer to the main language model generating outputs as the policy model.
It can be paired with a reward model, which scores outputs from the policy model to facilitate inference.
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In our experiments, REBASE consistently outperforms sampling and MCTS methods across all set-
tings, models, and tasks. Importantly, we find that REBASE with a smaller language model typi-
cally achieves a Pareto-optimal trade-off. For instance, we show that the Llemma-7B model can
achieve competitive accuracy to a Llemma-34B model while using 2x less FLOPs when evaluat-
ing on MATHS500 (Fig. 4) or GSMS8K (Fig. 5). Moreover, Llemma-7B with REBASE outperforms
Llemma-34B with standard majority voting across all compute budgets. Our results show the value
of using smaller models with advanced inference-time algorithms, and the benefits of new algo-
rithms for achieving better returns on inference-time compute.

Our contributions are summarized as follows:

* We explore new inference scaling laws by evaluating the performance of various model
sizes under a fixed inference strategy. We show that smaller models can outperform larger
ones under the same compute budget by increasing the number of samples.

* We provide new theoretical analysis of the scaling behavior of voting methods, presenting
convergence bounds and rates. Our analysis shows performance limits and diminishing
returns from sampling, pointing to the need for more sophisticated inference algorithms.

* We formulate a new compute-optimal inference problem and propose a novel tree search
algorithm, REBASE, which is compute-optimal compared to widely-used sampling and
MCTS methods. Our results show benefits of using smaller models with advanced infer-
ence algorithms, and new algorithms for achieving better cost-performance tradeoffs.

2 RELATED WORKS

Mathematical Reasoning with LLMs. Large language models have made significant progress
in recent years, and have exhibited strong reasoning abilities (Brown et al., 2020; Hoffmann et al.,
2022; Chowdhery et al., 2022; Lewkowycz et al., 2022). Mathematical problem solving is a key
task for measuring LLM reasoning abilities (Cobbe et al., 2021a; Hendrycks et al., 2021b). Ling
et al. (2017) first developed the method of producing step by step solutions that lead to the final
answer. Later, (Cobbe et al., 2021b) extended the work by training a verifier for evaluating and
ranking solutions. Subsequent research (e.g., Lewkowycz et al. (2022)) has shown the performance
benefits of inference-time techniques such as majority voting (Wang et al., 2022a) and weighted
majority voting (Li et al., 2023). We choose problem solving in mathematics as the task to study
compute-optimal strategies since it allows us to accurately evaluate problem solving ability.

Inference Strategies of LLM Problem Solving. A variety of inference strategies have been de-
veloped to generate sequences with a trained model. Deterministic methods such as greedy decod-
ing and beam search (Teller, 2000; Graves, 2012) find highly probable sequences, often yielding
high quality results but without diversity. Sampling algorithms (e.g., temperature sampling (Ackley
et al., 1985)) can produce a diverse set of results which are then aggregated to achieve higher ac-
curacy (e.g., via majority voting (Wang et al., 2022a)). Recent methods combine search algorithms
with LLMs, including breadth-first or depth-first search (Yao et al., 2023), Monte-Carlo Tree Search
(MCTS) (Zhang et al., 2023; Zhou et al., 2023; Liu et al., 2024; Choi et al., 2023), and guided beam
search (Xie et al., 2023). All of these methods show that using search at inference time can lead
to performance gains in various tasks. However, the trade-off for the improved performance is the
use of compute to perform the search. Analyzing the resulting cost-performance trade-offs remains
understudied. In this paper, we systematically analyze the trade-off between compute budget and
problem-solving performance, and propose a tree search method that is empirically Pareto-optimal.

Process Reward Models. Process reward models (PRMs) have emerged as a technique to im-
prove the reasoning and problem-solving capabilities of LLMs. These models assign rewards to the
intermediate steps of the LLM generated sequences. PRMs have been shown effective in selecting
reasoning traces with a low error rate, and for providing rewards in reinforcement learning-style
algorithms (Uesato et al., 2022; Polu & Sutskever, 2020; Gudibande et al., 2023). Ma et al. (2023)
applies a PRM to give rewards on the intermediate steps and guide the multi-step reasoning process.
The PRM can be either trained on human labeled data (Lightman et al., 2023a) or model-labeled
synthetic data (Wang et al., 2023). In our work, we use the PRM as the reward model for selecting
generated solutions, and for selecting which partial solutions to explore in tree search.



Under review as a conference paper at ICLR 2025

Compute—OP‘t}mal Compu‘te_—OPtimal
Training Inference
'Trodnin::’ MOA;_T”\‘ Inference
Tokens Size // S‘tr‘a‘tegie,

Greedy / Best-of-¥ /
Tree-Search / ...

T /2T /.. #B / 34B / ...

\/

W ]
Chinchilla Scaling Low Ours

Figure 2: Illustration of compute-optimal scaling laws in training and inference. The Chinchilla
scaling law (Hoffmann et al., 2022) shows how to choose a model size and number of training tokens
under a training-compute budget, while our work shows how to choose a model size and an inference
strategy under an inference-compute budget.

3 COMPUTE-OPTIMAL INFERENCE FOR PROBLEM-SOLVING

We explore the following question: Given a fixed FLOPs budget, how should one select an optimal
model size for the policy model, and an effective inference strategy to maximize performance (i.e.,
accuracy)? We are the first to formulate this problem and study the associated inference-time scaling
laws, setting our work apart from previous scaling law studies (Fig. 2).

To address this, we represent the problem-solving error rate E(N,T'; S) as a function of the number
of model parameters N, the number of generated tokens 7" and the inference strategy S. The com-
putational budget C' is a deterministic function FLOPs(N, T'; S), based on N and T'. Our goal is to
minimize E under the test-time compute constraint FLOPs(N, T, S) = C:

(Nopt (C), Tops (C); S) = arg min E(N,T;S)
(N,T,S) st. FLOPs(N,T,S)=C

where Nopi (C) and To,p (C) denote the optimal allocation of a computational budget C'.

Here, the inference computation (FLOPs) for a fixed model can be modulated by generating more
tokens with the policy model and an inference strategy, e.g., sampling additional candidate solutions
and subsequently ranking them using a reward model. As the inference strategies, we primarily con-
sider sampling and tree-search approaches paired with re-ranking or majority voting. This includes
greedy search, majority voting, best-of-n, weighted voting, and their tree-search variants.

3.1 INFERENCE STRATEGIES
We consider the following inference strategies which are popularly used in practice:

¢ Greedy search. This strategy generates tokens one at a time by selecting the highest probability
token at each step. It is computationally efficient but often suboptimal in terms of diversity.

* Best-of-n. This strategy, also known as rejection sampling, generates a set of candidates and
chooses the one with the highest score given by the reward model.

* Majority voting. In this strategy, a set of candidates are generated, and the final answer to the
problem is determined by the most frequently occurring answer in all the outputs.

* Weighted majority voting. This strategy is a variant of majority voting in which the candidates
are weighted based on the scores given by the reward model.

We say a strategy is sampling-based if it uses a standard autoregressive sampling algorithm (e.g.,
temperature sampling) to generate the candidate set (greedy search is separate, in that it only has a
single deterministic candidate). A tree-search variant uses a tree search to generate the candidate
set. Before discussing tree-search methods, we analyze sampling-based voting below.
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Theoretical analysis of sampling-based voting. We present theoretical results on the asymptotic
behavior of voting-based strategies given infinite compute in Theorems | & 2. Informally, we show
that the accuracy of standard/weighted majority voting converges with infinite samples, and the
limit only depends on the distribution modeled by the language model (and the reward model).
This theoretical finding is also aligned with our empirical findings shown in Sec. 4.2, which show
saturation at high sampling budgets. The proofs are presented in Appendix A.

Notations and assumptions. Let )V be a finite vocabulary and V* its Kleene closure, i.e., the set
of all strings. Given a problem x, we say a language model answers y to this problem if the model
outputs rey where r € V* can be any “reasoning path” and e € ) denotes a special token that marks
the end of reasoning. We further assume that the answer string is always shorter than L tokens, i.e.,
ly| < L for some fixed L € N* where |y| denotes the length of y. For a language model , denote
by 7 (v|w) the probability of generating v given input (prompt) w. For a reward model p, denote by
p(v) the score it assigns to the string v. We use I to denote the indicator function.

Theorem 1. Consider a dataset D = {(x;,y;)}™, where x; and y; denotes input and true answer,
respectively. For a language model 7, denote by accMV (D; 1) the accuracy on D using majority
voting with n samples. Following the notations and assumptions defined above, we have:

n—-+o0o

1 m
lim accMY(D;7) = . Z]I [yi = arg max Z (reyaji)] (almost surely);

and E [acc)V(D;7)] = %ZH [y, = arg max Z (reylz;)| — O(c™™)

lyl<L reyv*

for some constant ¢ > 1.

Theorem 2. Consider a dataset D = {(x;,y;) Y. For a language model 7 and a reward model
p, denote by acc) (D;r, p) the accuracy on D using weighted majority voting with n_samples.
Following the notations and assumptions defined above, we have:

n—-+oo

1 m
lim acc)V(D;m,p) = Z]I [y, = arg max Z (reyxi)p(z,;rey)] (almost surely);
m <

and E [acc V(D;7 p)] = ”11 Z]I [yl = arg max Z w(rey|z;)p(zirey) | — O(c™)

for some constant ¢ > 1.

Remarks. Theorems | & 2 state the convergence of the accuracy with increasing number of sam-
ples, indicating that the performance gains of using more samples will saturate for any fixed models.
The limit is determined by the likelihood of generating the correct answers through all possible rea-
soning paths (and the likelihood should be viewed as a weighted sum for weighted majority voting).
This motivates us to consider inference algorithms that search for “good” reasoning paths, such as
the tree-search-based variants detailed in Sec. 3.1.1 & 3.1.2.

Theorem | & 2 also present insights to compare standard majority voting with weighted majority
voting. Informally, as long as the reward model is “better than random”, i.e., assigning higher
rewards to correct solutions on average, the accuracy limit of weighted majority voting is higher
than that of majority voting. In our experiments, we consistently find that weighted majority voting
dominates majority voting. Thus, we focus on best-of-n and weighted majority voting in the main
paper and defer majority voting results to Appendix D.

3.1.1 MONTE CARLO TREE SEARCH (MCTS)

Monte Carlo Tree Search (MCTS) has proven effective in domains such as board games where
strategic decision-making is required (Silver et al., 2016; 2017; Jones, 2021). Recent work has
shown that adapting MCTS to the context of LLMs can enhance the text generation process (Zhang
et al., 2023; Zhou et al., 2023; Liu et al., 2024; Choi et al., 2023; Chen et al., 2024a; Tian et al.,
2024; Chen et al., 2024a). In this context, MCTS is paired with a value model to score and guide
the exploration steps. For additional background, we provide a review of MCTS in Appendix B.
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Figure 3: Illustration of one iteration of REward BAlanced SEarch (REBASE).

Recent work in MCTS or its variants (e.g., Tree of Thoughts (Yao et al., 2023)) mainly focus on
improving the performance (e.g., accuracy) on the studied tasks. However, generic comparisons
of MCTS with conventional methods like best-of-n and majority voting in terms of computational
budget, measured in generated tokens or processing time are scarce or indicate potentially unfavor-
able cost-performance tradeoffs. For example, MCTS consumes substantially more resources, often
requiring dozens of times more generated tokens than simpler methods. Specifically, a significant
portion of the paths in the search tree are used to estimate and select nodes, and these paths do not
necessarily become a part of the final candidate solution, although MCTS ensures that the sampled
solutions comprise high-quality intermediate steps. In contrast, sampling methods generate multiple
solutions in parallel and independently, and all the generated sequences are included in the candi-
date solutions. However, the intermediate steps in these sequences are not guaranteed to be of high
quality, as there is no mechanism for pruning poor steps or exploiting promising ones.

This highlights the need for a new tree search method that can achieve a comparable (or better) per-
formance as MCTS, and that is computationally less costly, with a cost similar to weighted majority
voting and best-of-n. This motivates our new method, Reward Balanced SEarch (REBASE).

3.1.2 REWARD BALANCED SEARCH (REBASE)

The REBASE tree search method, illustrated in Fig. 3, inherits the exploitation and pruning prop-
erties of tree search, while using a reward model alone to estimate quality of intermediate nodes.
This saves on computation compared to methods such as MCTS, since it does not involve estimate
node quality with explicit rollouts. In short, the underlying idea is to use a process reward model to
determine how much each node should be expanded at each depth. Namely, REBASE expands nodes
at a given depth according to their softmax-normalized reward scores, subject to a total expansion
budget. We describe this procedure in more detail below.

Notations. We view the fine-tuned LLM as a policy my which generates the solution step by step.
Given a question x and the first k steps of a solution 7 - - - 7, the (k + 1)-th step is sampled from
mg(+|xry - - - ). REBASE generates a solution tree during inference, in which the root node is the
question x, and other nodes corresponds to solution steps. When generating solution trees, we
generate children of rj, by sampling from 7y (-|ry - - - 7). We use the corresponding solution step
to denote a node. The reward of a node r, is generated by the PRM: R(ry) := R(xry - - - 1k).
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Figure 4: MATH inference scaling across inference strategies and model sizes (lower is better).
MCTS configurations can be found in the Appendix. The left/right panel shows the error rate on
MATH based on weighted majority/best-of-n. REBASE is the compute-optimal strategy at all bud-
gets, with 7B typically the optimal model size.

Initialization. Given the question x, a balance temperature 73, > 0, and target number of generated
solutions N, we sample [V instances of the first step for the question, yielding all the nodes of depth
1 in the search tree. We let the sampling budget of depth 0, By, to N at initialization.

Reward assignment and update. In the ¢-th iteration, the PRM assigns the rewards to all the nodes
at depth 7. After that, the algorithm examines whether the solutions up to depth ¢ are complete.
Supposing there are C; completed solutions, we update the sampling budget using B; <— B;_1 —Cj.
If B; = 0, the process ends, and we obtain /N solutions.

Exploration balancing and expansion. For all of the nodes n; with reward R(n;) in the depth i of
the tree, we calculate the expansion width of the n; as:

_ round [ B, &2 (B(n5)/Th)
W; = Round (Blzkexp (R(nk)/Tb)) '

Then we sample W children for n; for all the nodes in depth 4, and start the next iteration.

4 EXPERIMENTS
Our experiments are centered around two main questions:

* Compute-optimal model size: How does performance scale as inference-time compute is
increased with a fixed inference strategy, but with varying model size?

¢ Compute-optimal inference strategy: How does performance scale as inference-time
compute is increased with various inference strategies (and various model sizes)?

We detail our experimental setup below.

4.1 SETUP

Datasets. We conduct experiments on two mathematical problem-solving datasets to investigate
the effects of scaling inference compute for both challenging and simpler problems. Specifically,
MATH (Hendrycks et al., 2021a) and GSM8K (Cobbe et al., 2021b) are datasets containing high
school mathematics competition-level problems and grade-school level mathematical reasoning
problems, respectively. Following (Lightman et al., 2023b; Wang et al., 2024; Sun et al., 2024),
we use the MATHS500 subset as our test set.

Policy model (solution generator). To study the how performance scales as inference compute is
increased using a fixed strategy, the primary axis of variation is model size. Therefore, we choose
Pythia (Biderman et al., 2023) as our base models, since various model sizes are available in the
Pythia family. To study inference scaling under different inference strategies (e.g., tree search,
weighted majority voting), we use math-specialized Llemma models (Azerbayev et al., 2024). We
finetune these models on the MetaMath dataset (Yu et al., 2024) using full parameter supervised
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Figure 5: GSMBSK inference scaling across inference strategies and model sizes (lower is bet-
ter). The left/right panel shows the problem-solving error rate on GSM8K based on weighted
majority/best-of-n. MCTS is not included in the comparison because of its poor compute-accuracy
trade-off. REBASE is the compute-optimal inference strategy, and the optimal model size varies.

fine-tuning (Full-SFT), The finetuning configuration is given in the Appendix. Additionally, we test
the Mistral-7B (Jiang et al., 2023) to expand our findings across different models and architectures.

Reward model. All of the experiments use the same Llemma-34B reward model, which we fine-
tuned on the synthetic process reward modeling dataset, Math-Shepherd (Wang et al., 2024). We
added a reward head to the model, enabling it to output a scalar reward at the end of each step.

Inference configuration. We use sampling and tree search methods to generate multiple candi-
dates, and select the answer through best-of-n, majority voting, or weighted voting. Each con-
figuration is run multiple times to calculate the mean and variance, which mitigates effects from
randomness and thereby improves the reliability of our conclusions. Unless explicitly stated other-
wise, each point in the Figures in the following section represents 2° samples, where i is an integer
starting from 0.

4.2 COMPUTE-OPTIMAL MODEL SIZE

To compare the inference compute budgets of different models, we plot the figures with the num-
ber of FLOPs used per question during inference. We compute the inference FLOPs based on the
standard formula from (Kaplan et al., 2020).

Scaling law of compute-optimal inference for model size. Fig. 1 shows the relationship between
inference compute and error rate for different model sizes. The error rate first decreases steadily and
then starts to saturate. Initially, sampling many times from smaller models is compute-optimal. At
larger compute budgets the larger models are preferable, since the performance of small models has
saturated. As highlighted in the right panel of Fig. 1, the optimal model size varies based on the
inference budget. We performed a regression analysis on inference FLOPs C' and model sizes N
to establish a relationship between a given computational budget and its optimal model size. The
resulting equation, log;, (C) = 1.191og;, (V) + 2.03, lets us estimate the optimal inference model
size for a specific compute budget.

Llemma-7B achieves competitive accuracy to Llemma-34B with less compute. Fig. 4 and
Fig. 5 shows the relationship between error rate and inference FLOPs for Llemma 7B and Llemma
34B using different inference strategies. Llemma-7B requires around 2x less total FLOPs than
Llemma-34B to achieve comparable accuracy. This held across inference strategies (sampling strate-
gies, MCTS, REBASE) and tasks (MATH, GSM8K). This result suggests that, with the same training
dataset and model family, generating more tokens with a suitable inference strategy using a smaller
model can have more favorable cost-performance tradeoffs than using a larger model.

4.3 COMPUTE-OPTIMAL INFERENCE STRATEGY

REBASE is Pareto-optimal. REBASE consistently achieves the best cost-performance tradeoffs,
outperforming the sampling-based methods in all settings when fixing the model and the evaluation
task (Fig. 4, 5, 6, and 7). For example, in Fig. 4, REBASE is the compute-optimal strategy at all
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Figure 6: MATH inference scaling across inference strategies and models (lower is better). The
tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B (right). In the legend,
W.M. and BoN refer to weighted majority and best-of-n, respectively.
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Figure 7: GSMS8K inference scaling across inference strategies and models (lower is better). The
tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B (right). In the legend,
W.M. and BoN refer to weighted majority and best-of-n, respectively.

inference compute budgets, with 7B typically the optimal model size. On the other hand, MCTS
underperforms the sampling-based methods at each compute budget, likely due to its costly rollouts
(Fig. 4) compared to the efficient use of the reward model in REBASE.

Table | shows that REBASE achieves better accuracy with a lower compute budget compared to
sampling-based weighted voting. With the 7B model, REBASE achieves higher accuracy with 7
times less compute. This finding is novel, and differs from previous tree search methods that typi-
cally improve the performance at the cost of higher computational expense compared to sampling-
based voting (Chen et al., 2024a; Xie et al., 2023).

Weaker models gain more from tree search. For example, our proposed REBASE leads to 5.3%,
3.3%, and 2.6% performance gains on MATH for Mistral-7B, Llemma-7B, Llemma-34B, respec-
tively. The order of accuracy increase is inversely related to the model’s corresponding greedy search
accuracy on those datasets. This suggests that weaker models, as indicated by their lower greedy
search accuracy, benefit more from tree search methods like REBASE.

REBASE saturates later than sampling with higher accuracy. From Fig. 6 and Fig. 7, we ob-
serve that both sampling and REBASE saturate early in GSM8K and relatively late in MATH. We
attribute this to the difference of in difficulty levels between GSM8K and MATH. Specifically, the
LLM may assign high probability only to correct solutions in easy problems, but spread probability
mass across solutions in harder problems. Thus, harder problems may require aggregating over more
solution paths to converge to the distribution over answers shown in Theorems 1 & 2. On MATH
(Fig. 6), we see that REBASE finally saturates with a higher accuracy than sampling. We hypoth-
esize the reason is that drawing samples from REBASE corresponds to sampling from a policy that
assigns high probability to true answers compared to sampling from the underlying language model.
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Table 1: REBASE with a lower compute budget has better accuracy than sampling with a higher
compute budget. We use weighted voting to aggregate candidates for both sampling and REBASE.

# SAMPLES FLOPs MATHS500

MISTRAL-7B
SAMPLING 256 8.70 x 1014 42.8
REBASE 32 1.36 x 1014 45.0
LLEMMA-7B
SAMPLING 256 10.0 x 104 45.5
REBASE 32 1.48 x 1014 46.8
LLEMMA-34B
SAMPLING 64 12.1 x 1014 46.7
REBASE 32 7.08 x 1014 49.2

If this was indeed the case, Theorems | & 2 indicate that the upper bound would become higher. We
leave formally analyzing the behavior of tree search algorithms as interesting future work.

5 CONCLUSIONS, LIMITATIONS, AND DISCUSSIONS ON CONCURRENT
WORKS

Conclusions. We study the relationship between task performance and the amount of compute
expended during inference for various model sizes, model families, and inference strategies, to form
empirical inference scaling laws. These relationships let us reason about compute-optimal inference:
inference configurations that give the best performance at a given compute budget.

Our results lead to three main takeaways. First, we find that using a smaller model and generat-
ing more tokens in an inference strategy often outperforms using a larger model at a fixed compute
budget. This has implications for models deployed in the real world, where inference compute is
constrained in various ways. Specifically, it is potentially beneficial to deploy smaller models with
more sophisticated inference strategies for better cost-performance tradeoffs. Second, we showed
that in the limit of infinite compute (allocated by drawing more samples), sampling-based majority
voting strategies inevitably saturate to a distribution that depends on the underlying generation pol-
icy. Hence, it is of interest to alter the sampling distribution by designing an alternative inference
strategy. Third, we design such an inference strategy—the novel REBASE tree search—and find it is
Pareto optimal, in that it achieves the best performance across all tested compute budgets. Notably,
it outperforms commonly used weighted majority voting and MCTS methods that have attracted
much interest and widespread use. This finding not only shows the strength of REBASE, but also
indicates that there is large headroom to improve language model performances via inference-time
algorithms.

Limitations. Our empirical analysis specifically targets mathematical problem-solving. Investi-
gating the inference scaling laws and compute-optimal inference strategies for tasks beyond mathe-
matical problem-solving would be a valuable direction for future research. Additionally, we mainly
evaluate the proposed REBASE on the GSM8K and MATHS00 datasets. We speculate that the
REBASE algorithm, which assumes access only to a function that assigns scores to nodes, will be
effective in tasks beyond those studied here.

10



Under review as a conference paper at ICLR 2025

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147-169, 1985.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. arXiv preprint arXiv:2310.10631, 2023.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. arXiv preprint
arXiv:2304.01373, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models—as-world-simulators.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877-1901, 2020.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process, 2024a.

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree
search useful for llm planning? it depends on the discriminator. arXiv preprint arXiv:2402.10890,
2024b.

Sehyun Choi, Tianqing Fang, Zhaowei Wang, and Yangqiu Song. Kcts: Knowledge-constrained
tree search decoding with token-level hallucination detection, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaL.M:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael

11


https://arxiv.org/abs/2108.07732
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

Under review as a conference paper at ICLR 2025

Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzman, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-

12



Under review as a conference paper at ICLR 2025

hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shugiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835-10866. PMLR, 2023.

Alex Graves. Sequence transduction with recurrent neural networks, 2012.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary llms. arXiv preprint
arXiv:2305.15717, 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.

In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021b.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive genera-
tive modeling. arXiv preprint arXiv:2010.14701, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Andy L Jones. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

13


https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2025

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Mak-
ing language models better reasoners with step-aware verifier. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 5315-5333, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.291. URL
https://aclanthology.org/2023.acl-long.291.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023a.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023b.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158-167,
2017.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding, 2024.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114,2021.

OpenAl. Gpt-4 technical report, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195-4205, 2023.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation in
transformer language models. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=NikbrdtYvG.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. arXiv preprint arXiv:1909.12673, 2019.

David Silver, Aja Huang, Chris ] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354-359, 2017.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Virginia Teller. Speech and language processing: an introduction to natural language processing,
computational linguistics, and speech recognition, 2000.

14


https://aclanthology.org/2023.acl-long.291
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG

Under review as a conference paper at ICLR 2025

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. To-
ward self-improvement of llms via imagination, searching, and criticizing. arXiv preprint
arXiv:2404.12253, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce 1lms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
International Conference on Learning Representations (ICLR 2023), 2022a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou.
Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 2022.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie.
Self-evaluation guided beam search for reasoning, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models, 2024.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan.
Planning with large language models for code generation, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2023.

15



Under review as a conference paper at ICLR 2025

A  OMITTED PROOFS
A.1 PROOF OF THEOREM 1

Proof. Recall that we assume the answer must be shorter than L tokens. Let A = {v | |v| < L} be
the set of all possible answers. Let 7(y | =) be the probability of the language model 7 outputting
the answer y to the question x after marginalizing over the “reasoning paths”, i.e.,

7y lx) =Y w(reylx).

rey*

Given an input z, Assume that y* = arg max 7(y|x), ¥’ = argmax 7(y|z), and denote
yeA yeA\{y~}

6 =7(y*|x) — 7(y|x).

For any y, denote by f,,(y) the number of times that the model answers y in the first n samples. Let
E, be the event that majority voting with n samples does not output y*. We note that E),, happens
only if there exists y” such that f,,(y") > f,.(y*). Therefore, by union bound,

P(E,) <PEy" € A\{y"}, fuy”) = fu(y™))
< D> P = fay?)
yreA\{y}
<|AP(fn(y") > fuly™))

Note that f,,(y*) — fn(y’) can be viewed as a sum of n i.i.d. random variables, which take value
1 with probability 7(y*|z), —1 with probability 7(y’|z), and 0 otherwise. Thus, their expectations
are all 6 = 7(y*|z) — 7(y'|«). By Hoeffding’s inequality, we have

P(fa(y') > fuly")) < exp (”5) .

Thus,
2

5 =
P(E,) < |A|exp (”) = Y P(E,) < +oo.
2 n=1
By Borel-Cantelli lemma, we have
P (lim sup En> =0,
n—-+oo
which implies the following is true almost surely:

3 N € N*, such that forany n > N, y* = arg max f,(y)
yeA

Hence
lim acc™Y ({(z,9)};7) =1y = y*] (almost surely).

n——+00

Recall the definition of y*, the above shows the theorem is true for a dataset with a single example
{(x,y)}. For general datasets D with m examples, one can apply the above argument to each
examples and combine the results to conclude the proof of the almost-sure convergence.

Next, we prove the asymptotic result on E [accy'Y ({D};7)]. We slightly abuse notation for sim-

plicity as follows: We let y*(z;) = argmax 7 (y|x;), vy’ = argmax 7(y|x;), and let
yEA yeA\{y*(z:)}
Omin = min _7(y"(zi)|2;) — 7y (2)]z:)-
(z4,y:)€ED
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We denote by E,(z;) the event that majority voting with n samples does not output y*(x;) given
input z;. Then it’s easy to see that

nd2.
P(Bu(e0) < [Ajexp (-8 ) = B(B, () = O™

where ¢ > 1 is a constant (which does not depend on 7).
Note that if accMV ({z;,y; };7) = 1, we have y; = y*(x;) unless E,,(x;) happens. In other words,

acchY ({zs,y:};m) <Ly = y* ()] + 1[En ()]
B e (it m] — Ly = o (@0)l] < B(Eu(z) = O(c™).

Taking a summation over the entire dataset D yields

m

1

acep™ (Dsm) — — > Ty = y* (z;)]| <
m

i=1 i=1

which concludes the proof. O

A.2 PROOF OF THEOREM 2
Proof. The proof is similar to the proof of Theorem 1. We only need to set
Ty | @)=Y w(reyla)p(zirey).
reyv*

Then the technique in the proof of Theorem | immediately applies. O

B MCTS DETAILS

In this section, we present additional background on the Monte Carlo Tree Search (MCTS) algo-
rithm. The MCTS process can be formulated as the following steps:

Selection. The process begins at the root node. Here, the algorithm recursively selects the child
node that offers the highest Upper Confidence Bound applied to Trees (UCT) value, continuing until
a node is reached that has not been expanded. The UCT is calculated using the formula

In (N (Parent(s)))
N(s) ’

UCT(s) = Q(s) + c\/

where Q(s) denotes the quality score of node s, N(s) is the number of visits to node s, Parent(s)
denotes the parent node of s, and C' is a constant determining the level of exploration.

Expansion and evaluation. Upon reaching a non-terminal node s, the node is expanded by gen-
erating multiple child nodes. Each child node ¢ is then evaluated using a value function V'(c), which
predicts the potential quality of continuing the sequence from node c.

Backpropagation. After evaluation, the algorithm updates the UCT values and the visit counts
for all nodes along the path from the selected node back to the root. For any node n in this path, the
updates are made as follows:

N(n) + N(n)+1,
N
“

o) V) =D Q) +V(s)

—1)
N(n)
C HYPER-PARAMETERS

Finetuning All the hyperparameters for model fine-tuning can be found in Table 2. We preprocess
the MetaMath Dataset to make the solutions in a stepwise format.
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Table 2: Fine-tuning Hyper-parameters: LR refers to the learning rate, BS refers to the batch size.
Pythia, Llemma-7B and LLemma-34B are the generators we use in our experiments, RM is short
for Reward Model. We only use problems from GSMSK to train the Pythia models.

Model # Epoch Dataset BS LR Max SeqLength Dtype
Pythia-410M 1 MetaMath (GSM8K) 128 8E-5 768 FP32
Pythia-1.4B 1 MetaMath (GSM8K) 128 4E-5 768 FP32
Pythia-2.8B 1 MetaMath (GSM8K) 128 3E-5 768 FP32
Pythia-6.9B 1 MetaMath (GSM8K) 128 2E-5 768 FP32
Pythia-12B 1 MetaMath (GSM8K) 128 1E-5 768 FP32
Llemma-7B 1 MetaMath 128 8E-6 1024 FP32
Llemma-34B 1 MetaMath 128 8E-6 768 FP32
Llemma-34B RM 2 Math-Shepherd 128 1E-5 768 BF16
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Figure 8: The inference computation scaling laws of different models for the problem-solving
error rate on MATH test set. The tested models are Llemma-7B (left), Llemma-34B (middle), &
Mistral-7B (right). In the legend, M. V. refer to majority voting.
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Infer. FLOPs per question (x10%2) Infer. FLOPs per question (x10'2)  Infer. FLOPs per question (x10%?)

Figure 9: The inference computation scaling laws of different models for the problem-solving
error rate on GSMS8K test set. The tested models are Llemma-7B (left), Llemma-34B (middle), &
Mistral-7B (right). In the legend, M. V. refer to majority voting.

Inference For all the inference strategies, the temperature of the LLM is set to 1.0. Max tokens
for the output is 1024 and max tokens for one step is 256. For REBASE, we chose the balance
temperature (the softmax temperature in the REBASE algorithm) as 7, = 0.1. For MCTS, we set
C in the UCT value as 1 and we expand 4, 8, 16 children for the root, 2 children for other selected
nodes with total 32, 64, 128 expansions respectively. New expanded nodes will be assigned values
by the PRM, and then backpropagate the Q values through the process described in the last section.
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Figure 10: The inference computation scaling laws of different models for the problem-solving
error rate on MATH test set. The tested models are Llemma-7B (left), Llemma-34B (middle), &

Mistral-7B (right). In the legend, M.V. and W.M. refer to majority voting and weighted majority,
respectively.
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Figure 11: The inference computation scaling laws of different models for the problem-solving
error rate on GSMS8K test set. The tested models are Llemma-7B (left), Llemma-34B (middle), &

Mistral-7B (right). In the legend, M.V. and W.M. refer to majority voting and weighted majority,
respectively.

D SUPPLEMENTARY FIGURES AND TABLES

D.1 MAIJORITY VOTING EXPERIMENT RESULTS

In this section, we additionally include experimental results on the majority voting method, along
with its comparison with weighted majority voting (Fig. 8, 9,10, 11). The experiments show that
although the gap between majority voting and weighted majority voting on sampling is huge. This
gap becomes much smaller if we apply REBASE. This phenomenon can be caused by the selection
ability of tree search like REBASE. Once REBASE already samples solutions with high rewards,

conducing weighted majority voting gains less since the sampled solutions may all have relatively
high and stable rewards compared with those of sampling.

D.2 ADDITIONAL EXPERIMENTS ON LLAMA3 MODELS

We conduct additional experiments with Llama3-8B-Instruct (Dubey et al., 2024) model on MATH
and GSMSK datasets, as shown in Fig. 12. Results for code generation task MBPP are presented
(Austin et al., 2021) in Tab. 3. These experiments demonstrate that our conclusions generalize to
the Llama3 architecture and coding tasks, confirming that increased computational effort improves

performance until saturation is reached, and REBASE reaches the optimal performance-compute
trade-off.

In mathematical reasoning tasks, REBASE consistently outperforms the sampling approach across
different answer selection strategies, including best-of-n, majority voting, and weighted voting. The
highest performance on each dataset is achieved using REBASE. Specifically, on GSM8K, REBASE
combined with weighted majority voting using 128 samples achieves an accuracy of 90.2%, sur-
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Figure 12: GSMS8K (left) and MATH (right) inference scaling across inference strategies and
models (lower is better). The tested model is Llama3-instruct-8B. In the legend, M.V., WM., and
BoN refer to majority voting, weighted majority, and best-of-n, respectively.

Table 3: Zero shot pass rates of Sampling and REBASE on MBPP code generation task.

# SAMPLES  SAMPLING FLOPS  SAMPLING PASS RATE REBASE FLOPS REBASE PASS RATE

8 8 x 102 63 8.26 x 10'2 69.6
16 16 x 102 69.4 17.5 x 102 72.4
32 32 x 10'? 72.4 34.9 x 102 75.8
64 64 x 102 79 69.15 x 102 81.4

passing the best accuracy of 89.7% obtained by the sampling method with 256 samples using the
best-of-n strategy. Similarly, on MATH, REBASE with weighted majority voting using 128 samples

achieves an accuracy of 47.4%, significantly outperforming the sampling method’s best accuracy of
41.9% with 256 samples using best-of-n.

For the code generation task MBPP, we analyze scaling behavior and compute-optimal inference
through pass rate evaluation. The results confirm that REBASE is more compute-efficient than sam-
pling. This advantage can be attributed to the use of a reward model that evaluates partial code
solutions. By conducting one iteration of REBASE, our method prunes suboptimal partial solutions

while encouraging exploration of promising ones, thereby enhancing computational efficiency and
solution quality.

D.3 COMPARISON OF DIFFERENT STRATEGIES ACROSS DIFFERENT MODELS

We show the accuracy of different stragegies under a specific compute budget in Tab. 4.
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Table 4: Accuracy of different inference configurations under a specific compute budget. MV, BoN
and WV denote Majority Voting, Best-of-N and Weighted Voting, respectively.

# SAMPLES MATH FLOPs GSMS8K FLOPs MATH500 GSMS8K

MISTRAL-7B
GREEDY 1 3.4 x 10*2 2.3 x 10'2 28.6 77.9
SAMPLING + MV 32 109.2 x 102 72.6 x 10*2 36.1 85.7
SAMPLING + BON 32 109.2 x 102 72.6 x 10*2 40.3 89.4
SAMPLING + WV 32 109.2 x 10'? 72.6 x 102 39.7 89.1
REBASE + MV 32 136.2 x 10'? 78.9 x 10*2 44.1 88.8
REBASE + BON 32 136.2 x 10'? 78.9 x 102 45.4 89.4
REBASE + WV 32 136.2 x 10'? 78.9 x 102 45.0 89.8

LLEMMA-7B
GREEDY 1 3.92 x 102 2.3 x 102 30.0 68.5
SAMPLING + MV 32 125.4 x 10'? 73.9 x 10'2 41.0 80.0
SAMPLING + BON 32 125.4 x 102 73.9 x 10'2 41.7 85.6
SAMPLING + WV 32 125.4 x 102 73.9 x 10*2 43.5 85.4
REBASE + MV 32 148.0 x 10*2 82.6 x 10*2 46.1 86.1
REBASE + BoON 32 148.0 x 10*2 82.6 x 10*2 44.1 86.9
REBASE + WV 32 148.0 x 10'? 82.6 x 10*2 46.8 87.3

LLAMA3-INSTRUCT-8B

GREEDY 1 3.84 x 10'2 2.28 x 10*2 29.6 79.0
SAMPLING + MV 32 122.9 x 10'? 73.2 x 102 35.4 84.6
SAMPLING + BON 32 122.9 x 10'? 73.2 x 102 39.7 88.5
SAMPLING + WV 32 122.9 x 102 73.2 x 10'2 39.5 88.6
REBASE + MV 32 172.8 x 102 79.3 x 10'2 45.2 88.3
REBASE + BoON 32 172.8 x 102 79.3 x 10'2 45.5 88.7
REBASE + WV 32 172.8 x 10'? 79.3 x 10*2 43.7 89.1

LLEMMA-34B
GREEDY 1 19.0 x 10'? 11.2 x 10*2 33.0 78.4
SAMPLING + MV 8 152.3 x 10'? 89.7 x 10*2 39.9 84.3
SAMPLING + BON 8 152.3 x 10'? 89.7 x 10*2 40.4 86.7
SAMPLING + WV 8 152.3 x 10'? 89.7 x 10*2 41.0 86.0
REBASE + MV 8 176.8 x 10'? 98.7 x 102 43.9 86.1
REBASE + BON 8 176.8 x 10'? 98.7 x 102 43.6 86.9
REBASE + WV 8 176.8 x 10'? 98.7 x 10'2 42.9 86.9
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