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ABSTRACT

Building sample-efficient agents that generalize out-of-distribution (OOD) in real-
world settings remains a fundamental unsolved problem on the path towards achiev-
ing higher-level cognition. One particularly promising approach is to begin with
low-dimensional, pretrained representations of our world, which should facilitate
efficient downstream learning and generalization. By training 240 representations
and over 10,000 reinforcement learning (RL) policies on a simulated robotic setup,
we evaluate to what extent different properties of pretrained VAE-based representa-
tions affect the OOD generalization of downstream agents. We observe that many
agents are surprisingly robust to realistic distribution shifts, including the challeng-
ing sim-to-real case. In addition, we find that the generalization performance of a
simple downstream proxy task reliably predicts the generalization performance of
our RL agents under a wide range of OOD settings. Such proxy tasks can thus be
used to select pretrained representations that will lead to agents that generalize.

1 INTRODUCTION

Robust out-of-distribution (OOD) generalization is one of the key open challenges in machine
learning. This is particularly relevant for the deployment of ML models to the real world, where we
need systems that generalize beyond the i.i.d. (independent and identically distributed) data setting
(Schölkopf et al., 2021; Djolonga et al., 2020; Koh et al., 2021; Barbu et al., 2019; Azulay & Weiss,
2019; Roy et al., 2018; Gulrajani & Lopez-Paz, 2020; Hendrycks & Dietterich, 2019; Michaelis
et al., 2019; Funk et al., 2021). One instance of such models are agents that learn by interacting with
a training environment and we would like them to generalize to other environments with different
statistics (Zhang et al., 2018; Pfister et al., 2019; Cobbe et al., 2019; Ahmed et al., 2021; Ke et al.,
2021). Consider the example of a robot with the task of moving a cube to a target position: Such an
agent can easily fail as soon as some aspects of the environment differ from the training setup, e.g.
the shape, color, and other object properties, or when transferring from simulation to real world.

Humans do not suffer from these pitfalls when transferring learned skills beyond a narrow training
domain, presumably because they represent visual sensory data in a concise and useful manner (Marr,
1982; Gordon & Irwin, 1996; Lake et al., 2017; Anand et al., 2019; Spelke, 1990). Therefore, a
particularly promising path is to base predictions and decisions on similar low-dimensional represen-
tations of our world (Bengio et al., 2013; Kaiser et al., 2019; Finn et al., 2016; Barreto et al., 2017;
Dittadi et al., 2021a; Stooke et al., 2021; Vinyals et al., 2019). The learned representation should
facilitate efficient downstream learning (Eslami et al., 2018; Anand et al., 2019; Stooke et al., 2021;
Van Steenkiste et al., 2019) and exhibit better generalization (Zhang et al., 2020; Srinivas et al., 2020).
Learning such a representation from scratch for every downstream task and every new variation
would be inefficient. If we learned to juggle three balls, we should be able to generalize to oranges
or apples without learning again from scratch. We could even do it with cherimoyas, a fruit that we
might have never seen before. We can effectively reuse our generic representation of the world.

∗Equal contribution. The order was chosen at random and can be swapped. Correspondence to:
frederik.traeuble@tuebingen.mpg.de and adit@dtu.dk.
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We thus consider deep learning agents trained from pretrained representations and ask the following
questions: To what extent do they generalize under distribution shifts similar to those mentioned
above? Do they generalize in different ways or to different degrees depending on the type of
distribution shift, including sim-to-real? Can we predict the OOD generalization of downstream
agents from properties of the pretrained representations?

To answer the questions above, we need our experimental setting to be realistic, diverse, and
challenging, but also controlled enough for the conclusions to be sound. We therefore base our study
on the robot platform introduced by Wüthrich et al. (2020). The scene comprises a robot finger with
three joints that can be controlled to manipulate a cube in a bowl-shaped stage. Dittadi et al. (2021c)
conveniently introduced a dataset of simulated and real-world images of this setup with ground-truth
labels, which can be used to pretrain and evaluate representations. To train downstream agents, we
adapted the simulated reinforcement learning benchmark CausalWorld from Ahmed et al. (2021) that
was developed for this platform. Building upon these works, we design our experimental study as
follows (see Fig. 1): First, we pretrain representations from static simulated images of the setup and
evaluate a collection of representation metrics. Following prior work (Watter et al., 2015; Van Hoof
et al., 2016; Ghadirzadeh et al., 2017; Nair et al., 2018; Ha & Schmidhuber, 2018; Eslami et al.,
2018), we focus on autoencoder-based representations. Then, we train downstream agents from this
fixed representation on a set of environments. Finally, we investigate the zero-shot generalization of
these agents to new environments that are out of the training distribution, including the real robot.

The goal of this work is to provide the first systematic and extensive account of the OOD generalization
of downstream RL agents in a robotic setup, and how this is affected by characteristics of the upstream
pretrained representations. We summarize our contributions as follows:

• We train 240 representations and 11,520 downstream policies,1 and systematically investigate
their performance under a diverse range of distribution shifts.2

• We extensively analyze the relationship between the generalization of our RL agents and a
substantial set of representation metrics.

• Notably, we find that a specific representation metric that measures the generalization of a
simple downstream proxy task reliably predicts the generalization of downstream RL agents
under the broad spectrum of OOD settings considered here. This metric can thus be used to
select pretrained representations that will lead to more robust downstream policies.

• In the most challenging of our OOD scenarios, we deploy a subset of the trained policies to
the corresponding real-world robotic platform, and observe surprising zero-shot sim-to-real
generalization without any fine-tuning or domain randomization.

2 BACKGROUND

In this section, we provide relevant background on the methods for representation learning and
reinforcement learning, and on the robotic setup to evaluate out-of-distribution generalization.

Variational autoencoders. VAEs (Kingma & Welling, 2014; Rezende et al., 2014) are a framework
for optimizing a latent variable model pθ(x) =

∫
z
pθ(x | z)p(z)dz with parameters θ, typically with

a fixed prior p(z) = N (z;0, I), using amortized stochastic variational inference. A variational distri-
bution qφ(z |x) with parameters φ approximates the intractable posterior pθ(z |x). The approximate
posterior and generative model, typically called encoder and decoder and parameterized by neural
networks, are jointly optimized by maximizing a lower bound to the log likelihood (the ELBO):

log pθ(x) ≥ Eqφ(z |x) [log pθ(x | z)]−DKL (qφ(z |x)‖p(z)) = LELBOθ,φ (x) . (1)

In β-VAEs, the KL term is modulated by a factor β to enforce a more structured latent space (Higgins
et al., 2017a; Burgess et al., 2018). While VAEs are typically trained without supervision, we also
employ a form of weak supervision (Locatello et al., 2020) that encourages disentanglement.

Reinforcement learning. A Reinforcement Learning (RL) problem is typically modeled as a Par-
tially Observable Markov Decision Process (POMDP) defined as a tuple (S,A, T,R,Ω, O, γ, ρ0, H)

1Training the representations required approximately 0.62 GPU years on NVIDIA Tesla V100. Training and
evaluating the downstream policies required about 86.8 CPU years on Intel Platinum 8175M.

2Additional results and videos are provided at https://sites.google.com/view/ood-rl.
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Figure 1: Overview of our experimental setup for investigating out-of-distribution generalization in down-
stream tasks. (1) We train 240 β-VAEs on the robotic dataset from Dittadi et al. (2021c). (2) We then train
downstream policies to solve object reaching or pushing, using multiple random RL seeds per VAE. The input to
a policy consists of the output of a pretrained encoder and additional task-related observable variables. Crucially,
the policy is only trained on a subset of the cube colors from the pretraining dataset. (3) Finally, we evaluate
these policies on their respective tasks in four different scenarios: (a) in-distribution, i.e. with cube colors used
in policy training; (b) OOD1, i.e. with cube colours previously seen by the encoder but OOD for the policy;
(c) OOD2-sim, having cube colours also OOD to the encoder; (d) sim-to-real zero-shot on the real-world setup.

with states s ∈ S, actions a ∈ A and observations o ∈ Ω determined by the state and action of the en-
vironment O(o|s, a). T (st+1|st, at) is the transition probability distribution function, R(st, at) is the
reward function, γ is the discount factor, ρ0(s) is the initial state distribution at the beginning of each
episode, and H is the time horizon per episode. The objective in RL is to learn a policy π : S ×A→
[0, 1], typically parameterized by a neural network, that maximizes the total discounted expected re-
ward J(π) = E

[∑H
t=0 γ

tR(st, at)
]
. There is a broad range of model-free learning algorithms to find

π∗ by policy gradient optimization or by learning value functions while trading off exploration and ex-
ploitation (Haarnoja et al., 2018b; Schulman et al., 2017; Sutton et al., 1999; Schulman et al., 2015b;a;
Silver et al., 2014; Fujimoto et al., 2018). Here, we optimize the objective above with Soft Actor Critic
(SAC), an off-policy method that simultaneously maximizes the expected reward and the entropy
H(π(·|st)), and is widely used in control tasks due to its sample efficiency (Haarnoja et al., 2018b).

A robotic setup to evaluate out-of-distribution generalization. Our study is based on a real robot
platform where a robotic finger with three joints manipulates a cube in a bowl-shaped stage (Wüthrich
et al., 2020). We pretrain representations on a labeled dataset introduced by Dittadi et al. (2021c)
which consists of simulated and real-world images of this setup. This dataset has 7 underlying factors
of variation (FoV): angles of the three joints, and position (x and y), orientation, and color of the
cube. Some of these factors are correlated (Dittadi et al., 2021c), which may be problematic for
representation learners, especially in the context of disentanglement (Träuble et al., 2021; Chen
et al., 2021). After training the representations, we train downstream agents and evaluate their
generalization on an adapted version of the simulated CausalWorld benchmark (Ahmed et al., 2021)
that was developed for the same setup. Finally, we test sim-to-real generalization on the real robot.

Our experimental setup, illustrated in Fig. 1, allows us to systematically investigate a broad range of
out-of-distribution scenarios in a controlled way. We pretrain our representations from this simulated
dataset that covers 8 distinct cube colors. We then train an agent from this fixed representation on a
subset of the cube colors, and evaluate it (1) on the same colors (this is the typical scenario in RL),
(2) on the held-out cube colors that are still known to the encoder, or (3) OOD w.r.t. the encoder’s
training distribution, e.g. on novel colors and shapes or on the real world.

We closely follow the framework for measuring OOD generalization proposed by Dittadi et al.
(2021c). In this framework, a representation is initially learned on a training set D, and a simple
downstream model is trained on a subset D1 ⊂ D to predict the ground-truth factors from the
learned representation. Generalization is then evaluated by testing the downstream model on a set D2
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that differs distributionally from D1, e.g. containing images corresponding to held-out values of a
chosen factor of variation (FoV). Dittadi et al. (2021c) consider two flavors of OOD generalization
depending on the choice of D2: First, the case when D2 ⊂ D, i.e. the OOD test set is a subset of the
dataset for representation learning. This is denoted by OOD1 and corresponds to the scenario (2)
from the previous paragraph. In the other scenario, referred to as OOD2, D and D2 are disjoint
and distributionally different. This even stronger OOD shift corresponds to case (3) above. The
generalization score for D2 is then measured by the (normalized) mean absolute prediction error
across all FoVs except for the one that is OOD. Following Dittadi et al. (2021c), we use a simple
2-layer Multi-Layer Perceptron (MLP) for downstream factor prediction, we train one MLP for each
FoV, and report the negative error. This simple and cheap generalization metric could serve as a
convenient proxy for the generalization of more expensive downstream tasks. We refer to these
generalization scores as GS-OOD1, GS-OOD2-sim, and GS-OOD2-real depending on the scenario.

The focus of Dittadi et al. (2021c) was to scale VAE-based approaches to more realistic scenarios
and study the generalization of these simple downstream tasks, with a particular emphasis on
disentanglement. Building upon their contributions, we can leverage the broader potential of this
robotic setup with many more OOD2 scenarios to study our research questions: To what extent can
agents generalize under distribution shift? Do they generalize in different ways depending on the
type of shift (including sim-to-real)? Can we predict the OOD generalization of downstream agents
from properties of the pretrained representations such as the GS metrics from Dittadi et al. (2021c)?

3 STUDY DESIGN

Robotic setup. Our setup is based on TriFinger (Wüthrich et al., 2020) and consists of a robotic
finger with three joints that can be controlled to manipulate an object (e.g. a cube) in a bowl-shaped
stage. The agent receives a camera observation consistent with the images in Dittadi et al. (2021c) and
outputs a three-dimensional action. During training, which always happens in simulation, the agent
only observes a cube of four possible colors, randomly sampled at every episode (see Fig. 1, step 2).

Distribution shifts. After training, we evaluate these agents in 7 environments: (1) the training
environment, which is the typical setting in RL, (2) the OOD1 setting with cube colors that are OOD
for the agent but still in-distribution for the encoder, (3) the more challenging OOD2-sim setting
where the colors are also OOD for the encoder, (4-6) the OOD2 settings where the object colors are
as in the 3 previous settings but the cube is replaced by a sphere (a previously unseen shape), (7) the
OOD2-real setting, where we evaluate zero-shot sim-to-real transfer on the real robotic platform.

Tasks. We begin our study with the object reaching downstream control task, where the agent has to
reach an object placed at an arbitrary random position in the arena. This is significantly more challeng-
ing than directly predicting the ground-truth factors, as the agent has to learn to reach the cube by act-
ing on the joints, with a scalar reward as the only learning signal. Consequently, the compute required
to learn this task is about 1,000 times greater than in the simple factor prediction case. We additionally
include in our study a pushing task which consists of pushing an object to a goal position that is sam-
pled at each episode. Learning this task takes one order of magnitude more compute than object reach-
ing, likely due to the complex rigid-body dynamics and object interactions. To the best of our knowl-
edge, this is the most challenging manipulation task that is currently feasible on our setup. Ahmed et al.
(2021) report solving a similar pushing task, but require the full ground-truth state to be observable.

Training the RL agents. The inputs at time t are the camera observation ot and a vector of observable
variables xt containing the joint angles and velocities, as well as the target object position in pushing.
We then feed the camera observation ot into an encoder e that was pretrained on the dataset in Dittadi
et al. (2021c). The result is concatenated with xt, yielding a state vector st = [xt, e(ot)]. We then
use SAC to train the policy with st as input. The policy, value, and Q networks are implemented as
MLPs with 2 hidden layers of size 256. When training the policies, we keep the encoder frozen.

Model sweep. To shed light on the research questions outlined in the previous sections, we perform
a large-scale study in which we train 240 representation models and 11,520 downstream policies, as
described below. See Appendix A for further implementation details.

• We train 120 β-VAEs (Higgins et al., 2017a) and 120 Ada-GVAEs (Locatello et al., 2020) with
a subset of the hyperparameter configurations and neural architecture from Dittadi et al. (2021c).
Specifically, we consider β ∈ {1, 2, 4}, β annealing over {0, 50000} steps, with and without
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input noise, and 10 random seeds per configuration. The latent space size is fixed to 10 following
prior work (Kim & Mnih, 2018; Chen et al., 2018; Locatello et al., 2020; Träuble et al., 2021).

• For object reaching, we train 20 downstream policies (varying random seed) for each of the 240
VAEs. The resulting 4,800 policies are trained for 400k steps (approximately 2,400 episodes).

• Since pushing takes substantially longer to train, we limit the number of policies trained on this
task: We choose a subset of 96 VAEs corresponding to only 4 seeds, and then use 10 seeds per
representation. The resulting 960 policies are trained for 3M steps (about 9,000 episodes).

• Finally, for both tasks we also investigate the role of regularization on the policy. More
specifically, we repeat the two training sweeps from above (5,760 policies), with the difference
that now the policies are trained with L1 regularization on the first layer.

Limitations of our study. Although we aim to provide a sound and extensive empirical study, such
studies are inevitably computationally demanding. Thus, we found it necessary to make certain design
choices. For each of these choices, we attempted to follow common practice, in order to maintain
our study as relevant, general, and useful as possible. One such decision is that of focusing on
autoencoder-based representations. To answer our questions on the effect of upstream representations
on the generalization of downstream policies, we need a diverse range of representations. How
these representations are obtained is not directly relevant to answer our research question. Following
Dittadi et al. (2021c), we chose to focus on β-VAE and Ada-GVAE models, as they were shown to
provide a broad set of representations, including fully disentangled ones. Although we conjecture
that other classes of representation learning algorithms should generally reveal similar trends as those
found in our study, this is undoubtedly an interesting extension. As for the RL algorithm used in this
work, SAC is known to be a particularly sample-efficient model-free RL method that is a popular
choice in robotics (Haarnoja et al., 2018a; Kiran et al., 2021; Singh et al., 2019). Extensive results on
pushing from ground-truth features on the same setup in Ahmed et al. (2021) indicate that methods
like TD3 (Fujimoto et al., 2018) or PPO (Schulman et al., 2017) perform very similarly to SAC
under the same reward structure and observation space. Thus, we expect the results of our study to
hold beyond SAC. Another interesting direction is the study of additional regularization schemes on
the policy network, an aspect that is often overlooked in RL. We expect the potential insights from
extending the study along these axes to not justify the additional compute costs and corresponding
carbon footprint. However, with improving efficiency and decreasing costs, we believe these could
become worthwhile validation experiments in the future.

4 RESULTS

We discuss our results in three parts: In Section 4.1, we present the training results of our large-scale
sweep, and how policy regularization and different properties of the pretrained representations affect
in-distribution reward. Section 4.2 gives an extensive account of which metrics of the pretrained
representations predict OOD generalization of the agents in simulated environments. Finally, in
Section 4.3 we perform a similar evaluation on the real robot, in a zero-shot sim-to-real scenario.

4.1 RESULTS IN THE TRAINING ENVIRONMENT

Fig. 2 shows the training curves of all policies for object reaching and pushing in terms of the
task-specific success metric. Here we use success metrics for interpretability, as their range is always
[0, 1]. In object reaching, the success metric indicates progress from the initial end effector position
to the optimal distance from the center of the cube. It is 0 if the final distance is not smaller than the
initial distance, and 1 if the end effector is touching the center of a face of the cube. In pushing, the
success metric is defined as the volumetric overlap of the cube with the goal cube, and the task can
be visually considered solved with a score around 80%.

From the training curves we can conclude that both tasks can be consistently solved from pixels using
pretrained representations. In particular, all policies on object reaching attain almost perfect scores.
Unsurprisingly, the more complex pushing task requires significantly more training, and the variance
across policies is larger. Nonetheless, almost all policies learn to solve the task satisfactorily.

To investigate the effect of representations on the training reward, we now compute its Spearman
rank correlations with various supervised and unsupervised metrics of the representations (Fig. 2
bottom). By training reward, we mean the average reward of a fully trained policy over 200 episodes
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Figure 2: Top: Average training success, aggregated over all policies from the sweep (median, quartiles, 5th/95th
percentiles). Bottom: Rank correlations between representation metrics and in-distribution reward (evaluated
when the policies are fully trained), in the case without regularization. Correlations are color-coded in red
(positive) or blue (negative) when statistically significant (p<0.05), otherwise they are gray.

in the training environment (see Appendix A). On object reaching, the final reward correlates with
the ELBO and the reconstruction loss. A simple supervised metric to evaluate a representation is
how well a small downstream model can predict the ground-truth factors of variation. Following
Dittadi et al. (2021c), we use the MLP10000 and GBT10000 metrics (simply MLP and GBT in the
following), where MLPs and Gradient Boosted Trees (GBTs) are trained to predict the FoVs from
10,000 samples. The training reward correlates with these metrics as well, especially with the MLP
accuracy. This is not entirely surprising: if an MLP can predict the FoVs from the representations,
our policies using the same architecture could in principle retrieve the FoVs relevant for the task.
Interestingly, the correlation with the overall MLP metric mostly stems from the cube pose FoVs, i.e.
those that are not included in the ground-truth state xt. These results suggest that these metrics can
be used to select good representations for downstream RL. On the more challenging task of pushing,
the correlations are milder but most of them are still statistically significant.

Summary. Both tasks can be consistently solved from pixels using pretrained representations. Unsu-
pervised (ELBO, reconstruction loss) and supervised (ground-truth factor prediction) in-distribution
metrics of the representations are correlated with reward in the training environment.

4.2 OUT-OF-DISTRIBUTION GENERALIZATION IN SIMULATION

Figure 3: Correlations between
training (in distrib.) and OOD
rewards (p<0.05).

In- and out-of-distribution rewards. After training, the in-
distribution reward correlates with OOD1 performance on both tasks
(especially with regularization), but not with OOD2 performance (see
Fig. 3). Moreover, rewards in OOD1 and OOD2 environments are
moderately correlated across tasks and regularization settings.

Unsupervised metrics and informativeness. In Fig. 4 (left) we as-
sess the relation between OOD reward and in-distribution metrics
(ELBO, reconstruction loss, MLP, and GBT). Both ELBO and recon-
struction loss exhibit a correlation with OOD1 reward, but not with
OOD2 reward. These unsupervised metrics can thus be useful for
selecting representations that will lead to more robust downstream RL
tasks, as long as the encoder is in-distribution. While the GBT score
is not correlated with reward under distribution shift, we observe a
significant correlation between OOD1 reward and the MLP score,
which measures downstream factor prediction accuracy of an MLP with the same architecture as the
one parameterizing the policies. As in Section 4.1, we further investigate the source of this correlation,
and find it in the pose parameters of the cube. Correlations in the OOD2 setting are much weaker,
thus we conclude that these metrics do not appear helpful for model selection in this case. Our results
on pushing confirm these conclusions although correlations are generally weaker, presumably due to
the more complicated nature of this task. An extensive discussion is provided in Appendix B.2.
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Figure 4: Rank correlations of representation properties with OOD1 and OOD2 reward on object reaching
without regularization. Numbering when splitting metrics by FoV: (1) cube color; (2–4) joint angles; (5–7) cube
position and rotation. Correlations are color-coded as described in Fig. 2.

Correlations with generalization scores. Here we analyze the link between generalization in RL
and the generalization scores (GS) discussed in Section 2, which measure the generalization of
downstream FoV predictors out of distribution, as opposed to the MLP and GBT metrics considered
above. For both OOD scenarios, the distribution shifts underlying these GS scores are the same as
the ones in the RL tasks in simulation. We summarize our findings in Fig. 4 (right) on the object
reaching task. Reward in the OOD1 setting is significantly correlated with the GS-OOD1 metric
of the pretrained representation. We observe an even stronger correlation between the reward in
the simulated OOD2 setting and the corresponding GS-OOD2-sim and GS-OOD2-real scores. On
a per-factor level, we see that the source of the observed correlations primarily stems from the
generalization scores w.r.t. the pose parameters of the cube. The OOD generalization metrics can
therefore be used as proxies for the corresponding form of generalization in downstream RL tasks.
This has practical implications for the training of RL downstream policies which are generally known
to be brittle to distribution shifts, as we can measure a representation’s generalization score from a few
labeled images. This allows for selecting representations that yield more robust downstream policies.

Disentangled representations. Disentanglement has been shown to be helpful for downstream
performance and OOD1 generalization even with MLPs (Dittadi et al., 2021c). However, in object
reaching, we only observe a weak correlation with some disentanglement metrics (Fig. 5). In
agreement with (Dittadi et al., 2021c), disentanglement does not correlate with OOD2 generalization.
The same study observed that disentanglement correlates with the informativeness of a representation.
To understand if these weak correlations originate from this common confounder, we investigate
whether they persist after adjusting for MLP FoV prediction accuracy. Given two representations
with similar MLP accuracy, does the more disentangled one exhibit better OOD1 generalization? To
measure this we predict success from the MLP accuracy using kNN (k=5) (Locatello et al., 2019)
and compute the residual reward by subtracting the amount of reward explained by the MLP metric.
Fig. 5 shows that this resolves the remaining correlations with disentanglement. Thus, for the RL
downstream tasks considered here, disentanglement per se does not seem to be useful for OOD
generalization. We present similar results on pushing in Appendix B.2.

Policy regularization and observation noise. It might seem unsurprising that disentanglement
is not useful for generalization in RL, as MLP policies do not have any explicit inductive bias to
exploit it. Thus, we attempt to introduce such inductive bias by repeating all experiments with L1
regularization on the first layer of the policy. Although regularization improves OOD1 and OOD2
generalization in general (see box plots in Fig. 5), we observe no clear link with disentanglement.
Furthermore, in accordance with Dittadi et al. (2021c), we find that observation noise when training
representations is beneficial for OOD2 generalization. See Appendix B.2 for a detailed discussion.

Stronger OOD shifts: evaluating on a novel shape. On object reaching, we also test generalization
w.r.t. a novel shape by replacing the cube with a sphere. This corresponds to a strong OOD2-type
shift, since shape was never varied when training the representations. Surprisingly, the policies appear
to be robust to the novel shape. In fact, when the sphere has the same colors that the cube had during
policy training, all policies get closer than 5 cm to the sphere on average, with a mean success metric
of 95%. On sphere colors from the OOD1 split, more than 98.5% move the finger closer than this
threshold, and on the strongest distribution shift (OOD2-sim colors, and cube replaced by sphere)
almost 70% surpass that threshold with an average success metric above 80%.

Summary. (1) In- and out-of-distribution rewards are correlated, as long as the representation
remains in its training distribution (OOD1). (2) Similarly, in-distribution representation metrics (both
unsupervised and supervised) predict OOD1 reward, but are not reliable when the representation is
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Figure 5: Box plots: fractional success on object reaching split according to low (blue), medium-high (orange),
and almost perfect (green) disentanglement. L1 regularization in the first layer of the MLP policy has a positive
effect on OOD1 and OOD2 generalization with minimal sacrifice in terms of training reward (see scale).
Correlation matrix (left): although we observe a mild correlation between some disentanglement metrics and
OOD1 (but not OOD2) generalization, this does not hold when adjusting for representation informativeness.
Correlations are color-coded as described in Fig. 2. We use disentanglement metrics from Eastwood & Williams
(2018); Chen et al. (2018); Kumar et al. (2018); Ridgeway & Mozer (2018).

Figure 6: Zero-shot sim-to-real on object reaching on over 2,000 episodes. Left: Rank-correlations on the
real platform with a red cube (color-coded as described in Fig. 2). Middle: Training encoders with additive
noise improves sim-to-real generalization. Right: Histogram of fractional success in the more challenging
OOD2-real-{green,blue} scenario from 50 policies across 4 different goal positions.

OOD (OOD2). (3) Disentanglement does not correlate with generalization in our experiments, while
(4) input noise when training representations is beneficial for OOD2 generalization. (5) Most notably,
the GS metrics, which measure generalization under distribution shifts, are significantly correlated
with RL performance under similar distribution shifts. We thus recommend using these convenient
proxy metrics for selecting representations that will yield robust downstream policies.

4.3 DEPLOYING POLICIES TO THE REAL WORLD

We now evaluate a large subset of the agents on the real robot without fine-tuning, quantify their
zero-shot sim-to-real generalization, and find metrics that correlate with real-world performance.

Reaching. We choose 960 policies trained in simulation, based on 96 representations and 10 random
seeds, and evaluate them on two (randomly chosen, but far apart) goal positions using a red cube.
While a red cube was in the training distribution, we consider this to be OOD2 because real-world
images represent a strong distribution shift for the encoder (Dittadi et al., 2021c; Djolonga et al., 2020).
Although sim-to-real in robotics is considered to be very challenging without domain randomization
or fine-tuning (Tobin et al., 2017; Finn et al., 2017; Rusu et al., 2017), many of our policies obtain a
high fractional success without resorting to these methods. In addition, in Fig. 6 (left) we observe sig-
nificant correlations between zero-shot real-world performance and some of the previously discussed
metrics. First, there is a positive correlation with the OOD2-sim reward: Policies that generalize to un-
seen cube colors in simulation also generalize to the real world. Second, representations with high GS-
OOD2-sim and (especially) GS-OOD2-real scores are promising candidates for sim-to-real transfer.
Third, if no labels are available, the weaker correlation with the reconstruction loss on the simulated
images can be exploited for representation selection. Finally, as observed by Dittadi et al. (2021c)
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Figure 7: We select pushing policies with high GS-
OOD2-real score. When deployed on the real robot
without fine-tuning, they succeed in pushing the cube to
a specified goal position (transparent blue cube).

for simple downstream tasks, input noise while
learning representations is beneficial for sim-to-
real generalization (Fig. 6, middle).

Based on these findings, we select 50 policies
with a high GS-OOD2-real score, and evaluate
them on the real world with a green and a blue
cube, which is an even stronger OOD2 distri-
bution shift. In Fig. 6 (right), where metrics
are averaged over 4 cube positions per policy,
we observe that most policies can still solve the
task: approximately 80% of them position the
finger less than 5 cm from the cube. Lastly, we
repeat the evaluations on the green sphere that
we previously performed in simulation, and ob-
serve that many policies successfully reach this completely novel object. See Appendix B.3 and the
project website for additional results and videos of deployed policies.

Pushing. We now test whether our real-world findings on object reaching also hold for pushing. We
again select policies with a high GS-OOD2-real score and encoders trained with input noise. We
record episodes on diverse goal positions and cube colors to support our finding that pushing policies
in simulation can generalize to the real robot. In Fig. 7, we show three representative episodes with
successful task completions and refer to the project site for video recordings and further episodes.

Summary. Policies trained in simulation can solve the task on the real robot without domain ran-
domization or fine-tuning. Reconstruction loss, encoder robustness, and OOD2 reward in simulation
are all good predictors of real-world performance. For real-world applications, we recommend using
GS-OOD2-sim or GS-OOD2-real for model selection, and training the encoder with noise.

5 OTHER RELATED WORK

A key unsolved challenge in RL is the brittleness of agents to distribution shifts in the environment,
even if the underlying structure is largely unchanged (Cobbe et al., 2019; Ahmed et al., 2021). This
is related to studies on representation learning and generalization in downstream tasks (Gondal et al.,
2019; Steenbrugge et al., 2018; Dittadi et al., 2021b; Esmaeili et al., 2019; Chaabouni et al., 2020),
as well as domain generalization (see Wang et al. (2021) for an overview). More specifically for
RL, Higgins et al. (2017b) focus on domain adaptation and zero-shot transfer in DeepMind Lab and
MuJoCo environments, and claim disentanglement improves robustness. To obtain better transfer
capabilities, Asadi et al. (2020) argue for discretizing the state space in continuous control domains by
clustering states where the optimal policy is similar. Kulkarni et al. (2015) propose geometric object
representations by means of keypoints or image-space coordinates and Wulfmeier et al. (2021) inves-
tigate the effect of different representations on the learning and exploration of different robotics tasks.
Transfer becomes especially challenging from the simulation to the real world, a phenomenon often
referred to as the sim-to-real gap. This is particularly crucial in RL, as real-world training is expensive,
requires sample-efficient methods, and is sometimes unfeasible if the reward structure requires ac-
curate ground truth labels (Dulac-Arnold et al., 2019; Kormushev et al., 2013). This issue is typically
tackled with large-scale domain randomization in simulation (Akkaya et al., 2019; James et al., 2019).

6 CONCLUSION

Robust out-of-distribution (OOD) generalization is still one of the key open challenges in machine
learning. We attempted to answer central questions on the generalization of reinforcement learning
agents in a robotics context, and how this is affected by pretrained representations. We presented
a large-scale empirical study in which we trained over 10,000 downstream agents given pretrained
representations, and extensively tested them under a variety of distribution shifts, including sim-to-
real. We observed agents that generalize OOD, and found that some properties of the pretrained
representations can be useful to predict which agents will generalize better. We believe this work
brings us one step closer to understanding the generalization abilities of learning systems, and we
hope that it encourages many further important studies in this direction.
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ETHICS STATEMENT

Our study is based on synthetic and real data of a robotic setup where a robotic finger interacts with
a cube. Our study does therefore not involve any human subjects leading to discrimination, bias
or fairness concerns, or privacy and security issues. Representation learning and generalization is
important across many disciplines and applications and could have harmful consequences without
humans in the loop in safety-relevant settings. Having a sound understanding of the robustness of a
given ML system based on such pretrained representations to distributions shifts is crucial to avoid
harmful consequences in potential future high-stake applications to society, such as human-robot
interaction (e.g. robotic surgery), autonomous driving, healthcare applications or other fairness-
related settings. Here, we investigate a narrow aspect of this, that is, learning arguably harmless
manipulation skills like reaching or pushing an object with a simple robotic finger. Our conclusions
for OOD generalization are based on this setting and thus cannot be directly transferred to any given
application setting of concern.
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A IMPLEMENTATION DETAILS

Task definitions and reward structure. We derive both tasks, object reaching and pushing, from
the CausalWorld environments introduced by Ahmed et al. (2021). We pretrain representations on the
dataset introduced by Dittadi et al. (2021c), and allow only one finger to move in our RL experiments.
We introduce the object reaching environment that involves an unmovable cube. We used reward
structures similar to those in Ahmed et al. (2021):

• object reaching: rt = −750 [d(gt, et)− d(gt−1, et−1)]

• pushing: rt = −750 [d(ot, et)− d(ot−1, et−1)]− 250 [d(ot, gt)− d(ot−1, gt−1)] + ρt

where t denotes the time step, ρt ∈ [0, 1] is the fractional overlap with the goal cube at time t,
et ∈ R3 is the end-effector position, ot ∈ R3 the cube position, gt ∈ R3 the goal position, and d(·, ·)
denotes the Euclidean distance. The cube in object reaching is fixed, i.e. ot = gt for all t. The time
limit is 2 seconds in object reaching and 4 seconds in pushing.

Success metrics. Besides the accumulated reward along episodes, that is determined by the reward
function, we also report two reward-independent normalized success definitions for better inter-
pretability: In object reaching, the success metric indicates progress from the initial end effector
position to the optimal distance from the center of the cube. It is 0 if the final distance is greater
than or equal to the initial distance, and 1 if the end effector is touching the center of a face of the
cube. In pushing, the success metric is defined as the volumetric overlap of the cube with the goal
cube, and the task can be visually considered solved with a score around 80%. We observed that
accumulated reward and success are very strongly correlated, thus allowing us to use one or the other
for measuring performance.

Training and evaluation details. During training, the goal position is randomly sampled at every
episode. Similarly, the object color is sampled from the 4 specified training colors from D1 that
correspond to the OOD1-B split from Dittadi et al. (2021c).

For each policy evaluation (in-distribution and out-of-distribution variants), we average the accu-
mulated reward and final success over 200 episodes with randomly sampled cube positions and the
respective object color in both tasks.

SAC implementation. Our implementation of SAC builds upon the stable-baselines pack-
age (Hill et al., 2018). We use the same SAC hyperparameters used for pushing in Ahmed et al.
(2021). When using L1 regularization, we add to the loss function the L1 norm of the first layers of
all MLPs, scaled by a coefficient α. We gradually increase regularization by linearly annealing α
from 0 to 5 · 10−7 over 200,000 time steps in object reaching, and from 0 to 6 · 10−8 over 3,000,000
time steps in pushing.

B ADDITIONAL RESULTS

B.1 TRAINING ENVIRONMENT

Fig. 2 in Section 4.1 shows correlations of unsupervised and supervised metrics with in-distribution
reward for object reaching and pushing, only in the case without regularization. In Fig. 8 we also
show these results in the case with regularization, as well as when adjusting for MLP informativeness.

B.2 OUT-OF-DISTRIBUTION GENERALIZATION IN SIMULATION

In Section 4.2 we discussed rank-correlations of OOD rewards with unsupervised, informativeness
and generalization scores on object reaching without regularization. In Fig. 9 we also show these
results for the case with regularization and on pushing, as well as when adjusting for MLP informa-
tiveness. Without regularization, we observe on pushing very similar correlations along all metrics
as we observed on object reaching, confirming our conclusions on this more complex task. When
using regularization, rank correlations are very similar across both tasks. Interestingly, the correlation
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Figure 8: Rank correlations between metrics and in-distribution reward, with and without adjusting for informa-
tiveness. Correlations are color-coded as described in Fig. 2.

Figure 9: Rank correlations between metrics and OOD reward, with and without adjusting for informativeness.
Correlations are color-coded as described in Fig. 2.

between GS-OOD2 scores and OOD2 generalization of the policy is even stronger when using L1 reg-
ularization. In contrast to our observations without regularization, we find that the correlation between
GS-OOD1 and OOD1 generalization of the policy vanishes when adjusting for the MLP metric.

B.2.1 DISENTANGLED REPRESENTATIONS

As discussed in Section 4.2 for object reaching without regularization, we observe in Fig. 9 a weak
correlation between some disentanglement metrics and OOD1 reward, which however vanishes
when adjusting for MLP informativeness. In agreement with Dittadi et al. (2021c), we observe no
significant correlation between disentanglement and OOD2 generalization, for both tasks, with and
without regularization. From Fig. 10 we see that in some cases, especially without regularization,
a very high DCI score seems to lead to better performance on average. However, this behavior is
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Figure 10: Fractional success on object reaching (top) and pushing (bottom), split according to low (blue),
medium-high (orange), and almost perfect (green) disentanglement. Results for object reaching are also reported
in Fig. 5 in Section 4.2.

not significant (within error bars), as opposed to the results shown in simpler downstream tasks by
Dittadi et al. (2021c). Furthermore, this trend is likely due to representation informativeness, since
the correlations with disentanglement disappear when adjusting for the MLP score, as discussed
above.

B.2.2 REGULARIZATION

As seen in Fig. 10, regularization generally has a positive effect on OOD1 and OOD2 generalization,
which is particularly prominent in the OOD1 setting. On the other hand, it leads to lower training
rewards both in object reaching and in pushing. In the latter, the performance drop is particularly
significant, while in object reaching it is negligible.

B.2.3 SAMPLE EFFICIENCY

In addition to the analysis reported in the main paper, we investigate how representation prop-
erties affect sample efficiency. Specifically, we store checkpoints of our policies at t ∈
{20k, 50k, 100k, 400k} for object reaching and t ∈ {200k, 500k, 1M, 3M} for pushing. We then
evaluate policies at these time step on the same three environments as before: (1) on the cube colors
from training; (2) on the OOD1 cube colors; and (3) on the OOD2-sim cube colors. Results are
summarized in Fig. 11 for object reaching and Fig. 12 for pushing.

On object reaching (Fig. 11), we observe very similar trends with and without regularization:
Unsupervised metrics (ELBO and reconstruction loss) display a correlation with the training reward,
as do the supervised informativeness metrics (GBT and MLP). This is strongest on early timesteps,
meaning these scores could be important for sample efficiency. Similarly, we observe a correlation
with the disentanglement scores DCI, MIG and SAP. With the help of the additional evaluation of
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Figure 11: Sample efficiency analysis for object reaching. Rank correlations of rewards with relevant metrics
along multiple time steps. Correlations are color-coded as described in Fig. 2.

Figure 12: Sample efficiency analysis for pushing. Rank correlations of rewards with relevant metrics along
multiple time steps. Correlations are color-coded as described in Fig. 2.

rewards adjusted for MLP informativeness, we can attribute this correlation again to this common
confounder. Crucially, we see that the generalization scores (GS) are correlated with generalization
of the corresponding policies under OOD1 and OOD2 shifts for all recorded time steps, confirming
the results in the main text.

On pushing (Fig. 12), many correlations at early checkpoints are significantly reduced, especially
with regularization. This behavior might be due to the more complicated nature of the task, which
involves learning to reach the cube first, and then push it to the goal. Correlations are primarily seen
towards the end of training, with similar spurious correlations with disentanglement as elaborated
above. Importantly, correlations between generalization scores (GS) and policy generalization under
the same distribution shifts remain strong and statistically significant, corroborating the analysis in
the main text.

B.2.4 GENERALIZATION TO A NOVEL SHAPE

As mentioned in Section 4.2, on the object reaching task, we also test generalization w.r.t. a novel
object shape by replacing the cube with an unmovable sphere. This corresponds to a strong OOD2-
type shift, since shape was never varied when training the representations. We then evaluate a subset
of 960 trained policies as before, with the same color splits. Surprisingly, the policies appear to
handle the novel shape as we see from the histograms in Fig. 13 in terms of success and final distance.
In fact, when the sphere has the same colors that the cube had during policy training, all policies
get closer than 5 cm to the sphere on average, with a mean success metric of about 95%. On sphere
colors from the OOD1 split, more than 98.5% move the finger closer than this threshold, and on the
strongest distribution shift (OOD2-sim colors and cube replaced by sphere) almost 70% surpass that
threshold with an average success metric above 80%.
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Figure 13: Testing policies for object reaching under the same in-distribution, OOD1, and OOD2 evaluation
protocols regarding object color in simulation, but replacing the cube with a sphere, which was never used in
training.

Figure 14: Transferring policies for object reaching to the real robot setup without any fine-tuning on a green
sphere (unseen shape and color). Correlations are color-coded as described in Fig. 2.

B.3 DEPLOYING POLICIES TO THE REAL WORLD

In Fig. 14 we show three representative episodes of testing a reaching policy on the real robot for the
strong OOD shift with a novel sphere object shape instead of the cube from training. We present the
respective videos in the project page. There we also present videos of additional real-world episodes
on pushing and reaching cubes of different colors.
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