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Abstract

As the reasoning abilities of artificial intelli-
gence gain more attention, generating reliable
benchmarks to evaluate reasoning capabilities
is becoming increasingly important. The Ab-
stract and Reasoning Corpus (ARC) is one
of the introduced reasoning benchmarks, pro-
viding challenging problems that artificial in-
telligence has yet to solve. While ARC has
been recognized for assessing reasoning abil-
ities, it has a limitation in that its evaluation
method through generation fails to consider
other aspects of assessment. Bloom’s taxon-
omy, widely known in education, argues that
good evaluation methods should evaluate the
six stages of Remember, Understand, Apply,
Analyze, Evaluate, and Create in a step-by-step
manner. To make ARC, which primarily eval-
uates the Create stage, suitable for assessing
stages like Understand and Apply, we devel-
oped MC-LARC. This new multiple-choice for-
mat fits well on evaluating large language mod-
els (LLMs) across different cognitive stages.
We evaluated the analogical reasoning abilities
of ChatGPT4V with MC-LARC, confirming
that 1) a multiple-choice format can support the
language model’s reasoning capabilities and 2)
facilitate evidence analysis. However, we no-
ticed LLMs relying on shortcuts when tackling
MC-LARC. By analyzing this, we identified
areas to consider in multiple-choice synthesis
and specified criteria for what constitutes good
choices based on these findings.

1 Introduction

Research on artificial intelligence with reasoning
capabilities is attracting attention, leading to the

proposal of benchmarks to measure such abilities.

The Abstraction and Reasoning Corpus (ARC) is
one such benchmark designed to evaluate reasoning
abilities. Each ARC task consists of 2—5 examples
where both input and output are provided, along
with one task where only the input is given. The

goal is to infer the rule from the examples and de-
duce the answer to the task. The input and output
grids in ARC can range from a minimum 1 x 1
grid to a maximum 30 x 30 grid, with each grid
filled with up to 10 different colors. Unlike exist-
ing reasoning benchmarks, ARC’s strength lies in
its specialization in evaluating reasoning abilities
alone by reducing the amount of prior knowledge
and data required to solve the tasks.

However, ARC has limitations in that it is
an overly difficult benchmark requiring multiple
stages of reasoning to solve. According to Bloom’s
Taxonomy (Anderson et al., 2001), proposed in tra-
ditional educational theory, evaluation consists of
the following six stages: Remember, Understand,
Apply, Analyze, Evaluate, and Create. In this taxon-
omy, ARC assesses creation, which encompasses
all prior levels of cognitive processes, making it
difficult to pinpoint which specific stage may be
problematic when a solution is not reached. Even
if the logical reasoning process is correct, the entire
response is marked wrong if there is a slight error
in the generated grid. This issue is also found in
derived datasets with reduced difficulty, such as
Mini-ARC (Kim et al., 2022) and 1D-ARC (Xu
et al., 2023). Although these datasets changed grid
sizes or reduced 2D arrays to 1D arrays, it remains
difficult to identify which part of the model’s rea-
soning process is flawed when the task is not solved
due to the evaluation format that includes creation.
Therefore, a new evaluation method is needed to
identify which step of reasoning is problematic in
solving ARC.

Therefore, this paper proposes a modified bench-
mark called MC-LARC to provide an intermediate
step in solving ARC tasks. MC-LARC aims to
convert the evaluation format from generation to
selection, assessing the areas corresponding to Un-
derstand and Apply in Bloom’s Taxonomy. It con-
verts the dataset into a multiple-choice language
format by using Large Language Models (LLMs)



to generate four alternative options based on the
correct answer to ARC tasks. We conducted ex-
periments to investigate the impact of the transfor-
mation into multiple-choice form and found the
following two points: 1) The accuracy of LLMs
on ARC tasks increased from about 10% to 75%.
This indicates that the options in MC-LARC have
served a supportive role in the inference of LLMs,
which are more aligned with language generation
and comprehension than image processing. 2) Eval-
uating the extent of the inferential abilities of LLMs
becomes more clearly feasible. However, it was
observed that LLMs used shortcuts while solving
MC-LARC, finding the correct answer by consid-
ering the form or internal context of the choices to
eliminate inappropriate options, rather than utiliz-
ing reasoning abilities. Based on this analysis, it
was confirmed that when synthesizing data into a
multiple-choice format using LLMs, sufficient and
accurate context information should be provided
to avoid unnecessary additional information. Addi-
tionally, this analysis established criteria for what
constitutes good multiple-choice options.

2 Related Works

2.1 Evaluation Methods for LLM Abilities
Based on Bloom’s Taxonomy

Bloom’s Taxonomy (Anderson et al., 2001) pro-
vides a hierarchical classification of cognitive skills
that educators can use to structure learning objec-
tives, assessments, and activities. The taxonomy
categorizes cognitive skills into six levels as illus-
trated in Figure 1, each representing a different
level of complexity and depth of understanding,
from the most basic (Remembering) to the most
advanced (Creating).

By utilizing Bloom’s Taxonomy, educators and
researchers can more effectively design, evaluate,
and enhance learning experiences and assessments,
ensuring that they address all levels of cognitive
skills, from basic recall of information to the cre-
ation of new and original work.

(Shojaee-Mend et al., 2024) employed Bloom’s
Taxonomy to assess the cognitive levels of neuro-
physiology questions answered by large language
models, revealing strengths in basic knowledge
recall and weaknesses in higher-order reasoning
and knowledge integration. Similarly, (Joshi et al.,
2024) used this taxonomy to analyze the cogni-
tive depth of recommendations made by ChatGPT
and Bard for teaching Parallel Coordinate Plots.

Produce new or original work
Create assemble, design, construct, conjecture, develop, formulate

Justify a stand or decision

Evaluate argue, defend, judge, select, support, critique, weigh
Draw connections among ideas
Analyze differentiable, organize, relate, compare, examine, test
Use information in new situations
Apply execute, implement, solve, use, interpret, operate
Explain ideas or concepts
Understand classify, describe, explain, identify, recognize
Recall fact and basic concepts
Remember

define, repeat, list, memorize

Figure 1: The six cognitive skills in Bloom’s Taxon-
omy. These skills begin with basic tasks like recalling
facts and remembering concepts at the pyramid’s base,
progressing to creating original work based on a com-
prehensive understanding of a specific concept at the
top. Image credits: Center for Teaching, Vanderbilt Uni-
versity (Armstrong, 2010).

Human-expert evaluations showed that ChatGPT’s
suggestions were generally more appropriate and
effective across various cognitive stages, while
Bard’s recommendations were often less reliable.
Additionally, the BloomGPT project (Spanos et al.,
2024) structured a ChatGPT-powered web appli-
cation around Bloom’s Taxonomy, enhancing stu-
dents’ cognitive and metacognitive learning in an
undergraduate history course. Expert evaluations
indicated that the application effectively supported
diverse cognitive processes.

2.2 Benchmark for Analogy Abstraction
Tasks

Abstraction and Reasoning Corpus (ARC)
The Abstraction and Reasoning Corpus (ARC)
benchmark (Chollet, 2019) was created for the pur-
pose of measuring intelligence in computer sys-
tems. This benchmark requires inference based
on complex prior knowledge such as arithmetic
abilities, geometric understanding, and topologi-
cal understanding. The goal is to derive common
rules from examples and apply them to infer the
appropriate output image for a given test input im-
age. Each task provides 2-5 pairs of example input
and output images. The original ARC benchmark
consists of 400 training set, 400 evaluation set, and
200 test set. Moreover, the ARC benchmark is
represented as 2D matrices.

Language-complete = ARC (LARC) The
LARC (Acquaviva et al., 2022) dataset consists
of 400 ARC training data, each accompanied
by 1) a description of the input image and 2) a
natural language description of the rules between



the input and output images. Both the input
description and the output description must be
language-complete. Language-complete refers to
having sufficient relevant information even when
neither input nor output images are provided. In
other words, humans should be able to understand
the task sufficiently based solely on the description
of LARC without the presence of images. A
language-complete LARC is shown in the Refined
LARC in Figure 2.

Modified Benchmark with Transformed Evalu-
ation Format Abstract and reasoning tasks often
face problems in setting task objectives due to their
attempt to measure unclearly defined reasoning
abilities. Therefore, there have been previous stud-
ies that tried to perform new tasks by modifying
or expanding existing tasks. Bongard-LOGO (Nie
etal., 2020) is an example of simplifying a complex
task. Bongard (Bongard, 1967), one of the Visual
Reasoning benchmarks, is a task that expresses
the difference between two given abstract image
groups as a natural language description. It has
long been a notable task as it requires high abstrac-
tion and reasoning ability to solve the problem, but
it had limitations in analyzing the cause when a spe-
cific model could not solve it, as it is a description
task requiring natural language processing abilities.
To address this, Bongard-LOGO transformed the
type of Bongard problem from a description task
to a classification task. On the other hand, there
are also cases where simple tasks were changed
into complex tasks. VQA (Antol et al., 2015) is a
task that evaluates how well one can answer when
given an image and a question. However, VQA
only assesses whether the given image and natural
language problem are well understood, making it
unsuitable for evaluating reasoning abilities. To
overcome this limitation, a modified benchmark,
TGIF-QA (Jang et al., 2017), which added ques-
tions requiring reasoning about visual images, was
proposed. Thus, especially in the field of Visual
Reasoning, attempts are being made to establish
intermediary results through task transformation.

3 Methodology

We created MC-LARC through the following two
steps: 1) manually refining the existing LARC, and
2) utilizing ChatGPT4 to generate wrong options
based on LARC.

Inconsistent Expression

Example: Color

pink, yellow, darkred - brown

grey, pink, yellow, brown

Improving Insufficient Expression

ARC example Original LARC
o Fill in the first, second and last with blue and fill in
.== -> . the other three with yellow.
=
v
“EE - o
| . e
T Refined b+y Experts
L F e .
e Refined LARC

Fill in the pixel with blue if the input is symmetrical,
and with orange if it is not.

HE
N e
HE

Figure 2: Two main issues of LARC. (Upper part)
There are instances where different expressions are
used for the same concept within LARC. For example,
some LARC expressions describe brown as “dark red”.
(Lower part) This task involves identifying the symme-
try of the input grid to predict the output image result.
However, some original LARC expressions provide
insufficient information necessary for ARC problem-
solving. These have been revised to contain sufficient
and accurate information by experts.

Refining process The original LARC exhibited
significant quality issues, as evidenced by Figure 2.
These issues appeared primarily in 1) inconsisten-
cies across expressions for the same concept and 2)
a lack of information in the provided explanations.
For instance, the upper part of Figure 2 illustrates
different representations for the same concepts,
leading to confusion. Additionally, the explana-
tions accompanying the tasks often omitted crucial
information necessary for their successful comple-
tion. These issues emerged as a consequence of
the dataset’s compilation by numerous non-experts
using Amazon Mechanical Turk.

In addition to the issues highlighted in Figure 2,
there were further cases of inconsistency through-
out the dataset. These inconsistencies involved not
only color but also shape representations and grid
manipulation operations. The presence of these
multiple issues complicates the process of generat-
ing new datasets based on LARC, emphasizing the
challenges of relying on flawed data sources.

To address these issues, we conducted a refining



Visualized ARC example

Language Descriptions of ARC by Experts
Description for Input Image

In the input, you can see...
Several different lengths of gray bars that rise vertically.

Five Options for MC-LARC
Description for Output Image

To make the output, you have to...
@ Color the tallest blue, the second tallest red, the third tallest green, and the shortest yellow.

Four Distractors Generated by ChatGPT4 @

To make the output, you have to...

® Color the tallest blue, the second tallest green, the third tallest red, and the shortest yellow.

® Color the shortest red, the second shortest blue, the third shortest green, and the shortest yellow.
® Color the shortest green, the second shortest red, the third shortest yellow, and the shortest blue.
® Color the shortest blue, the second shortest red, the third shortest green, and the shortest yellow.

Figure 3: The composition of MC-LARC. It consists of a visualized ARC example and five multiple-choice options.
The five multiple-choice options consist of the correct solution and four distractors. (Blue part) It visualizes ARC
represented as a 2D matrix. (Green part) It is LARC refined manually by experts. (Red part) Using ChatGPT4, four
distractors were generated from the output description (Red boundary) of the refined LARC. To solve MC-LARC,
the solver must identify common rules from the visualized ARC example and select the one option from the Five

Options for MC-LARC that best describes those rules.

process to enhance quality. This process prioritized
ensuring consistency in expressions and rectifying
erroneous representations. Figure 2 provides an
overview of this refining process.

Generating wrong options with ChatGPT4
Based on the given output description of LARC,
we generated four distractors through ChatGPT4,
as illustrated in Figure 3. However, allowing unre-
stricted generation of distractors led to issues such
as creating out-of-context choices unrelated to the
task. To address this problem, we improved by
adding constraints during the prompt level. The
constraints added to the prompt are as follows:

* In context vocabulary: To generate plausible
distractors, it was necessary to limit the ex-
pressions within the context that aligns with
the ARC domain. To achieve this, two contex-
tual constraints were imposed. One involved
adding descriptions about the ARC environ-
ment, while the other entailed mentioning spe-
cific words that should not be used.

* Length of options: When generating dis-
tractors for lengthy options, there were cases
where LLM produced relatively short options,
leading to easily solvable problems. There-
fore, we restricted the LLM to generate incor-
rect options of similar lengths to the correct
options.

* Format: When creating distractors, we en-

sured that the opening phrases of the sentences
exactly matched the correct answer option’s
“To make the output, you have to.... If the
opening phrases of the incorrect options vary,
it could lead to selecting the correct answer
based on the format rather than the meaning
of the sentence.

As shown in Figure 7, before constraints were
added, the model generated options that were either
completely irrelevant to the ARC problem context
or altered parts that were not core concepts. These
were classified as either bad or moderate. How-
ever, after the constraints were applied, the model
did not produce any bad options, and the options
were classified only as best or moderate. Despite
this improvement, the model still faces the chal-
lenge of not being able to produce best options for
all tasks.

4 Experiments

To verify that the augmented multiple-choice op-
tions generated by the LLLM did not inadvertently
reveal more information than intended, we con-
ducted a control test, as illustrated in Figure 4,
where the LLM was presented with only the op-
tions, devoid of any accompanying images. If the
options were crafted appropriately and free from
informational bias, the LLM’s expected accuracy
rate would approximate 20%. Additionally, this
image-free experiment required the LLM to justify
its choice for each option.



Experiment 1: With Image

Part 1: Test Accuracy Part 2: Explanation

Five Options

ARC Example
L]

With Image - Part 1

112|345 +

“Provide explanation
about your choice”

®Pick v

Correct Option

@®Find
Common Rule

ChatGPT4V

ChatGPT4V Get Explanation

Experiment 2: Without Image

Part 1: Test Accuracy Part 2: Explanation

A CpiEns Without Image - Part 1

1[2]3 45 +

“Provide explanation
about your choice”

@®Pick v
Correct Option
ChatGPT4V
v

ChatGPT4V Get Explanation

Figure 4: Overview of the conducted experiments. The
upper part illustrates the first experiment, which in-
cludes visualized ARC example images, while the lower
part depicts the second experiment, which does not in-
clude these images. Each experiment is divided into
two parts. In Part 1, ChatGPT4 is tasked with solving
the MC-LARC to measure accuracy. In Part 2, it is
requested to provide explanations for its choices, in ad-
dition to completing the tasks from Part 1.

4.1 Influence of Multiple Choices

Table 1: A table summarizing the results of experi-
ments where ChatGPT4V solved MC-LARC five times.
It shows statistics on the accuracy and Krippendorft’s
Alpha score. The statistics show the mean, standard
deviation, and 95% confidence interval for the accu-
racy. Krippendorff’s Alpha score evaluates whether
ChatGPT4V’s responses are reliable across the five re-
peated experiments.

Category Mean (%) Std.  95% CI (%) Alpha
With images 75.81 .11 7493-76.70 0.8329
Without images 64.61 1.75 63.08-66.14 0.7995

For the MC-LARC, we asked the ChatGPT4V
model 5 times per problem, and as shown in Ta-
ble 1, the accuracy of correctly answered tasks out
of the total 400 tasks was about 75%. Considering
that the accuracy of LLMs on ARC tasks is around
10% (Qiu et al., 2024), this is certainly a high score.
Additionally, Krippendorff’s Alpha score of ap-
proximately 0.83 confirmed that the LLM was con-
sistently reasoning the answers.

To further evaluate the reasoning process of the

@ Correct Explanation

In all the given image files, there
is ared square in the input grid
on the left, and in the output grid
on the right, the red square is
filled with the pattern of

another colored object that is
present in the input grid.

ARC example

Therefore, the common rule is to
fill in the red square with the
pattern of the other colored
object.

& Wrong Explanation

In each of the given examples, the
colored pattern from the input grid
(on the left) has been duplicated
twice vertically -> (horizontally) in
the output grid (on the right).

This creates two exact copies of
the pattern, one above -> (next to)
the other, resulting in a vertically
-> (horizontally) extended version
of the original pattern.

The duplication maintains the
same colors and positions relative
to each other, just expanded
vertically -> (horizontally).

Figure 5: A result of requesting an explanation of the ex-
periments with provided images. (Upper part) It shows
an example where the answer to MC-LARC is correctly
chosen. (Lower part) It demonstrates the incorrect an-
swers due to failure to infer the correct solution.

LLM, we additionally asked for the reason behind
selecting each option. As a result, there were cases
where both the answer and the reasoning process
were correct or both were incorrect, but there were
almost no cases where the answer was correct but
the explanation was wrong, or where the answer
was wrong but the explanation was correct. This
indicates a decrease in the errors of generating cor-
rect answers through incorrect reasoning processes
or giving inconsistent answers, which tend to occur
when LLMs directly solve ARC tasks (Lee et al.,
2024). Therefore, even when multiple-choice op-
tions, including incorrect options along with the
answer description, were provided, we could con-
firm that the LLM’s reasoning ability was partially
improved.

4.2 Problems on Augmentation

However, there were indications that the LLM
found a shortcut when solving MC-LARC. MC-
LARC should be solved by inferring the rule from
the given images and choosing the correct option,
but the LLLM achieved an accuracy of 65% even
when the task was provided without images. The
Krippendorff’s Alpha score was also 0.79, not



ARC example

Input

(&)

Multiple-choice of MC-LARC

To make the output, you have to...

3. Examine the green pattern in the input.
Identify any empty areas of blocks enclosed by the pattern
and fill those enclosed parts with brown.

Explanation from LLM

1. Examine the grey pattern in the input.

Identify any empty areas of blocks enclosed by the pattern
and fill those enclosed parts with yellow. \

2. Examine the green pattern in the output.

Identify any empty areas of blocks enclosed by the pattern ——» Repeated Expression
and fill those enclosed parts with yellow.

(green, input, empty, yellow)

4. Examine the green pattern in the input.
Identify any empty areas of blocks enclosed by the pattern ——»
and fill those enclosed parts with yellow.

. Examine the green pattern in the input.
Identify any full areas of blocks enclosed by the pattern
and fill those enclosed parts with yellow.

— Contradiction

Figure 6: Example of an experiment without an image. When given five options, the LLM solves the problem by
analyzing them in the following manner. By examining the options, the LLM identifies repeated expressions and
excludes the options that use different vocabulary from the others. Additionally, it excludes options that cannot be
represented in the ARC grid by identifying semantic contradiction within the sentences themselves.

much lower than the experiment with images pro-
vided. This can be understood as evidence that
the LLM found a consistent logic for getting the
correct answers.

To analyze how the LLM solved MC-LARC
without the problem images, we additionally asked
the LLM to explain the reasoning behind its an-
swers. As shown in Figure 6, we found that the
LLM inferred the correct option by 1) choosing the
option with the most repeated expressions and 2)
eliminating options that were self-contradictory.

We point out two problems in the generation
process: First, generating four different incorrect
options from one correct option became problem-
atic, as the correct option naturally included more
repeated words than the incorrect options. Second,
not providing image and context information for op-
tion generation led to contradictory or incompatible
expressions in some options. Therefore, from this
experiment, we can conclude that to fairly evaluate
reasoning ability, the process of generating choices
should be improved to avoid providing additional
information that could serve as a shortcut.

4.3 Good Option and Bad Option

From the two experiments above, we confirmed
that converting to a multiple-choice format has ad-
vantages as an inference problem in two aspects:
1) providing additional information to solve the
reasoning problem, and 2) allowing for a more
transparent evaluation of the reasoning process.
However, we also found cases where unintended
shortcuts were discovered, and to address this is-

sue, the process of augmenting choices needs to be
improved. But before improving the choice gen-
eration process, this question must be answered
first: What distinguishes a good choice from a bad
choice?

As we examined the augmented choice examples
generated by the LLM, we were able to categorize
the choices into three levels of quality, as shown in
Figure 7. The best choices modified the core part of
the problem that fits the context. In ARC, the core
is the part where a change occurs between images,
so in the given examples, completing a square by
filling in orange pixels is the core. Thus, choices
questioning the change to orange can be considered
the best type of choice. Next, choices that were
possible to predict from the input image but did
not capture the core of the problem were of mod-
erate quality. Examples include using colors not
present in the input image or specifying grid sizes
that were not present. Finally, choices that included
cases that cannot occur in the ARC domain at all
were the worst. Commands like “Write an essay"
are irrelevant to ARC and do not require any rea-
soning process to solve the problem, making them
poor choices. Therefore, good text descriptions
and choices should 1) include the core of the prob-
lem in the choices, and 2) be consistent within the
context of the problem. Identifying the criteria in
form and content needed to generate good choices
during the augmentation process is the contribution
of this study.



Best

ARC example

-

pink pixels.

N

consisting of yellow pixels,
with gray pixels.

()

consisting of yellow pixels,
with blue pixels.

consisting of yellow pixels,
with red pixels.

a1

consisting of yellow pixels,
with orange pixels.

. Fill in the complete 3x3 square,

consisting of yellow pixels, with

Fill in the complete 5x5 square,

Fill in the complete 4x4 square,

4. Fill in the complete 2x2 square,

Fill in the complete 3x3 square,

1.

N

w

»

eal

. Fill in the incomplete 4x4 square,

Bad

. Complete the squares using
the color orange.

Moderate

-

Fill in the complete 3x3 square,
consisting of green pixels, with
pink pixels.

b

Fill in the incomplete 5x5 square,
consisting of light blue pixels,
with gray pixels.

Write an essay about the color
orange.

w

. Draw a circle using the color
consisting of black pixels, blue.
with blue pixels.

IS

Fill in the complete 2x2 square,
consisting of brown pixels,
with red pixels.

. Fold the paper into triangular
shapes.

=l

Fill in the incomplete 3x3 square,
consisting of yellow pixels,
with orange pixels.

Bake a cake using orange
flavoring.

Figure 7: Three examples of multi-choice options augmented differently by the LLM. The given problem is to fill
in an object with holes with the color orange to make a 3 x 3 square, where the size of the square and the color
are the core aspects of the problem. The good example demonstrates an understanding of the core of the problem
and provides consistent variations, while the poorer examples increasingly include choices that are unrelated to the

problem and inconsistent.

5 Discussion

5.1 Limitations in the Multi-Choice
Generation Method

While the experimental results confirmed that the
multiple-choice problem format provided sufficient
additional information to adequately assess Under-
standand Apply aspects, the issue of finding short-
cuts during the solving process was raised. This
problem is not unique to LLM evaluation. The is-
sue of imbalance among options in multiple-choice
questions has already been raised in classical test
theory (Alagumalai and Curtis, 2005). The follow-
ing are suggestions for improving the options in
MC-LARC:

* Option Quality Improvement: The multiple-
choice evaluation method has been criticized
for the existence of shortcuts such as Logical
cues, Long correct answer, Word repeats, and
Convergence strategy, even in the case of hu-
mans (Case and Swanson, 1998). It has also
been pointed out that when there is a lack of
discrimination power, the quality of the op-
tions decreases. The most intuitive way to
address this issue is for humans to consider
constraints when creating options.

* Modification on the Benchmark Format:
Not only the content of the options but also
the format of the options can affect the bench-
mark. Currently, MC-LARC follows a format

where one correct answer option is chosen
among five options. On the other hand, an-
other study reported that the selection ratio
between options remained similar when there
were four or three options compared to five
options (Vyas and Supe, 2008). It is also note-
worthy that problems with multiple correct
answers tend to be more difficult than those
with a single correct answer(Case and Swan-
son, 1998). However, it is not yet known how
these various multiple-choice formats differ
for LLMs, and therefore, they need to be con-
sidered as hyperparameters in the future.

Changing the Evaluation Objective: Mod-
ifying the content of the multiple-choice op-
tions to measure various areas of reasoning
such as application and creation is another pos-
sible improvement. Currently, the options in
MC-LARC are focused on finding the correct
way to solve the ARC task, which is aimed
at assessing the understanding of the task. To
extend the assessment to other reasoning abil-
ities, the application and creation stages of
the task need to be evaluated. Converting the
problem into a multiple-choice format where
images are selected instead of answer texts,
similar to MARVEL (Jiang et al., 2024), could
be one possible way to shift the problem for-
mat to the creation stage. To transition to the
application stage, instead of using an entire
problem description, it may be necessary to



consider separating the steps required to solve
the problem and have the option to select steps
that are not necessary for solving the given
ARC task.

5.2 Limitations in the Evaluation
Methodology

One of the current limitations of MC-LARC is
the lack of sufficient evaluation metrics for the pro-
posed benchmark. Therefore, it is difficult to assess
how much the addition of multiple-choice has con-
tributed to securing intermediate reasoning stages
leading up to ARC, and how well the options are
constructed. The following describes existing meth-
ods for evaluating options:

» Using Scoring Models: (Ding and Beichner,
2009) has proposed statistical and numerical
methods for evaluating the quality of multiple-
choice questions (MCQs). They propose three
methods for individual item evaluation (Item
Difficulty Level, Item Discrimination Index,
Point Biserial Coefficient) and two methods
for overall test evaluation (Kuder-Richardson
Reliability Index, Ferguson’s Delta). Item
Difficulty Level and Item Discrimination In-
dex measure item difficulty and discrimina-
tive power, while Point Biserial Coefficient
assesses each item’s appropriateness by com-
paring item scores with the total test score.
The Kuder-Richardson Reliability Index de-
termines whether the test is suitable for indi-
vidual or group assessments, and Ferguson’s
Delta measures the test’s ability to distinguish
between varying levels of proficiency. Addi-
tionally, they introduce clustering analysis for
analyzing respondent patterns and model us-
age. Therefore, using metrics to measure the
quality of MCQs is one method for improving
MC-LARC.

¢ Comparison with Human-Created Ques-
tions: One issue with the current MC-LARC
is that both question generation and evalua-
tion are done through a single model, Chat-
GPT4V. This evaluation approach does not
reveal whether MC-LARC can be properly
evaluated on other models, including other
LLMs. In existing test theory, to compare with
human-created options, a large number of peo-
ple directly participated in the evaluation to
minimize errors as much as possible (Palmer

et al., 2006). Similarly, 1) three or more peo-
ple can evaluate whether there are errors in the
options, and 2) the quality of the options can
be compared with human-created questions.

6 Conclusion

To overcome the limitations of the existing ARC in
measuring inferential reasoning ability, we created
a new multiple-choice dataset called MC-LARC.
As a result, the multiple-choice format allowed for
a clearer analysis of logical flow during problem-
solving and provided supplementary support for
the solver’s reasoning abilities. However, in an
additional control experiment without images, we
found that the LLM solved problems by finding
shortcuts instead of using reasoning abilities. This
highlights the regulation needed when using LLMs
to synthesize multiple-choice questions. Based on
these findings, we propose specific conditions for
designing multiple-choice questions that effectively
evaluate the required reasoning abilities without
enabling shortcuts.

These findings have several important implica-
tions. Firstly, they offer valuable insights into
the appropriate methods for evaluating inferential
reasoning, demonstrating the potential of using
multiple-choice questions for this purpose. Sec-
ondly, by identifying the constraints to consider
when using LLMs to synthesize multiple-choice
questions, this research paves the way for the de-
velopment of more sophisticated and automated
high-quality question generators.

7 Limitation

Our study has two main limitations. First, the
generated options lack quality, allowing LL.Ms to
find shortcuts. Second, there is a lack of metrics
to measure the quality of the options. We have
found issues such as repeated words and contradic-
tory content in the current multiple-choice options.
However, these issues are inherent limitations of
multiple-choice questions (Alagumalai and Curtis,
2005), and therefore, do not undermine the funda-
mental purpose of MC-LARC to assess cognitive
features of LLMs such as understanding and appli-
cation, which are difficult to confirm solely through
solving ARC problems.

Secondly, our current analysis is limited to the
accuracy of LLMs. In existing test theory, met-
rics such as discrimination are used to evaluate the
quality of options. This requires the use of various



LLMs and analysis of human cases. Nonetheless,
this study lays the foundation for identifying cog-
nitive features that cannot be confirmed through
ARC alone, with significant potential for future
expansion.
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