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ABSTRACT

Diffusion-based 2D virtual try-on (VTON) techniques have recently demonstrated
strong performance, while the development of 3D VTON has largely lagged behind.
Despite recent advances in text-guided 3D scene editing, integrating 2D VTON
into these pipelines to achieve vivid 3D VTON remains challenging. The reasons
are twofold. First, text prompts cannot provide sufficient details in describing
clothing. Second, 2D VTON results generated from different viewpoints of the
same 3D scene lack coherence and spatial relationships, hence frequently leading
to appearance inconsistencies and geometric distortions. To resolve these problems,
we introduce an image-prompted 3D VTON method (dubbed GS-VTON) which,
by leveraging 3D Gaussian Splatting (3DGS) as the 3D representation, enables
the transfer of pre-trained knowledge from 2D VTON models to 3D while improv-
ing cross-view consistency. (1) Specifically, we propose a personalized diffusion
model that utilizes low-rank adaptation (LoRA) fine-tuning to incorporate person-
alized information into pre-trained 2D VTON models. To achieve effective LoRA
training, we introduce a reference-driven image editing approach that enables the
simultaneous editing of multi-view images while ensuring consistency. (2) Further-
more, we propose a persona-aware 3DGS editing framework to facilitate effective
editing while maintaining consistent cross-view appearance and high-quality 3D
geometry. (3) Additionally, we have established a new 3D VTON benchmark,
3D-VTONBench, which facilitates comprehensive qualitative and quantitative 3D
VTON evaluations. Through extensive experiments and comparative analyses with
existing methods, the proposed GS-VTON has demonstrated superior fidelity and
advanced editing capabilities, affirming its effectiveness for 3D VTON.

1 INTRODUCTION

Driven by advancements in neural rendering, virtual try-on (VTON) techniques represent a significant
milestone in the intersection of fashion and computer vision. These technologies are increasingly
utilized across various domains, such as online shopping (Kim & Forsythe, 2008; Zhang et al., 2019),
VR/AR avatar modeling (Mystakidis, 2022), and gaming (Lerner et al., 2007), enabling users to
visualize how different garments will look on them without the need for a physical try-on. Traditional
methods (Han et al., 2018; Wang et al., 2018; Meng et al., 2010; Hauswiesner et al., 2013; Hsieh
et al., 2019) for this task primarily emphasize 2D image editing. Typically, they achieve virtual
try-on by estimating pixel displacements using optical flow (Canny, 1986) and employing pixel
warping techniques to seamlessly blend clothing with the individual. However, these 2D VTON
approaches have struggled with occlusion issues and have difficulty accommodating complex human
poses and clothing. With the rise of deep learning, methods (Choi et al., 2021; Ge et al., 2021a;b;
Lee et al., 2022; Men et al., 2020) utilizing Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have been introduced, aiming for more effective virtual fitting experiences. Despite
their promise, these methods face challenges when handling custom user images that fall outside
the training data. Although approaches (Zhu et al., 2023; Choi et al., 2024; Kim et al., 2024; Xu
et al., 2024) leveraging large language models (Radford et al., 2021b) and diffusion models (Song
et al., 2021; Stability.AI, 2022) have demonstrated improved performance and generalization, these
approaches still struggle with generating consistent multi-view images and accurately modeling 3D
representations of garments.
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Figure 1: Examples of 3D virtual try-on results obtained via GS-VTON. Our approach facilitates
high-fidelity editing of 3D garments, featuring intricate geometry and texture, under various scenarios
with diverse cloth types, body shapes, and poses.

Recently, neural radiance field (NeRF) (Mildenhall et al., 2021) and 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) have garnered significant attention for their efficient differentiable
rendering capabilities, sparking research into text-guided 3D editing algorithms (Haque et al., 2023;
Cyrus & Ayyan, 2023; Wu et al., 2024). Instruct-NeRF2NeRF (Haque et al., 2023) leverages a
pre-trained diffusion model to edit rendered images while computing image-level loss based on
textual prompts, allowing gradients to be back-propagated for modifying 3D differentiable scenes.
Following this, subsequent research efforts (Zhuang et al., 2023; Shao et al., 2023; Dong & Wang,
2024; Cheng et al., 2023; Han et al., 2023; Zhou et al., 2024b) have aimed to improve quality and
broaden the applications of Instruct-NeRF2NeRF across various tasks. However, these methods
generally apply global edits to the 3D scene, limiting their effectiveness for VTON applications.
While GaussianEditor (Chen et al., 2023b) and TIP-Editor (Zhuang et al., 2024) have been developed
to facilitate local editing, they still encounter difficulties when modifying clothing items based solely
on textual descriptions (see Fig. 5). In addition, the rising use of image prompts in VTON applications,
which convey richer information than text, underscores the urgent need for adaptable 3D VTON
methods that accommodate user-specified images. On the other hand, directly applying 3D editing
algorithms with diffusion-based 2D VTON models often leads to unsatisfactory results, primarily
due to two major limitations. First, current 2D VTON diffusion models struggle to accurately visual-
ize how the input clothing image would appear from different viewpoints, resulting in multi-view
inconsistencies within the edited 3D scene. This issue stems from a lack of coherence and spatial
relationships. Furthermore, since we aim to modify individual garments rather than the entire body,
maintaining consistency with other body parts becomes even more challenging. Second, existing 2D
VTON diffusion model may still yield suboptimal results when dealing with data that falls outside
their training distribution, leading to issues such as blurriness and distortions in both appearance and
geometry.

To address this challenge, we present a novel image-prompted 3D VTON method in this paper,
entitled GS-VTON, which could achieve fine-grained editing of human garments. By taking a
garment image and multi-view human images as input, our method comprises two major components,
personalized diffusion model via LoRA fine-tuning and persona-aware 3DGS editing, to achieve this
objective. First, we enhance the pre-trained 2D VTON diffusion model by incorporating personalized
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information through a low-rank adaptation (LoRA) module. This enhancement allows the model to
better reflect the specific characteristics of the input data by extending its learned distribution. Second,
we introduce a reference-driven image editing approach that can simultaneously edit multi-view
images while maintaining high consistency. This method forms a robust foundation for effectively
training the LoRA module. Third, we design a persona-aware 3DGS editing process that refines the
original editing by blending two predicted attention features: one for editing and the other for ensuring
coherence across different viewpoints. This strategy facilitates effective editing while enhancing
multi-view consistency in geometry and texture.

Moreover, to support more thorough qualitative and quantitative evaluations, we establish a 3D
VTON benchmark, named 3D-VTONBench, which, to our knowledge, is the first dataset of its
kind. As presented in Fig. 1, our method achieves high-fidelity 3D VTONs across diverse scenarios
with various garments and human poses. Comprehensive comparisons with existing techniques
also demonstrate that our approach significantly surpasses existing methods, establishing a new
state-of-the-art in 3D VTON.

Our contributions could be summarized as follows:

• We introduce GS-VTON that, by extending the 2D pre-trained virtual try-on diffusion model
to 3D, can take garment images as input to perform fine-grained 3D virtual try-on.

• To enhance multi-view consistency, we propose a reference-aware image editing technique
that simultaneously generate consistent multi-view edited images, as well as a persona-aware
3DGS editing which takes into account both the intended editing direction and the original
set of edited images.

• We have created the first benchmark for 3D virtual try-on, enabling more comprehensive
evaluations. Extensive experiments demonstrate that our method establishes a new state-of-
the-art performance for 3D virtual try-on.

2 RELATED WORKS

2D Diffusion-based Generative Model. In recent years, there have been significant advancements
in vision-language technologies, including methods like Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021a) and various diffusion models (Ho et al., 2020; Dhariwal & Nichol,
2020; Rombach et al., 2022b; Song et al., 2021). These models, trained on billions of text-image
pairs, exhibit a strong understanding of real-world image distributions, enabling them to generate
high-quality and diverse visuals. Such developments have greatly advanced the field of text-to-2D
content generation (Saharia et al., 2022; Ramesh et al., 2022; Balaji et al., 2022; Stability.AI, 2022;
2023a) and text-to-video generation (Blattmann et al., 2023a; Liu et al., 2024; Guo et al., 2023; Ma
et al., 2024; Huang et al., 2024). Following these techniques, subsequent research has focused on
enhancing control over generated outputs (Zhang & Agrawala, 2023; Zhao et al., 2023; Mou et al.,
2023), adapting diffusion models for video sequences (Singer et al., 2023; Blattmann et al., 2023c),
facilitating both image and video editing (Hertz et al., 2022; Kawar et al., 2022; Wu et al., 2022;
Brooks et al., 2023; Valevski et al., 2022; Esser et al., 2023; Hertz et al., 2023). Additionally, efforts
have also been made to boost performance in personalized content generation (Ruiz et al., 2023a;
Gal et al., 2023). Despite these advancements, the skill of crafting effective prompts remains crucial.
Furthermore, in virtual try-on applications, which is the main target of this paper, textual descriptions
frequently struggle to convey the intricate details of clothing as effectively as images, complicating
the process of achieving realistic 2D virtual try-on.

Image-based Virtual Try-on. Image-based virtual try-on aims to create a visualization of a target
person wearing a specific garment. Traditionally, methods (Choi et al., 2021; Lee et al., 2022; Men
et al., 2020; Ge et al., 2021b; Xie et al., 2023; Ge et al., 2021a) based on generative adversarial
network (GAN) (Goodfellow et al., 2014) have been proposed to correspondingly deform the garment
before fitting it to the human subject. Subsequent efforts (Issenhuth et al., 2020; Lee et al., 2022;
Ge et al., 2021b; Choi et al., 2021) have been made to minimize the discrepancies between the
altered garment and the person. However, these methods are often constrained by the training
dataset, showing limited generalization to images outside the pre-trained distribution. More recently,
benefiting from the success of diffusion models (Saharia et al., 2022; Ramesh et al., 2022; Balaji et al.,
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2022; Stability.AI, 2022), researches have explored applying them to tackle the existing limitations
for virtual try-on. Specifically, TryOnDiffusion (Zhu et al., 2023) introduces a dual UNet architecture,
demonstrating the potential of diffusion-based approaches when trained on extensive datasets; Yang
et al. (2023) treats the virtual try-on as the exemplar-based image inpainting; Stableviton (Kim
et al., 2024), Ladi-VTON (Morelli et al., 2023) and Gou et al. (2023) fine-tune diffusion models
to achieve high-quality results; IDM-VTON (Choi et al., 2024) explores the usage of high-level
semantics and low-level features to handle the task of identity preservation during virtual try-on.
Despite showing promise, they can still yield suboptimal results for out-of-distribution data, and
transferring pre-trained 2D knowledge directly to the 3D space remains challenging.

3D Scene Editing. Leveraging the advancement of differentiable 3D representation, i.e.,
NeRF (Mildenhall et al., 2020) and 3DGS (Kerbl et al., 2023), and diffusion-based text-to-2D
generation methods (Stability.AI, 2022; Brooks et al., 2023), text-driven 3D scene editing methods
have emerged for modifying 3D subjects using diffusion models. Among them, Instruct-NeRF2NeRF
(IN2N) (Haque et al., 2023) is the first to propose editing 2D renderings with Instruct-Pix2Pix (Brooks
et al., 2023) and back-propagating gradients to adjust the 3D scene until convergence. While IN2N
shows promise, it faces challenges such as instability, inefficient training, blurry results, and sig-
nificant artifacts. These issues arise from the diffusion models’ lack of 3D awareness, particularly
regarding camera pose, leading to inconsistent multi-view rendering edits. To address these limi-
tations, subsequent works (Po et al., 2024; Wang et al., 2024) have aimed to enhance performance
from various angles: Instruct-Gaussian2Gaussian (Cyrus & Ayyan, 2023) replaces the 3D represen-
tation of NeRF with 3DGS and introduces improved dataset updating strategies for better training
efficiency. Vica-NeRF (Dong & Wang, 2024) first selects several reference images from the input
dataset, edits them using Instruct-Pix2Pix, and then blends the results for the remaining dataset to
reduce inconsistencies. However, this blending does not fully resolve the consistency issue and often
results in blurry edits for human subjects. DreamEditor (Zhuang et al., 2023) applies personalized
DreamBooth (Ruiz et al., 2023b) to achieve local editing. TIP-Editor (Zhuang et al., 2024) introduces
a 3D bounding box as a condition to enhance control over local editing. Despite promising results in
adding objects to 3D scenes, these methods struggle with local modifications of internal geometry
and textures. GaussianEditor (Chen et al., 2023b) utilizes large language models (Kirillov et al.,
2023) for text-driven local editing. GaussCTRL achieves similar outcomes using a depth-conditioned
ControlNet (Zhang & Agrawala, 2023). Unfortunately, existing techniques typically do not accept
images as input and have difficulty performing garment editing for effective 3D virtual try-on. While
GaussianVTON (Chen et al., 2024a) presents a three-stage editing pipeline aimed at a similar task, it
may still face challenges in largely altering the original garment geometry.

3 METHODOLOGY

We present GS-VTON, a novel 3D virtual try-on method that enables controllable local editing
to the human garment within a 3D Gaussian Splatting (3DGS) scene. Specifically, our method
leverages multi-view human images Itrain, and a garment image as inputs to achieve this objective. In
the subsequent sections, we first describe the preliminary knowledge that underpins our method in
Sec. 3.1. We will then delve into the core elements of GS-VTON, which include (1) personalized
inpainting diffusion model adaptation via reference-driven image editing and LoRA fine-tuning in
Sec. 3.2, and (2) persona-aware self-attention mechanism for achieving customizable 3D virtual
try-ons using 3DGS in Sec. 3.3. An overview of GS-VTON is illustrated in Fig. 2.

3.1 PRELIMINARIES

3D Gaussian Splatting. Unlike NeRF (Mildenhall et al., 2021), which employs neural networks to
synthesize novel views, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) takes another direction by
directly optimizing the 3D position x and attributes of 3D Gaussians, i.e, opacity α, anisotropic covari-
ance, and spherical harmonic (SH) coefficients SH (Ramamoorthi & Hanrahan, 2001). Specifically,
the 3D Gaussian G(x) is defined by a 3D covariance matrix Σ centered at point (mean) µ:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

Drawing inspiration from (Lassner & Zollhofer, 2021), 3DGS implements a tile-based rasterizer: The
screen is first divided into tiles, such as 16× 16 pixels. Each Gaussian is instantiated based on the
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Figure 2: Overview of GS-VTON. We enable 3D virtual try-on by leveraging knowledge from
pre-trained 2D diffusion models and extending it into 3D space. (1) We introduce a reference-driven
image editing method that facilitates consistent multi-view edits. (2) We utilize low-rank adaptation
(LoRA) to develop a personalized inpainting diffusion model based on previously edited images. (3)
The core of our network is the persona-aware 3DGS editing which, by leveraging the personalized
diffusion model, respects two predicted attention features-one for editing and the other for ensuring
coherence across different viewpoints-allowing for multi-view consistent 3D virtual try-on.

number of tiles it overlaps, with a key assigned to each Gaussian to record view space depth and tile
ID. These Gaussians are then sorted by depth, enabling the rasterizer to accurately manage occlusions
and overlapping geometry. Finally, a point-based α-blend rendering technique is used to compute the
RGB color C, by sampling points along the ray at intervals δi:

Ccolor =
∑
i∈N

ciσi

i−1∏
j=1

(1− σj) , σi = αie
− 1

2 (x)
TΣ−1(x), (2)

where ci is the color of each point along the ray.

Instruct-Gaussian2Gaussian (IG2G) (Cyrus & Ayyan, 2023). Building on Instruct-
Pix2Pix (Brooks et al., 2023) and 3DGS, IG2G facilitates text-guided scene editing with a given
3DGS model and its associated training dataset. This process is achieved in two main steps:

1) Image editing. For a rendered image from a specified camera viewpoint, IG2G first introduces
Gaussian noise to the image. This noisy image, alongside the text embedding y and the original
training image, serves as conditions for Instruct-Pix2Pix to generate an edited image, which reflects
the desired modifications. These changes will then be back-propagated to the 3DGS scene to update
it accordingly.

2) Dataset update. In addition to incorporating the editing direction through back-propagation, IG2G
updates the entire dataset periodically, specifically every 2,500 training iterations. This update process
involves inputting the rendered image into the diffusion model, such as Instruct-Pix2Pix, to ensure
stronger and more accurate 3D edits over time.

Latent Diffusion Model. Latent Diffusion Model (LDM) (Blattmann et al., 2023b) is a refined
variant of diffusion models, optimizing the trade-off between image quality and training efficiency.
Specifically, LDM achieves this by first using a pre-trained variational auto-encoder (VAE) (Kingma
& Welling, 2013) to project images into a latent space, and then carry out the diffusion process
in the latent space. Additionally, LDM enhances the UNet architecture (Ronneberger et al., 2015)
by incorporating self-attention mechanisms (Vaswani et al., 2017), cross-attention layers (Vaswani
et al., 2017), and residual blocks (He et al., 2016), allowing the model to integrate text prompts as
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conditional inputs during the image generation process. The attention mechanism in LDM’s UNet is
defined as follows:

ATT(Q,K, V ) = softmax(
Q ·KT

√
dk

) · V (3)

where K, Q, V represents the key, value, and query features respectively.

3.2 PERSONALIZED INPAINTING DIFFUSION MODEL ADAPTATION

Existing methods for editing 3D scenes (Haque et al., 2023; Cyrus & Ayyan, 2023; Wu et al., 2024;
Dong & Wang, 2024; Zhuang et al., 2024) typically rely on a pre-trained diffusion model to control
the editing process and update the training dataset. However, these approaches would struggle with
tasks such as modifying the garment of a human subject (see Fig. 5). A notable cause is that diffusion
models like instruct-pix2pix (Brooks et al., 2023) lack the capability to accurately perceive and edit
clothing locally. Although there have been advancements in diffusion models (Choi et al., 2024; Zeng
et al., 2024; Zhu et al., 2023) for 2D virtual try-on, applying them directly to 3D scene editing often
leads to inconsistencies and geometric distortions. This is primarily due to the inherent randomness
of diffusion models, which struggle to accurately predict how garments will appear from different
viewpoints, leading to discrepancies across various views (see Fig. 3). To tackle this problem in 3D
virtual try-on, we propose injecting spatial consistent features derived from the training dataset Itrain
into the diffusion model.

Personalized Diffusion Model via LoRA fine-tuning. Low-Rank Adaption (LoRA) (Hu et al.,
2021) is a technique designed to efficiently fine-tune large language models, and has recently been
extended to diffusion models. Rather than adjusting the entire model, LoRA focuses on modifying a
low-rank residual component ∆θ, which is represented as a sum of low-rank matrices. This method
allows us to incorporate characteristics of a specific image into the learned distribution of a pre-trained
diffusion model.

In order to design an image-prompted network, we first apply LoRA to enhance a pre-trained Stable
Diffusion Inpainting Model (Rombach et al., 2022a). Specifically, it involves training the LoRA
component ∆θ using a collection of edited training images Xtrain = {Ii|i ∈ [0, n)}, where n
represents the total number of images, with the following objective:

L(∆θ) = Eϵ,t[||ϵ− ϵθ+∆θ(
√
atz0−i +

√
1− atϵ, t, y)||2], (4)

where z0 = E(Ii) is the latent embedding from the VAE encoder for image Ii, ϵ is the randomly
sampled Gaussian noise, y denotes the text embedding, and ϵθ+∆θ represents the UNet model
enhanced with LoRA.

To further enhance the performance, we generate K random binary masks M = {mi = 0, 1|i ∈
[0,K)} and apply these masks to the images (Tang et al., 2024) during LoRA fine-tuning. Then the
objective becomes:

L(∆θi) = Eϵ,t[||ϵ− ϵθ+∆θ(
√
atz0−i ⊙ (1−mi) +

√
1− atϵ, t, y)||2], (5)

where ⊙ denotes the element-wise product.

w/o reference-driven image editing w/ reference-driven image editingInput cloth

Figure 3: Effectiveness of reference-driven im-
age editing in multi-view image editing.

Reference-driven Image Editing. To achieve
a well-trained LoRA model, the first critical
step is constructing the edited training image set
Xtrain. To this end, we further propose reference-
driven image editing. Naïvely, one might con-
sider such a straightforward method: applying
images from the input human images Itrain di-
rectly to a pre-trained 2D virtual try-on diffusion
model to obtain the edited images individually.
However, we found that this method introduces
significant inconsistencies in garment appear-
ance, which adversely affects the quality and
reliability of the LoRA model, as shown in Fig. 3. We attribute this problem to the randomness of the
Gaussian noise, which would lead to variations in the attention features.
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Drawing inspiration from recent advancements in temporal-aware self-attention techniques used
in video generation (Zhou et al., 2024a; Chen et al., 2023a; 2024b; Blattmann et al., 2023a), we
propose a novel approach to enhance image consistency using a pre-trained IDM-VTON (Choi
et al., 2024). Our approach involves first creating an image set Xtrain through random sampling of n
images from the input multi-view human images Itrain. Note that we set n = 4 for the experiments
reported in this paper. We then perform simultaneous editing of these images while incorporating
reference attention features into the denoising process to enhance the overall consistency. Specifically,
during the denoising step t, we begin by processing the latent features zt−i of the images Ii ∈ Xtrain
through the UNet of IDM-VTON, which produces the key and value matrices Kt−i and Vt−i for the
self-attention mechanism. We then integrate reference attention features to update these matrices
accordingly:

Kt−i := [Kt−i,Kt−ref], Vt−i := [Vt−i, Vt−ref], i = 0, ..., n (6)

where [·] represents the concatenation operation. In our implementation, we treat the first image as
the reference image, i.e., Kt−ref = Kt−0, Vt−ref = Vt−0. We then replace the corresponding matrices
in the UNet with these updated values to obtain the edited images:

Xtrain := {Fθ(Ii, Iref)|i = 0, ..., n− 1}, (7)

where Fθ(·) denotes the pre-trained IDM-VTON model. This approach ensures that during the
denoising steps, the intermediate latents are influenced by consistent reference features, thereby
improving the overall consistency of the edited images.

3.3 PERSONA-AWARE 3DGS EDITING

After developing a fine-tuned personalized inpainting diffusion model, integrating it into the 3DGS
editing pipeline introduces additional challenges. Unfortunately, images generated by this fine-tuned
diffusion model can still exhibit inconsistencies, particularly when the rendered viewpoints differ
significantly from those in the edited image set Xtrain. Consequently, this can negatively impact
3DGS editing by introducing visual artifacts and inconsistent textures (see Fig. 7). The problem
stems from the limited number of training images used during fine-tuning, which restricts the model’s
ability to produce consistent features across various viewpoints. This issue remains even when we
increase the number of images for LoRA fine-tuning (see Appx. ??), which also raises GPU memory
requirements and reduces training efficiency.

To address this, we propose persona-aware 3DGS editing, which refines diffusion process by merging
two predicted attention features: one based on the editing direction and the other derived from the
edited image set Xtrain:

ATT(Qj ,Kj , Vj) := λ · ATT(Qj ,Kj , Vj) + (1− λ) · 1
n

∑
i∈Xtrain

ATT(Qj ,Ki, Vi), (8)

where λ is a hyper-parameter to balance the effects, and defaults to 0.55 in our experiments. Instead of
adapting the original stable diffusion inpainting model with LoRA, we adapt it via a ControlNet-based
stable diffusion inpainting model to condition the inpainting process on the input garment image,
thus enhancing the fidelity of the results. Formally, given a rendered image Isrc from 3DGS scene
and a garment image Icloth with captioning text y from BLIP-2 (Li et al., 2023), we first input these
into the fine-tuned personalized inpainting diffusion model equipped with ControlNet C to obtain the
edited image:

Iedit = ϵθ+∆θ(zsrc; y, t, C(Icloth)), (9)

where zsrc represents the encoded latents from the rendered image. Our optimization objective is then
be formulated as:

L = λ1 · LMAE(Iedit, Isrc) + λ2 · LLPIPS(Iedit, Isrc), (10)

where λ1 and λ2 are hyper-parameters, which defaults to 10 and 15 respectively.

3.4 IMPLEMENTATION DETAILS

GS-VTON builds upon official implementation of GaussianEditor (Chen et al., 2023b) for 3DGS
editing. While GaussianEditor uses a large language model (Kirillov et al., 2023) to create a 2D
image mask and then invert it for labeling locally edited 3D Gaussians, we take a different approach

7
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Figure 4: User study. Numbers are averaged over 625 responses from 25 volunteers.

by employing a 2D human parsing model (Li et al., 2020) and a human pose estimation model (Güler
et al., 2018) to generate the image mask. For our personalized inpainting diffusion model, we
utilize the Stable-Diffusion-2-Inpainting model (Stability.AI, 2023b) and adopt hyperparameters from
RealFill (Tang et al., 2024). We utilize the pre-trained BLIP-2 model to generate captions for the
garment image, which serves as part of the input to the diffusion model. Unlike many existing 3D
editing methods that are limited to a maximum image resolution of 512 × 512 due to constraints
from Instruct-pix2pix, GS-VTON can operate without such limitations, allowing edits at the original
resolution of the 3D scene. Additionally, while other methods may adjust hyperparameters for
different scenes, we keep all hyperparameters fixed across our experiments. For experiments reported
in this paper, we fine-tune the LoRA module for 1,000 iterations, while the 3DGS editing stage
involves 4,000 iterations. Typically, the fine-tuning of the LoRA module takes about 30 minutes, and
the 3DGS editing requires approximately 25 minutes on a single V100 GPU with 32GB of memory.

4 EXPERIMENTS

We now evaluate the performance of our GS-VTON both quantitatively and qualitatively, and provide
comparisons with other SOTA methods for 3D scene editing.

3D-VTONBench. Existing virtual try-on techniques primarily focus on 2D image generation, while
the majority of 3D virtual try-on methods (Rong et al., 2024; Feng et al., 2022; Jiang et al., 2020;
Corona et al., 2021; Pons-Moll et al., 2017; Grigorev et al., 2023) are centered around dressing
the SMPL models (Loper et al., 2015; Pavlakos et al., 2019) with human garments. On the other
hand, current 3D scene editing approaches tend to work with general scenes, leaving 3D virtual
try-on underexplored. As a result, there is a notable lack of specific evaluation benchmarks for this
task. To thoroughly assess the effectiveness of our methods, we introduce 3D-VTONBench, the first
benchmark dataset dedicated to evaluating 3D virtual try-on. Our dataset includes 60 data subjects
captured in various poses and garments. We believe that 3D-VTONBench will foster further research
in this important area.

Comparison Methods. We compare the editing results with five techniques: GaussianEditor (Chen
et al., 2023b), Instruct-Gaussian2Gaussian (IG2G) (Cyrus & Ayyan, 2023), GaussCTRL (Wu et al.,
2024), Instruct-NeRF2NeRF (IN2N) (Haque et al., 2023), and Vica-NeRF (Dong & Wang, 2024).
Since these methods only accept text prompts as input, we use ChatGPT to generate the text prompts
corresponding to the clothing images. We don’t compare with GaussianVTON (Chen et al., 2024a)
as their code is not publicly available.

4.1 QUANTITATIVE EVALUATIONS

User Studies. We begin by conducting a series of user studies with 25 pairs of edited results to
assess the quality of our method. For each pair, we presented the videos generated by our method
alongside those from five comparison methods (Chen et al., 2023b; Cyrus & Ayyan, 2023; Haque
et al., 2023; Dong & Wang, 2024; Wu et al., 2024). Participants were asked to watch these videos
and select the best result based on (1) realism, (2) similarity to the clothing image, and (3) overall
performance. A total of 25 volunteers participated in the user studies, providing 625 responses
overall. The results, provided in Fig. 4, show that our method significantly outperformed the others
across all three dimensions. Furthermore, the evaluation of similarity to the clothing image highlights
the limitations of text descriptions in conveying garment details, emphasizing the necessity for our
image-prompted pipeline.
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Transform his upper body to be in a crisp white t-shirt featuring a vibrant floral graphic on the left 
chest, combining casual comfort with a touch of artistic flair …

3DGS scene

3DGS scene Ours GaussianEditor IG2G GaussCTRL IN2N Vica-NeRF

2.21

Transform his upper body to be in a bright red lightweight windbreaker jacket from The North Face, 
featuring a zippered front, a hood, and a convenient chest pocket ...

Input

Input

Transform his upper body to be in a relaxed-fit, light beige t-shirt with short sleeves and a simple, 
understated logo on the chest, perfect for a casual and comfortable look.Input

Transform his upper body to be in a sleek, insulated gray puffer jacket with a hood and a front zipper, 
designed for warmth and comfort during outdoor activities in colder weather.Input

Figure 5: Qualitative comparison with existing 3D scene editing techniques. In contrast to other
methods that often struggle to produce satisfactory virtual try-on results, our approach consistently
delivers high-quality geometry and texture, closely resembling the input garment image.

4.2 QUALITATIVE EVALUATIONS

249 308
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Time
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Input cloth
Ours

Figure 6: Comparison with baseline method.

Comparison with baseline method. We be-
gin with qualitative evaluations to first com-
pare our approach against the baseline method.
Specifically, the baseline method achieves 3D
virtual try-on by (1) generating edited train-
ing image set Xtrain individually via IDM-
VTON (Choi et al., 2024); (2) fine-tuning LoRA
module; (3) editing the 3D scene with fine-tuned
model. Results are provided in Fig. 6. The re-
sults reveal that the baseline method encounters
challenges in three main areas of 3D virtual try-
on: (1) it has trouble generating outputs that closely resemble the input garment image; (2) it struggles
to maintain consistency across different frames; and (3) it tends to produce artifacts, such as outliers.
In contrast, our contributions, which include reference-driven image editing and persona-aware 3DGS
editing, effectively lead to consistent results that align closely with the garment image.

Comparisons with SOTA methods. We provide visual comparisons with existing methods in
Fig. 5, from which we can draw the following conclusions: (1) Textual prompts, even when care-
fully refined, often struggle to capture the details of garments. This limitation contributes to the
tendency of existing methods to produce suboptimal 3D scenes for virtual try-on compared to our
approach; (2) While GaussianEditor (Chen et al., 2023b) enables local editing using a large language
model (Kirillov et al., 2023), it has difficulty making substantial changes to the original geometry
and textures. This leads to 3D scenes that do not accurately reflect the textual descriptions; (3)
GaussCTRL (Wu et al., 2024) utilizes a depth-conditioned ControlNet (Zhang & Agrawala, 2023)
to tackle inconsistency issues. However, it struggles with (i) preserving the original identity and
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(ii) producing results with insufficient editing; (4) Instruct-NeRF2NeRF (Haque et al., 2023) and
Instruct-Gaussian2Gaussian (Cyrus & Ayyan, 2023) effectively extract information from text inputs,
yet they struggle to (i) keep the background unchanged, (ii) maintain the original identity and poses,
and (iii) produce high-resolution renderings; (5) Although Vica-NeRF (Dong & Wang, 2024) per-
forms well with general scenes, it has difficulty editing human-centric 3D environments. In contrast,
our method consistently produces superior results, offering higher-quality details in both geometry
and texture, along with strong consistency with the provided garment image. Additional comparisons
can be found in the Appendix.

4.3 ABLATION STUDY

Figure 7: Analysis of persona-aware 3DGS edit-
ing and the utilization of ControlNet.

Effectiveness of Persona-aware 3DGS Edit-
ing. We then conduct ablation studies to assess
our persona-aware 3DGS editing and the use of
ControlNet, with results shown in Fig. 7. Both
components are essential for ensuring consis-
tent 3D scene editing; without them, the edited
scenes struggle to (1) maintain consistent tex-
ture across frames and (2) match the texture of
the input garment.

Effectiveness of Reference-driven Image Edit-
ing. In Fig. 8, we present ablation studies to as-
sess the effect of our proposed reference-driven
image editing. Existing diffusion models for 2D
virtual try-on often demonstrate inconsistencies
when editing multi-view images individually (as
shown in Fig.3). This inconsistency can hinder
the effective fine-tuning of the LoRA module,
resulting in subpar 3DGS editing. For instance, the results shown in Fig. 8, edited without our design,
display a mismatch in texture with the input garment image. In contrast, our reference-driven image
editing effectively addresses this issue, yielding high-fidelity 3D edits with textures that remain
consistent with the input.

5 CONCLUSION

249 308
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w/o Reference-driven Image Editing
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Figure 8: Effectiveness of reference-driven im-
age editing for 3D virtual try-on.

In this paper, we have introduced GS-VTON,
a novel image-prompted method for 3D vir-
tual try-on. We first propose a personalized
diffusion adaptation through LoRA fine-tuning,
allowing the model to better represent the in-
put garment by extending its pre-trained distri-
bution. Additionally, we introduce reference-
driven image editing to enable consistent multi-
view editing, providing a solid foundation for
LoRA fine-tuning. To further enhance multi-
view consistency in the edited 3D scenes, we
present persona-aware 3DGS editing, which re-
spects both the desired editing direction and fea-
tures derived from the original edited images. Extensive evaluations demonstrate the effectiveness of
our design, highlighting that GS-VTON delivers high-fidelity results across a range of scenarios and
significantly outperforms state-of-the-art methods.

Limitations. While establishing a new state-of-the-art for 3D virtual try-on, our GS-VTON ap-
proach still has some limitations: (1) Inheriting biases from pre-trained 2D virtual try-on models, our
pipeline has difficulty accurately modeling long hair when it intersects with clothing. (2) Although
our method can accommodate human subjects in various poses, it encounters challenges with severe
self-occlusion, such as when a person crosses their arms in front of the chest.
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