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ABSTRACT

Out-of-distribution (OOD) generalization is challenging because distribution
shifts come in many forms. A multitude of learning algorithms exist and each
can improve performance in specific OOD situations. We posit that much of the
challenge of OOD generalization lies in choosing the right algorithm for the right
dataset. However, such algorithm selection is often elusive under complex real-
world shifts. In this work, we formalize the task of algorithm selection for OOD
generalization and investigate whether it could be approached by learning.
We propose a solution, dubbed OOD-CHAMELEON that formulates the task as
a supervised classification over candidate algorithms. We construct a dataset of
datasets to learn from, which represents diverse types, magnitudes and combi-
nations of shifts (covariate shift, label shift, spurious correlations). We train the
model to predict the relative performance of algorithms given a dataset’s charac-
teristics. This enables a priori selection of the best learning strategy, i.e. without
training various models as needed with traditional model selection.
Our experiments show that the adaptive selection outperforms any individual al-
gorithm and simple selection heuristics, on unseen datasets of controllable and
realistic image data. Inspecting the model shows that it learns non-trivial data/al-
gorithms interactions, and reveals the conditions for any one algorithm to surpass
another. This opens new avenues for (1) enhancing OOD generalization with ex-
isting algorithms instead of designing new ones, and (2) gaining insights into the
applicability of existing algorithms with respect to datasets’ properties.

1 INTRODUCTION

The many faces of OOD generalization. Out-of-distribution (OOD) generalization refers to a
model’s ability to remain accurate when the distributions of the training and test data differ. “OOD”
is a catch-all term since it encompasses many types of distribution shifts (Wiles et al., 2021; Ye
et al., 2022; Nagarajan et al., 2021). In medical imaging for example (Oakden-Rayner et al., 2020),
a model may have to process X-rays from various demographics (covariate shift), pathologies (label
shift), and co-occurrences of patient attributes (spurious correlations). These types of shifts have
often been studied independently, and are often best addressed with different algorithms. However,
real data is often complicated by combinations of shifts of different types and magnitudes (Wiles
et al., 2021; Yang et al., 2023) that interact in complex ways with the learning algorithms (Jiang
et al., 2023; Cabannes et al., 2023; Benoit et al., 2024).

The trade-offs of learning algorithms. OOD generalization is challenging because it is funda-
mentally underspecified (D’Amour et al., 2022; Teney et al., 2022). The training set alone is not
enough to inform about the nature of the shifts nor to constrain the behavior of the model on OOD
test data. This is why a multitude of learning algorithms exist, which rely on different assumptions
or side information (e.g. domain labels), from standard ERM (Vapnik, 2000) to simple interventions
such as Resampling, GroupDRO (Sagawa et al., 2020a), and more-complex ones (Liu et al., 2023).

A well-known study by Gulrajani & Lopez-Paz (2020) showed that none of the methods, at the time
of their study, surpasses an ERM baseline across a collection of datasets. This is not surprising
though: each dataset exhibits different characteristics and types or magnitudes of shifts that call for
different methods (Benoit et al., 2024). Numerous newer analyses indeed confirm that (at the time of
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Figure 1: Given a dataset, how can one choose an algorithm such that the most robust model is
obtained after training on the dataset? (right) We propose the task of algorithm selection for OOD
generalization and build an automated algorithm selector dubbed OOD-CHAMELEON. We train
the model on a dataset of datasets that exemplify a variety of distribution shifts (left) and show that
it learns non-trivial data/algorithms interactions for algorithm selection.

writing) no single method can handle a multitude of shifts (Wiles et al., 2021; Nguyen et al., 2021;
Ye et al., 2022; Liang & Zou, 2022; Yang et al., 2023).

“It would be helpful for practitioners to be able to select the best approaches
without requiring comprehensive evaluations and comparisons.” (Wiles et al., 2021)

We posit that OOD generalization can be improved if we knew which algorithm to apply in
each situation. However, under complex real-world shifts, finding the right learning algorithm
without trial and error is elusive for human experts. We therefore investigate the possibility of
learning to predict a priori, for a new unseen dataset, the algorithm that will produce the most robust
model. This a priori prediction contrasts with traditional model selection that first requires training
multiple models and often relies on restrictive heuristics (Garg et al., 2022; Baek et al., 2023; Miller
et al., 2021; Teney et al., 2023; Liu et al., 2024). In a concurrent work, Bell et al. (2024) proposed
to select an algorithm to deal with spurious correlations based on past performance on benchmarks
most similar to the target data. In comparison, we target many types of shifts (spurious correlation,
covariate shift, label shift) and propose a learning-based approach instead of similarity heuristics.

OOD-CHAMELEON. We frame the algorithm selection as a classification over a set of candidate
algorithms, and study it in a data-driven manner. We train an algorithm selector named OOD-
CHAMELEON in a setup akin to meta-learning (Vanschoren, 2018; Öztürk et al., 2022) in two ways.
(1) It is trained on a dataset of datasets that exemplify diverse types, magnitudes, and combinations
of shifts. Concretely, we construct such a dataset of datasets by sampling from synthetic distribu-
tions or real datasets e.g. CelebA (Liu et al., 2015), in controlled ways to simulate various distri-
bution shifts. (2) We seek to learn to learn, or learn to apply a learning algorithm, by discovering
interactions between a dataset’s characteristics and the performance of candidate algorithms. We
evaluate the performance of various algorithms on the dataset of datasets, and we train the algorithm
selector with supervision to predict the relative performance of the algorithms given a statistical de-
scriptor of a dataset (see Figure 1). We investigate training objectives such as regression, multi-label
classification (Fürnkranz et al., 2008), and pairwise comparison (Bradley & Terry, 1952).

Our experiments start with a controllable setup to evaluate various design choices. We then push
the concept further with realistic image data. Results show that the system consistently selects
algorithms with significantly lower test error than any single candidate algorithm, on unseen datasets
with complex types of distribution shifts. We further verify that it achieves this by learning non-
trivial, non-linear data/algorithm interactions. More importantly, we show transfer across datasets
by training the selector on CelebA-derived datasets, then applying it to COCO (Lin et al., 2014). As
a byproduct, we demonstrate that the algorithm selector can reveal which dataset characteristics are
important for any candidate algorithm to outperform another.

In summary, our findings open new avenues for improving OOD generalization by learning to
better apply existing algorithms, instead of designing new ones. Additionally, this line of research
can help understand the applicability of existing algorithms, especially under complex conditions
such as combined distribution shifts that are difficult to study theoretically.
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Our contributions are summarized as follows.
• We propose the new task of algorithm selection for OOD generalization in a standard setting

where attribute labels of the training data are available (Section 2). We present a first proof of
concept that predicts the most suitable strategy to obtain a robust model on a given dataset.

• We describe a reusable workflow to construct a dataset of datasets that exemplifies a variety of
distribution shifts in different types, magnitudes, and combinations. (Section 3.1).

• We propose a demonstrator of the viability of the task (Section 3): an algorithm selector trained
with supervised learning to predict the most suitable algorithm from a set of candidates.

• We empirically verify that the proposed model predicts algorithms leading to high OOD accuracy,
by learning non-trivial data/algorithm interactions (Section 4). We also show that the model can
reveal properties of datasets that make algorithms more effective than others (Section 3.4).

2 FORMALIZING THE ALGORITHM SELECTION FOR OOD GENERALIZATION

2.1 IS THE SELECTION OF THE BEST LEARNING ALGORITHM EVEN POSSIBLE?

A universal solution to the selection of a learning algorithm cannot exist according to the no-free-
lunch theorem (Wolpert & Macready, 1997)). The key here is to restrict ourselves to a distribution
of distribution shifts that are likely in real-world data (Wiles et al., 2021; Goldblum et al., 2023). We
consider the three major types of shifts (Yang et al., 2023): covariate shifts (CS), label shifts (LS),
and spurious correlations (SC). Formally, given a joint distribution P (X,Y ) over inputs X and
labels Y , the three types correspond to shifts of P (X), P (Y ) and P (Y |X). Each sample x ∈ X is
typically characterized by both a robust feature xc ∈ Xc that is reliably predictive, and an attribute
a ∈ A that is not. A covariate shift implies a variation of the attribute a such as a shift in the
background typically associated with a specific object in an image. A shift of spurious correlations
implies a variation of an attribute/label co-occurrences, which means a shift on P (Y |A) but not
P (Y |Xc). Because of the co-occurrence, a model could learn to rely on parts of the input related
to the attribute. This model would become unreliable on data where the co-occurrence has shifted.
Finally, to measure OOD performance, We use the standard worst-group accuracy (WGA) on test
data. A group G ∈ Y ×A refers to a unique attribute–label combination (Sagawa et al., 2020a). We
focus on the most common setting in the study of OOD generalization (Yong et al., 2022) where the
training data includes labels of a potentially-spurious attribute a. We will also evaluate the use of
pseudo-attribute labels obtained from a heuristic method in Appendix E.

2.2 OOD ALGORITHM SELECTION AS A META-LEARNING TASK

Our eventual goal is to obtain a robust model given a dataset, referred to below as the OOD task.
An OOD task is defined by its dataset D = Dtr ∪ Dte = {(xi, yi)}ni=1 ∪ {(xi, yi)}nte

i=1, where
training and test data show potential distribution shifts. Solving an OOD task means running a
learning algorithm A(·) : Dtr → hθ that takes the training set and produces a parametrized model.
We can then evaluate the performance of A by computing WGA({hθ(xi)}nte

i=1, {yi}
nte
i=1) (Dte is not

available during training).

To better solve OOD tasks, we propose to automate the OOD algorithm selection (i.e. selecting the
best A among candidates) by learning from experiences over many OOD tasks. The training data
D (a meta-dataset) for this process is built from a dataset of datasets that represent a variety of
distribution shifts. Each example in this meta-dataset D = {Dtr

j ,Aj , Pj} is an OOD task annotated
with the performance Pj of an algorithm on this task. In practice, we feed Dtr into a dataset
descriptor (Rivolli et al., 2022; Jomaa et al., 2021) that summarize its distributional characteristics
with a function f(·) : Dtr → Rl, so that we can leverage vector-based models. This makes D =
{f(Dtr

j ),Aj , Pj}. Then, we expect to learn from D an algorithm selector ϕ(w, ·) : Dtr → A
that takes a training set and predicts the most suitable algorithm1. We will describe in Section 3.2
several realizations of the algorithm selector. A straightforward option is a mapping from a dataset
descriptor f(Dtr) and algorithm identifier A to its predicted performance, i.e. ϕ(w, ·) : f(Dtr) ×

1By abuse of notation, A represents in practice a one-hot identifier of an algorithm.
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A → R that is trained by solving a regression objective:

min
w

E{f(Dtr
j ),Aj ,Pj}∼D LO(ϕ(w, {f(Dtr

j ),Aj}), Pj) (1)

where LO is a loss function such as the MSE. The trained ϕ(w, ·) can then be used on any new dataset
(representing a new unseen OOD task) to predict the performance of all the candidate algorithms.
The best algorithm is eventually used on the new dataset to obtain a robust downstream model. We
will show in Section 3.2 that the regression can be reformulated as a classification objective.

Overall, our formulation turns the problem of model selection into a standard supervised task, where
training examples represent the past performance of algorithms in various situations. While a the-
oretical treatment goes beyond the scope of this paper, the generalization and needs for training
data could thus be studied with standard results from statistical learning theory (Vapnik, 2000). Our
approach is also similar to existing work on the analogous problem of learning to select among pre-
trained models (Zhang et al., 2023; Achille et al., 2019; Öztürk et al., 2022) since the selection is
also approached in a data-driven manner. In our case, the rationale is that a selection purely from
existing theory on distribution shifts is intractable because of the complex mixtures of different types
of shifts that appear in real-world data.

3 OOD-CHAMELEON: LEARNING WHEN TO USE A LEARNING ALGORITHM

We now describe our solution to tackle OOD algorithm selection including three consecutive steps:
1. Obtaining a collection of example datasets with a variety of distribution shifts to learn from.
2. Assembling the meta-dataset D. That is, training candidate algorithms on each dataset to get

the corresponding performance, and summarizing each dataset with some dataset descriptor f(·).
3. Training an algorithm selector on the meta-dataset to learn robust data/algorithm relations.

Each step poses special challenges which we address as follows.

3.1 CONSTRUCTING DATASETS WITH VARIOUS DISTRIBUTION SHIFTS

We first generate a dataset of datasets that exhibit three types of shifts in various combinations and
degrees. The generation procedure takes in: (1) a triple (dcs, dls, dsc) ∈ [0, 1]3 that specifies the
degree of covariate shift (CS), label shift (LS), and spurious correlation (SC), and (2) the size of the
training set n. It computes the required number of samples of each group necessary to achieve these
properties. The actual dataset can then be built with these numbers using synthetic data (Section 3.3)
or by resampling an existing real dataset such as CelebA (Liu et al., 2015) (Section 4).

Robust

Spurious

Figure 2: Illustrative ex-
ample of our distribution
shift quantification.

Quantifying distribution shifts. We need a way to specify the de-
gree of each type of shift. Prior work by Yang et al. (2023) has used
information-theoretic measures to quantify the degrees of SC, LS, and
CS respectively as the normalized mutual information I(a; y) between
labels and attributes, entropy of class H(y), and entropy of attributes
H(a). However, we cannot use them to directly compute the required
number of samples for each group. Hence we propose an alternative il-
lustrated in Figure 2 with a 2-way classification of shapes with two color
attributes. The four groups correspond to G1 = {i|yi = 1, ai = 1},

G2 = {i|yi = −1, ai = 1}, G3 = {i|yi = −1, ai = −1},
G4 = {i|yi = 1, ai = −1}. We define the degree of SC as the ratio of
samples where class labels and attribute labels agree, i.e. where a cor-
rect classification of the attribute entails a correct classification of the
class We define the degrees of LS and CS as the ratio of class/attribute
as follows (numerators colored as in Figure 2):

dsc =
|G1|+ |G3|∑

i |Gi|
, dls =

|G1|+ |G4|∑
i |Gi|

, dcs =
|G1|+ |G2|∑

i |Gi|
, (2)

where | · | is the set cardinality. These degrees are in [0, 1] by definition, and
∑

i |Gi| = n size of Dtr.
To construct a dataset with desired shifts, we start with the three desired degrees and the training set
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Figure 3: We propose three possible objectives to train the algorithm selector. The meta-
dataset D contains here the performance of three algorithms A{1,2,3} on one dataset DI. Regres-
sion (left) estimates the algorithms’ absolute performance. MLC (middle) and PPL (right) estimate
the binarized (unary and pairwise) suitability of the algorithms.

size, then solve linear equations for |Gi| and obtain the required group sizes in the training set. We
sample a balanced test set Dte with |Gi| = nte/4. See Appendix A for additional explanations.

3.2 FORMULATIONS OF THE ALGORITHM SELECTOR

Given a collection of datasets {Dj}Nj=1 created as described above, we apply a set of algorithms
{Am}Mm=1 on each. Each case yields a downstream model with OOD performance Pjm that we
store in a meta-dataset D = {f(Dtr

j ),Am, Pjm}j,m (of size MN ) where f(·) : Dtr → Rl is the
dataset descriptor (will discuss in Section 3.3). This meta-dataset is used to train the algorithm
selector ϕ (an MLP in most of our experiments) with one of the three objectives described below
The different formulations are visually summarized in Figure 3.

Formulation 1 (Regression): classification via regression. Equation 1 tackles the algorithm se-
lection task with a classification via regression. The algorithm selector ϕ(w, ·) : f(Dtr) × A → R
takes the dataset descriptors and a one-hot algorithm vector as input, predicts the OOD perfor-
mance, and then chooses the algorithm with the highest one. This may be suboptimal because of
(1) the mismatch between the goal of directly selecting (i.e., classifying) suitable algorithms, and
(2) a regression being often more difficult than classification with neural networks (Devroye et al.,
2013). This motivates two following alternative formulations as classification tasks.

Formulation 2 (MLC): multi-label classification. For each dataset Dj , we have M (the number
of algorithms) records {f(Dtr

j ),Am, Pjm}Mm=1 in the meta-dataset D. We aggregate each such
set of M records into a single training sample {f(Dtr

j ), YA} where YA ∈ {0, 1}M is a one- or
multi-hot vector indicating the suitability of one or several algorithms on Dj . An algorithm is
considered suitable if (Pjm − minmPjm) ≤ ϵ for a small threshold ϵ (e.g. 0.05). This aggregation
converts the performance numbers into discrete labels and also serves as “denoising” because we
consider algorithms with close performance similarly suitable. The process results in a smaller meta-
dataset (from MN to N ) but allows for learning more robust data/algorithm interactions because
of denoising. We train the algorithm selection as a binary multi-label classifier ϕ(w, ·) : f(Dtr) →
{0, 1}M with a cross-entropy objective minw L(ϕ(w, f(Dtr

j )), YA).

Formulation 3 (PPL): pairwise preference learning. Going one step further, an alternative for-
mulation decomposes the M-way multi-label classification into

(
M
2

)
classifications (Hüllermeier

et al., 2008) across pairs of algorithms. The intuition is that pairwise comparisons are easier than
comparing all the candidates (Bradley & Terry, 1952) as recently shown i.a. in the alignment of
language models (Ouyang et al., 2022). We train

(
M
2

)
pairwise classifiers ϕkm(w, ·) : f(Dtr) →

{win,lose,tie} to predict the relative ranking of Ak and Am. They are considered on par when
|Pjk − Pjm| ≤ ϵ. Formally, these 3-way classifiers are trained on {f(Dtr

j ), YA}, j ∈ [1, ..., N ],
where YA ∈ {win,lose,tie}. At test time, for a target dataset, we aggregate the

(
M
2

)
pre-

dictions using Copeland’s classical voting method (Saari & Merlin, 1996). It starts from 0 for all
algorithms and adds/subtracts 1 for the winner/loser of each pairwise prediction, and does nothing
for ties. The final scores give a ranking across all algorithms from which we select the top value.
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Metrics Oracle
Selection

Random
Selection

Global
Best

MLC
(Naive descriptors)

Regression
(Ours)

MLC
(Ours)

PPL
(Ours)

0–1 ACC. (%) ↑ 100 62.9±0.6 72.5±0.7 52.1±0.1 79.7±0.7 86.3±0.4 90.8±0.9

Worst-group error (%) ↓ 19.0 24.0±0.1 22.7±0.1 23.9±0.2 20.4±0.3 19.9±0.1 20.1±0.1

Remarks Upper
bound

Non-parametrized Descriptors from
Öztürk et al. (2022) Eq. 1 multi-label

classification
pairwise

comparison

Table 1: Results on synthetic experiments. The learned algorithm selector predicts algorithms
with low worst-group test error (average over 2,000 unseen datasets and 3 seeds).

3.3 DATASET DESCRIPTORS: A CASE STUDY WITH CONTROLLABLE EXPERIMENTS

Now that we focus on algorithm selector’s input – the vectorized datasets (i.e., dataset descriptors).
The dataset descriptors should summarize properties relevant to the performance of the various
algorithms. Recent work (Nagarajan et al., 2021; Hermann et al., 2023; Yang et al., 2024; Chen et al.,
2022; Ye et al., 2022; Wang et al., 2024) discovered various properties related to OOD performance
that could serve as dataset descriptors. However, many are difficult or impossible to measure before
training, or work only under restricted conditions. Other works on learning model selection (Arango
et al., 2024; Öztürk et al., 2022) use simple descriptors (e.g., number of training samples, image
channels, number of classes, etc.) that clearly cannot predict OOD performance.

We propose two categories of properties to include in dataset descriptors: (1) distribution shift
characteristics and (2) data complexity characteristics. We hypothesize that the former includes
the degrees of the distribution shifts (dsc, dls, dcs in Equation 2), and the availability2 r of the
spurious correlation (i.e., how easily the model relies on the spurious feature to make predictions).
And the latter includes the size of the training set n and the input dimensionality d (e.g. image
resolution in vision data).

Controllable experiments. We investigate the relevance of the proposed descriptors with a syn-
thetic test case. We consider the binary classification from Figure 2. The input X’s distribution
follows the modified synthetic example from Sagawa et al. (2020b). The distribution of each group
is defined by their input x = [xc, xa] ∈ R2d, with xc and xa of dimension d generated from Gaussian
distribution:

xc | y ∼ N
(
y1, σ2

c Id
)
, xa | y ∼ N

(
a1, σ2

a Id
)

The availability of the spurious features is defined as r = σ2
c /σ

2
a (more available when higher). Fol-

lowing Section 3.1, we create N = 7, 392 datasets D1,...,N spanning different dsc, dls, dcs, training
set sizes n, input dimensionality d, and availability r (details in Appendix C).

Experimental setup. We construct the meta-dataset D with the created collection of datasets, train
the algorithm selector with different objectives on it, and then evaluate how well the algorithm se-
lector predicts suitable algorithms for unseen datasets. Other relevant details (see also Appendix C):
• Candidate algorithms. We select 5 algorithms, namely ERM (Vapnik, 2000), Group-

DRO (Sagawa et al., 2020a), oversampling the minority groups, undersampling the majority
groups, and logits correction (Nagarajan et al., 2021) (i.e. adjust the prediction logits with a
temperature), because: (1) they are shown to perform comparably with others (Nguyen et al.,
2021; Gulrajani & Lopez-Paz, 2020; Yang et al., 2023), (2) do not require extensive hyperparam-
eter tuning, (3) can handle different distribution shifts (Nguyen et al., 2021) and (4) span different
types of approaches, namely regularization-based, reweighting-based, margin-based and standard
ERM. Including more algorithms is straightforward.

• Obtaining OOD performance on the collection of datasets. We obtain each algorithm’s worst-
group error Pjm on each dataset’s test set Dte

j . We use a linear classifier for training on each
dataset because (1) it is sufficient to solve the synthetic example and was also used by Sagawa
et al. (2020b), (2) it is relevant to the common setting of linear probing over frozen features (Setlur
et al., 2024; You et al., 2024).

• Evaluation. We create around 2,000 datasets with unseen properties (i.e. different and unseen
dataset descriptors) to test the generalizability of the algorithm selector.
2Similar concepts exist in prior works: signal/noise ratio (Yang et al., 2024), magnitude (Wang et al., 2024;

Joshi et al., 2023), simplicity (Qiu et al., 2024), and spurious/core information ratio (Sagawa et al., 2020b).
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Figure 4: (Left) OOD algorithms perform differently across datasets. We compare pairs of algo-
rithms and show the histogram of differences in worst-group test error. (Middle) The generalizabil-
ity of the algorithm selector (MLC) improves with a larger meta-dataset. (Right) We estimate the
importance of dataset descriptors with leave-one-descriptor-out training of the algorithm selector.

• Algorithm selection baselines. (1) Random selection: randomly selecting an algorithm per
dataset. (2) Global best (GB): choosing the single top algorithm based on its performance over
the whole meta-dataset. (3) MLC (Naive descriptors): MLC with the naive dataset descriptors
from Öztürk et al. (2022). This is useful to indicate whether our dataset descriptors provide useful
additional information. (4) Oracle selection: using the ground truth best algorithm per dataset.

Results. In Table 1, we show that the learned algorithm selectors generalize to unseen datasets.
We examine the 0–1 accuracy, which considers an algorithm prediction on an unseen dataset as
correct if it belongs to the “ground truth” suitable algorithms as defined earlier in Section 3.2. We
also look at the worst-group error of the selected algorithms, averaged across unseen datasets. We
see that (1) our formulations accurately predict suitable OOD algorithms, with significantly higher
0–1 accuracy and lower worst-group error than the baselines. (2) The algorithm selectors generalize
significantly better with our dataset descriptors in lieu of naive descriptors, c.f. columns 4 and 6.
(3) Comparing our three formulations (columns 4, 5, 6) shows that a classification objective is
significantly better than a regression.

In Figure 4 (left), we verify that the different OOD algorithms perform differently across datasets
(each count in the histogram is a dataset). This confirms that using the right algorithm for the right
dataset improves OOD generalization. In Figure 4 (middle), we show that the algorithm selector
(MLC) generalizes better with a larger meta-dataset, yet it already significantly outperforms the
best non-parametrized baseline (Global best) even with a small meta-dataset. In Figure 4 (right),
we conduct a leave-one-descriptor-out training of MLC by excluding one part of the descriptor at a
time. The accuracy drops (c.f. the leftmost bar) reveal the importance of each piece of information
for an accurate prediction. The degrees of shifts and data complexity matter most, specifically the
input dimensionality d, the availability of the spurious feature r, and the degree of SC dsc.

3.4 ATTRIBUTING ALGORITHM EFFECTIVENESS TO DATA CHARACTERISTICS
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Figure 5: Leave-one-descriptor-out training of
pairwise algorithm selectors. The accuracy drops
reveal decisive factors for one algorithm to outper-
form another.

We take an even closer look at the learned data-
algorithm interactions with leave-one-descriptor-
out training of pairwise algorithm selectors (i.e.,
selecting from only two algorithms). In Figure 5,
for each pair of algorithms, the performance drop
of each bar compared to the leftmost bar (“N/A”)
indicates the significance of the corresponding in-
formation for distinguishing the two algorithms.
For example, when comparing over- and under-
sampling, the data size n and degree of spurious
correlation dsc matter most. We find this to be con-
sistent with the analysis in Nguyen et al. (2021)
that implies that, while undersampling can cope
with more distribution shifts than oversampling, it
is inferior when the number of samples for the mi-
nority group is too small (i.e. when n or dsc is too small). This approach can thus help discover data
characteristics important for one algorithm to outperform another, and better understand the applica-
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Methods
CelebA COCO

ResNet18 CLIP (ViT-B/32) ResNet18 CLIP (ViT-B/32)

0-1 ACC. ↑ WG error ↓ 0-1 ACC. ↑ WG error ↓ 0-1 ACC. ↑ WG error ↓ 0-1 ACC. ↑ WG error ↓
Oracle Selection 100 40.4 ±0.2 100 31.8 ±0.3 100 33.2 100 20.9
Random Selection 25.0 ±1.7 49.8 ±0.5 26.7 ±0.9 41.6 ±0.1 31.9 ±0.3 42.0 ±0.2 38.3 ±0.2 28.0 ±0.2

Global Best (GB) 44.8 ±1.0 45.9 ±0.3 43.0 ±2.2 38.7 ±0.2 42.5 ±0.1 37.3 ±0.3 46.8 ±0.4 26.2 ±0.3

Regression (Ours) 75.4 ±1.5 42.5 ±0.6 72.9 ±1.1 34.3 ±0.3 51.1 ±1.0 37.2 ±0.5 68.8 ±0.6 24.0 ±0.5

MLC (Ours) 69.1 ±2.1 42.7 ±0.5 80.6 ±0.4 33.5 ±0.4 55.3 ±0.7 36.4 ±0.3 74.4 ±1.1 23.6 ±0.7

PPL (Ours) 80.0 ±1.1 42.0 ±0.2 83.7 ±0.6 33.0 ±0.3 65.9 ±0.5 35.9 ±0.3 75.8 ±0.5 23.4 ±0.4

Table 2: Results on algorithm selection for unseen CelebA and COCO datasets. Algorithm
selectors are trained on the meta-dataset generated from CelebA and evaluated on unseen CelebA or
COCO datasets. ResNet18 and CLIP (ViT-B/32) refer to the models use in the OOD tasks.

bility of existing algorithms. We observe for example that the importance of some descriptors varies
for other pairs of algorithms (Figure 5 middle/right), which could deserve further investigations.

4 TOWARDS REALISTIC OOD ALGORITHM SELECTION

We now push the concept further with realistic data to answer the following research questions.
(RQ1) Is the learned algorithm selection also effective with datasets of real images? (RQ2) Does
our algorithm selector, trained on the semi-synthetic datasets built from CelebA for example, trans-
fer to unseen datasets from another domain (e.g. COCO (Lin et al., 2014))? (RQ3) How is the
system affected by different dataset descriptors and different training variations of OOD tasks (lin-
ear probing vs. fine-tuning)? (RQ4) How complex are the learned data-algorithm interactions?

Experimental setup. The setup resembles that of Section 3.3 (see Appendix D for more details).
• Dataset of datasets. We generate 1,056 example datasets from CelebA (Liu et al., 2015) with

various sizes, types of shifts, etc. We simulate various “availabilities” of the spurious feature
by using various annotations from CelebA, e.g. mouth slightly open as class label and
wearing lipstick as spurious attribute (see Table 8).

• Dataset descriptors. We now estimate the availability of spurious feature (rather than using
ground truth values as in Section 3.3) with r =

∑
y dy/

∑
a da, where dy and da are average

distances of the samples’ embeddings to the cluster center of labels or attributes, respectively.
Using estimated availabilities allows for generalizing to unseen availabilities, see Appendix D.1
for the rationale and details.

• Obtaining OOD performance on the collection of datasets. We use a pre-trained ResNet18 (He
et al., 2015) or CLIP model (ViT-B/32) (Radford et al., 2021) to solve each OOD task and obtain
the “ground truth” performance of each algorithm. We do a linear probing or a fine-tuning (on
ResNet18 for the experiment of Table 5). In addition, we train for long enough (1000 epochs)
to ensure convergence with the same hyperparameters in each run. The rationale is that no OOD
validation data should be relied on for hyperparameter search, otherwise this OOD data could
simply be used as additional training data to achieve OOD generalization.

• Evaluation. We create 264, 47 and 150 unseen datasets with CelebA, COCO, and Colored-
MNIST respectively. We use the {cat, dog} and {indoor, outdoor} images for COCO.
These are classical datasets that we selected because others such as MetaShift (Liang & Zou,
2022) are not large enough to create diverse resampled versions.

RQ1-RQ2: Algorithm selection is learnable on real-world data. In Table 2, we see that all
three formulations of OOD-CHAMELEON can still select algorithms for unseen OOD datasets from
both CelebA and COCO with significantly lower worst-group error and higher 0–1 Accuracy than
any baselines. The results on COCO also verify the robustness of our dataset descriptors in captur-
ing general properties relevant to the performance of the algorithms in a way that transfers across
datasets. See additional experiments on Colored-MNIST in Appendix F. The transferability from
CelebA to COCO and Colored-MNIST shows the potential of training the algorithm selector
once, then using it on other datasets. Additionally, we see that PPL achieves the best performance
among the proposed three realizations. This uses a classification objective with pairwise compar-
isons (see additional discussion in Appendix B).
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Methods ResNet18 CLIP (ViT-B/32)

Alg. Selection WG error ↓ Alg. Selection WG error ↓
Oracle Selection 40.4 ±0.2 31.8 ±0.3

ERM 58.8 ±0.3 49.9 ±0.4

GroupDRO 46.6 ±0.2 41.3 ±0.2

Logits Correction 54.1 ±0.5 42.6 ±0.4

UnderSampling 43.1 ±0.4 34.6 ±0.2

OverSampling 46.9 ±0.3 41.5 ±0.1

PPL (Ours) 42.0 ±0.2 33.0 ±0.3

Table 3: Learning to adaptively use OOD algorithms
leads to lower worst-group errors than single algo-
rithms. The bars are colored by the ratios of algorithms.

Models 0-1 ACC. ↑ WG error ↓
Linear (ResNet) 54.8 ±0.6 44.8 ±0.4

k-NN (ResNet) 62.9 ±0.2 43.5 ±0.2

MLP (ResNet) 69.1 ±2.1 42.7 ±0.5

Linear (CLIP) 50.4 ±0.7 36.6 ±0.3

k-NN (CLIP) 65.3 ±0.2 34.8 ±0.1

MLP (CLIP) 80.6 ±0.4 33.5 ±0.4

Table 4: Architecture of algo-
rithm selector. This shows that the
learned data-algorithm interactions
are non-trivial (see RQ4).

Methods
Linear probing Fine-tuning

0-1 ACC. ↑ WG error ↓ 0-1 ACC. ↑ WG error ↓
Oracle Selection 100 40.4 ±0.2 100 32.3 ±0.4

Regression (Ours) 75.4 ±1.5 42.5 ±0.6 73.6 ±1.8 34.5 ±0.3

MLC (Ours) 69.1 ±2.1 42.7 ±0.5 67.8 ±1.3 34.8 ±0.4

PPL (Ours) 80.0 ±1.1 42.0 ±0.2 79.2 ±1.3 34.1 ±0.3

Table 5: Evaluation of training paradigms
for OOD tasks. The model generalizes on
both linear probing and fine-tuning.

Methods ResNet18 CLIP (ViT-B/32)

0-1 ACC. ↑ WG error ↓ 0-1 ACC. ↑ WG error ↓
Regression (*) 66.3 ±1.1 46.3 ±0.2 53.4 ±0.9 36.8 ±0.1

MLC (*) 54.9 ±1.3 45.0 ±0.3 49.8 ±0.9 37.2 ±0.5

PPL (*) 69.3 ±1.0 44.1 ±0.3 69.4 ±0.8 35.9 ±0.3

Regression (Ours) 75.4 ±1.5 42.5 ±0.6 72.9 ±1.1 34.3 ±0.3

MLC (Ours) 69.1 ±2.1 42.7 ±0.5 80.6 ±0.4 33.5 ±0.4

PPL (Ours) 80.0 ±1.1 42.0 ±0.2 83.7 ±0.6 33.0 ±0.3

Table 6: Comparison of our dataset descriptors
with the simple ones (marked *) from Öztürk et al.
(2022).

In Table 3, we compare PPL with single-algorithm baselines, where a single algorithm is used for all
unseen datasets. Our method performs an adaptive selection of algorithms for each unseen dataset,
thereby achieving lower worst-group error than any single algorithm. Furthermore, the ratios of the
selected algorithms across unseen datasets are close to the ground truth oracle selection. This also
shows that choosing algorithms according to the nature of the dataset is both learnable and helpful.

RQ3: Ablation studies. We analyze the impact of dataset descriptors and training paradigms for
the OOD tasks. In Table 6, we show that the simple dataset descriptors from Öztürk et al. (2022) are
clearly outperformed by ours. In Table 5, we verify that the algorithm selector works well with both
linear probing and fine-tuning with CelebA. This is necessary to check because, solving the OOD
tasks by different training paradigms affects the algorithms’ OOD performance Pjm and therefore
changes the distribution of meta-dataset D = {f(Dtr

j ),Am, Pjm}. The results indicate that the
learned algorithm selector can also accurately select suitable algorithms when the models for the
OOD tasks become over-parametrized in the case of fine-tuning.

Importantly, in Appendix E we evaluate our model with estimated dataset descriptors, i.e. when
information such as the samples’ attributes are not directly available at test time. The results show
that suitable algorithms are predicted even with the estimated dataset descriptors.

RQ4: The algorithm selector learns non-trivial data-algorithm interactions. We evaluate the
complexity of the learned data-algorithm interactions by comparing various architectures for the
algorithm selector ϕ(·, w) (see Table 4; “Linear (ResNet)” means for example a linear model for the
selector and a ResNet18 for the OOD task). First, we see that a linear model is significantly worse
than an MLP. This shows that the model makes accurate predictions on the basis of non-linear
interactions between datasets’ characteristics and algorithms’ performance. Second, we see
that a k-NN is also significantly worse than an MLP. This shows that the model works not only
by memorizing a large number of example shifts, which a k-NN could also do. On the contrary,
accurate predictions on unseen datasets require non-trivial generalization.

5 RELATED WORK

OOD generalization has been widely studied but several benchmark studies concluded that there
is no one-fits-all solution to distribution shifts (Gulrajani & Lopez-Paz, 2020; Wiles et al., 2021;
Nguyen et al., 2021; Ye et al., 2022; Liang & Zou, 2022; Yang et al., 2023; Bell et al., 2024). These
meta-studies show that OOD algorithms perform differently in different situations. An algorithm
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only shines when its underlying assumptions are met. This is the motivation for our goal of adap-
tively using existing algorithms, and investigating whether this can be learned and automated.

Algorithm selection. Model selection (Forster, 2000; Raschka, 2020) and algorithm selec-
tion (Rice, 1976; Kerschke et al., 2019) are integral parts of any machine learning workflow. Re-
garding OOD generalization, a series of works (Liu et al., 2024; Baek et al., 2023; Garg et al., 2022;
Miller et al., 2021; Lu et al., 2023) use heuristics to estimate a models’ OOD performance on a
target dataset when no labeled OOD data is available. These heuristics have one or several of these
downsides: (1) they can only be estimated after training, (2) they require (unlabeled) test data, and
(3) they work only under restricted conditions. In contrast, our work aims for a priori selection of
the best algorithm, i.e. before training on the target dataset.

Concurrently to our work, Bell et al. (2024) identified a very similar motivation. They proposed to
select among algorithms that deal with spurious correlations based on their performance on bench-
marks most similar to the target dataset. The differences with our work are: (1) we use a learning
approach rather than a similarity heuristic, (2) our learning process relies on semi-synthetic data
rather than existing benchmarks, which helps cover a broader set of distribution shifts, and (3) we
also consider label and covariate shifts and their combinations, not only spurious correlations.

Meta-learning. Our “learning-to-learn” process resembles meta-learning (Vilalta & Drissi, 2002;
Hospedales et al., 2022) in that it carries over prior experience from historical tasks to future similar
ones. Achille et al. (2019); Öztürk et al. (2022); Arango et al. (2024); Zhang et al. (2023) learn to se-
lect among pretrained models for downstream tasks or for outlier detection Zhao et al. (2021). They
either first require training a model on the target dataset or they are not suited to OOD generalization.

AutoML. Our work relates to AutoML which aims to identify ML workflows, often by trial-and-
error (Hutter et al., 2019; He et al., 2021). Our work differs in its aim for a priori algorithm selection
and its potential for unveiling datasets’ properties predictive of the applicability of algorithms.

6 DISCUSSION

This work explored a new avenue for improving OOD generalization by better using existing algo-
rithms instead of creating new ones. We formalized the task of OOD algorithm selection and took
the first step to learn it. We treated it as a classification over candidate algorithms, learned with
supervision from a dataset of datasets representing a variety of distribution shifts. The resulting
system not only predicts low-test-error algorithms on unseen datasets, but also reveals key proper-
ties of datasets that allow algorithms to outperform one another. More could be learned in the future
about existing algorithms e.g. by training the selector as an interpretable decision tree.

Limitations and future work. The proposed solution served to verify the viability of the new
task. Future work will expand this approach in several ways.

• Candidate algorithms. Our proof of concept uses simple algorithms representative of several
broad categories. They were selected because they are effective in a range of settings and some-
times even superior to sophisticated alternatives Idrissi et al. (2022). The fact that our approach
is effective with such simple algorithms is testament to its potential for better exploiting the
plethora of other existing algorithms. A direct future extension will include more algorithms and
their variations, e.g. by including some of their hyperparameters in the search space.

• Can we transfer the approach to real-world settings? As discussed in Section 2, we consider
a restricted but representative distribution of distribution shifts and learn the algorithm selector.
To verify that most real-world scenarios fall into this distribution, the approach will be applied to
real-world data (e.g. from WILDS, Koh et al. (2021)) and larger-scale models. This will evaluate
the limits of transferability of the learned selector as started in Section 4.

• Are the proposed dataset descriptors optimal? The proposed dataset descriptors (Section 3.3)
are interpretable but (1) they may not capture all relevant data properties, (2) and they require the
knowledge of the spurious attribute (as many OOD generalization works do (Yong et al., 2022)).
A promising direction is to replace our dataset descriptors with learned representations of datasets
e.g. with Set Transformers Lee et al. (2018) or Dataset2Vec Jomaa et al. (2021).
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In order to ensure that this work is reproducible, we have relied on the open-source code of Sub-
popBench (Yang et al., 2023) for some of the experiments in Section 4 and we have provided the
anonymized source code for other experiments performed in the paper.
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APPENDIX

We provide more details and results omitted in the main paper, summarized as follows.
• Appendix A details how we construct datasets with desired distribution shifts.

• Appendix B provides intuitions why the 3 formulations of the selector perform differently.

• Appendix C describes details on the setup of the controllable experiments from Section 3.3.

• Appendix D describes details on the setup of the realistic experiments from Section 4.

• Appendix E evaluates the use of estimated dataset descriptors as input to the selector.

A META-DATASET CONSTRUCTION

In Section 3.1, we describe a framework that allows for constructing datasets with diverse distri-
bution shifts by sampling from synthetic distributions or an existing dataset, here we provide more
details and examples on this front. There are two use cases in Section 3.3 and Section 4 respectively,
where in both cases we know the distribution of each group (recall that the combinations of different
values of attribute a and class y form different groups). Specifically, in Section 3.3, we have the
group distributions as Gaussian distributions so that we can sample the desired numbers of samples
from those distributions, while in Section 4 we have a decent amount of samples (in CelebA) from
each group distributions and we can also sample the desired numbers of samples from each group
distributions.

In Equation 2, we define the degrees of distribution shifts as a function of the number of samples
for each group. Therefore, to obtain a dataset with specific degrees of distribution shifts, one only
needs to solve the number of samples for each group and sample them from the group distribution.
Note that the number of samples can be scaled up or down depending on the size of the dataset we
want. All of the constraints to be solved are therefore:

dsc =
|G1|+ |G4|∑

i |Gi|
, dls =

|G1|+ |G3|∑
i |Gi|

, dcs =
|G1|+ |G2|∑

i |Gi|
,∑

i

|Gi| = n, (|Gi| ≥ 0)

0 ≤ dsc ≤ 1, 0 ≤ dls ≤ 1, 0 ≤ dcs ≤ 1,

(3)

Solving the constraints gives the solution set of the degrees of distribution shifts, as shown in Fig-
ure 6. We see that not any value in the cube can be chosen because of the constraint |Gi| ≥ 0 for ∀i.

We can then generate various datasets by varying: (1) the degrees of distribution shifts, (2) the size
of the dataset, and (3) the group distributions. Note that by definition when given a d(·) = 0.5, it
means the absence of the corresponding type of distribution shift. This framework can therefore
generate combinations of shifts in types and degrees.

B DISCUSSIONS ON THE ALGORITHM SELECTOR

While achieving the same goal of predicting the suitable algorithms given the descriptors of the
target dataset, the three formulations of the algorithm sector mentioned in Section 3.2 perform dif-
ferently as verified in Section 3.3 and Section 4. Here we briefly discuss our intuition on this front.

The disadvantage of regression is that, it is hard to learn robust information from the subtle differ-
ences in performance. These subtle differences in performance between algorithms can be caused
by the variances of training randomness. Therefore, a regression model trained on continuous per-
formance can be disturbed by the variances of OOD task training.

Transforming the continuous performance into discrete labels and use classification models (what we
called a ’denoising’ step) is the key to learning robust information from the meta-dataset. Benefiting
from this step, the multi-label classification (MLC) trains an end-to-end classifier to take the dataset

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

dsc

0.0
0.2

0.4
0.6

0.8
1.0

d ls

0.0
0.2

0.4
0.6

0.8
1.0

d c
s

0.0

0.2

0.4

0.6

0.8

1.0

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

Solution Set of Inequalities Forming a Closed Shape

Figure 6: The feasible degrees of spurious correlation (dsc), covariate shift (dcs) and label shift (dls).

descriptors as input and predict which algorithm is ’suitable’ on the target dataset. It is verified to
perform significantly better than the regression most of the time.

Finally, leveraging pairwise comparison (PPL) is observed to outperform MLC in many cases. While
a future analysis on this front is needed, our hypotheses are that (1) pairwise comparison is easier
than comparing all the algorithms at once, which is consistent with our observation that higher accu-
racies are achieved on each pairwise classifiers (many achieved above 90% and some were close to
100% perfect accuracy), and (2) pairwise classifiers can parameterize more nuanced data-algorithm
interactions, while MLC as a single classifier, only learns a more global view. This becomes more
clear when comparing Figure 4-right and Figure 5, we see that there exist different ’patterns’ of data-
algorithm interactions (exemplified by the importance of dataset descriptors) in different pairwise
classifiers.

C DETAILED SETUP OF THE CONTROLLABLE EXPERIMENTS

We provide the detailed experimental setup for the controllable experiments in Section 3.3.

Dataset of datasets. In total, we created 9,240 datasets, see Table 7 for the statistics for these
datasets. Specifically, we generate the training sets of the datasets with the combinations of values
in Table 7, and for the degrees of distribution shifts, we consider 2 cases: (1) 3 shifts (spurious corre-
lation, covariate shift and label shift) all present each in different degrees, we uniformly sampled 30
different triple degrees, and (3) there is only 1 shift present, in this case for each shift we 9 different
values shown in the table (therefore in total 3∗9−2 = 25 different triple degrees). We generate their
test sets with the same number of samples as its training set for each dataset, but keep the number of
samples the same for all groups (therefore balanced test sets with all d(·) = 0.5). We randomly split
these datasets into 4:1 as the dataset of datasets for training the algorithm selector, and the unseen
datasets for evaluation.

Algorithm selector. In all formulations of the algorithm selector mentioned in Section 3.2, we
use 4-layer MLPs to parameterize the algorithm selector, because we found a shallower or simpler
model underfits (see Table 4) while a deeper model does not provide more improvements.

OOD tasks. To solve the OOD tasks defined by each dataset in the dataset of datasets, we use
Adam optimizer with default hyperparameters, along with l2 regularization. We train for 1000
epochs to ensure convergence on this synthetic example.
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Statistics Value

Size of training set {200, 500, 1000, 2000, 3000, 5000, 10000}
Input dimensionality {2, 10, 50, 100}
Availability r = σ2

c/σ
2
a {1, 5, 10, 20, 50, 100}

3 shifts uniformly sampled 30 feasible degrees (Figure 6)
1 shift {0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}

Table 7: Statistics for the dataset of datasets in controllable synthetic experiments.

D DETAILED SETUP OF THE REALISTIC EXPERIMENTS

D.1 AVAILABILITY OF THE SPURIOUS FEATURES

In the controllable experiments in Section 3.3, we compute the availability of spurious features as
r = σ2

c/σ
2
a, following the spurious-core information ratio defined in Sagawa et al. (2020b). The

higher the r, the more signal there is about the spurious attribute in the spurious features, relative to
the signal about the label in the core features.

However, in real-world data (Section 4), it is not straightforward how to generate the dataset of
datasets with diverse r. To tackle this, we use different attribute pairs (one as the label attribute,
i.e. the attribute we want to classify, and the other as spurious attribute) as shown in Table 8, to
account for different availability of spurious features. Intuitively, the obviousness of different types
of attributes (in terms of size, color, etc) signifies different availability of the spurious feature (caused
by the attribute).

Label attribute Spurious attribute

Mouth Slightly Open Wearing Lipstick
Attractive Smiling
Black Hair Male
Oval Face High Cheekbones

Table 8: Attribute pairs in CelebA (Liu et al., 2015) that are used to construct different availability
of the spurious feature.

By considering different attribute pairs, we are able to generate datasets with different availabilities
according to the same framework in Section 3.1. However, unlike the controllable experiments,
here we cannot generalize to unseen availability if we directly encode the availability as a one-hot
vector indicating the attribute pairs. Instead, as mentioned in Section 4, we compute the availability
as the average distances of the samples’ embeddings to their labels or attributes clustering center,
respectively. Specifically, we first obtain the samples embeddings {zi}ntr

i=1 from the used backbone
(either ResNet18 or CLIP) and then compute the clustering center of each label and attribute as µy

and µa. The availability r is then:

r =

∑
y dy∑
a da

dy = ||zi − µy||2
da = ||zi − µa||2

µy =
1

|yi = y|
∑
yi=y

zi

µa =
1

|ai = a|
∑
ai=a

zi

(4)

This definition is intuitively similar to what is defined for availability in controllable experiments,
where we had r = σ2

c/σ
2
a. Intuitively, a smaller average distance w.r.t. attribute labels signifies an

easier spurious feature and therefore, higher availability. This allows for training on datasets with
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diverse availabilities (constructed by different attribute pairs) and generalizes to unseen availabilities
(e.g. on the COCO datasets).

D.2 DETAILED EXPERIMENTAL SETUP

We provide the detailed experimental setup for the realistic experiments in Section 4.

Dataset of datasets. In total, we created 1,320 datasets from CelebA (Liu et al., 2015), see Table 9
for the statistics for these datasets. Specifically, we generate the training sets of the datasets with the
combinations of values in Table 9, and for the degrees of distribution shifts, we consider 2 cases: (1)
3 shifts (spurious correlation, covariate shift and label shift) all present each in different degrees, we
uniformly sampled 30 different triple degrees, and (3) there is only 1 shift present, in this case for
each shift we 9 different values shown in the table (therefore in total 3 ∗ 9− 2 = 25 different triple
degrees). We generate their test sets with the half number of samples as its training set for each
dataset, but keep the number of samples the same for all groups (therefore balanced test sets with
all d(·) = 0.5). We randomly split these datasets into 4:1 as the dataset of datasets for training the
algorithm selector, and the unseen datasets for evaluation. Additionally, we create 47 datasets from
COCO (Lin et al., 2014) for evaluation, where we follow a similar generation strategy. However,
we were only able to generate a limited number of datasets since the cat, dog and indoor, outdoor
are limited. A future evaluation on datasets that support generating a larger number of datasets is
expected.

Statistics Value

Size of training set {200, 500, 1000, 2000, 5000, 10000}
Input dimensionality N/A
Availability 4 different attribute pairs, see Table 8
3 shifts uniformly sampled 30 feasible degrees (Figure 6)
1 shift {0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}

Table 9: Statistics for the dataset of datasets in realistic experiments.

Algorithm selector. In all formulations of the algorithm selector mentioned in Section 3.2, we
use 4-layer MLPs to parameterize the algorithm selector, because we found a shallower or simpler
model underfits (see Table 4) while a deeper model does not provide more improvements.

OOD tasks. To solve the OOD tasks defined by each dataset in the dataset of datasets, we either
do (1) linear probing on ResNet18 or CLIP (ViT-B/32) or (2) fine-tuning ResNet18. In the first case
(all tables except for Table 5), we use Adam optimizer with default hyperparameters, along with l2
regularization. We train for 1000 epochs to ensure convergence. In the second case (Table 5), we
use SubpopBench (Yang et al., 2023) and its default hyperparameters to fine-tune ResNet18. We use
basic data augmentations (resize, crop, ...).

E ALGORITHM SELECTION WITH ESTIMATED DATASET DESCRIPTORS

Here we study the scenarios where the information to compute dataset descriptors, such as the
attribute for each sample (Liu et al., 2021), is not easily obtained at test time. Recent works (Liu
et al., 2021; Kirichenko et al., 2022; Qiu et al., 2023; Lee et al., 2023; Pagliardini et al., 2022)
for OOD generalization aim to eliminate the need for attribute annotation by either: (1) infer the
attribute annotation and then use them to run algorithms that require attribute annotation, (2) run
ERM on the training set assuming that the ERM learns the spurious feature, and then build invariant
classifier on top of the ERM classifier (e.g. fit a model that disagrees with the ERM).

We leverage the above first line of research, i.e. inferring the attribute annotation and use them to
compute the dataset descriptors on the target training set. Then, we can use OOD-CHAMELEON
to select the suitable algorithms. We infer the attributes by clustering the embeddings from frozen
backbones, following Sohoni et al. (2020); You et al. (2024). The intuition is that different attributes,
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such as cows in grass or desert, can be considered as ’subclasses’ or ’hidden stratifications’, and they
are observed to be separable in the feature space of the deep models. Hence, for example we can
infer which cow belongs to which environment, by clustering on the embeddings. In particular,
the training samples are passed through the backbone of the OOD task (i.e. ResNet18 or CLIP in
our case), and get the embeddings. For each semantic class, we cluster the corresponding samples
with K-means and assign different attribute labels to different clusters. This gives each sample its
inferred attribute annotation. We can then use these inferred attribute annotations to compute dataset
descriptors, where they are used to compute the degree of spurious correlation dsc and covariate
shift dcs, as well as the availability of spurious features r, see Appendix D.1 on how we compute the
availability.

With the inferred dataset descriptors, we use the algorithm selector to predict suitable algorithms. In
Tab 10, we show that the suitable algorithms are still predictable with estimated dataset descriptors.
Interestingly, while having performance drops in most cases, using estimated dataset descriptors
boosts the performance on COCO with ResNet18.

Methods Attribute CelebA COCO

ResNet18
CLIP

(ViT-B/32) ResNet18
CLIP

(ViT-B/32)
Oracle Selection N/A 100 100 100 100

Regression ✓ 75.4 ±1.5 72.9 ±1.1 51.1 ±1.0 68.8 ±0.6

MLC ✓ 69.1 ±2.1 80.6 ±0.4 55.3 ±0.7 74.4 ±1.1

PPL ✓ 80.0 ±1.1 83.7 ±0.6 65.9 ±0.5 75.8 ±0.5

Regression ✗ 70.8 ±1.6 66.3 ±1.4 55.3 ±0.8 61.9 ±1.0

MLC ✗ 68.2 ±0.7 72.0 ±1.1 61.7 ±1.2 70.2 ±0.9

PPL ✗ 76.5 ±0.8 81.8 ±1.0 71.2 ±1.6 70.4 ±0.5

Table 10: OOD-CHAMELEON with inferred attribute labels (and dataset descriptors) on CelebA and
COCO. 0-1 Accuracy (higher is better) is shown.

F ADDITIONAL EXPERIMENTS

In Section 4, we investigate with RQ1 and RQ2 the effectiveness of OOD-CHAMELEON in se-
lecting algorithms on real-world data. Furthermore, we show the learned data-algorithm relation is
transferrable: when training the algorithm selector with a meta-dataset constructed from CelebA,
the algorithm selector proves to be effective on unseen COCO datasets as well.

Here we provide more experiments as further support, in particular, we train on the same CelebA
meta-dataset and evaluate the algorithm selector on Colored-MNIST dataset (Arjovsky et al., 2020).
In Colored-MNIST dataset, there are images of 10 digits from 0-9 and the digits are divided into 2
classes (i.e. 0–4 is class 0, 5–9 is class 1). In addition, the two classes of digits are in two different
colors (e.g. red and green). When the colors of the digits correlate with the shapes of digits, a
spurious correlation occurs. Similar to Section 3.1, we create 150 datasets from Colored-MNIST
dataset, each dataset exhibits different magnitudes of spurious correlation (SC), label shift (LS) and
covaraite shifts (CS) and the size of datasets span {200, 500, 1000, 2000, 5000}. In Table 11, we
see that the algorithm selector proves to be effective on Colored-MNIST as well.
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Methods
Colored-MNIST

ResNet18 CLIP (ViT-B/32)

0-1 ACC. ↑ WG error ↓ 0-1 ACC. ↑ WG error ↓
Oracle Selection 100 21.1 ±0.3 100 13.3 ±0.4

Random Selection 29.3 ±1.1 28.1 ±0.3 39.3 ±0.5 19.0 ±0.3

Global Best (GB) 50.1 ±0.7 25.1 ±0.4 63.3 ±1.2 16.0 ±0.2

Regression (Ours) 79.4 ±0.5 23.8 ±0.3 54.2 ±0.9 16.1 ±0.4

MLC (Ours) 82.7 ±0.8 23.5 ±0.4 75.3 ±0.7 15.6 ±0.4

PPL (Ours) 82.8 ±0.4 23.3 ±0.2 85.3 ±0.6 15.3 ±0.3

Table 11: Results on algorithm selection for unseen Colored-MNIST datasets. Algorithm se-
lectors are trained on the meta-dataset generated from CelebA and evaluated on unseen Colored-
MNIST datasets. ResNet18 and CLIP (ViT-B/32) refer to the models use in the OOD tasks.
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