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Abstract
To mitigate the bias exhibited by machine learning
models, fairness criteria can be integrated into the
training process to ensure fair treatment across
all demographics, but it often comes at the ex-
pense of model performance. Understanding such
tradeoffs, therefore, underlies the design of fair
algorithms. To this end, this paper provides a
complete characterization of the inherent tradeoff
of demographic parity on classification problems,
under the most general multi-group, multi-class,
and noisy setting. Specifically, we show that the
minimum error rate achievable by randomized
and attribute-aware fair classifiers is given by the
optimal value of a Wasserstein-barycenter prob-
lem. On the practical side, our findings lead to
a simple post-processing algorithm that derives
fair classifiers from score functions, which yields
the optimal fair classifier when the score is Bayes
optimal. We provide suboptimality analysis and
sample complexity for our algorithm, and demon-
strate its effectiveness on benchmark datasets.

1. Introduction
Machine learning models trained on biased data have been
found to perpetuate and even amplify the bias against his-
torically underrepresented and disadvantaged demographic
groups at inference time (Barocas & Selbst, 2016; Bolukbasi
et al., 2016). As a result, concerns of fairness have gained
significant attention, especially as applications of these mod-
els expand to high-stakes domains such as criminal justice,
healthcare, and finance (Berk et al., 2021). To mitigate the
bias, a variety of fairness criteria and algorithms have been
proposed (Barocas et al., 2023; Caton & Haas, 2020), which
impose mathematical or statistical constraints on the model
to ensure equitable treatment under the respective fairness
notions. But these algorithms typically incur a cost to model
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performance as they improve model fairness (Calders et al.,
2009; Corbett-Davies et al., 2017).

It is not immediately clear whether the degradation in perfor-
mance is attributed to artifacts of the algorithm, or possibly
to the inherent tradeoff —predictive power that must be
given up for satisfying the criteria (Hardt et al., 2016; Zhao
& Gordon, 2022). Hence the design of fair algorithms neces-
sitates the understanding of this tradeoff, which would also
provide insight to the implications of fairness in machine
learning; yet, it remains an open problem for most fairness
criteria and learning settings.

For the group fairness criterion of demographic parity (DP;
Definition 2.1), a.k.a. statistical parity, which requires statis-
tical independence between model output and demographic
group membership (Calders et al., 2009), Le Gouic et al.
(2020) and Chzhen et al. (2020) concurrently characterized
the tradeoff between mean squared error (MSE) and fair-
ness on regression problems. On classification problems,
the inherent tradeoff in terms of error rate has only been
studied under special cases: Denis et al. (2023) assumed
binary groups, Zeng et al. (2022a) and Gaucher et al. (2023)
assumed binary class labels, and Zhao & Gordon (2022) as-
sumed that the data distribution is noiseless, i.e., the Bayes
error rate is zero. We will close this gap and complete the
characterization of the tradeoff of DP fairness in the most
general classification setting.

Contributions. This paper considers learning randomized
and attribute-aware classifiers under (approximate) DP fair-
ness in the general setting of multi-group, multi-class, and
potentially noisy data distributions. We show that:

1. The minimum classification error rate under DP is
given by the optimal value of a (relaxed) Wasserstein-
barycenter problem (Section 3.1).

2. This characterization reveals that the optimal fair
classifier—one that satisfies DP while achieving the
minimum error—is given by the composition of the
Bayes optimal score function (minimum MSE re-
gressor of the one-hot labels) and the optimal trans-
ports from the Wasserstein-barycenter problem (Sec-
tion 3.2).

3. Based on the findings, we propose a post-processing

1

mailto:rxian2@illinois.edu
mailto:hanzhao@illinois.edu


Fair and Optimal Classification via Post-Processing

method that derives fair classifiers from (pre-trained)
score functions (Section 3.3). Our method is instan-
tiated for finite sample estimation in Section 4 with
sample complexity analysis.2

4. Experiments on benchmark datasets demonstrate the
effectiveness of our algorithm (Section 5), which
achieves precise control of the tradeoff provided suffi-
cient training data.

1.1. Related Work

Inherent Tradeoff. The concept of barycenter appears in
many analyses of the tradeoff of DP fairness. Intuitively, by
treating the barycenter—computed over the distributions of
optimal model outputs (without constraints) on each group—
as the output distribution that is required to be identical
across groups under DP, the sum of distances to the barycen-
ter is naturally related to the minimum fair error.

We review existing characterizations of the tradeoff of DP
fairness below and draw connections to our result. Denote
the input by X , group membership by A, and target variable
by Y (for classification, the one-hot label). Let r∗a be the
distribution of the conditional mean on group a, E[Y |
X,A = a], i.e., the minimum MSE estimates of Y given
(X,A = a) (for classification, these are distributions of
class probabilities). Lastly, let wa := P(A = a) denote the
proportion of each group. Then, under DP, on

• regression problems (Le Gouic et al., 2020; Chzhen
et al., 2020; Chzhen & Schreuder, 2022), the minimum
excess risk in terms of MSE is given by the Wasserstein-
2-barycenter (under the ℓ2 metric) over the r∗a’s,

min
q:supp(q)⊆R

∑
a∈A

waW
2
2 (r

∗
a, q); (1)

• noiseless classification problems (Zhao & Gordon,
2022), the minimum/excess error rate is given by the
TV-barycenter over the class priors, pa(ei) := P(Y =
ei | A = a),

min
q:supp(q)⊆{e1,··· ,ek}

∑
a∈A

wa
2
∥pa − q∥1, (2)

where 1
2∥ · ∥1 computes the total variation (TV);

• classification problems in the general setting (The-
orem 3.2), the minimum error rate is given by the
Wasserstein-1-barycenter (under the ℓ1 metric),

min
q:supp(q)⊆{e1,··· ,ek}

∑
a∈A

wa
2
W1(r

∗
a, q). (3)

2Our code is available at https://github.com/rxian/
fair-classification.

First, unlike regression, the support of the barycenters in
Equations (2) and (3) is restricted to {e1, · · · , ek}, which
represents the one-hot labels. Combined with the fact that
the error rate is the expected 1

2ℓ1 distance between the true
class probabilities and the output class assignments, the
minimum error rate equals the sum of 1

2W1 distances to
the barycenter under the ℓ1 metric. Similarly, the use of
the W 2

2 distance under ℓ2 in Equation (1) reflects the MSE
loss. Second, our Equation (3) recovers Equation (2) in
the noiseless setting, because, under which, r∗a = pa and
1
2W1 = 1

2∥ · ∥1. Denis et al. (2023) and Gaucher et al.
(2023) also derived similar expressions for the tradeoff to
ours, but only under binary group or class labels.

Post-Processing. Given a (biased) model, this family of
mitigation algorithms post-process the model to satisfy fair-
ness, e.g., via remapping the outputs (Hardt et al., 2016;
Pleiss et al., 2017). Existing algorithms for DP fairness
include (Fish et al., 2016; Menon & Williamson, 2018;
Chzhen et al., 2019; Jiang et al., 2020; Zeng et al., 2022a;
Denis et al., 2023), but they are limited to binary group
and/or binary classification.

For multi-group and multi-class DP, the only applicable post-
processing algorithm, to our knowledge, is due to Alghamdi
et al. (2022), which is based on model projection. But the
tradeoff of their algorithm is unclear as they did not directly
relate error rate to the difference between the projected
model and the original, and experiments show that their
algorithm underperforms compared to ours, especially on
tasks involving a large number of groups and classes.

2. Preliminaries
Notation. Denote the (k − 1)-dimensional probability
simplex by ∆k := {z ∈ Rk≥0 : ∥z∥1 = 1}, whose k
vertices are {e1, · · · , ek}, where ei ∈ Rk is the vector of
all zeros except for a single 1 on the i-th coordinate. Let
Qk denote the collection of distributions supported on the
vertices of ∆k. We will work with randomized functions
(Definition B.2), which have probabilistic outputs according
to some distributions conditioned on the input. Given a
(randomized) function f : X → Y and a distribution p over
X , we denote the push-forward of p by f♯p (Definition B.3).

Problem Setup. A k-class classification problem is de-
fined by a joint distribution µ of input X ∈ X , demo-
graphic group membership (a.k.a. the sensitive attribute)
A ∈ A = [m] := {1, · · · ,m}, and class label in one-hot
representation, Y ∈ Y = {e1, · · · , ek}; the class labels
may be subject to noise originating from, e.g., the data col-
lection process. Denote the marginal distribution of input
X by µX , the conditional distribution of µ on group A = a
by µa, and the group weight by wa := Pµ(A = a).
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The goal of fair classification is to find a randomized and
attribute-aware classifier, h : X × A → Y , that achieves
the minimum classification error rate on µ subject to the
constraints set by the designated fairness criteria. Denote the
component of h associated with group a by ha : X → Y ,
i.e., ha(x) ≡ h(x, a). The error rate is defined as

err(h) := P(hA(X) ̸= Y )

=
∑
a∈[m]

wa P(hA(X) ̸= Y | A = a)

=
∑
a∈[m]

wa

∫
X×Y

P(ha(x) ̸= y) dµa(x, y),

where the decomposition on the last line highlights the ran-
domness of h. For fairness, we consider the group criterion
of demographic parity:

Definition 2.1 (Approximate Demographic Parity). For α ∈
[0, 1], a classifier h : X ×A → Y is said to satisfy α-DP if
∆DP(h) ≤ α, which is defined as

∆DP(h) := max
a,a′∈[m]
y∈Y

∣∣P(hA(X) = y | A = a)

− P(hA(X) = y | A = a′)
∣∣

= max
a,a′∈[m]

∥∥ha♯µXa − ha′♯µXa′∥∥∞,
where

P(hA(X) = y | A = a) =

∫
X
P(ha(x) = y) dµXa (x)

is the proportion of outputs with class assignment y on
group a, and ∥p− q∥∞ := maxz∈Z |p(z)− q(z)| between
two distributions p, q.

We call a classifier α-fair if it satisfies α-DP. The parameter
α controls the tradeoff between fairness and (the maximum
attainable) accuracy (due to the inherent tradeoff); setting
α = 0 recovers the standard strict definition of DP.

Lastly, a (attribute-aware) score function f : X ×A → ∆k

is a model that outputs probability vectors as estimates of the
class probabilities, as in f(x, a)y ≈ Pµa

(Y = y | X = x).
A score function is said to be Bayes optimal, denoted by f∗,
if it computes the true class probabilities exactly,

f∗a (x)i := Pµa
(Y = ei | X = x) = Eµa

[Y | X = x]i;

it coincides with the minimum MSE estimator of the one-
hot labels Y given (X,A = a). We will often work with
the quantity r∗a := f∗a ♯µ

X
a , the distribution of true class

probabilities conditioned on group a.

Given a (pre-trained) score function f , our post-processing
method finds a (probabilistic) fair classifier by deriving from
f . I.e., it returns classifiers of the form (x, a) 7→ ga ◦ fa(x)
for some post-processing maps g1, · · · , gm : ∆k → Y .

Optimal Transport and Wasserstein Distance. Our anal-
ysis involves the concept of optimal transports and Wasser-
stein distance (Villani, 2003); the latter is a metric on the
space of probability distributions.
Definition 2.2 (Coupling). Let p, q be probability distri-
butions over X and Y , respectively. A coupling γ of
p, q is a joint distribution over X × Y satisfying p(x) =∫
y∈Y dγ(x, y), ∀x ∈ X , and q(y) =

∫
x∈X dγ(x, y), ∀y ∈

Y . We denote the collection of couplings of p, q by Γ(p, q).
Definition 2.3 (Optimal Transport). Let p, q be probability
distributions over X and Y , respectively, and c : X × Y →
[0,∞) a cost function. The optimal transportation cost be-
tween p and q is given by infγ∈Γ(p,q)

∫
X×Y c(x, y) dγ(x, y).

Let γ∗ be a minimizer, then the optimal transport from p to
q, denoted by T ∗

p→q,c : X → Y , is a (randomized) function
satisfying γ∗ = (Id × T ∗

p→q,c)♯p, where Id is the identity
map (that in the other direction is defined symmetrically).

Intuitively, T ∗
p→q,c specifies a plan for moving masses dis-

tributed according to p to q with the minimum total cost. In
this plan, the mass located at each x ∈ X is moved (prob-
abilistically) to T ∗

p→q,c(x) ∈ Y . The optimal transport can
also be represented by the optimal coupling γ∗ ∈ Γ(p, q),
as we can derive an optimal transport T from γ∗ by setting
P(T (X) = y | X = x) = γ∗(x, y)/γ∗(x,Y), ∀x, y.3

Lastly, when X = Y is a metric space equipped with dis-
tance d, the optimal transportation cost between p and q
under c = d is equivalent to their Wasserstein-1 distance:
Definition 2.4 (Wasserstein Distance). Let p, q be probabil-
ity distributions over a metric space (X , d), and r ∈ [1,∞].
The Wasserstein-r distance between p and q is Wr(p, q) =
(infγ∈Γ(p,q)

∫
X×X d(x, x

′)r dγ(x, x′))1/r.

3. Fair and Optimal Classification
In this section, we provide a characterization of the inherent
tradeoff of DP fairness, then, based on the findings, propose
and analyze a post-processing method for DP.

3.1. Characterization of the Inherent Tradeoff

Our characterization comes from a reformulation of the
classification problem assuming access to the Bayes optimal
score. On any generic (group-less) classification problem,
Lemma 3.1. Let f∗ : X → ∆k be the Bayes optimal
score function, define r∗ := f∗♯µX , and fix q ∈ Qk.
For any (randomized) classifier h : X → Y satisfy-
ing h♯µX = q, there exists a coupling γ ∈ Γ(r∗, q) s.t.
err(h) = 1

2

∫
∆k×Y ∥s− y∥1 dγ(s, y). Conversely, for any

γ ∈ Γ(r∗, q), there exists a randomized classifier h satisfy-
ing h♯µX = q s.t. the above equality holds.

3We will only consider transportation under the of ℓ1 cost of
(x, y) 7→ ∥x− y∥1, hence omit the dependency of T ∗

p→q on c.
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Figure 1. A distribution r over the 2d simplex (density; grey sur-
face), and a finite distribution q ∈ Q3 over its vertices {e1, e2, e3}
(blue spikes).

It follows that minimizing classification error subject to
having an output distribution of q is equivalent to solv-
ing an optimal transport problem from r∗ to q under the
ℓ1 cost, because by Definition 2.4, minh:h♯µX=q err(h) =
1
2 minγ∈Γ(r∗,q)

∫
∥s− y∥1 dγ = 1

2 W1(r
∗, q).

Note that this reformulation allows for explicit control of
the output distribution, which is well-suited for analyzing
DP fairness since it only constrains the output distributions
qa := ha♯µ

X
a ; namely, that they need to be equal (α = 0)

or close: ∆DP(h) ≤ α ⇐⇒ maxa,a′ ∥qa − qa′∥∞ ≤ α
by Definition 2.1. Therefore, for attribute-aware classifiers,
whose component ha’s can be optimized independently, the
discussions above immediately give the following character-
ization of the minimum error rate under DP:

Theorem 3.2 (Minimum Fair Error Rate). Let α ∈ [0, 1],
f∗ : X × A → ∆k be the Bayes optimal score function,
and define r∗a := f∗a ♯µ

X
a , ∀a ∈ [m]. With W1 under the ℓ1

metric,

err∗α := min
h:∆DP(h)≤α

err(h)

= min
q1,··· ,qm∈Qk

maxa,a′ ∥qa−qa′∥∞≤α

∑
a∈[m]

wa
2
W1(r

∗
a, qa). (4)

It could be viewed as a (relaxed) Wasserstein-barycenter
problem on the r∗a’s under the special case where the sup-
port of the barycenter(s) qa is restricted to the vertices
{e1, · · · , ek}. It is a convex problem (in the primal form
presented above), and can be simplified under certain as-
sumptions: if the problem is noiseless (and α = 0), it
reduces to the TV-barycenter problem in Equation (2) (The-
orem A.1); this result is first established in (Zhao & Gordon,
2022), but only under m = k = 2.

Under strict DP fairness (α = 0), the inherent tradeoff,
namely the excess risk incurred by the DP constraint, is
1
2 (minq

∑
a waW1(r

∗
a, q)−

∑
aminqawaW1(r

∗
a, qa)) ≥ 0;

the second term is the Bayes error rate, achieved by the clas-
sifier (x, a) 7→ eargmaxi f

∗
a (x)i

. The tradeoff is expected to
be large on problems with very different r∗a’s, and equals

to zero when they are identical (i.e., Eµ[Y | X,A] ⊥⊥ A;
since all groups would have the same optimal decision rule),
meaning that enforcing DP would not degrade model per-
formance. But we point out that the tradeoff could be zero
even if Eµ[Y | X,A] ̸⊥⊥ A, partly due to the nonuniqueness
of the optimal classifier (Example A.4).

Lastly, Zhao & Gordon (2022) concluded that in the noise-
less setting, the tradeoff is zero if and only if the class priors
are identical, i.e., Eµ[Y | A] ⊥⊥ A. But this condition is no
longer sufficient in the general setting (Example A.5).

3.2. Optimal Fair Classifier via Post-Processing

In addition to characterizing the minimum error rate under
DP, we also show that the optimal fair classifier can be
obtained by deriving from the Bayes optimal score f∗:

Theorem 3.3 (Optimal Fair Classifier). Let α ∈ [0, 1],
f∗ : X × A → ∆k be the Bayes optimal score function,
(q∗1 , · · · , q∗m) a minimizer of Equation (4), and T ∗

r∗a→q∗a
the

optimal transport from r∗a to q∗a under the ℓ1 cost, ∀a ∈ [m].
We have

(x, a) 7→ T ∗
r∗a→q∗a

◦ f∗a (x) ∈ argmin
h:∆DP(h)≤α

err(h).

This result is a consequence of the construction used in the
proof of Lemma 3.1 (deferred to Appendix B), and reveals
the form of the optimal fair classifier as a composition of
f∗ and optimal transports from r∗a’s to the minimizing q∗a’s
of Equation (4) (see Figure 1 for a picture of these distri-
butions). It immediately suggests a three-step method for
learning optimal fair classifiers: (i) learn the Bayes opti-
mal score function f∗, e.g., via minimizing MSE w.r.t. the
one-hot label Y ,

f∗ = argmin
f :X×A→∆k

Eµ
[
∥f(X,A)− Y ∥22

]
,

(ii) find a minimizer (q∗1 , · · · , q∗m) of the barycenter problem
in Equation (4), (iii) compute the optimal transports T ∗

r∗a→q∗a
,

and finally return (x, a) 7→ T ∗
r∗a→q∗a

◦ f∗a (x). The last two
steps (reproduced in Algorithm 1) post-process f∗.

3.3. Post-Processing Any Score Function

In practice, however, the Bayes optimal f∗ may not be ex-
actly learned due to computational cost, or difficulties in rep-
resentation, optimization, and generalization (Woodworth
et al., 2017). Instead, we will often work with suboptimal
scores f ≈ f∗ (e.g., pre-trained by a vendor). This section
analyzes the applicability and suboptimality of Algorithm 1
for post-processing non-Bayes optimal score functions.

Given an arbitrary score function f : X×A → ∆k, we want
to find post-processing maps ga : ∆k → Y such that the
derived classifier (x, a) 7→ ga ◦ fa(x) satisfies DP fairness,
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Algorithm 1 Post-Process for α-DP
1: Input: α ∈ [0, 1], score function f : X × A → ∆k,

marginal distribution µX,A of (X,A)
2: Define wa := Pµ(A = a) and ra := fa♯µ

X
a , ∀a ∈ [m]

3: (q1, · · · , qm)← minimizer of Eq. (4)
4: for a = 1 to m do
5: T ∗

ra→qa ← ra-to-qa optimal transport under ℓ1 cost
6: end for
7: Return: (x, a) 7→ T ∗

ra→qa ◦ fa(x)

and ideally, achieves the minimum error rate among all fair
classifiers derived from f .

Let h̄(x, a) := T ∗
ra→qa ◦fa(x) denote the classifier obtained

from applying Algorithm 1 to f . First, h̄ is always α-fair
regardless of f , because h̄a♯µXa = qa, ∀a ∈ [m] by con-
struction, and ∆DP(h̄) = maxa,a′ ∥qa − qa′∥∞ ≤ α from
the constraints in Equation (4). Second, the suboptimality
of h̄ can be upper bounded by the L1 difference between f
and the Bayes optimal score f∗:

Theorem 3.4 (Error Propagation). Let α ∈ [0, 1], f : X ×
A → ∆k be a score function, and f∗ the Bayes optimal
score function. For the α-fair classifier h̄ obtained from
applying Algorithm 1 to f ,

0 ≤ err(h̄)− err∗α ≤ E[∥f(X,A)− f∗(X,A)∥1],

where err∗α is defined in Equation (4).

Hence, whereas the degradation in performance of the post-
processed h̄ from Algorithm 1 if f = f∗ is attributed en-
tirely to the inherent tradeoff (Theorem 3.3), it is not the
case when f ̸= f∗ due to the loss of information about Y .
We may, however, guarantee that h̄ is optimal among all
fair classifiers derived from f if it satisfies group-wise dis-
tribution calibration (Kull & Flach, 2015), i.e., the output
predictions correctly convey the class probabilities:

Definition 3.5. A score function f : X ×A → ∆k is said
to be group-wise distribution calibrated if Pµ(Y = ei |
f(X, a) = s,A = a) = si, ∀s ∈ ∆k, i ∈ [k], a ∈ [m].

If f is not calibrated, but labeled data is available, one
could learn mappings ua : ∆k → ∆k and compose it with
f to recalibrate it. The optimal calibration maps, u∗a (in
the sense that they achieve calibration without incurring
further information loss), are by definition the minimum
MSE estimators of Y given (fa(X), A = a).

To see why the optimality of h̄ among all fair classifiers
derived from f is guaranteed provided calibration, note that
finding the optimal fair post-processing map for f is equiva-
lent to finding the optimal fair classifier on a new problem
µ′ derived from the original µ under an input transforma-
tion, given by the joint distribution of (X ′ := fA(X), A, Y ).

Also, the Bayes optimal score on µ′ coincide with the opti-
mal calibration map, as Eµ′ [Y | X ′ = s,A = a] = u∗a(s).
So by Theorem 3.3, Algorithm 1 finds post-processing map
ga’s s.t. (x′, a) 7→ ga◦u∗a(x′) is the optimal fair classifier on
µ′, whereby (x, a) 7→ ga ◦ (u∗a ◦ fa)(x) is optimal among
all derived fair classifiers (the term in the parentheses is
the recalibrated score). Finally, we remark that the subop-
timality of h̄ due to miscalibration can be bounded using
Theorem 3.4 by simply replacing the reference f∗ with the
calibrated score (x, a) 7→ u∗a ◦ fa.

4. Finite Sample Estimation
We have discussed post-processing for DP assuming access
to the distribution µX,A. In this section, we instantiate our
Algorithm 1 for post-processing using finite samples:
Assumption 4.1. We have n i.i.d. samples of (X,A) that are
independent of the score function f being post-processed.

Denote the samples from group a by (xa,i)i∈[na], and their
number by na. Define ŵa := na/n, and the empirical
distribution r̂a := 1

na

∑
i∈[na]

δfa(xa,i), where δ is the Dirac
delta function.

We also analyze the sample complexity for both the fairness
and the error rate of the returned classifier. For simplicity,
we assume f to be calibrated; otherwise, Theorem 3.4 can
be used to bound the suboptimality due to miscalibration.
Assumption 4.2. The score function f being post-processed
is group-wise calibrated (Definition 3.5).

Let ra := fa♯µ
X
a , ∀a ∈ [m]. Recall from Section 3.3 that

the error rate of the optimal derived α-fair classifier is

err∗α,f := min
q1,··· ,qm∈Qk

maxa,a′ ∥qa−qa′∥∞≤α

∑
a∈[m]

wa
2
W1(ra, qa).

This section is divided into three subsections w.r.t. the conti-
nuity of the distributions of the score, r1, · · · , rm.

4.1. The Finite Case

We start with the case where the ra’s have finite supports,
i.e., |Ra| <∞ whereRa := supp(ra). Note that this does
not mean that the input distribution µX is finite.

If the true probability mass of the ra’s were known, then
Algorithm 1 can be implemented by a linear program:

LP : min
q1,··· ,qm≥0
γ1,··· ,γm≥0

∑
a∈[m]

∑
s∈Ra,y∈Y

wa
2
∥s− y∥1 γa(s, y)

s.t.
∑
s′∈Ra

γa(s
′, y) = qa(y), ∀a ∈ [m], y ∈ Y,

∑
y′∈Y

γa(s, y
′) = ra(s), ∀a ∈ [m], s ∈ Ra,

|qa(y)− qa′(y)| ≤ α, ∀a, a′ ∈ [m], y ∈ Y,
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Figure 2. Examples of simplex-vertex optimal transports (k = 3;
with different vertex distributions). All points in the lower-left blue
partition are transported to e1, lower-right yellow to e2, and upper
green to e3. The transports are described by a Y-shaped boundary.

where qa ∈ ∆k and γa ∈ R|Ra|×k. This program simultane-
ously finds a minimizer (q∗1 , · · · , q∗m) of the barycenter prob-
lem in Equation (4) and the optimal transports T ∗

ra→q∗a
(used

in Theorem 3.3) in the form of couplings (γ∗1 , · · · , γ∗m):
namely, each T ∗

ra→q∗ is a randomized function satisfying
P(T ∗

ra→q∗(R) = y | R = s) = γ∗a(s, y)/
∑
y′∈Y γ

∗
a(s, y

′),
for all s ∈ Ra.

If the true pmfs of the ra’s are unknown but finite samples
as in Assumption 4.1 are given, we proceed with solving
LP defined on the empirical ŵa and r̂a’s, which will give us
estimated q̂a’s and T ∗

r̂a→q̂a
’s. Then, we post-process f via

ĥ(x, a) = T ∗
r̂a→q̂a

◦ fa(x). The sample complexity is:

Theorem 4.3 (Sample Complexity, Finite Case). Let α ∈
[0, 1], f : X × A → ∆k be a score function, and assume
|Ra| := supp(fa♯µ

X
a ) <∞, ∀a ∈ [m]. W.p. at least 1− δ

over the random draw of samples in Assumption 4.1, for the
classifier ĥ derived above, and n ≥ Ω(maxa ln(m/δ)/wa),

∆DP(ĥ) ≤ α+O

max
a

√
|Ra| ln(m/δ)

nwa

;

in addition, with Assumption 4.2,

err(ĥ)− err∗α,f ≤ O

max
a

√
|Ra| ln(m/δ)

nwa

.
4.2. The Continuous Case

When the ra’s are continuous,4 given finite samples, we may
still solve LP defined on ŵa and r̂a’s to estimate the opti-
mal output distribution q̂a’s under α-DP, but the empirical
transports T ∗

r̂a→q̂a
are no longer usable for post-processing

in this case, since by continuity, the inputs to the trans-
ports at inference time will be unseen almost surely (i.e.,
fa(x) /∈ fa[(xa,i)i∈[na]] a.s. for x ∼ µXa ), or in other words,

4I.e., the probability measure does not give mass to sets whose
intersection with ∆k has Hausdorff dimension less than k − 1.

they cannot extrapolate to the full support of ra. So after
obtaining the q̂a’s, we will need to estimate the optimal
transports T ∗

ra→q̂a
from (the population) ra’s to the q̂a’s.

Since supp(q̂a) = {e1, · · · , ek} is finite, this makes finding
T ∗
ra→q̂a

a semi-discrete optimal transport problem (Genevay
et al., 2016; Staib et al., 2017; Chen et al., 2019), for which,
a common procedure in existing work is to reformulate
optimal transport as a convex optimization problem over a
vector ψa ∈ Rk using the Kantorovich-Rubinstein dual and
the c-transform of the Kantorovich potential ϕa: concretely,
for each a ∈ [m],

W1(ra, q̂a) = inf
γa∈Γ(ra,q̂a)

∫
∆k×Y

∥s− y∥1 dγa(s, y)

= sup
ϕa:∆k→R, ψa∈Rk

ϕa(s)+ψa,i≤∥s−ei∥1

(
ES∼ra [ϕa(S)] +

k∑
i=1

ψa,iq̂a(ei)

)

= sup
ψa∈Rk

(
ES∼ra

[
min
i
(∥S − ei∥1 − ψa,i)

]
+

k∑
i=1

ψa,iq̂a(ei)

)
,

(5)

and ψ∗
a can be optimized, e.g., using (stochastic) gradient

ascent. Moreover, Gangbo & McCann (1996) showed that in
the semi-discrete case, the optimal transport T ∗

ra→q̂a
belongs

to the parameterized function class

Gk :=
{
s 7→ eargmini∈[k](∥s−ei∥1−ψi) : ψ ∈ Rk

}
(break ties to the tied ei with the largest index i) with ψ∗

a

as its parameter. See Figure 2 for pictures of semi-discrete
optimal transports when k = 3. Compared to the empirical
transports T ∗

r̂a→q̂a
, the domain of T ∗

ra→q̂a
∈ Gk covers the

support of ra, i.e., it can handle future unseen inputs.

Note that Gangbo & McCann (1996) assumed the cost func-
tion to be strictly convex and superlinear (Assumptions H1
to H3 in their paper), which are not satisfied by our ℓ1
cost (Ambrosio & Pratelli, 2003). Hence, as a technical
contribution, we provide a proof in Appendix D for the ex-
istence and uniqueness of the optimal transport in Gk on
simplex-vertex transportation problems under the ℓ1 cost,
via analyzing its geometry.

Our Implementation. To recap, for post-processing in
the finite sample and continuous case, we (i) get the q̂a’s
from solving LP, then (ii) estimate the T ∗

ra→q̂a
’s; as dis-

cussed above, the typical approach for solving this semi-
discrete transportation problem is via optimizing ψa w.r.t.
Equation (5) (taking expectation over the empirical r̂a).

However, instead of estimating from scratch, by leveraging
the observation that each of the empirical transports T ∗

r̂a→q̂a
obtained (as byproducts) from solving LP already achieves
the optimal value of W1(r̂a, q̂a) of Equation (5), and their
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Figure 3. Extract a simplex-vertex transport T ∈ G3 that agrees with the discrete optimal transport (Lines 6 to 9 of Algorithm 2). For
illustrative purposes, the discrete transport on the left does not split mass; otherwise, there would be disagreements on the boundaries.

Algorithm 2 Post-Process for α-DP (Finite Samples, Con-
tinuous Case)

1: Input: α ∈ [0, 1], score function f : X × A → ∆k,
samples ((xa,i)i∈[na])a∈[m]

2: Define ŵa := na

n and r̂a := 1
na

∑
i δfa(xa,i), ∀a ∈ [m]

3: (γ1, · · · , γm)← minimizer of LP on ŵa and r̂a’s
4: Define vij := ej − ei
5: for a = 1 to m do
6: Ba,ij ← {0} ∪max{fa(xa,ℓ)⊤vij + 1

: ℓ s.t. γa(fa(xa,ℓ), ei) > 0}
7: za ← point in

⋂
i ̸=j{x ∈ Rk : x⊤vij ≥ Ba,ij − 1}

8: ψa,i ← 2z⊤a vi1, ∀i ∈ [k]
9: Ta ← (s 7→ eargmini(∥s−ei∥1−ψa,i))

10: end for
11: Return: (x, a) 7→ Ta ◦ fa(x)

decision boundaries is simply described by
(
k
2

)
= Θ(k2)

hyperplanes (recall Figure 2), we can directly extract a set of
transport mappings Ta ∈ Gk from T ∗

r̂a→q̂a
. The procedure

for this is provided on Lines 6 to 9 in Algorithm 2 (with
step-by-step illustration in Figure 3; formal derivations are
deferred to Appendix D), which amounts to finding a fea-
sible point in a polytope, formulated as a linear program
(Appendix E.3). Each of the extracted Ta will agree with
T ∗
r̂a→q̂ on all points in r̂a except for those that lie on the

Θ(k2) boundaries, and by continuity of ra, the number of
disagreements between them is O(k2) almost surely.

Our implementation in Algorithm 2 involves (m + 1) lin-
ear programs, where LP dominates with O(nk) variables
and constraints, and takes, e.g., Õ(poly(nk)) time to solve
to (near-)optimality using interior point methods (Vaidya,
1989). Its sample complexity is:

Theorem 4.4 (Sample Complexity, Continuous Case). Let
α ∈ [0, 1], f : X × A → ∆k be a score function, and
assume that fa♯µXa is continuous, ∀a ∈ [m]. W.p. at least
1− δ over the random draw of samples in Assumption 4.1,
for the classifier ĥ obtained from applying Algorithm 2 to f ,

and n ≥ Ω(maxa ln(m/δ)/wa),

∆DP(ĥ) ≤ α+O

max
a

√k + ln(mk/δ)

nwa
+

k

nwa

;

in addition, with Assumption 4.2,

err(ĥ)− err∗α,f ≤ O

max
a

√k ln(m/δ)

nwa
+

k2

nwa

.
The first term in both expressions is the sample complexity
of PAC learning (with the complexity of Gk analyzed in
Theorem D.2), and the second term comes from the dis-
agreement between Ta and T ∗

r̂a→q̂ on r̂a discussed above.

4.3. The General Case

For completeness, we briefly discuss the general case where
the ra’s are neither finite nor continuous (i.e., contain
atoms), which is handled by smoothing the ra’s using an
i.i.d. noise generator ρ with a continuous distribution.4

The smoothing is done by perturbing (samples from) ra with
random noise drawn from ρ, i.e., r̃a := uρ♯ra, where uρ is
a randomized function s.t. uρ(s) ∼ s+N with N ∼ ρ; it
is not hard to show that the resulting r̃a is continuous. Now
that uρ ◦ fa produces continuous score distributions, we
may apply the same algorithm in Section 4.2 for DP post-
processing. The resulting classifier, h̄ρ(x, a) := T ∗

r̃a→qa
◦

uρ ◦ fa(x), is α-fair regardless of the choice of ρ, and
the suboptimality incurred by the smoothing procedure is
controlled by the bandwidth of ρ:

Theorem 4.5 (Error Propagation, Smoothing). Let α ∈
[0, 1], f : X × A → ∆k be a score function, and ρ a
continuous distribution with finite first moment. Under As-
sumption 4.2, for the α-fair classifier h̄ρ derived above,

0 ≤ err(h̄ρ)− err∗α,f ≤ EN∼ρ[∥N∥1].
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Figure 4. Tradeoff curves between accuracy and ∆DP (Definition 2.1). Scoring model is logistic regression. Error bars indicate the standard
deviation over 10 runs with different random splits. Running time is reported in appendix Table 1. On ACSIncome, FairProjection-KL
and FairProjection-CE have similar results.

E.g., if ρ = Laplace(0, b Ik), then E[∥N∥1] = kb, and the
suboptimality due to smoothing is less than kb; in practice,
the smallest-allowable b depends on machine precision.

5. Experiments
Our proposed DP post-processing Algorithm 2 is evalu-
ated on four benchmark datasets: the UCI Adult dataset
for income prediction (Kohavi, 1996), the ACSIncome
dataset (Ding et al., 2021)—an extension of the Adult
with much more examples (1.6 million vs. 48,842)—on
which we consider a binary setting where the sensitive at-
tribute is gender and the target is whether the income is
over $50k, as well as a multi-group multi-class setting with
five race categories and five income buckets; the Commu-
nities & Crime dataset (Redmond & Baveja, 2002), and
the BiasBios dataset (De-Arteaga et al., 2019), where the
task is to predict occupations from biographies. We high-
light the effectiveness of our algorithm by comparing it to
FairProjection (Alghamdi et al., 2022), which is to our
knowledge the only other fair post-processing algorithm for
multi-group and multi-class classification.

On each dataset, we split the data into pre-training, post-
processing, and testing. We first train a linear logistic regres-
sion scoring model on the pre-training split, then perform
DP post-processing. On BiasBios, the model is trained on
embeddings of biographies computed by a pre-trained BERT
language model from the bert-base-uncased check-
point (Devlin et al., 2019). Additional details, including
hyperparameters, are in Appendix E.

Results. The results on ACSIncome and BiasBios are
shown in Figure 4 (those on Adult and Communities are de-
ferred to appendix Figure 7). Across all tasks, our method is

effective at reducing the disparity, and almost precise control
of ∆DP via α is achieved on tasks with sufficient data. Com-
pared to FairProjection, our method can achieve lower
∆DP and produces better tradeoff curves, and its advantage
is most evident under multi-class settings (e.g., BiasBios).

While our method achieves a significant degree of DP fair-
ness, there remains a gap to ∆DP = 0 in our results, espe-
cially on tasks with more groups and classes (e.g., ACSIn-
come under the multi-group multi-class setting). This could
be due to a potential violation of the continuity assump-
tion required by Algorithm 2 (Section 4.2), but we suspect
the main reason to be insufficient data. Recall from Theo-
rem 4.4 that the sample complexity scales as Õ(

√
k/nwa)

in the worst-case a, where wa is the proportion of group a.
This means that good generalization performance hinges on
collecting adequate amounts of data from minority groups.
Lastly, as discussed in Section 3.3—although not empiri-
cally explored here—higher accuracies could be achieved if
the scores were calibrated prior to post-processing.

6. Further Related Work
Fairness Criteria. This paper focused on the group crite-
rion of demographic parity, which is defined on population-
level statistics (Verma & Rubin, 2018; Kearns et al., 2018).
Other group criteria include parity of true positive and/or
negative rates (Hardt et al., 2016), predictive rates (Choulde-
chova, 2017; Berk et al., 2021; Zeng et al., 2022b), accu-
racy (Buolamwini & Gebru, 2018), etc. Besides group-level,
there are criteria defined on the individual-level (Dwork
et al., 2012; Kearns et al., 2019), which require the model
to output similar predictions to individuals deemed to be
similar under application and context-specific measures de-
signed by the practitioner.
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Mitigation Methods. In addition to post-processing, there
are data pre-processing methods (Calmon et al., 2017),
as well as in-processing ones via constrained optimiza-
tion (Kamishima et al., 2012; Zafar et al., 2017; Agarwal
et al., 2019) or fair representation learning (Zemel et al.,
2013; Madras et al., 2018; Zhao et al., 2020; Song et al.,
2019). There are methods under other learning settings and
paradigms, such as unsupervised learning (Chierichetti et al.,
2017; Backurs et al., 2019; Li et al., 2020), ranking (Zehlike
et al., 2017), and sequential decision making (Joseph et al.,
2016; 2017; Gillen et al., 2018; Chi et al., 2022).

7. Conclusion
In this paper, we characterized the inherent tradeoff of DP
fairness on classification problems in the most general set-
ting, and proposed an effective post-processing method with
suboptimality and sample complexity analyses. Our imple-
mentation uses linear program solvers; while they enjoy
stability and consistent performance, a potential concern
is scalability to larger numbers of classes or samples. It
would be of practical value to analyze an implementation
that uses more time efficient optimization methods, e.g.,
gradient descent (Staib et al., 2017).

Technically, we studied the geometry of the optimal trans-
port between distributions supported on the simplex and its
vertices. A main result is that when the distributions are
semi-discrete, the optimal transport is unique, and is given
by the c-transform of the Kantorovich potential, including
under the ℓ1 cost which is neither strictly convex nor super-
linear. This result may be of independent theoretical interest
to the community.

Our results add to the line of work that study the inherent
tradeoffs of fairness criteria, which we believe would benefit
practitioners in the design of fair machine learning systems,
and contribute to a better understanding of the implications
of fairness in machine learning.

Acknowledgements
The authors thank Jane Du, Yuzheng Hu, and Seiyun Shin
for feedback on the draft. The work of HZ was sup-
ported in part by the Defense Advanced Research Projects
Agency (DARPA) under Cooperative Agreement Number:
HR00112320012, a Facebook Research Award, and Ama-
zon AWS Cloud Credit.

References
Abid, A., Farooqi, M., and Zou, J. Persistent Anti-Muslim

Bias in Large Language Models. In Proceedings of the
2021 AAAI/ACM Conference on AI, Ethics, and Society,
pp. 298–306, 2021.

Agarwal, A., Dudík, M., and Wu, Z. S. Fair Regres-
sion: Quantitative Definitions and Reduction-Based Al-
gorithms. In Proceedings of the 36th International Con-
ference on Machine Learning, pp. 120–129, 2019.

Alghamdi, W., Hsu, H., Jeong, H., Wang, H., Michalak,
P. W., Asoodeh, S., and Calmon, F. P. Beyond Adult and
COMPAS: Fair Multi-Class Prediction via Information
Projection. In Advances in Neural Information Process-
ing Systems, 2022.

Ambrosio, L. and Pratelli, A. Existence and stability results
in the L1 theory of optimal transportation. In Optimal
Transportation and Applications, volume 1813 of Lecture
Notes in Mathematics, pp. 123–160. Springer, 2003.

Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A.,
and Wagner, T. Scalable Fair Clustering. In Proceed-
ings of the 36th International Conference on Machine
Learning, pp. 405–413, 2019.

Barocas, S. and Selbst, A. D. Big Data’s Disparate Impact.
California Law Review, 104(3):671–732, 2016.

Barocas, S., Hardt, M., and Narayanan, A. Fairness and
Machine Learning: Limitations and Opportunities. The
MIT Press, 2023.

Bauer, U., Kerber, M., Roll, F., and Rolle, A. A unified
view on the functorial nerve theorem and its variations.
Expositiones Mathematicae, 2023.

Berk, R., Heidari, H., Jabbari, S., Kearns, M., and Roth,
A. Fairness in Criminal Justice Risk Assessments: The
State of the Art. Sociological Methods & Research, 50
(1):3–44, 2021.

Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., and
Kalai, A. Man is to Computer Programmer as Woman
is to Homemaker? Debiasing Word Embeddings. In Ad-
vances in Neural Information Processing Systems, 2016.

Buolamwini, J. and Gebru, T. Gender Shades: Intersectional
Accuracy Disparities in Commercial Gender Classifica-
tion. In Proceedings of the 2018 Conference on Fairness,
Accountability, and Transparency, pp. 77–91, 2018.

Calders, T., Kamiran, F., and Pechenizkiy, M. Building
Classifiers with Independency Constraints. In 2009 IEEE
International Conference on Data Mining Workshops, pp.
13–18, 2009.

Calmon, F. P., Wei, D., Vinzamuri, B., Ramamurthy, K. N.,
and Varshney, K. R. Optimized Pre-Processing for Dis-
crimination Prevention. In Advances in Neural Informa-
tion Processing Systems, 2017.

Caton, S. and Haas, C. Fairness in Machine Learning: A
Survey, 2020. arXiv:2010.04053 [cs.LG].

9



Fair and Optimal Classification via Post-Processing

Chen, Y., Telgarsky, M., Zhang, C., Bailey, B., Hsu, D.,
and Peng, J. A Gradual, Semi-Discrete Approach to
Generative Network Training via Explicit Wasserstein
Minimization. In Proceedings of the 36th International
Conference on Machine Learning, pp. 1071–1080, 2019.

Chi, J., Shen, J., Dai, X., Zhang, W., Tian, Y., and Zhao, H.
Towards Return Parity in Markov Decision Processes. In
Proceedings of the 25th International Conference on Ar-
tificial Intelligence and Statistics, pp. 1161–1178, 2022.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S.
Fair Clustering Through Fairlets. In Advances in Neural
Information Processing Systems, 2017.

Chouldechova, A. Fair Prediction with Disparate Impact: A
Study of Bias in Recidivism Prediction Instruments. Big
Data, 5(2):153–163, 2017.

Chzhen, E. and Schreuder, N. A minimax framework for
quantifying risk-fairness trade-off in regression. The An-
nals of Statistics, 50(4):2416–2442, 2022.

Chzhen, E., Denis, C., Hebiri, M., Oneto, L., and Pontil,
M. Leveraging Labeled and Unlabeled Data for Consis-
tent Fair Binary Classification. In Advances in Neural
Information Processing Systems, 2019.

Chzhen, E., Denis, C., Hebiri, M., Oneto, L., and Pontil,
M. Fair Regression with Wasserstein Barycenters. In Ad-
vances in Neural Information Processing Systems, 2020.

Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., and
Huq, A. Algorithmic Decision Making and the Cost
of Fairness. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 797–806, 2017.

De-Arteaga, M., Romanov, A., Wallach, H., Chayes, J.,
Borgs, C., Chouldechova, A., Geyik, S., Kenthapadi, K.,
and Kalai, A. T. Bias in Bios: A Case Study of Se-
mantic Representation Bias in a High-Stakes Setting. In
Proceedings of the 2019 ACM Conference on Fairness,
Accountability, and Transparency, pp. 120–128, 2019.

Denis, C., Elie, R., Hebiri, M., and Hu, F. Fairness guarantee
in multi-class classification, 2023. arxiv:2109.13642
[math.ST].

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, volume 1, pp. 4171–4186, 2019.

Diamond, S. and Boyd, S. CVXPY: A Python-Embedded
Modeling Language for Convex Optimization. Journal
of Machine Learning Research, 17(83):1–5, 2016.

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring
Adult: New Datasets for Fair Machine Learning. In Ad-
vances in Neural Information Processing Systems, 2021.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness Through Awareness. In Proceedings of the
3rd Innovations in Theoretical Computer Science Confer-
ence, pp. 214–226, 2012.

Fish, B., Kun, J., and Lelkes, Á. D. A Confidence-Based
Approach for Balancing Fairness and Accuracy. In Pro-
ceedings of the 2016 SIAM International Conference on
Data Mining, pp. 144–152, 2016.

Forrest, J., Ralphs, T., Santos, H. G., Vigerske, S., Forrest,
J., Hafer, L., Kristjansson, B., jpfasano, EdwinStraver,
Lubin, M., Jan-Willem, rlougee, jpgoncal1, Brito,
S., h-i-gassmann, Cristina, Saltzman, M., tosttost,
Pitrus, B., Matsushima, F., and to-st. coin-or/cbc:
Release releases/2.10.10, April 2023. URL https:
//doi.org/10.5281/zenodo.7843975.

Gangbo, W. and McCann, R. J. The geometry of opti-
mal transportation. Acta Mathematica, 177(2):113–161,
1996.

Gaucher, S., Schreuder, N., and Chzhen, E. Fair learning
with Wasserstein barycenters for non-decomposable per-
formance measures. In Proceedings of the 26th Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 2436–2459, 2023.

Genevay, A., Cuturi, M., Peyré, G., and Bach, F. Stochastic
Optimization for Large-scale Optimal Transport. In Ad-
vances in Neural Information Processing Systems, 2016.

Gillen, S., Jung, C., Kearns, M., and Roth, A. Online
Learning with an Unknown Fairness Metric. In Advances
in Neural Information Processing Systems, 2018.

Hardt, M., Price, E., and Srebro, N. Equality of Oppor-
tunity in Supervised Learning. In Advances in Neural
Information Processing Systems, 2016.

Jiang, R., Pacchiano, A., Stepleton, T., Jiang, H., and Chi-
appa, S. Wasserstein Fair Classification. In Proceedings
of the 35th Uncertainty in Artificial Intelligence Confer-
ence, pp. 862–872, 2020.

Joseph, M., Kearns, M., Morgenstern, J., and Roth, A. Fair-
ness in Learning: Classic and Contextual Bandits. In Ad-
vances in Neural Information Processing Systems, 2016.

Joseph, M., Kearns, M., Morgenstern, J., Neel, S., and Roth,
A. Fair Algorithms for Infinite and Contextual Bandits,
2017. arXiv:1610.09559 [cs.LG].

10

https://doi.org/10.5281/zenodo.7843975
https://doi.org/10.5281/zenodo.7843975


Fair and Optimal Classification via Post-Processing

Kamishima, T., Akaho, S., Asoh, H., and Sakuma, J.
Fairness-Aware Classifier with Prejudice Remover Regu-
larizer. In Machine Learning and Knowledge Discovery
in Databases, pp. 35–50, 2012.

Kearns, M., Neel, S., Roth, A., and Wu, Z. S. Prevent-
ing Fairness Gerrymandering: Auditing and Learning for
Subgroup Fairness. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, pp. 2564–2572,
2018.

Kearns, M., Roth, A., and Sharifi-Malvajerdi, S. Average
Individual Fairness: Algorithms, Generalization and Ex-
periments. In Advances in Neural Information Processing
Systems, 2019.

Kohavi, R. Scaling Up the Accuracy of Naive-Bayes Clas-
sifiers: A Decision-Tree Hybrid. In Proceedings of the
Second International Conference on Knowledge Discov-
ery and Data Mining, pp. 202–207, 1996.

Kull, M. and Flach, P. Novel Decompositions of Proper Scor-
ing Rules for Classification: Score Adjustment as Precur-
sor to Calibration. In Machine Learning and Knowledge
Discovery in Databases, pp. 68–85, 2015.

Le Gouic, T., Loubes, J.-M., and Rigollet, P. Projection to
Fairness in Statistical Learning, 2020. arXiv:2005.11720
[cs.LG].

Li, P., Zhao, H., and Liu, H. Deep Fair Clustering for Visual
Learning. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9067–9076, 2020.

Madras, D., Creager, E., Pitassi, T., and Zemel, R. Learn-
ing Adversarially Fair and Transferable Representations.
In Proceedings of the 35th International Conference on
Machine Learning, pp. 3384–3393, 2018.

Menon, A. K. and Williamson, R. C. The cost of fairness in
binary classification. In Proceedings of the 2018 Confer-
ence on Fairness, Accountability, and Transparency, pp.
107–118, 2018.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foun-
dations of Machine Learning. The MIT Press, second
edition, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, É.
Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12(85):2825–2830, 2011.

Peyré, G. and Cuturi, M. Computational Optimal Transport:
With Applications to Data Science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., and Wein-
berger, K. Q. On Fairness and Calibration. In Advances
in Neural Information Processing Systems, 2017.

Ravfogel, S., Elazar, Y., Gonen, H., Twiton, M., and Gold-
berg, Y. Null It Out: Guarding Protected Attributes by
Iterative Nullspace Projection. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pp. 7237–7256, 2020.

Redmond, M. and Baveja, A. A data-driven software tool for
enabling cooperative information sharing among police
departments. European Journal of Operational Research,
141(3):660–678, 2002.

Shalev-Shwartz, S. and Ben-David, S. Understanding Ma-
chine Learning: From Theory to Algorithms. Cambridge
University Press, 2014.

Song, J., Kalluri, P., Grover, A., Zhao, S., and Ermon, S.
Learning Controllable Fair Representations. In Proceed-
ings of the 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2164–2173, 2019.

Spanier, E. H. Algebraic Topology. Springer, 1981.

Staib, M., Claici, S., Solomon, J., and Jegelka, S. Paral-
lel Streaming Wasserstein Barycenters. In Advances in
Neural Information Processing Systems, 2017.

Vaidya, P. M. Speeding-up linear programming using fast
matrix multiplication. In 30th Annual Symposium on
Foundations of Computer Science, pp. 332–337, 1989.

Verma, S. and Rubin, J. Fairness Definitions Explained.
In 2018 IEEE/ACM International Workshop on Software
Fairness, 2018.

Villani, C. Topics in Optimal Transportation. American
Mathematical Society, 2003.

Weed, J. and Bach, F. Sharp asymptotic and finite-sample
rates of convergence of empirical measures in Wasserstein
distance. Bernoulli, 25(4A):2620–2648, 2019.

Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., and
Weinberger, M. J. Inequalities for the L1 Deviation of
the Empirical Distribution. Technical Report HPL-2003-
97R1, Hewlett-Packard Laboratories, 2003.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-Art
Natural Language Processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, 2020.

11



Fair and Optimal Classification via Post-Processing

Woodworth, B., Gunasekar, S., Ohannessian, M. I., and
Srebro, N. Learning Non-Discriminatory Predictors. In
Proceedings of the 2017 Conference on Learning Theory,
pp. 1920–1953, 2017.

Zafar, M. B., Valera, I., Rogriguez, M. G., and Gummadi,
K. P. Fairness Constraints: Mechanisms for Fair Classifi-
cation. In Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics, pp. 962–970,
2017.

Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed,
M., and Baeza-Yates, R. FA*IR: A Fair Top-k Ranking
Algorithm. In Proceedings of the 2017 ACM on Confer-
ence on Information and Knowledge Management, pp.
1569–1578, 2017.

Zemel, R., Wu, Y. L., Swersky, K., Pitassi, T., and Dwork,
C. Learning Fair Representations. In Proceedings of the
30th International Conference on Machine Learning, pp.
325–333, 2013.

Zeng, X., Dobriban, E., and Cheng, G. Bayes-Optimal Clas-
sifiers under Group Fairness, 2022a. arXiv:2202.09724
[stat.ML].

Zeng, X., Dobriban, E., and Cheng, G. Fair Bayes-Optimal
Classifiers Under Predictive Parity. In Advances in Neural
Information Processing Systems, 2022b.

Zhao, H. and Gordon, G. J. Inherent Tradeoffs in Learn-
ing Fair Representations. Journal of Machine Learning
Research, 23(57):1–26, 2022.

Zhao, H., Coston, A., Adel, T., and Gordon, G. J. Condi-
tional Learning of Fair Representations. In International
Conference on Learning Representations, 2020.

Zhao, J., Wang, T., Yatskar, M., Ordonez, V., and Chang,
K.-W. Gender Bias in Coreference Resolution: Evalua-
tion and Debiasing Methods. In Proceedings of the 2018
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, volume 2, pp. 15–20, 2018.

12



Fair and Optimal Classification via Post-Processing

A. Additional Discussions in Section 3.1
This section discusses the reduction of Theorem 3.2 to TV-barycenter in the noiseless setting, and the examples in Section 3.1.

A.1. Reduction to TV-Barycenter

When the classification problem µ is noiseless, i.e., the (unconstrained) Bayes error rate is zero, minh err(h) = 0, we show
that Theorem 3.2 reduces to a relaxed TV-barycenter problem. For strict DP (α = 0), this result is previously established by
Zhao & Gordon (2022) for the binary case of m = k = 2. Our reduction here holds for the general case.

Note that noiselessness means that there exist a deterministic labeling function y : X ×A → Y s.t. Y = y(X,A) (almost
surely). Therefore, the Bayes optimal score f∗ = y, and we have

r∗a = pa := f∗a ♯µ
X
a where pa(ei) = Pµ(Y = ei | A = a).

Theorem A.1 (Minimum Fair Error Rate, Noiseless Setting). Let α ∈ [0, 1], and suppose µ is noiseless. We have

min
h:∆DP(h)≤α

err(h) = min
q1,··· ,qm∈Qk

maxa,a′ ∥qa−qa′∥∞≤α

∑
a∈[m]

wa
2
W1(r

∗
a, qa) = min

q1,··· ,qm∈Qk

maxa,a′ ∥qa−qa′∥∞≤α

∑
a∈[m]

wa
2
∥pa − qa∥1.

This is due to supp(pa) ⊆ {e1, · · · , ek} sharing the same finite support with any qa ∈ Qk, whereby 1
2 W1(r

∗
a, qa) =

1
2 W1(pa, qa) =

1
2∥pa − qa∥1. Specifically, recall the fact that W1 under the 0-1 distance is equal to ∥ · ∥1:

Proposition A.2. Let p, q be probability measures on X with metric d(x, y) = 1[x ̸= y], where 1[·] denotes the indicator
function. We have W1(p, q) =

1
2∥p− q∥1.

Proof. By definition, under the metric d(x, y) = 1[x ̸= y],

W1(p, q) = inf
γ∈Γ(p,q)

∫
X×X

1[x ̸= y] dγ(x, y)

=

(
1− sup

γ∈Γ(p,q)

∫
X×X

1[x = y] dγ(x, y)

)

= 1−
∫
X
min(p(x), q(x)) dx

=

∫
X
(p(x)−min(p(x), q(x))) dx

=

∫
X
max(0, p(x)− q(x)) dx

=
1

2

∫
X
|p(x)− q(x)|dx,

where line 3 is due to γ(x, x) ≤ min(p(x), q(x)) for all γ ∈ Γ(p, q), plus there always exists a coupling s.t. γ(x, x) =
min(p(x), q(x)), and line 5 to

∫
X p(x)− q(x) dx = 0.

Proof of Theorem A.1. Because supp(r∗a) = supp(pa) ⊆ {e1, · · · , ek}, the ℓ1 distance (in W1) between any s ∈ supp(r∗a)
and y ∈ {e1, · · · , ek} simplifies to ∥s− y∥1 = 21[s ̸= y]. The result then follows from Proposition A.2.

Moreover, in this case, we have closed-form solution for the optimal fair classifier in Theorem 3.3:

Theorem A.3 (Optimal Fair Classifier, Noiseless Setting). Let α ∈ [0, 1], suppose µ is noiseless, let y : X ×A → Y be the
ground-truth labeling function, and (q∗1 , · · · , q∗m) a minimizer of Equation (4). Define

da(ei) :=
max(0, q∗a(ei)− pa(ei))∑

j∈[k] max(0, q∗a(ej)− pa(ej))
, sa(ei) :=

max(0, pa(ei)− q∗a(ei))
pa(ei)

, ∀a ∈ [m], i ∈ [k],
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and randomized functions Ta : Y → Y for each a ∈ [m] satisfying

Ta(ei) =

{
ei w.p. sa(ei)da(ei) + (1− sa(ei)),
ej w.p. sa(ei)da(ej), ∀j ∈ [m], j ̸= i.

We have
(x, a) 7→ Ta ◦ ya(x) ∈ argmin

h:∆DP(h)≤α
err(h).

Proof. We first verify that (Ta ◦ ya)♯µXa = q∗a, which would imply ∆DP(h) ≤ α by the constraints in Equation (4). For all
ei ∈ Y ,

P(Ta ◦ ya(X) = ei | A = a) = pa(ei)(sa(ei)da(ei) + (1− sa(ei))) + da(ei)
∑
i ̸=j

pa(ej)sa(ej)

= pa(ei)(1− sa(ei)) + da(ei)
∑
j∈[k]

pa(ej)sa(ej)

= pa(ei)−max(0, pa(ei)− q∗a(ei)) + max(0, q∗a(ei)− pa(ei))
= q∗a(ei),

where line 3 is because
∑
i pa(ei) − q∗a(ei) = 0 =⇒

∑
imax(0, pa(ei) − q∗a(ei)) =

∑
imax(0, q∗a(ei) − pa(ei)), and

the last line is from case analysis.

Next, we compute the error rate on group a ∈ [m]. By construction, its accuracy conditioned on Y = ya(X) = ei is

P(Ta ◦ ya(X) = ei | A = a, Y = ei) =

{
1− sa(ei) if da(ei) = 0,

1 = 1− sa(ei) if da(ei) > 0 ⇐⇒ sa(ei) = 0,

so the error rate is

P(Ta ◦ ya(X) ̸= Y | A = a) =
∑
i∈[k]

pa(ei) (1− P(Ta ◦ ya(X) = ei | A = a, Y = ei))

=
∑
i∈[k]

pa(ei)sa(ei)

=
∑
i∈[k]

max(0, pa(ei)− q∗a(ei))

=
1

2

∑
i∈[k]

|pa(ei)− q∗a(ei)|.

We conclude by combining the error on all groups and invoking Theorem A.1.

A.2. Examples Regarding the Tradeoff of DP Fairness

In the remarks of Theorem 3.2, we discussed properties of the inherent tradeoff of error rate for DP fairness, which we
illustrated here with two concrete examples.

It is discussed that the tradeoff could be zero even when the distribution of class probabilities r∗a := f∗a ♯µ
X
a differ, or

equivalently, Eµ[Y | X,A] ⊥⊥ A. This means that on certain problem instances, the Bayes error rate is simultaneously
achieved by an unfair classifier and a fair one; in other words, the cost of DP fairness is zero. Such cases arise from the
nonuniqueness of the optimal classifier. They would not occur on regression problems (with MSE), where the optimal
regressor is always unique (namely, f∗a (x) = Eµ[Y | X,A = a]).
Example A.4. Consider the two-group binary classification problem given by

Pµ1
(Y = e1 | X = x) = 1 and

Pµ2(Y = e1 | X = x) = Pµ2(Y = e2 | X = x) =
1

2
for all x ∈ X .
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The optimal classifier on group 1 is the constant function x 7→ e1, and all classifiers on group 2 yield the same (hence
optimal) error rate of 1

2 , including x 7→ e1 which when combined with the optimal group 1 classifier achieves DP and the
(group-balanced) Bayes error rate of 1

4 .

In (Zhao & Gordon, 2022), it is concluded that in the noiseless setting, the inherent tradeoff is zero if and only if the
class prior distributions are the same, pa(ei) = Pµ(Y = ei | A = a) and r∗a = pa := f∗a ♯µ

X
a in this case, or equivalently

Eµ[Y | A] ⊥⊥ A. However, for the general case, this is no longer sufficient for the tradeoff to be zero (a sufficient condition
here is Eµ[Y | X,A] ⊥⊥ A).

Example A.5. Consider the two-group binary classification problem of two inputs, X = {1, 2}, given by

Pµ1(Y = e1 | X = 1) = 1, Pµ1(Y = e1 | X = 2) = 0,

Pµ1(Y = e2 | X = 1) = 0, Pµ1(Y = e2 | X = 2) = 1, with

Pµ1
(X = 1) =

1

3
, Pµ1

(X = 2) =
2

3
, and

Pµ2
(Y = e1 | X = x) =

1

3
for all x ∈ {1, 2}.

Note that the class prior on both groups is ( 13 ,
2
3 ). The unique optimal classifier on group 1 is x 7→ ex, and the unique

optimal classifier on group 2 is the constant x 7→ e2, but this combination do not satisfy DP, since the output distribution on
group 1 is ( 13 ,

2
3 ) but that on group 2 is (0, 1). Since all other classifiers including the fair ones have strictly higher error

rates, the tradeoff is nonzero.

B. Proofs for Section 3
To make our arguments rigorous, we begin by providing a definition of randomized functions via the Markov kernel. These
definitions will be frequently referred to in the proofs in this section, and that of Theorem 4.5.

Definition B.1 (Markov Kernel). A Markov kernel from a measurable space (X ,S) to (Y, T ) is a mapping K : X × T →
[0, 1], such that K(·, T ) is S-measurable ∀T ∈ T , and K(x, ·) is a probability measure on (Y, T ) ∀x ∈ X .

Definition B.2 (Randomized Function). A randomized function f : (X ,S)→ (Y, T ) is associated with a Markov kernel
K : X × T → [0, 1], and for all x ∈ X , T ∈ T , P(f(x) ∈ T ) = K(x, T ).

Definition B.3 (Push-Forward by Randomized Function). Let p be a measure on (X ,S) and f : (X ,S) → (Y, T ) a
randomized function with Markov kernel K. The push-forward of p under f , denoted by f♯p, is a measure on Y given by
f♯p(T ) =

∫
X K(x, T ) dp(x) for all T ∈ T .

Also, let blackboard bold 1 denote the indicator function, where 1[P ] = 1 if the predicate P is true, else 0.

We provide the proofs to Lemma 3.1 and Theorems 3.2 to 3.4. The proofs to these results and the ones in Section 4 all make
use of the following rewriting of the error rate as an integral over a coupling:

Lemma B.4. Let f∗ : X → ∆k be the Bayes optimal score function. The error rate of any randomized classifier h : X → Y
can be written as

err(h) =
1

2

∫
∆k×Y

∥s− y∥1 P(f∗(X) = s, h(X) = y) d(s, y) =
1

2
E[∥f∗(X)− h(X)∥1].

Note that the joint distribution P of (f∗(X), h(X)) is a coupling belonging to Γ(f∗♯µX , h♯µX).
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Proof. The accuracy of h is

1− err(h) = 1− P(h(X) ̸= Y ) = P(h(X) = Y )

=

∫
∆k

∑
i∈[k]

P(Y = ei, h(X) = ei, f
∗(X) = s) ds

=

∫
∆k

∑
i∈[k]

P(Y = ei, h(X) = ei | f∗(X) = s)Pµ(f∗(X) = s) ds

=

∫
∆k

∑
i∈[k]

Pµ(Y = ei | f∗(X) = s)P(h(X) = ei | f∗(X) = s)Pµ(f∗(X) = s) ds

=

∫
∆k

∑
i∈[k]

si P(f∗(X) = s, h(X) = ei) ds,

where line 4 follows from X ⊥⊥ Y given f∗(X), since f∗(X) = Eµ[Y | X] fully specifies the pmf of Y conditioned on X .
Next, because P(f∗(X) = ·, h(X) = ·) is a probability measure,

err(h) =

∫
∆k

∑
i∈[k]

(1− si)P(f∗(X) = s, h(X) = ei) ds

=
1

2

∫
∆k

∑
i∈[k]

∥s− ei∥1 P(f∗(X) = s, h(X) = ei) ds

≡ 1

2

∫
∆k×Y

∥s− y∥1 P(f∗(X) = s, h(X) = y) d(s, y)

≡ 1

2
E[∥f∗(X)− h(X)∥1],

where the second equality is due to an identity stated in Equation (8).

Lemma B.5 (Full Version of Lemma 3.1). Let f∗ : X → ∆k be the Bayes optimal score function, define r∗ := f∗♯µX ,
and fix q ∈ Qk. For any randomized classifier h : X → Y with Markov kernel K satisfying h♯µX = q, the coupling
γ ∈ Γ(r∗, q) given by

γ(s, y) =

∫
f∗−1(s)

K(x, y) dµX(x),

where f∗−1(s) := {x ∈ X : f∗(x) = s}, satisfies

err(h) =
1

2

∫
∆k×Y

∥s− y∥1 dγ(s, y). (6)

Conversely, for any γ ∈ Γ(r∗, q), the randomized classifier h with Markov kernel

K(x, T ) = γ(f∗(x), T )/γ(f∗(x),Y)

satisfies h♯µX = q and Equation (6).

Proof. We begin with the first direction. Let a randomized classifier h with Markov kernel K satisfying h♯µX = q be given.
We verify that the coupling constructed above belongs to Γ(r∗, q):∫

Y
γ(s, y) dy =

∫
Y

∫
f∗−1(s)

K(x, y) dµX(x) dy

=

∫
f∗−1(s)

∫
Y
K(x, y) dy dµX(x)

=

∫
f∗−1(s)

dµX(x)

= PµX (f∗(X) = s) = r∗(s),
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where line 3 follows from Definition B.1 of Markov kernels, and line 5 from the definition of push-forward measures;∫
∆k

γ(s, y) ds =

∫
∆k

∫
f∗−1(s)

K(x, y) dµX(x) ds

=

∫
X
K(x, y) dµX(x)

=

∫
X
P(h(X) = y | X = x) dµX(x)

= P(h(X) = y) = q(y),

where line 3 follows from Definition B.2 of randomized function, and line 5 is by assumption.

Next, by Lemma B.4 and the same arguments above,

err(h) =
1

2

∫
∆k×Y

∥s− y∥1 P(f∗(X) = s, h(X) = y) d(s, y)

=
1

2

∫
∆k×Y

∥s− y∥1
(∫

x

P(f∗(X) = s, h(X) = y,X = x) dx

)
d(s, y)

=
1

2

∫
∆k×Y

∥s− y∥1

(∫
f∗−1(s)

P(h(X) = y,X = x) dx

)
d(s, y)

=
1

2

∫
∆k×Y

∥s− y∥1

(∫
f∗−1(s)

P(h(X) = y | X = x) dµX(x)

)
d(s, y)

=
1

2

∫
∆k×Y

∥s− y∥1 γ(s, y) d(s, y)

as desired, where line 3 is due to P(f∗(X) = s, h(X) = y,X = x) = 1[f∗(x) = s]P(h(X) = y,X = x) for all (s, y, x).

For the converse, let a coupling γ ∈ Γ(r∗, q) be given. We show that the Markov kernel of the randomized classifier h
constructed in the statement satisfies the equality γ(s, y) =

∫
f∗−1(s)

K(x, y) dµX(x), then Equation (6) will follow directly

from the same arguments used in the previous part. Let s ∈ ∆k and y ∈ Y , and x′ ∈ f∗−1(s) arbitrary, then

γ(s, y) =
γ(s, y)

γ(s,Y)
γ(s,Y)

=
γ(f∗(x′), y)

γ(f∗(x′),Y)
γ(s,Y)

= K(x′, y) γ(s,Y)
= K(x′, y) r∗(s)

= K(x′, y)
∫
x∈f∗−1(s)

dµX(x)

=

∫
x∈f∗−1(s)

K(x′, y) dµX(x)

=

∫
x∈f∗−1(s)

K(x, y) dµX(x),

where line 3 is by construction of K, line 4 from γ ∈ Γ(r∗, q), and the last line is because K(x, y) is constant for all
x ∈ f∗−1(s), also by construction.

Proof of Theorem 3.2. Lemma 3.1 implies that for each a ∈ [m] and fixed qa ∈ Qk, the minimum error rate on group a,
denoted by erra, among randomized classifiers ha : X → Y whose output distribution equals to qa, is given by

min
ha:ha♯µX

a =qa
erra(ha) := min

ha:ha♯µX
a =qa

P(ha(X) ̸= Y | A = a) =
1

2
W1(r

∗
a, qa).
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Because of attribute-awareness, we can optimize each component of h : X × A → Y , h(·, a) =: ha for all a ∈ [m],
independently. So for any set of fixed q1, · · · , qm ∈ Qk,

min
h:ha♯µX

a =qa,∀a
err(h) =

∑
a∈[m]

min
ha:ha♯µX

a =qa
wa erra(ha) =

∑
a∈[m]

wa
2
W1(r

∗
a, qa).

Incorporating the α-DP constraint, we get

min
h:∆DP(h)≤α

err(h) = min
q1,··· ,qm∈Qk

maxa,a′ ∥qa−qa′∥∞≤α

min
h:ha♯µX

a =qa,∀a
err(h) = min

q1,··· ,qm∈Qk

maxa,a′ ∥qa−qa′∥∞≤α

∑
a∈[m]

wa
2
W1(r

∗
a, qa).

Proof of Theorem 3.3. By construction, the Markov kernel of the randomized optimal fair classifier h̄∗(x, a) := T ∗
r∗a→q∗a

◦
f∗a (x) is

K((x, a), y) = γ∗a(f
∗
a (x), y)

γ∗a(f
∗
a (x),Y)

where γ∗a ∈ Γ(r∗a, q
∗
a) is the optimal transport between r∗a and q∗a.

We verify that the output distributions of h̄∗ equal q∗1 , · · · , q∗m, thereby it is α-DP because the q∗a’s satisfy the constraint in
Equation (4), and its error rate achieves the minimum in Theorem 3.2.

First, for all y ∈ Y ,

P(h̄∗(X,A) = y | A = a) =

∫
X
P(h̄∗(x, a) = y)Pµ(X = x | A = a) dx

=

∫
X
K((x, a), y) dµXa (x)

=

∫
X

γ∗a(f
∗
a (x), y)

γ∗a(f
∗
a (x),Y)

dµXa (x)

=

∫
∆k

γ∗a(s, y)

γ∗a(s,Y)

(∫
f∗
a
−1(s)

dµXa (x)

)
ds

=

∫
∆k

γ∗a(s, y)

γ∗a(s,Y)
r∗a(s) ds

=

∫
∆k

γ∗a(s, y) ds = γ∗a(∆k, y) = q∗a(y),

where line 3 is due to γ∗a(f
∗
a (x), y) = γ∗a(s, y) being constant for all x ∈ f∗a

−1(s).

Similarly, Lemma B.5 implies that the error rate on group a, denoted by erra(h̄
∗), is

erra(h̄
∗) =

1

2

∫
∆k×Y

∥s− y∥1 dγa(s, y),

where γa ∈ Γ(r∗a, q
∗
a) equals to

γa(s, y) =

∫
f∗
a
−1(s)

K((x, a), y) dµXa (x) =

∫
f∗
a
−1(s)

γ∗a(f
∗
a (x), y)

γ∗a(f
∗
a (x),Y)

dµXa (x) =
γ∗a(s, y)

γ∗a(s,Y)

∫
f∗
a
−1(s)

dµXa (x) = γ∗a(s, y).

So erra(h̄
∗) = 1

2

∫
∆k×Y ∥s − y∥1 dγ

∗
a(s, y) =

1
2 W1(r

∗
a, q

∗
a) because γ∗a is an optimal transport between r∗a and q∗a, and

err(h̄∗) =
∑
a∈[m] wa erra(h̄

∗) =
∑
a∈[m]

wa

2 W1(r
∗
a, q

∗
a), the minimum error rate under α-DP.

Proof of Theorem 3.4. Recall that the α-fair classifier h̄ returned from Algorithm 1 is

h̄(x, a) = T ∗
ra→qa ◦ fa(x),
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where (q1, · · · , qm) is a minimizer of Equation (4) on ra := fa♯µ
X
a and α, and T ∗

ra→qa is the optimal transport from ra to
qa.

Denote the L1 difference between f and f∗ by

E := EµX [∥fA(X)− f∗A(X)∥1].

For the upper bound, by Lemma B.4 and the triangle inequality,

err(h̄) =
1

2

∑
a∈[m]

wa E
[
∥T ∗
ra→qa ◦ fa(X)− f∗a (X)∥1 | A = a

]
≤ 1

2

∑
a∈[m]

wa
(
E[∥T ∗

ra→qa ◦ fa(X)− fa(X)∥1 | A = a] + E[∥fa(X)− f∗a (X)∥1 | A = a]
)

=
∑
a∈[m]

wa
2
W1(ra, qa) +

E
2

= min
q′1,··· ,q

′
m∈Qk

maxa,a′ ∥q′a−q
′
a′∥∞≤α

∑
a∈[m]

wa
2
W1(ra, q

′
a) +

E
2
,

where line 3 is because T ∗
ra→qa is the optimal transport from ra to qa under the ℓ1 cost, and line 4 is because (q1, · · · , qm)

is a minimizer. Let (q∗1 , · · · , q∗m) denote a minimizer of Equation (4) on the distributions of Bayes scores r∗a := f∗a ♯µ
X
a and

α, then by Theorem 3.2,

err(h̄)− err∗α ≤
1

2

 min
q′1,··· ,q

′
m∈Qk

maxa,a′ ∥q′a−q
′
a′∥∞≤α

∑
a∈[m]

waW1(ra, q
′
a)−

∑
a∈[m]

waW1(r
∗
a, q

∗
a)

+
E
2

≤ 1

2

∑
a∈[m]

waW1(ra, q
∗
a)−

∑
a∈[m]

waW1(r
∗
a, q

∗
a)

+
E
2

≤
∑
a∈[m]

wa
2
W1(ra, r

∗
a) +

E
2

≤ 1

2

∑
a∈[m]

wa E[∥fa(X)− f∗a (X)∥1 | A = a] +
E
2

= E ,

where the last line is because for each a ∈ [m], W1(ra, r
∗
a) is upper bounded by the transportation cost under the

coupling given by the joint distribution of (fa(X), f∗a (X)) conditioned on A = a: denote the coupling by πa, then clearly
πa ∈ Γ(ra, r

∗
a), and

∫
∆k×∆k

∥s− s′∥1 dπa(s, s′) =
∫
X ∥fa(x)− f

∗
a (x)∥1 dµXa (x) = E[∥fa(X)− f∗a (X)∥1 | A = a].

For the lower bound, again by Lemma B.4,

err(h̄) =
∑
a∈[m]

wa
2

∫
∆k×Y

∥s− y∥1 P(f∗a (X) = s, T ∗
ra→qa ◦ fa(X) = y | A = a) d(s, y)

≥
∑
a∈[m]

wa
2
W1(r

∗
a, qa)

≥ min
q′1,··· ,q

′
m∈Qk

maxa,a′ ∥q′a−q
′
a′∥∞≤α

∑
a∈[m]

wa
2
W1(r

∗
a, q

′
a)

= err∗α,

where line 2 is because the joint distribution of (f∗a (X), T ∗
ra→qa ◦ fa(X)) conditioned on A = a is a coupling belonging to

Γ(r∗a, qa), thereby the transportation cost represented by the quantity in the preceding line upper bounds W1(r
∗
a, qa).
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C. Proofs for Section 4
We establish the sample complexities in Theorems 4.3 and 4.4 and the error propagation bound for smoothing (Theorem 4.5),
in that order. We remark that Assumption 4.2 of group-wise calibration of the scores can be dropped by adding the error
propagation of Theorem 3.4 to the results. The sample complexity for the general case procedure described in Section 4.3
via smoothing can also be obtained by combining Theorems 4.4 and 4.5 (provided that the supports of the distributions after
smoothing are contained in the simplex).

The generalization bound of the finite case uses an ℓ1 (TV) convergence result of empirical distributions, which follows
directly from the concentration of multinoulli random variables (Weissman et al., 2003):

Theorem C.1. Let p ∈ ∆d, d ≥ 2, and p̂n ∼ 1
nMultinomial(n, p). W.p. at least 1− δ, ∥p− p̂n∥1 ≤

√
2d ln(2/δ)/n.

Corollary C.2. Let p be a distribution overX with finite support, and x1, · · · , xn ∼ p be i.i.d. samples. Define the empirical
distribution p̂n := 1

n

∑n
i=1 δxi

. W.p. at least 1− δ over the random draw of the samples, ∥p− p̂n∥1 ≤
√
2|X | ln(2/δ)/n.

Theorem C.3 (Hoeffding’s Inequality). Let x1, · · · , xn ∈ R be i.i.d. random variables s.t. ai ≤ xi ≤ bi almost surely. W.p.
at least 1− δ, | 1n

∑n
i=1(xi − Exi)| ≤

√∑n
i=1(bi − ai)2/2n2 · ln 2/δ.

Proof of Theorem 4.3. We first bound the error rate, then ∆DP.

Error Rate. Consider the classification problem µ′ derived from the original µ under an input transformation given by the
joint distribution of (fA(X), A, Y ), as discussed in Section 3.3, on which Id is the Bayes optimal score due to calibration of
f ’s. Then by Lemma B.4 applied on µ′,

err(ĥ) =
1

2

∑
a∈[m]

wa
∑
s∈Ra

∑
y∈Y
∥s− y∥1 P(Id(X ′) = s, T ∗

r̂a→q̂a(X
′) = y)

=
1

2

∑
a∈[m]

wa
∑
s∈Ra

∑
y∈Y
∥s− y∥1 ra(s) P(T ∗

r̂a→q̂a(s) = y)

≤ 1

2

∑
a∈[m]

wa
∑
s∈Ra

∑
y∈Y
∥s− y∥1 (r̂a(s) + |ra(s)− r̂a(s)|) P(T ∗

r̂a→q̂a(s) = y)

≤
∑
a∈[m]

wa

(
1

2
W1(r̂a, q̂a) +

∑
s∈Ra

|ra(s)− r̂a(s)|

)
,

where line 4 uses the fact that each T ∗
r̂a→q̂a

is an optimal transport from r̂a to q̂a. Let (q1, · · · , qm) denote a minimizer of
Equation (4) on the ra’s with α, then

err(ĥ)− err∗α,f ≤
∑
a∈[m]

wa

(
1

2
(W1(r̂a, q̂a)−W1(ra, qa)) +

∑
s∈Ra

|ra(s)− r̂a(s)|

)

= O

∑
a∈[m]

ŵa

(
1

2
(W1(r̂a, q̂a)−W1(ra, qa)) +

∑
s∈Ra

|ra(s)− r̂a(s)|

)
≤ O

∑
a∈[m]

ŵa

(
1

2
(W1(r̂a, qa)−W1(ra, qa)) +

∑
s∈Ra

|ra(s)− r̂a(s)|

)
≤ O

∑
a∈[m]

ŵa

(
1

2
W1(r̂a, ra) +

∑
s∈Ra

|ra(s)− r̂a(s)|

),
where we defined ŵa = na/n, line 2 is because wa = Θ(ŵa) for all a ∈ [m] when n ≥ Ω(maxa ln(m/δ)/wa), and line 3
is due to (q̂1, · · · , q̂m) being a minimizer of Equation (4) on the r̂a’s. Because ∥s− s′∥1 ≤ 2 1[s ̸= s′], by Proposition A.2,

20



Fair and Optimal Classification via Post-Processing

W1(r̂a, ra) ≤ ∥r̂a − ra∥1, so it follows that

err(ĥ)− err∗α,f ≤ O

∑
a∈[m]

∑
s∈Ra

ŵa|ra(s)− r̂a(s)|


≤ O

∑
a∈[m]

ŵa

√
|Ra| ln(m/δ)

na


≤ O

max
a

√
|Ra| ln(m/δ)

nwa


w.p. at least 1− δ from m applications of Corollary C.2 and a union bound.

Fairness. In the finite case, we can get a stronger result in terms of the ℓ1-norm. Note that for all a ∈ [m] and y ∈ Y ,

∑
y∈Y

∣∣∣P(ĥ(X,A) = y | A = a)− q̂a(y)
∣∣∣ = ∑

y∈Y

∣∣∣∣∣ ∑
s∈Ra

ra(s)P(T ∗
r̂a→q̂a(s) = y)−

∑
s∈Ra

r̂a(s)P(T ∗
r̂a→q̂a(s) = y)

∣∣∣∣∣
≤
∑
y∈Y

∑
s∈Ra

|ra(s)− r̂a(s)|P(T ∗
r̂a→q̂a(s) = y)

=
∑
s∈Ra

|ra(s)− r̂a(s)|

≤ O

√ |Ra| ln(m/δ)
nwa


w.p. at least 1− δ from applications of Corollary C.2 and a union bound, where the first equality is because T ∗

r̂a→q̂a
is a

transport from r̂a to q̂a. This ℓ1-norm bound directly implies an ℓ∞-norm bound:

max
y∈Y

∣∣∣P(ĥ(X,A) = y | A = a)− q̂a(y)
∣∣∣ ≤∑

y∈Y

∣∣∣P(ĥ(X,A) = y | A = a)− q̂a(y)
∣∣∣ = O

√ |Ra| ln(m/δ)
nwa

.
Lastly, because of the constraint in Equation (4) that maxa,a′∈[m] ∥q̂a − q̂a′∥∞ ≤ α,

∆DP(ĥ) = max
a,a′∈[m]
y∈Y

∣∣∣P(ĥ(X,A) = y | A = a)− P(ĥ(X, a′) = y | A = a′)
∣∣∣

≤ max
a,a′∈[m]
y∈Y

|q̂a(y)− q̂a′(y)|

+ max
a,a′∈[m]
y∈Y

(∣∣∣P(ĥ(X,A) = y | A = a)− q̂a(y)
∣∣∣+ ∣∣∣P(ĥ(X, a′) = y | A = a′)− q̂a′(y)

∣∣∣)

≤ α+ max
a,a′∈[m]

O

√ |Ra| ln(m/δ)
nwa

+

√
|Ra′ | ln(m/δ)

nwa′

.
The theorem then follows from a final application of union bound.

The proof of the sample complexities in the continuous case uses the following uniform convergence results with the VC
dimension and the pseudo-dimension as the complexity measure. We omit the proofs, but refer readers to (Shalev-Shwartz
& Ben-David, 2014, Theorem 6.8) and (Mohri et al., 2018, Theorem 11.8), respectively. We also need a characterization
of the disagreement between the empirical transports T ∗

r̂a→q̂ and the transport mappings Ta ∈ Gk extracted from them on
Lines 6 to 9 of Algorithm 2, (to be) stated in Lemma D.5.
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Theorem C.4 (VC Dimension Uniform Convergence). LetH be a class of binary functions fromX to {0, 1}, p a distribution
over X × {0, 1}, of which (x1, y1), · · · , (xn, yn) ∼ p are i.i.d. samples. W.p. at least 1− δ over the random draw of the
samples, ∀h ∈ H, ∣∣∣∣∣E(X,Y )∼p 1[h(X) ̸= Y ]− 1

n

n∑
i=1

1[h(xi) ̸= yi]

∣∣∣∣∣ ≤ c
√
d+ ln(1/δ)

n

for some universal constant c, where d is the VC dimension ofH (Definition D.12 with k = 2).

Theorem C.5 (Pseudo-Dimension Uniform Convergence). LetH be a class of functions from X to R, ℓ : X × Y → R≥0 a
nonnegative loss function upper bounded by M , p a distribution over X × Y , of which (x1, y1), · · · , (xn, yn) ∼ p are i.i.d.
samples. W.p. at least 1− δ over the random draw of the samples, ∀h ∈ H,∣∣∣∣∣E(X,Y )∼p ℓ(h(X), Y )− 1

n

n∑
i=1

ℓ(h(xi), yi)

∣∣∣∣∣ ≤ cM
√
d+ ln(1/δ)

n

for some universal constant c, where is the pseudo-dimension of {(x, y) 7→ ℓ(h(x), y) : h ∈ H} (Definition D.14).

One highlight of our proof is that we avoided using the convergence of the empirical measure under Wasserstein distance in
our arguments, which would have resulted in sample complexity that is exponential in the number of label classes k (Weed
& Bach, 2019). Instead, we leveraged the existence and uniqueness of the semi-discrete simplex-vertex optimal transport
in the low complexity function class Gk, established in Theorems D.1 and D.2, whereby we can apply the above uniform
bound to Gk and achieve a rate that is only polynomial in k.

In addition, we remark that the O(k2/nwa) term coming from the disagreements between Ta and T ∗
r̂a→q̂a

on (xa,i)i∈[na]

could potentially be improved to O(k/nwa) if LP is assumed to return an extremal solution (Peyré & Cuturi, 2019), and Gk
is modified so that the output on points that lie on each boundary can be specified, rather than always tie-broken to the ei
with the largest index i.

Proof of Theorem 4.4. We first bound the error rate, followed by ∆DP. Recall that the classifier returned from Algorithm 2
is

ĥ(x, a) := Ta ◦ fa(x),

where each Ta ∈ Gk is extracted from the empirical optimal transport T ∗
r̂a→q̂a

by Algorithm 2, obtained from calling
LP(r̂1, · · · , r̂m, α), where q̂1, · · · , q̂m is the minimizer of Equation (4) on the r̂a’s with α. We will use a complexity result
of Gk in terms of its pseudo-dimension when associated with ℓ1 loss, and a VC bound of binarized versions of Gk (to be
defined in Equation (17)), which are deferred to Theorem D.15 and Corollary D.16.

Error Rate. Consider the classification problem µ′ derived from the original µ under an input transformation given by the
joint distribution of (fA(X), A, Y ), as discussed in Section 3.3, on which Id is the Bayes optimal score due to calibration of
f ’s. Then by Lemma B.4 applied on µ′,

err(ĥ) =
∑
a∈[m]

wa
2

∫
∆k×Y

∥s− y∥1 P(Id(X ′) = s, Ta(X ′) = y) d(s, y)

=
∑
a∈[m]

wa
2

ES∼ra [∥Ta(S)− S∥1].

Define sa,j := fa(xa,j). By Theorems C.5 and D.15, and a union bound, we have w.p. at least 1− δ, for all a ∈ [m],

ES∼ra [∥Ta(S)− S∥1]−
1

na

na∑
j=1

∥Ta(sa,j)− sa,j∥1 ≤ O

√k + ln(m/δ)

na

.
Because each Ta is extracted from the empirical optimal transport T ∗

r̂a→q̂a
using Lines 6 to 9 of Algorithm 2, by the

discussion in Appendix D and Lemma D.5, they both agree on all of (xa,i)i∈[na] except for points that lie on the decision
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boundaries of Ta. The boundaries are described by
(
k
2

)
hyperplanes, and because ra is continuous, no two points in

(xa,i)i∈[na] lie on the same hyperplane almost surely, so the number of disagreements is at most
(
k
2

)
= k(k − 1)/2, and∣∣∣∣∣∣ 1na

na∑
j=1

∥Ta(sa,j)− sa,j∥1 −W1(r̂a, q̂a)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1na

na∑
j=1

∥Ta(sa,j)− sa,j∥1 −
1

na

na∑
j=1

∥T ∗
r̂a→q̂a(sa,j)− sa,j∥1

∣∣∣∣∣∣
≤ 1

na

na∑
j=1

∥Ta(sa,j)− T ∗
r̂a→q̂a(sa,j)∥1

=
2

na

na∑
j=1

1[Ta(sa,j) ̸= T ∗
r̂a→q̂a(sa,j)]

≤ O
(
k2

na

)
,

where the first equality is because T ∗
r̂a→q̂a

is the optimal transport from r̂a to q̂a. Therefore, we arrive at w.p. at least 1− δ,

err(ĥ)−
∑
a∈[m]

wa
2
W1(r̂a, q̂a) ≤ O

√k + ln(m/δ)

na
+
k2

na

 ≤ O
max

a

√k + ln(m/δ)

na
+
k2

na

 =: E .

Continuing, let T ∗
ra→qa ∈ Gk denote the optimal transport from ra to qa, where the qa’s denote the minimizer of Equation (4)

on the ra’s with α. The existence of this transport in Gk is due to the problem being semi-discrete and Theorem D.1. Define
q′a(y) =

1
na

∑na

j=1 1[T ∗
ra→qa(sa,j) = y]. It follows that

err(ĥ)− err∗α,f ≤ E +
∑
a∈[m]

wa
2
(W1(r̂a, q̂a)−W1(ra, qa))

= E +
∑
a∈[m]

wa
2
((W1(r̂a, q̂a)−W1(r̂a, q

′
a)) + (W1(r̂a, q

′
a)−W1(ra, qa)))

≤ E +O

∑
a∈[m]

ŵa
2
((W1(r̂a, q̂a)−W1(r̂a, q

′
a)) + (W1(r̂a, q

′
a)−W1(ra, qa)))


≤ E +O

∑
a∈[m]

ŵa
2
((W1(r̂a, qa)−W1(r̂a, q

′
a)) + (W1(r̂a, q

′
a)−W1(ra, qa)))


≤ E +O

∑
a∈[m]

ŵa
2
(W1(qa, q

′
a) + (W1(r̂a, q

′
a)−W1(ra, qa)))

,
where we defined ŵa = na/n, line 3 is because wa = Θ(ŵa) for all a ∈ [m] when n ≥ Ω(maxa ln(m/δ)/wa), line 4 is
due to (q̂1, · · · , q̂m) being a minimizer of Equation (4) on the r̂a’s

For the first term in the summand, because both distributions qa, q′a are supported on the vertices, so by Proposition A.2,
W1(qa, q

′
a) = ∥qa − q′a∥1, and w.p. at least 1− δ, for all a ∈ [m],

∥qa − q′a∥1 =
∑
i∈[k]

∣∣∣∣∣∣ES∼ra 1[T ∗
ra→qa(S)i = 1]− 1

na

na∑
j=1

1[T ∗
ra→qa(sa,j)i = 1]

∣∣∣∣∣∣
=

∥∥∥∥∥∥ES∼ra [T ∗
ra→qa(S)]−

1

na

na∑
j=1

T ∗
ra→qa(sa,j)

∥∥∥∥∥∥
1

≤ O

√k ln(m/δ)

na

,
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where the last line follows from Theorem C.1, and a union bound over all a ∈ [m].

For the second term, because then the joint probability of (Ŝ, T ∗
ra→qa(Ŝ)), Ŝ ∼ r̂a, is a coupling belonging to Γ(r̂a, q

′
a), the

transportation cost of T ∗
ra→qa on r̂a to q′a upper bounds W1(r̂a, q

′
a), whereby w.p. at least 1− δ, for all a ∈ [m],

W1(r̂a, q
′
a)−W1(ra, qa) ≤

1

na

na∑
j=1

∥∥T ∗
ra→qa(sa,j)− sa,j

∥∥
1
− ES∼ra

[∥∥T ∗
ra→qa(S)− S

∥∥
1

]

≤ O

√ ln(m/δ)

na


by Theorem C.3, because ∥T ∗

ra→qa(sa,j)− sa,j∥1 ≤ 2.

Hence, putting everything together, we conclude with a union bound that

err(ĥ)− err∗α,f ≤ O

max
a

√k ln(m/δ)

na
+
k2

na

.
Fairness. By applying Theorem C.4 and Corollary D.16 to the artificial binary classification problem whose data
distribution is the joint distribution of (S, 1), S ∼ ra, and a union bound, w.p. at least 1− δ, for all i ∈ [k] and a ∈ [m],∣∣∣∣∣∣P(ĥ(X,A) = ei | A = a)− 1

na

na∑
j=1

1[Ta(sa,j) = ei]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ES∼ra,Ta 1[Ta(S)i = 1]− 1

na

na∑
j=1

1[Ta(sa,j)i = 1]

∣∣∣∣∣∣ ≤ O
√k + ln(mk/δ)

na

.
Now, the decision boundaries of the function s 7→ 1[Ta(s)i = 1] ∈ Gk,i (defined in Equation (17)) are described by k
hyperplanes, and Ta is extracted from T ∗

r̂a→q̂a
, so by the discussion in Appendix D and Lemma D.5 and the same reasoning

used previously, they both agree on all but k points in (xa,i)i∈[na] almost surely, thereby∣∣∣∣∣∣ 1na
na∑
j=1

1[Ta(sa,j) = ei]− q̂a(ei)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1na

na∑
j=1

1[Ta(sa,j)i = 1]− 1

na

na∑
j=1

1[T ∗
r̂a→q̂a(sa,j)i = 1]

∣∣∣∣∣∣
≤ 1

na

na∑
j=1

1[Ta(sa,j)i ̸= T ∗
r̂a→q̂a(sa,j)i] ≤ O

(
k

na

)
.

Therefore, we conclude that

∆DP(ĥ) = max
a,a′∈[m]
y∈Y

∣∣∣P(ĥ(X,A) = y | A = a)− P(ĥ(X, a′) = y | A = a′)
∣∣∣

≤ max
a,a′∈[m]
y∈Y

|q̂a(y)− q̂a′(y)|

+ max
a,a′∈[m]
y∈Y

(∣∣∣P(ĥ(X,A) = y | A = a)− q̂a(y)
∣∣∣+ ∣∣∣P(ĥ(X, a′) = y | A = a′)− q̂a′(y)

∣∣∣)

≤ α+O

max
a

√k + ln(mk/δ)

na
+

k

na

.
The theorem them follows from noting that na = Θ(nwa) when n ≥ Ω(maxa ln(m/δ)/wa).
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Proof of Theorem 4.5. Let the (q1, · · · , qm) denote a minimizer of Equation (4) on the ra’s with α, then

h̄ρ(x, a) := T ∗
r̃a→qa ◦ uρ ◦ fa(x)

where r̃a := uρ♯ra.

Denote the coupling associated with T ∗
r̃a→qa

by γa ∈ Γ(r̃a, qa), then the Markov kernel of T ∗
r̃a→qa

◦ uρ is

K(s, T ) = EN∼ρ

[
γa(s+N,T )

γa(s+N,Y)

]
=

∫
s̃∈Rk

γa(s̃, T )

γa(s̃,Y)
d(ρ ∗ δs)(s̃) =

∫
s̃∈Rk

γa(s̃, T )

r̃a(s̃)
d(ρ ∗ δs)(s̃),

where ∗ denotes convolution.

Consider the classification problem µ′ derived from the original µ under an input transformation given by the joint distribution
of (fA(X), A, Y ), as discussed in Section 3.3, on which Id is the Bayes optimal score due to calibration of f . Then by
Lemma B.5 applied on µ′, the error rate on group a, denoted by erra(h̄ρ), is

erra(h̄ρ) =
1

2

∫
∆k×Y

∥s− y∥1 dγ′a(s, y), (7)

where γ′a ∈ Γ(ra, qa) equals to

γ′a(s, y) =

∫
Id−1(s)

K(s′, y) dra(s′) = K(s, y) ra(s) =
∫
Rk

γa(s̃, y)

r̃a(s̃)
d(ρ ∗ δs)(s̃) ra(s),

whereby

2 erra(h̄ρ) =
∑
y∈Y

∫
∆k

∫
Rk

∥s− y∥1
γa(s̃, y)

r̃a(s̃)
(ρ ∗ δs)(s̃)ra(s) ds̃ds

≤
∑
y∈Y

∫
∆k

∫
Rk

∥s̃− y∥1
γa(s̃, y)

r̃a(s̃)
(ρ ∗ δs)(s̃)ra(s) ds̃ds

+
∑
y∈Y

∫
∆k

∫
Rk

∥s− s̃∥1
γa(s̃, y)

r̃a(s̃)
(ρ ∗ δs)(s̃)ra(s) ds̃ds

=:
∑
y∈Y

∫
Rk

∥s̃− y∥1
γa(s̃, y)

r̃a(s̃)

(∫
∆k

(ρ ∗ δs)(s̃)ra(s) ds
)
ds̃

+
∑
y∈Y

∫
∆k

∫
Rk

∥n∥1
γa(n− s, y)
r̃a(n− s)

(ρ ∗ δs)(n− s)ra(s) dn ds

=
∑
y∈Y

∫
Rk

∥s̃− y∥1
γa(s̃, y)

r̃a(s̃)
r̃a(s̃) ds̃+

∫
∆k

∫
Rk

∥n∥1 dρ(n) dra(s)

=W1(r̃a, qa) + EN∼ρ[∥N∥1],

where line 3 involves a change of variable n := s̃− s. Then we have

err(h̄ρ)− err∗α,f ≤
∑
a∈[m]

wa
2
(W1(r̃a, qa)−W1(ra, qa)) +

∑
a∈[m]

wa
2

EN∼ρ[∥N∥1]

≤
∑
a∈[m]

wa
2
W1(r̃a, ra) +

1

2
EN∼ρ[∥N∥1].
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Now, we upper bound the first term. Consider the coupling πa ∈ Γ(r̃a, ra) given by πa(s̃, s) = ρ(s̃− s)ra(s), whereby

W1(r̃a, ra) = inf
γ∈Γ(r̃a,ra)

∫
Rk×∆k

∥s̃− s∥1 dγ(s̃, s)

≤
∫
Rk×∆k

∥s̃− s∥1 dπa(s̃, s)

=

∫∫
∥s̃− s∥1ρ(s̃− s)ra(s) ds̃ds

=:

∫∫
∥(s+ n)− s∥1ρ(n)ra(s) dnds

= EN∼ρ[∥N∥1].

Substituting this into the result above, we obtain the upper bound.

On the other hand, the lower bound follows from Equation (7), where

err(h̄ρ) =
∑
a∈[m]

wa
2

∫
∆k×Y

∥s− y∥1 dγ′a(s, y) ≥
∑
a∈[m]

wa
2
W1(ra, qa) = err∗α,f .

D. Optimal Transport Between Simplex and Vertex Distributions
The (k − 1)-dimensional probability simplex is defined for k ≥ 2 by

∆k :=

{
x ∈ Rk :

k∑
i=1

xi = 1, xj ≥ 0,∀j ∈ [k]

}
,

and its k vertices are {e1, · · · , ek}. In this section, we study the optimal transport problem between distributions supported
on the simplex and its vertices under the ℓ1 cost, given by c(x, y) = ∥x− y∥1.

By extending each ∆k to infinity, we obtain a (k − 1)-dimensional affine space of

Dk :=

{
x ∈ Rk :

k∑
i=1

xi = 1

}
⊃ ∆k.

Define vectors
vij := ej − ei, ∀i, j ∈ [k],

and note that for each i ∈ [k], {vij : j ̸= i} forms a basis for Dk. Also, observe the following identity for the ℓ1 distance
between a point on the simplex and a point on the vertex:

∥x− ei∥1 = 1− xi +
∑
j ̸=i

xj = 1− 2xi +
∑
j

xj = 2(1− xi), ∀x ∈ ∆k, i ∈ [k] (8)

(this identity is central to some of the upcoming results).

A main result of this section is that when the transportation problem is semi-discrete, the deterministic (Monge) optimal
transport exists, and is unique:
Theorem D.1. Let p be a continuous probability measure on ∆k, q a probability measure on {e1, · · · , ek}, and c(x, y) =
∥x− y∥1. The optimal transport from p to q is a Monge plan, and is unique up to sets of measure zero w.r.t. p.

Specifically, the optimal transport T ∗
p→q in Theorem D.1 is given by the c-transform of the Kantorovich potential from

the Kantorovich-Rubinstein dual formulation of the transportation problem. In other words, it belongs to the following
parameterized class of deterministic functions:

Gk :=
{
x 7→ eargmini∈[k](∥x−ei∥1−ψi) : ψ ∈ Rk

}
⊂ {e1, · · · , ek}∆k (9)

(break ties to the tied ei with the largest index i).

This function class is therefore of particular interest to various analyses in this paper. For the generalization bounds in
Section 4.2, we show that this function class has low complexity in terms of the Natarajan dimension (Definition D.12):
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Theorem D.2. dN(Gk) = k − 1.

In addition, note that as illustrated in Figure 2, we can equivalently characterize each g ∈ Gk by the center point at which its
k decision boundaries all intersect:

Proposition D.3. Define the function class G′k ⊂ {e1, · · · , ek}∆k parameterized by Rk s.t. for each gz ∈ G′k with parameter
z ∈ Rk,

gz(x) = ei if xj − xi ≤ zj − zi ⇐⇒ x⊤vij ≤ z⊤vij , ∀j ̸= i (10)

(when multiple ei’s are eligible, output the tied ei with the largest index i).

We have ∀gψ ∈ Gk, gψ = gz ∈ G′k by setting

zi =
1

k
+

1

2

1

k

k∑
j=1

ψj − ψi

, ∀i ∈ [k] (11)

(the choice of
∑k
i=1 zi = 1 s.t. z ∈ Dk was arbitrary, due to an extra degree of freedom because the support of g is contained

in ∆k).

Conversely, ∀gz ∈ G′k, gz = gψ ∈ Gk by setting

ψi = 2(z1 − zi) = 2z⊤vi1, ∀i ∈ [k] (12)

(again, the choice of ψ1 = 0 was arbitrary).

Proof. Let gψ ∈ Gk, then for the gz ∈ G′k constructed in Equation (11), by Equation (8),

gz(x) = ei is eligible ⇐⇒ xj − xi ≤ zj − zi, ∀j ̸= i

⇐⇒ xj − xi ≤ (ψi − ψj)/2, ∀j ̸= i

⇐⇒ 2(xj − xi) ≤ ψi − ψj , ∀j ̸= i

⇐⇒ 2(1− xi)− ψi ≤ 2(1− xj)− ψj , ∀j ̸= i

⇐⇒ ∥x− ei∥1 − ψi ≤ ∥x− ej∥1 − ψj , ∀j ̸= i.

Conversely, let gz ∈ G′k, then for the gψ ∈ Gk constructed in Equation (12),

gψ(x) = ei is eligible ⇐⇒ ∥x− ei∥1 − ψi ≤ ∥x− ej∥1 − ψj , ∀j ̸= i

⇐⇒ 2(xj − xi) ≤ 2(z1 − zi)− 2(z1 − zj), ∀j ̸= i

⇐⇒ xj − xi ≤ zj − zi, ∀j ̸= i.

We will often use this alternative characterization of Gk.

The remaining proofs are deferred to Appendix D.2. Theorem D.1 is established via an analysis of the geometry of the
simplex-vertex optimal transport, which we discuss in the next section.

D.1. Geometry of Optimal Transport

Let p be an arbitrary distribution supported on ∆k, and q a (finite) distribution over Y := {e1, · · · , ek}. We study the
geometric properties of the optimal solution to the (Kantorovich) transportation problem between p, q under the ℓ1 cost,

sup
γ∈Γ(p,q)

∫
∆k×Y

∥x− y∥1 dγ(x, y), (13)

and note that the supremum can be attained because the supports are compact.
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⋂i∈[3] Ai
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C3
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Figure 5. Illustration of the objects defined on Equations (14) and (15) for k = 3. See Figure 6 for an example where the intersection is
empty, when the underlying transport is not optimal.

First, given a simplex-vertex transport γ ∈ Γ(p, q), we define the following geometric objects:

Bij := min
{
b ∈ R : γ({x ∈ ∆k : x⊤vij ≤ b− 1}, ei) = q(ei)

}
∪ {0}, and

Ci :=
⋂
j ̸=i

{x ∈ ∆k : x⊤vij ≤ Bij − 1}. (14)

For each i ∈ [k], Bij defines the (smallest offset of the) halfspace in the vij direction in which all points that are transported
by γ to ei are contained, and Ci is formed by the intersections of these halfspaces, also containing all points transported to
ei. See Figures 3 and 5 for illustrations.

Now, if γ∗ is an optimal transport of Equation (13), then intuition tells us that in order to achieve minimum cost, the
halfspaces along each direction should not overlap (i.e., Bij + Bji ≤ 2 for all i ̸= j), and the Ci’s should not intersect
(except on a set of Lebesgue measure zero). We show that these intuitions regarding the geometry of γ∗ are indeed valid,
and they are implied by showing that the intersection of the following sets Ai is nonempty (see Figure 5 for an illustration),

Ai :=
⋂
j ̸=i

{x ∈ Dk : x⊤vij ≥ Bij − 1}. (15)

Proposition D.4. If γ∗ is a minimizer of Equation (13), then
⋂
i∈[k]Ai ̸= ∅.

The proof is deferred to Appendix D.2. Note that
⋂
i∈[k]Ai is exactly the set considered on Line 7 of Algorithm 2, and

Proposition D.4 says that if γ∗ is an optimal transport, then a point z ∈
⋂
i∈[k]Ai exists. The significance of this point is

that, the function gz ∈ Gk with parameter z ∈ Dk agrees with the transport Tp→q associated with γ∗ only except for points
that lie on the boundaries (which have Lebesgue measure zero):

Lemma D.5. Let p, q be probability measures on ∆k and {e1, · · · , ek}, respectively. If γ∗ ∈ Γ(p, q) is a minimizer of
Equation (13), then ∃T ∈ Gk with parameters z ∈ Dk satisfying

γ(x, T (x)) = p(x), ∀x ∈ supp(p) \
⋃
i ̸=j

{x ∈ Dk : x⊤vij = z⊤vij}.

This result underlies many discussions throughout our presentation: (i) the construction used in its proof led to Lines 6 to 9
of Algorithm 2 for extracting post-processing functions from the empirical optimal transports, (ii) it embodies the argument
used in the proof of Theorem 4.4 regarding the disagreements between the extracted functions and the empirical transports,
and (iii) the existence part of Theorem D.1 is a direct consequence, since the set on which disagreements may occur always
has measure zero when p is continuous.

Proof. Let z ∈
⋂
i∈[k]Ai, which exists due to Proposition D.4. Then let T ∈ Gk with parameter z, which we show agrees

with γ∗ on all x ∈ supp(p) \
⋃
i ̸=j{x ∈ Dk : x⊤vij = z⊤vij}: suppose T (x) = ei, then T (x) = ei ⇐⇒ x⊤vij ≤ z⊤vij

by construction. Furthermore, by the definition of Ai in Equation (15) of γ∗, x⊤vij < z⊤vij ≤ Bij − 1 for all j ̸= i, so
we must have that γ∗(x, ej) = 0, ∀j ̸= i =⇒ γ∗(x, ei) = p(x). Otherwise, it would contradict the definition of Bij in
Equation (14).
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D.2. Omitted Proofs for Section D

Proof of Theorem D.1. For existence, Lemma D.5 provides a T ∈ Gk that agrees with the optimal transport almost
everywhere, since the set of points lying on the boundaries has measure zero w.r.t. p by continuity.

Next, we prove uniqueness. Let γ, γ′ ∈ Γ(p, q) be two optimal transports, and T , T ′ ∈ Gk mappings provided by
Lemma D.5 that agree with γ, γ′ a.e. We will show that T = T ′ a.e., and so is γ = γ′.

Denote the parameter (i.e., center of the decision boundaries) of T (analogously for T ′) by z ∈ Dk, the decision boundaries
by Bij := z⊤vij + 1, and the decision regions by Ci :=

⋂
j ̸=i{x ∈ ∆k : x⊤vij ≤ Bij − 1}. By definition of Gk,

∆k =
⊔k
i=1 Ci, and for all x ∈ ∆k, T (x) = ei ⇐⇒ x ∈ Ci almost surely, therefore, γ(Ci, ei) = q(ei) because T agrees

with the transport γ a.e.

Define the difference in the boundaries between T and T ′ by dij := B′
ij −Bij , and note that

dij = dnj − dni with dℓℓ := 0, ∀i, j, n, ℓ ∈ [k], (16)

which follows from the observation that

Bij = z⊤(vnj − vni) + 1 = Bnj −Bni + 1 with Bℓℓ := 0, ∀i, j, n, ℓ ∈ [k].

Construct a directed graph of k nodes where (i, j) is an edge iff dij > 0. Note that this graph is acyclic: first, it cannot
contain cycles of length 2, otherwise, (i, j), (j, i) ∈ E =⇒ dij + dji > 0 contradicts the fact that dij + dji = 0 by
definition; next, consider the shortest cycle, and let (i, j), (n, i), j ̸= n denote two edges contained in it. It follows that
dij , dni > 0, and dnj ≤ 0, or it is not the shortest cycle. Then by Equation (16), 0 < dij = dnj − dni < 0, which is a
contradiction.

Now, we show by strong induction on the reverse topological order of the graph nodes that for all i ∈ [n], p(Ci ⊕ C ′
i) = 0

where ⊕ denotes the symmetric difference of the sets. For the base case, let i denote a sink node in the graph, then we
have that dij ≤ 0 for all j, meaning that C ′

i ⊆ Ci. Then q(ei) = γ′(C ′
i, ei) = p(C ′

i) ≤ p(Ci) = γ(Ci, ei) = q(ei). If the
inequality is strict, then it is a contradiction; otherwise, combining the equality with T (x) = ei ⇐⇒ x ∈ Ci a.s. (and
T ′ analogously) implies p(Ci ⊕ C ′

i) = p(Ci \ C ′
i) = 0. For the inductive case, let i denote a node, and J ⊆ [n] \ {i} the

set of nodes directed to from i, then by construction
⊔
j∈J∪{i} C

′
j ⊆

⊔
j∈J∪{i} Cj . Let Fi := Ci ∩ C ′

i, and note that for
all x ∈ C ′

i \ Fi, T ′(x) = ei and T (x) ∈ {ej : j ∈ J \ {i}}. Therefore, C ′
i \ Fi ∈

⋃
j∈J(Cj ⊕ C ′

j), and by the inductive
hypothesis, p(C ′

i \ Fi) ≤ 0. It then follows that p(C ′
i) ≤ p(Ci), and subsequently p(Ci ⊕ C ′

i) = p(Ci \ C ′
i) = 0 by the

same arguments used in the base case.

Therefore, p({x : T (x) ̸= T ′(x)}) ≤
∑k
i=1 p(Ci ⊕ C ′

i) = 0, so T = T ′ a.e.

The proof of Proposition D.4 needs the following technical result, which at a high-level states that if a collection of
vij-aligned convex sets do not intersect, then they cannot cover the entire space:

Proposition D.6. Let B ∈ Rk×k arbitrary, and define Si :=
⋂
j ̸=i{x ∈ Dk : x⊤vij ≤ Bij − 1} for each i ∈ [k]. We have⋂

i∈[k] Si = ∅ =⇒
⋃
i∈[k] Si ̸= Dk.

While this could be proved with elementary arguments, for clarity, we use known results from algebraic topology in the
final steps of our proof. The tools and concepts that we use include homotopy equivalence and homology groups (we omit
the definition for the latter, but refer readers to (Spanier, 1981) for a textbook). The definitions are provided below for
completeness; readers may skip to the main proof.

Definition D.7 (Homotopy). Let X ,Y be topological spaces, and f, g : X → Y two continuous functions. A homotopy
between f and g is a continuous function h : X × [0, 1]→ Y , such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ X .
We say f, g are homotopic if there exists a homotopy between them.

Definition D.8 (Homotopy Equivalence). Let X ,Y be topological spaces. If there exist continuous maps f : X → Y and
g : Y → X such that g ◦ f is homotopic to the identity map IdX on X , and f ◦ g is homotopic to IdY , then X and Y are
homotopy equivalent, denoted by X ∼= Y .

Fact D.9 (Homology). (See (Spanier, 1981) for a textbook).
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1. The homology groups of Rd, denoted by Hn(Rd) for n ∈ {0, 1, 2, · · · }, are

Hn(Rd) =

{
Z if n = 0

{0} else.

2. The homology groups of the d-dimensional simplex, ∆d+1, are

Hn(∆d+1) =

{
Z if n = 0

{0} else.

3. The homology groups of the d-dimensional simplex without its interior, ∂∆d+1, are

Hn(∂∆d+1) =

{
Z if n = 0 or d− 1

{0} else.

4. If X ∼= Y , then Hn(X ) = Hn(Y) for all n.

Clearly, the affine space Dk ∼= Rk−1 via a rotation and a translation. We also cite the Nerve theorem (Bauer et al., 2023,
Theorem 3.1):

Theorem D.10 (Nerve). Let S = {S1, · · · , Sn} be a finite collection of sets, and define its nerve by

Nrv(S) =

{
J ⊆ [n] :

⋂
i∈J

Si ̸= ∅

}
.

If the sets Si’s are convex closed subsets of Rd, then Nrv(S) ∼=
⋃
i∈[n] Si.

Proof of Proposition D.6. We prove the contrapositive statement of
⋃
i∈[k] Si = Dk =⇒

⋂
i∈[k] Si ̸= ∅ by strong

induction on the dimensionality k. For the base case of k = 2, observe that S1 ∪ S2 = {x : x⊤v12 ≤ B12 − 1 or x⊤v12 ≥
1 − B21}, so S1 ∪ S2 = D2 if and only if B12 − 1 ≥ 1 − B21, in which case the point (1 − B12/2, B12/2) ∈ S1 ∩ S2,
thereby the intersection is nonempty.

For k > 2, suppose
⋃
i∈[k] Si = Dk. Our goal is to show that for all J ⊂ [k],

⋂
j∈J Sj ̸= ∅. Recall that

Si =
⋂

j∈[k],j ̸=i

{x ∈ Dk : x⊤vij ≤ Bij − 1},

and we define for any J ⊂ [k] and i ∈ [k]

S′
J,i :=

⋂
j∈J,j ̸=i

{x ∈ Dk : x⊤vij ≤ Bij − 1},

(we will drop the subscript J as the discussions below will focus on a single J).

We first show that
⋂
i∈J Si ̸= ∅ for any J ⊂ [k] with |J | ≤ k − 1. By assumption, Dk =

⋃
i∈[k] Si ⊂

⋃
i∈[k] S

′
i, and we

argue that
⋃
i∈J S

′
i = Dk. Suppose not, then let z /∈

⋃
i∈J S

′
i, and consider the line

L :=

z + a
∑

i/∈J,j∈J

vij : a ∈ R

.
First, no part of this line is contained in

⋃
i∈J S

′
i, because it does not contain the point z ∈ L, and L runs parallel to and

hence never intercepts any of the halfspaces defining each S′
i for i ∈ J : let i, j ∈ J , i ̸= j, then

v⊤ij
∑

n/∈J,m∈J

vnm =
∑

n/∈J,m∈J

(e⊤j em − e⊤j en − e⊤i em + e⊤i en) = 1− 0− 1 + 0 = 0.
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Figure 6. Illustration of the construction in the proof of Proposition D.4 for k = 3.

Second, this line is partially not contained any S′
i =

⋂
j∈J{x ∈ Dk : x⊤vij ≤ Bij − 1} for i /∈ J : let i /∈ J and j ∈ J , then

v⊤ij
∑

n/∈J,m∈J

vnm =
∑

n/∈J,m∈J

(e⊤j em − e⊤j en − e⊤i em + e⊤i en) = 1− 0− 0 + 1 = 2;

so points on L with sufficiently large a’s are not contained in
⋃
i/∈J S

′
i, contradicting the assumption that

⋃
i∈[k] S

′
i = Dk.

Back to proving that
⋂
i∈J Si ̸= ∅ for any J ⊂ [k] with |J | ≤ k − 1. Since

⋃
i∈J S

′
i = Dk, by applying the inductive

hypothesis to a |J |-dimensional instance derived from {S′
i : i ∈ J} by removing the axes {ei : i /∈ J}, we get ∃z′ ∈

⋂
i∈J S

′
i.

Using similar arguments above, it can be shown that the line L′ := {z′ + a
∑
i/∈J,j∈J vij : a ∈ R} is entirely contained in⋂

i∈J S
′
i and partially in

⋂
i∈J Si = (

⋂
i∈J S

′
i) ∩ (

⋂
i/∈J,j∈J{x ∈ Dk : x⊤vij ≤ Bij − 1}), so the intersection is nonempty.

We have thus established that any intersection of the strict subset of {Si}i∈[k] is nonempty, and we will conclude with the
Nerve theorem. We have ∀J ⊂ [k], 1 ≤ |J | ≤ k − 1, J ∈ Nrv({S1, · · · , Sk}). Because we assumed in the beginning
that

⋃
i∈[k] Si = Dk, it must follow that [k] ∈ Nrv({S1, · · · , Sk}) as well. Otherwise, the nerve is a (k − 1)-dimensional

simplex (each n-face is represented by its n− 1 vertices) without its interior (represented by [k]), whose homology differs
from that of Dk, then

⋃
i∈[k] Si

∼= Nrv({S1, · · · , Sk}) ̸∼= Dk by Theorem D.10, which contradicts our assumption that⋃
i∈[k] Si = Dk. Hence the nerve contains [k], meaning

⋂
i∈[k] Si ̸= ∅.

Proof of Proposition D.4. Recall the definitions of the objects Bij , Ci and Ai in Equations (14) and (15) of γ∗. Suppose⋂
i∈[k]Ai = ∅, then ∃z ∈

⋂
i∈[k](Dk \ Ai) by Proposition D.6. It then follows by definition that ∀i ∈ [k], ∃j ̸= i

s.t. z⊤vij < Bij − 1. Let u : [k]→ [k] denote a mapping s.t. the pairs (i, u(i)) satisfy this relation for all i ∈ [k]; note that
there exists a nonempty J ⊆ [m] s.t. the undirected edges {(i, u(i)) : i ∈ J} form a cycle because u(i) ̸= i. Also, there
exist m > 0 and measurable sets Fi ⊂ {x : x⊤viu(i) > z⊤viu(i)} ⊂ Ci s.t. γ∗(Fi, ei) := mi ≥ m.

We show that the coupling γ′ ∈ Γ(p, q) given by

γ′(B, ei) =


γ∗(B, ei) if i /∈ J ,
γ∗(B ∩ (∆k \ Fi), ei)

+
mi −m
mi

γ∗(B ∩ Fi, ei) +
m

mu−1(i)
γ∗(B ∩ Fu−1(i), eu−1(i))

else
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has a lower transportation cost than γ∗ (see Figure 6 for an illustration):∫
∆k×Y

∥x− y∥1 d(γ∗ − γ′)(x, y) =
∑
i∈J

m

mi

∫
Fi

(
∥x− ei∥1 − ∥x− eu(i)∥1

)
dγ∗(x, ei)

=
∑
i∈J

2m

mi

∫
Fi

x⊤viu(i) dγ
∗(x, ei)

>
∑
i∈J

2m

mi

∫
Fi

z⊤viu(i) dγ
∗(x, ei)

= 2m
∑
i∈J

z⊤viu(i)

= 2m
∑
i∈J

(zu(i) − zi) = 0,

where line 2 follows from Equation (8).

Finally, we consider the complexity of the function class Gk defined in Equation (9). First, recall the definition of multi-class
shattering, based on which the Natarajan dimension is defined (Shalev-Shwartz & Ben-David, 2014, Definitions 29.1 and
29.2):
Definition D.11 (Multi-Class Shattering). LetH be a class of functions from X to {1, · · · , k}. A set S := {x1, · · · , xn} ⊆
X is said to be multi-class shattered byH if ∃f0, f1 : S → {1, · · · , k} labelings satisfying f0(xi) ̸= f1(xi) for all i ∈ [n],
such that ∀S0, S1 that partition S (i.e., S0 ⊔ S1 = S), ∃h ∈ H, s.t.

h(x) = f0(x), ∀x ∈ S0, and
h(x) = f1(x), ∀x ∈ S1.

Definition D.12 (Natarajan Dimension). LetH be a class of functions from X to {1, · · · , k}. The Natarajan dimension of
H, denoted by dN(H), is the size of the largest subset of X multi-class shattered byH.

Proof of Theorem D.2. We associate ei with the label i, ∀i ∈ {1, · · · , k}. We first show that dN(Gk) ≥ k−1 by constructing
a set of cardinality k − 1 that is shattered by Gk, then show that dN(Gk) < k by contradiction.

Lower Bound. Consider the set S = {e1, e2, · · · , ek−1} and let f0(ej) = j and f1(ej) = k for all j ∈ [k − 1], which
satisfy f0 ̸= f1 on all x ∈ S. Let S0 ⊔ S1 = S be arbitrary, and define

ι(j) :=

{
1[ej ∈ S1] if j ∈ [k − 1]

0 if j = k.

Consider gz ∈ Gk with parameters

z =
1

k
1k −

k−1∑
j=1

ι(j)
∑
ℓ ̸=j

vjℓ,

where boldface 1k ∈ Rk denotes the vector of all ones. Observe that

z⊤vnm = −
k−1∑
j=1

ι(j)
∑
ℓ ̸=j

v⊤jℓvnm

= −
k−1∑
j=1

ι(j)
∑
ℓ ̸=j

(e⊤ℓ em − e⊤ℓ en − e⊤j em + e⊤j en)

=

k−1∑
j=1

ι(j) (1[n ̸= j]− 1[m ̸= j]) + (k − 1)

k−1∑
j=1

ι(j) (e⊤j em − e⊤j en)

= (k − 1)(ι(m)− ι(n)) + (ι(m)− ι(n))
= k(ι(m)− ι(n)).
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Recall from Equation (10) that for all i, n ∈ [k],

gz(ei) = en is eligible ⇐⇒ e⊤i vnm ≤ z⊤vnm, ∀m ̸= n;

so in our case, it follows that for all i ∈ [k − 1] and j ̸= i,

gz(ei) = ei is eligible ⇐⇒ −1 ≤ k(ι(m)− ι(i)), ∀m ̸= i,

and
gz(ei) = ej is eligible ⇐⇒ 1 ≤ k(ι(i)− ι(j)) and 0 ≤ k(ι(m)− ι(j)), ∀m ̸= i

(also, recall ι(k) := 0).

Observe that for any i ∈ [k − 1], if ι(i) = 0, then gz(ei) = ej is ineligible for all j ̸= i, then we must have gz(ei) = ei.
Otherwise, if ι(i) = 1, then ek is always eligible, so gz(ei) = ek due to the tie-breaking rule. Therefore, gz is a witness
function, and we conclude that Gk shatters S.

Upper Bound. Let S = (x1, · · · , xk) be given, along with f0, f1 : S → [k] satisfying f0(x) ̸= f1(x) for all x ∈ S.
Suppose Gk shatters S. Let gz ∈ Gk denote a witness function for the partitioning of S0 = S and S1 = ∅, and gz′ ∈ Gk that
for the partitioning of S′

0 = ∅ and S′
1 = S.

We will reuse an argument from an earlier proof. Denote the decision boundaries of gz (analogously for gz′) by Bij :=
z⊤vij + 1, and the decision regions by Ci :=

⋂
j ̸=i{x ∈ ∆k : x⊤vij ≤ Bij − 1}. By definition of Gk, x ∈ Ci =⇒

gz(x) = ei is eligible. Then, define the difference in the boundaries between gz and gz′ by dij := B′
ij −Bij . Construct a

directed graph of k nodes where (i, j) is an edge iff dij > 0, which is acyclic as shown in the proof of Theorem D.1.

First, consider the case where ∃x, x′ ∈ S s.t. {f0(x), f1(x)} = {f0(x′), f1(x′)}. W.l.o.g., assume i := f0(x1) = f1(x2)
and j := f1(x2) = f0(x1), then we have

gz(x1) = ei, gz′(x1) = ej =⇒ dji > 0,

gz(x2) = ej , gz′(x2) = ei =⇒ dij > 0

(after taking into account of the tie-breaking rule), however, this would imply a cycle in the graph, which is a contradiction.

Next, if {f0(x), f1(x)} differs for all x ∈ S, then we may assume w.l.o.g. f0(xi) = ei and f1(xi) = ei+1 for all i ∈ [k]
(where the index of k + 1 means 1). Then

gz(xi) = ei, gz′(xi) = ei+1 =⇒ di+1,i > 0, ∀i ∈ [k];

again, this would imply a cycle in the graph, hence a contradiction. Therefore, we conclude that Gk cannot shatter any
S ⊂ ∆k of cardinality k.

In addition, on data distributions that satisfy X = Y , X ∈ ∆k, applying the ℓ1 loss of ℓ(ŷ, y) := ∥ŷ − y∥1 to Gk yields a
function class with pseudo-dimension of k − 1:

Definition D.13 (Pseudo-Shattering). Let F be a class of functions from X to R. A set {x1, · · · , xn} ⊆ X is said
to be pseudo-shattered by F if ∃t1, · · · , tn ∈ R threshold values s.t. ∀b1, · · · , bn ∈ {0, 1} binary labels, ∃f ∈ F s.t.
1[f(xi) ≥ ti] = bi for all i ∈ [n].

Definition D.14 (Pseudo-Dimension). Let F be a class of functions from X to R. The pseudo-dimension of F , denoted by
dP(F), is the size of the largest subset of X pseudo-shattered by F .

Theorem D.15. Define Fk := {x 7→ ∥g(x)− x∥1 : g ∈ Gk}. We have dP(Fk) = k − 1.

Proof. The proof shares the same arguments as that of Theorem D.2. We will only show the upper bound, and remark that
the lower bound can be established using a similar construction of that in Theorem D.2.

Let x1, · · · , xk be given, and suppose there exists thresholds r1, · · · , rk s.t. Fk shatters the set of points. It follows that
∃gz, gz′ ∈ Gk s.t. ∥gz′(xi) − xi∥1 < ri ≤ ∥gz(xi) − xi∥1 for all i, which means that gz(xi) ̸= gz′(xi). But by the
arguments in the proof of the upper bound of Theorem D.2, such (gz, gz′) pair does not exists, contradicting the shattering
assumption.
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Finally, for all i ∈ {1, · · · , k}, define restriction of Gk to class i by

Gk,i := {x 7→ 1[g(x) = ei] : g ∈ Gk} ⊂ {0, 1}∆k . (17)

Because it is a binary function, its VC dimension, denoted by dVC(Gk,i), is equivalent to its Natarajan dimension by
Definition D.12; moreover, because Gk,i is derived from Gk by an output remapping, its Natarajan dimension is clearly
upper bounded by that of the latter:

Corollary D.16. dVC(Gk,i) ≤ dN(Gk) = k − 1.

E. Experiment Details
E.1. Datasets and Tasks

Adult (Kohavi, 1996). We consider the binary classification task of whether the annual income of an individual is over or
below $50k per year (|Y| = 2) given attributes including gender, race, age, education level, etc. The data are collected from
the 1994 US Census. We let gender be the sensitive attribute (|A| = 2). It contains 48,842 examples in total, which we split
for pre-training/post-processing/testing by 0.35/0.35/0.3.

ACSIncome (Ding et al., 2021). It is an extension of the Adult dataset with data collected from the US Census Bureau.
We consider income prediction under two settings. In the binary setting, the task is to predict whether the annual income of
an individual is over or below $50k per year (|Y| = 2), with gender as the sensitive attribute (|A| = 2). In the multi-group
multi-class setting, we create five income buckets of <15000, [15000,30000), [30000,48600), [48600,78030), ≥78030, and
group the data into five race categories of “American Indian or Alaska Native alone”, “Asian”, “Native Hawaiian or Other
Pacific Islander alone”, “Black or African American alone”, “Other”, and “White alone” (same as in Adult). It contains
1,664,500 examples, which we split for pre-training/post-processing/testing by 0.63/0.07/0.3.

BiasBios (De-Arteaga et al., 2019). The task is to determine the occupation (|Y| = 28) of female and male individuals
(|A| = 2) by their raw text biographies. The data are mined from the Common Crawl corpus. In this dataset, gender is
the sensitive attribute, and is observed to correlate with certain occupations such as software engineer and nurse. We use
the version of BiasBios scrapped and hosted by Ravfogel et al. (2020) with 393,423 examples in total, which we split for
pre-training/post-processing/testing by 0.35/0.35/0.3.

This experiment is of particular interest because of the increasing popularity of large language models and the fairness
concerns regarding their usage. In particular, the uncurated corpora (e.g., crawled from the internet) on which the language
models are pre-trained may contain historical social bias, and empirical investigations have shown that such bias could be
propagated and amplified in downstream applications (Bolukbasi et al., 2016; Zhao et al., 2018; Abid et al., 2021).

Communities & Crime (Redmond & Baveja, 2002). The Communities & Crime tabular dataset contains the socioeco-
nomic and crime data of communities in 46 US states, and the task is to predict the number of violent crimes per 100k
population given attributes ranging from the racial composition of the community, their income and background, and law
enforcement resource. The data come from the 1990 US Census, 1990 LEMAS survey, and 1995 FBI Uniform Crime
Reporting program. We bin the rate of violent crime into five classes (|Y| = 5), and we treat race as the sensitive attribute
by the presence of minorities (|A| = 4): a community does not have a significant presence of minorities if White makes up
more than 95% of the population, otherwise the largest minority group is considered to have a significant presence (Asian,
Black, or Hispanic). It contains 1,994 examples, which we split for pre-training/post-processing/testing by 0.35/0.35/0.3.

E.2. Additional Details

On each task, we first create the pre-training split from the dataset and train a linear logistic regression scoring model using
the implementation provided in scikit-learn (Pedregosa et al., 2011). Then, we randomly split the remaining data for
post-processing and testing with 10 different seeds and aggregate the results as presented in Figures 4 and 7 (the pre-trained
model remains the same).

The linear programs of our Algorithm 2 are implemented using the interface of cvxpy (Diamond & Boyd, 2016), and are
solved using the COIN-OR Cbc solver that is based on the branch and cut method (Forrest et al., 2023). Finally, the BERT
model in BiasBios experiments is loaded through the Hugging Face Transformers library (Wolf et al., 2020).
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Hyperparameters. The tradeoff curves in Figure 4 and Example A.5 are generated with the following fairness toler-
ance/strictness settings.

For our method, α is set to:

• ACSIncome (binary). 0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.005, 0.001, 0.0.

• ACSIncome (5-group, 5-class). 0.32, 0.3, 0.28, 0.26, 0.24, 0.22, 0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02,
0.01, 0.0.

• BiasBios. 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.008, 0.006, 0.004, 0.002, 0.001, 0.0.

• Adult. 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.008, 0.006, 0.004, 0.002, 0.001, 0.0.

• Communities. 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.01, 0.0.

For FairProjection, we use the default settings that came with the code/package; in particular, increasing the number of
iterations to over 1,000 did not improve performance. The tolerance is set to:

• ACSIncome (binary). 0.3, 0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.005, 0.001, 0.0.

• ACSIncome (5-group, 5-class). 0.5, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.0.

• BiasBios. 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.0.

• Adult. 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0.

• Communities. 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1, 0.0.

E.3. Finding Feasible Point on Line 7

Line 7 of Algorithm 2 involves finding a feasible point in the intersection of halfspaces, which can be obtained with the
following linear program:

min
z∈Rk

0 s.t. z⊤vij ≤ Bij − 1, ∀i, j ∈ [k], i ̸= j.

As illustrated in Figure 3, the point z that is returned determines the center of the boundaries of the extracted transport maps
Ta ∈ Gk. Because of the machine learning folklore that classifiers with larger margin enjoy better generalization properties,
we instead use the follow quadratic program (of a least-squares problem) that maximizes the margins in our experiments for
point-finding:

min
z∈Rk

∑
i̸=j

∥z⊤vij − (Bij − 1)∥22
(2−Bij −Bji)2

s.t. z⊤vij ≤ Bij − 1, ∀i, j ∈ [k], i ̸= j.

Our preliminary experiments showed that using the quadratic program for point-finding led to better post-processing
performance with Algorithm 2 than using the linear program, both in terms of the error rate and ∆DP during inference.
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Table 1. Running time (in seconds) of post-processing algorithms under the strictest tolerance setting (see Appendix E.2), averaged over
three random splits. Our algorithm is run on a single core of an Intel Xeon Silver 4314 CPU, and FairProjection is run on an NVIDIA
RTX A6000 GPU.

ACSIncome BiasBios Adult Communities

Groups 2 5 2 2 4
Classes 2 5 28 2 5
Examples (post-processing split) 116,515 137,698 17095 698

Ours (CPU) 2.56 109 797 0.43 0.38
FairProjection-KL (GPU) 33 38 99 15 13
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Figure 7. Tradeoff curves between accuracy and ∆DP (Definition 2.1). Scoring model is logistic regression. Error bars indicate the
standard deviation over 10 runs with different random splits. Running time is reported in Table 1. On both datasets, FairProjection-KL
and FairProjection-CE have similar results.
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