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ABSTRACT

Current training data attribution (TDA) methods treat the influence one sample has
on another as static, but neural networks learn in distinct stages that exhibit chang-
ing patterns of influence. In this work, we introduce a framework for stagewise
data attribution grounded in singular learning theory. We predict that influence can
change non-monotonically, including sign flips and sharp peaks at developmental
transitions. We first validate these predictions analytically and empirically in a
toy model, showing that dynamic shifts in influence directly map to the model’s
progressive learning of a semantic hierarchy. Finally, we demonstrate these phe-
nomena at scale in language models, where token-level influence changes align
with known developmental stages. This is a REBUTTAL VERSION

1 INTRODUCTION

Training data attribution (TDA) studies how training data shapes model behavior, a central problem in
AI interpretability and safety (Cheng et al., 2025; Lehalleur et al., 2025). Understanding attribution
requires accounting for the role of stagewise development and learning dynamics: when a model
encounters a given sample affects how the model learns from that sample. What helps the model
learn “dog” in early training may actively harm its ability to distinguish “poodle” from “terrier” later.

Currently, however, most approaches to TDA still ignore the role of development. In particular,
influence functions (IFs) assume that data ordering has no effect on influence, which implies that
influence is static and global over the course of training (Cook, 1977; Cook & Weisberg, 1980). This
perspective, inherited from the analysis of regular statistical models, breaks down catastrophically for
deep neural networks (see Section 2.1).

The cause of this breakdown is degeneracy: neural networks have degenerate loss landscapes with
non-isolated critical points and non-invertible Hessians. Singular learning theory (SLT) predicts that
this degeneracy gives rise to stagewise development, where models undergo phase transitions marked
by changes in degeneracy and Hessian rank (Watanabe, 2009; 2018). Taken together, this suggests

(a) Regular Development (Bernstein von-Mises) (b) Stagewise Development (Watanabe)

Posterior DensityMLE
Phase transition

# of samples

Figure 1: Stagewise learning requires stagewise data attribution. (a) In regular models, de-
velopment is a uniform, monotonic process of posterior concentration around a single solution
(Bernstein–von Mises). (b) In singular models, development is a stagewise process where the poste-
rior undergoes phase transitions (Watanabe’s singular learning theory). This stagewise development
means the influence one sample has on another can profoundly change over the course of the learning
process.
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that data attribution should take account of stagewise development, which motivates our work to
connect influence functions and developmental phase transitions.

Contributions. We put forth three contributions:

1. A developmental framework for influence: We introduce a theoretical framework,
grounded in Singular Learning Theory (SLT), that connects influence functions to stagewise
development. This predicts that influence is not static but can change non-monotonically
(including sign flips and sharp peaks) at the phase transitions that define stagewise learning.
This motivates a shift to stagewise data attribution that studies the dynamics of influence
over time.

2. Validation in a controlled system: We analytically derive and empirically confirm our
predictions in a hierarchical feature-learning model (Saxe et al., 2019a). We provide a
concrete proof-of-concept showing that dynamic shifts in influence directly correspond to
the model’s sequential learning of the data’s hierarchical structure.

3. Application at scale in language models: We demonstrate that these developmental
phenomena are observable at scale in language models. In particular, we show that influence
functions for tokens with key structural roles (e.g., delimiters, induction patterns) undergo
non-monotonic, sudden changes that align with known transitions.

Our findings challenge the foundational assumptions of the static influence paradigm, providing a
new framework for understanding not just which data points matter, but when and why they matter
during the learning process.

2 THEORY

This section develops our theoretical framework for stagewise data attribution. In Section 2.1, we
review the theory of stagewise development according to singular learning theory (SLT). We then,
in Section 2.2, re-evaluate influence functions through this developmental lens, which motivates a
shift from the global, point-wise approach of classical influence functions to a local, distributional
variant. Finally, in Section 2.3, we derive our central predictions: influence is not a fixed property but
changes non-monotonically, peaking at the phase transitions that define stagewise learning.

2.1 FROM UNIFORM TO STAGEWISE DEVELOPMENT

Developmental Interpretability: from SGD to Bayes and back again. While stochastic op-
timizers (such as SGD and Adam) are the de facto approach to training deep learning systems,
their complex dynamics make direct theoretical analysis difficult. To make progress, we follow the
recipe of Developmental Interpretability (Lehalleur et al., 2025; Wang et al., 2025b): we model
the optimizer’s learning trajectory with an idealized Bayesian learning process, then apply singular
learning theory (SLT; Watanabe 2009) to make predictions about stagewise development, and finally
test those predictions empirically in real networks trained via stochastic optimization.

The regular learning process (Bernstein–von Mises). In regular statistical models (with a unique
MLE and invertible Fisher information matrix, FIM), the Bernstein–von Mises (BvM) theorem
predicts a smooth, monotonic learning process where the posterior narrows around a single solu-
tion (Van der Vaart, 2000). More precisely, as the number of samples n increases, the Bayesian
posterior converges to a Gaussian centered at the minimum w∗ of the population loss with covariance
(nI(w∗))−1, where I(w∗) is the FIM.

The singular learning process (Watanabe). Neural networks violate the regularity assumptions
required for the Bernstein–von Mises theorem to hold. Not only do they have no unique minimum,
but the loss landscape is degenerate: the Fisher information matrix is not everywhere invertible. SLT
provides a framework for studying these singular models. Watanabe (2009) showed that degeneracy
can give rise to stagewise learning, where neural networks undergo a succession of phase transitions
between qualitatively distinct solutions, see Figure 1.
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In this framework, development is driven by a competition between data fit (or empirical loss,
Ln(w) =

∑
i ℓi(w) over a dataset D of n samples) and model complexity (as measured via a

measure of degeneracy known as the local learning coefficient, λ(w)). This evolving tradeoff can
lead to first-order phase transitions, where the model abruptly shifts from concentrating in one
region to another, and which can change the model’s generalization behavior (see Appendix A for
a formal treatment). As we will show in Section 2.3, these transitions are also responsible for the
non-monotonic dynamics of influence functions throughout the learning process.

2.2 FROM STATIC TO DEVELOPMENTAL INFLUENCE FUNCTIONS

The stagewise development of singular models requires a corresponding shift in our tools for data
attribution, moving from global, point-wise measures to local, distributional ones.

Classical influence functions: a static view. Classical influence functions (IFs) are a standard
technique for training data attribution, quantifying how an infinitesimal upweighting of a training
point zi affects an observable ϕ evaluated at the final model parameters w∗ (Cook, 1977). The
influence is given by:

IF(zi, ϕ) =
∂

∂βi
ϕ(w∗(β))

∣∣∣∣
β=1

= −∇wϕ(w∗)⊤H−1(w∗)∇wℓi(w
∗), (1)

where H(w∗) is the Hessian of the total loss evaluated at the solution w∗.

Crucially, the classical IF relies on the same regularity assumptions required for the Bernstein–von
Mises theorem: the existence of a single, stable local minimum w∗, and an invertible loss Hessian
H(w∗) at that minimum. As discussed, singular models like neural networks violate these conditions.
Their loss landscapes are degenerate, featuring non-isolated minima and rank-deficient Hessians. This
renders the classical IF theoretically ill-defined and practically unstable, which requires a dampening
factor (see Appendix C.4), especially at intermediate checkpoints that are unconverged and away
from minima.

Bayesian influence functions: a developmental tool. The Bayesian Influence Function (BIF)
provides a principled alternative that is well-suited to the dynamics of singular models (Giordano
et al., 2017; Kreer et al., 2025). Instead of measuring the change in a point estimate ϕ(w∗), the
BIF measures how the posterior expectation of an observable E[ϕ(w)] changes. This derivative is
equivalent to the negative covariance between the observable and the sample’s loss:

BIF(zi, ϕ) =
∂

∂βi
Epβ(w|D)[ϕ(w)]

∣∣∣∣
β=1

= −Covp(w|D)(ℓi(w), ϕ(w)). (2)

This formulation is ideal for studying development for three main reasons:

• It is distributional. Its definition in terms of expectations over posteriors makes it a natural
tool for the Bayesian learning framework of SLT.

• It is inherently Hessian-free. By replacing the problematic Hessian inverse with a covariance
estimation, it remains well-defined even on degenerate loss landscapes.

• It is well-defined at any point in the training trajectory, not just at stable local minima. This
is essential for studying influence as a dynamic quantity that evolves over time.

Moreover, when the regularity assumptions hold, the BIF asymptotically recovers the classical IF in
the large-data limit (Kreer et al., 2025); that is, the BIF is a natural higher-order generalization of the
classical influence function. For these reasons, we adopt the BIF as our primary tool for measuring
influence.

Estimating (local) Bayesian influence functions. To measure the BIF in practice, we use an
estimator based on stochastic-gradient MCMC introduced in Kreer et al. (2025). This also introduces
a dampening term that enables localizing the BIF to individual model checkpoints. For more details,
see Appendix B, where we also discuss practical scaling advantages of the BIF compared to other
popular IF methods, such as EK-FAC (Grosse et al., 2023).
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2.3 STAGEWISE DATA ATTRIBUTION

Influence and susceptibility. In the language of statistical physics, the BIF is an example of a
generalized susceptibility that measures a system’s response (in this case, a model’s loss on sample j)
to a perturbation (in this case, change in importance of sample i). In physical systems, susceptibilities
diverge at phase transitions, which makes them macroscopically the most legible signal that a phase
transition is taking place. This suggests using (Bayesian) influence functions to discover transitions
during the learning process.

Setup: a bimodal posterior. A first-order phase transition is characterized by the posterior distri-
bution p(w | D) having significant mass in two distinct neighborhoods, which we label U and V . We
can model this as a mixture distribution:

p(w | D) = πUp(w | U) + πVp(w | V)
where πU and πV are the posterior probabilities of being in phase U or V respectively, with πU+πV =
1. At the peak of a phase transition, πU ≈ πV ≈ 0.5. Away from the transition, one of the weights is
close to 1 and the other is close to 0.

Decomposing influence with the law of total covariance. The BIF between samples i and j is
defined as BIF(zi, ℓj) = −Covp(w|D)(ℓi(w), ℓj(w)). We can decompose this total covariance using
the Law of Total Covariance, conditioning on the phase (Z ∈ {U ,V}):

Cov(ℓi, ℓj) = E[Cov(ℓi, ℓj | Z)]︸ ︷︷ ︸
Average Within-Phase Influence

+Cov(E[ℓi | Z],E[ℓj | Z])︸ ︷︷ ︸
Between-Phase Influence

Let’s analyze each term:

1. Average Within-Phase Influence: This term is the weighted average of the influence
calculated strictly within each phase:

E[Cov(ℓi, ℓj | Z)] = πUCovU (ℓi, ℓj) + πVCovV(ℓi, ℓj)

This represents the “baseline” influence. If there were no phase transition (e.g., πU = 1),
this is the only term that would exist.

2. Between-Phase Influence: This term captures the covariance that arises because the
expected losses themselves change as the model switches phases. Let µi,U = E[ℓi | U ] be
the expected loss of sample i in phase U , and likewise for j and V . The term expands to:

Cov(E[ℓi | Z],E[ℓj | Z]) = πUπV(µi,U − µi,V)(µj,U − µj,V)

Predicting stagewise changes in influence. This decomposition predicts dynamic changing in-
fluence patterns over learning. The departure from the classical view arises because influence is
phase-dependent: the baseline “within-phase” influence may differ significantly across the transition
(CovU ̸= CovV ), and the “between-phase” term introduces an additional effect during the transition.
In particular, we derive two predictions that diverge from the classical view:

• Influence Can Change Sign: If the within-phase influences of the two phases have sig-
nificantly different values or if the between-phase term is large enough to dominate the
average baseline influence during the transition, then transitions can cause a large change in
magnitude or even a change in sign.

• Influence Peaks at Transitions: The between-phase influence term is maximized when the
posterior mass is evenly split (πU ≈ πV ≈ 0.5), causing a sharp peak in total influence at
the critical point of a transition. The magnitude of the between-phase term is proportional to
(µi,U − µi,V), which means the influence spike is largest for the samples on which the two
phases disagree the most: peaks in influence identify the specific samples that characterize
a given transition.

Towards stagewise data attribution. These theoretical predictions call for a shift from the classical
static view of training data attribution to what we term stagewise data attribution: the analysis of
influence as a dynamic trajectory over the entire learning process. The goal is to attribute learned
behaviors not only to the data that influenced it, but also to the specific period of time in which that
data had its effect. In the rest of this paper, we turn to testing the basic predictions above in order to
validate this developmental framework.
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3 TOY MODEL OF DEVELOPMENT

The acquisition of semantic knowledge involves the dynamic development of hierarchical structure
in neural representations. Often, broader categorical distinctions are learned prior to finer-grained
distinctions, and abrupt conceptual reorganization marks the non-static nature of knowledge acquisi-
tion, studied in both psychology and deep learning literature (Keil, 1979; Inhelder & Piaget, 1958;
Hinton, 1986; Rumelhart & Todd, 1993; McClelland, 1995; Rogers & McClelland, 2004). For a
principled understanding of the dynamical aspect of influence over training, we study a toy model of
hierarchical feature learning introduced by Saxe et al. (2019a), for which ground truth and analytical
tools are accessible.

We confirm our theoretical predictions in Section 2.3 by finding that the dynamics of influence
coincide with the stagewise development of hierarchical structure. Sign flips occur as the model shifts
to learning progressively finer levels of hierarchical distinctions, and peaks occur when the model
begins learning a new level of distinction.

Setup: a hierarchical semantic dataset. We train a 2-layer deep linear network with MSE loss on
a hierarchical semantic dataset from Saxe et al. (2019a). The dataset consists of one-hot input vectors
representing objects, and each input maps to an output vector representing a collection of features
that the object possesses (Figure 2). Importantly, this toy model mathematically shows that deep
neural network architecture develops neural representation that reflects hierarchical differentiation in
a progressive manner: learning animal vs. plants first, then mammals vs. birds, and then dogs vs. cats.
See Appendix C for a detailed description of the toy model and its analytical treatment.

a) b) c)

Figure 2: A toy model of hierarchical semantic knowledge acquisition. (a) A toy dataset adopted
from Saxe et al. (2019a). Each object maps to a feature vector that describes the hierarchical structure
of semantic knowledge, e.g., ‘penguin’ and cat are all living animals, but ‘penguin’ is a bird and
cat is a mammal. (b) The correlation matrix of the feature output shows a hierarchical structure.
(c) The hierarchical structure is acquired progressively during the training of the deep linear neural
network.

Measuring influence dynamics. First, we probe the local BIF (Kreer et al., 2025) on the toy model
over the entire learning trajectory. We use RMSProp-preconditioned SGLD sampler (described in
Appendix B) to estimate a posterior from each checkpoint w∗

t at training time t. See Appendix B for
details of the local BIF implementation and Appendix C.2 for the hyperparameter sweep. Furthermore,
we derive the dynamics of the influence function analytically, leveraging the mathematical tractability
of the toy model (see Appendix C.6).

Leave-one-out (LOO) verification. To confirm our observation from the BIF and analytical
treatment, we conduct retraining experiments. Specifically, we consider the Leave-One-Out (LOO)
setting, where we ablate one data point and measure the loss difference of other data points compared
to the baseline loss without ablation. We measure the loss difference over training time t:

∆ℓ
\i
j,t = ℓDj,t − ℓ

D\i
j,t , (3)

measured at time t where D is the full dataset, D\i is the dataset with data index i ablated, and j
is the index of the data point that we are querying. In Figure 3, we observe that the loss difference
from LOO results in a similar pattern to what we see in the BIF and the analytical derivation, and
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BIF Analytic IF 
query

Figure 3: Influence over time on a hierarchical semantic dataset. We measure the influence of dog
sample on other query samples j with the following: (Left) BIF (β = 1000, ϵ = 1e-3, γ = 5e+ 3).
(Center) Analytical IF (see full derivation in Appendix C.6). (Right) Loss difference from Leave-
One-Out (LOO) retraining experiment. All three measures agree that the influence one sample has
on another can vary non-monotonically over the course of training as discussed in Section 3. See
Appendix C.2 for additional pairs of samples and experimental details.

validates their use. The additional results on perturbing other data points show consistent trend
in Appendix C.2 and are also visible in the dampened classical IF Appendix C.4.

With these results, we confirm the predictions from Section 2: (1) influence changes over time non-
monotonically and can change sign, and (2) peaks in influence are correlated with key developmental
transitions in model behavior. In the rest of the section, we will establish how these observations are
reflected in the progressive learning of the hierarchical structure in our toy model.

“When” matters for measuring influence. We clearly observe that influence goes through non-
monotonic change over the course of training, strengthening our argument that a static interpretation
of influence is fallacious. In Appendix C.6, we analytically derive that influence is a function of
singular mode strength of data input-output covariance learned by the network, which is a time-
dependent variable and thus justifies studying data attribution from a dynamic perspective. Over the
course of training, each data point induces a non-static influence on other data points. The influence
can flip sign—the same data can be either helpful or harmful, depending on when it is presented. It
can also mark clear peaks at a specific time point on different query data points. Furthermore, the
influence over time from one data point to another point is specific to those points. The influence
from dog to cat might be the same as dog to ‘penguin’ early on, but they are distinguished later in
the learning process.

To confirm that these influence dynamics represent a causal effect on model performance, we perform
an additional retraining experiment in Appendix C.5. Instead of removing a sample for the full
training run, we ablate specific data points only during short temporal windows. We find that
ablating data precisely during the stage where the BIF assigns it peak influence induces the largest
loss difference compared to ablation at other times. This demonstrates that our measure correctly
identifies the critical window in which a specific sample drives the learning process.

Change of influence reflects stagewise learning. During the phase where one hierarchical dis-
tinction (e.g., animal vs. plant) is being learned, upweighting a data point in the same class
(dog) is helpful for learning a query data point (sparrow) as indicated by a negative influence
(positive covariance). In contrast, upweighting a data point that belongs to a different class harms
learning that query data point (pine), reflected in a positive influence. A data point dog is helpful
(negative influence) to learning sparrow early on in the learning, while learning to distinguish
animal vs. plant, but it is harmful (positive) later on when learning to distinguish mammal vs.
bird. In Figure 4 b), we show Multi-Dimensional Scaling (MDS, Torgerson 1952; Cox & Cox
2008) of hidden representation of each data over time as in Saxe et al. (2019a) where learning of each
hierarchical level is reflected on the branching node (numbered). We observe that the time point of
the branching node matches the peaks in influence. That is, at the transition, where the model learns
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to distinguish mammal vs bird within the animals and form a new hierarchy level, the influence
between mammal and bird is the highest.

query③

③

 ②

 ②
 
①

pineoak

lily

rose

sparrow

penguin

dogcat

③
 ②  

①

 
①
BIFa) b)

helps query 

   hurts query 

animals vs. plants mammals vs. birds dog vs. cat


Figure 4: BIF captures developmental influence. (a) The peak positive influence from dog to
different data points is noted with 1⃝, 2⃝, and 3⃝. (b) MDS of the hidden representations in the
network over the course of learning. The peaks in influence match the branching points of the MDS
trajectory, where each hierarchical category develops (black points).

4 LANGUAGE MODELS

To investigate the dynamics of influence in a real-world setting, we study the acquisition of token-level
syntactic knowledge using language models from the Pythia Scaling Suite (Biderman et al., 2023).

We confirm our theoretical predictions in Section 2.3 by finding non-monotonic influence trajectories,
with large changes in magnitude, sign flips, and peaks that correspond to known developmental
changes like the formation of the induction circuit.

Per-token influence functions. One clear benefit of the BIF in the language-modeling setting is
that computing influence at the level of individual tokens rather than sequences incurs no additional
computational cost. Loss is computed on a per-token basis during RMSprop-SGLD, which is already
necessary when considering the autoregressive losses that represent the standard for LLM pretraining:

ℓi(w) =
∑
k

ℓ(xi,k | xi,0 . . . xi,k−1,w),

where xi,j is the jth token in the ith text sequence. These per-token losses can then be stored
individually and used to estimate the per-token BIF matrix for the relevant dataset.

Classifying tokens into syntactic classes. Following the experimental setup of Baker et al. (2025),
we classify individual tokens according to how they are used to give structure to text. These classes
include strictly syntactic tokens (left delimiters, right delimiters, and formatting tokens—such as
newlines), morphological roles (parts of words and word endings), and a broader structural class—
tokens that have been used in conjunction earlier in the context, forming an inductive pattern. We
note that this classification is not exhaustive, nor is it exclusive—not all tokens have a class, and some
may occupy multiple classes at once. A full classification is provided in Appendix D.1.1.

Calculating group influence. To estimate patterns of influence between tokens across classes, we
make use of the following procedure:

1. Using a subset of The Pile (Gao et al., 2021), we compute the normalized BIF (Kreer et al.,
2025) between all pairs of tokens, sampled from the SGLD-estimated model posterior, as
described in Appendix B.

2. Each token is classified in accordance with the listed structural classes based on pattern-
matching, following Baker et al. (2025).

7
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Figure 5: Token–class relationships. BIF between structural classes through training. We observe
structural relationships between tokens reflected in influence patterns between classes, including
strong intra-class relationships, development of induction, and relationships between word elements
and corresponding delimiter token classes. Dashed lines indicate major inflection points in the BIF.
Opacity captures strongly influencing pairs of tokens. For additional resolution into the early stages
of training, see Appendix D.1.4

3. For every possible pair of classes, we compute the average (or “group”) influence between
tokens in these classes, excluding influences between the same token in different classes.

These inter-class influences can then be used to provide insight into how much influence tokens from
one class have tokens from other classes.

Learning induction. In Figure 5, we plot the inter-class influence for each query class across all
class pairings at several model checkpoints. From these plots, some clear dynamics emerge. We see
that the formation of model structures capturing induction relationships in the BIF starts as early as
1000 steps into learning, and continues to strengthen for the next 30k training steps before appearing
to peak and fall, corresponding with the results of Tigges et al. (2024), which finds that Pythia models
begin to learn the induction circuit at this time, and exhibit an apex at 30k training steps before
diminishing.

In Appendix D.3, we study a small language model trained from scratch and track the influence
on a targeted set of synthetic samples to automatically identify the induction bump. We find that
the influence of induction-pattern tokens sharply rises as the induction circuit is being learned.
We further validate the practical utility of these insights with a stagewise intervention experiment
in Appendix D.4. We find that upweighting induction patterns specifically when the induction circuit
begins to form accelerates the formation of induction heads significantly more than upweighting them
before this window. This confirms the prediction derived from the influence dynamics: influence
cannot be fully understood from a static analysis at the end of training.

Learning where to end. Another notable pattern occurs in the influence traces of left delimiters
and right delimiters. Both classes appear among high-influence tokens for the other class very
early in training, but this relationship quickly inverts, with tokens from the opposite delimiter class
progressively becoming increasingly negative as the model learns to distinguish between these classes.
We also see increasing influence between left and right delimiters and related classes that may perform
similar roles in structuring text. Left delimiters share high influence with parts of words but not
the ends of words, while right delimiters share uplifted influence with ends of words but not word
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parts. These relationships are also visible in the reverse direction (from word parts / word ends to
left / right delimiters). These relationships develop over time, with a particularly notable spike in
the relationship between word parts and left delimiters later in model training. For additional more
granular influence trajectories between individual pairs of tokens, see Appendix D.2

Dynamics of influence. Taken together, these results demonstrate that influence between different
classes of tokens is not a static property but a dynamic one that evolves throughout training. We
observe changes in both the magnitude and sign of influence, with the timing of these shifts varying
depending on the specific structural capability being learned. For instance, the influence related to
induction patterns exhibits a non-monotonic peak that aligns with the known developmental phase
transition for this circuit. Similarly, the relationship between left and right delimiters undergoes
a sign flip, indicating a qualitative shift in how the model processes scope and pairing. These
findings confirm the predictions of our stagewise framework: different data becomes influential
at different times, reflecting the model’s progressive, stage-by-stage acquisition of syntactic and
structural knowledge.

5 DISCUSSION & CONCLUSION

Stagewise data attribution and developmental interpretability. This work places data attribution
within the context of Developmental Interpretability. We follow the established methodology of
using singular learning theory (SLT) as a theoretical lens to study the dynamics of models trained
with stochastic optimizers. Prior work has successfully used this pipeline to explain phenomena
like phase transitions in toy models of superposition (Chen et al., 2023), algorithm selection in
transformers (Carroll et al., 2025), stagewise learning in toy transformers (Urdshals & Urdshals,
2025), and the stagewise emergence of structure (e.g., n-grams, induction, parenthesis-matching,
space-counting) in language models (Hoogland et al., 2024; Wang et al., 2025b; Baker et al., 2025;
Wang et al., 2025a). Our contribution is to use the SLT account of phase transitions to predict and
subsequently verify that a training sample’s influence is not static but a dynamic quantity that evolves
with the model’s development.

Stagewise vs. unrolling-based attribution. Our work complements another important line of
research that moves beyond static influence functions: trajectory-based or “unrolling” methods like
TracIn (Pruthi et al., 2020), HyDRA (Chen et al., 2021), and SOURCE (Bae et al., 2024). These
techniques approximate the total influence of a sample by integrating its contributions (such as
gradient updates or local influence scores) across numerous checkpoints along the full training path.
This approach provides a more faithful account of the path-dependent nature of SGD and can offer
more accurate attribution scores than single-point estimates.

However, our findings regarding influence dynamics raise the possibility of cancellation effects in
these unrolling-based measures. Since influence can flip signs during training, opposing contributions
from different stages could potentially offset each other when integrated. While such a score may still
accurately reflect the expected cumulative impact, it risks obscuring the data point’s role in driving
specific developmental stages. Fundamentally, the goal of these methods differs from ours: unrolling
techniques compute a single, cumulative summary of a sample’s total impact, treating the learning
process as a black box. In contrast, our framework treats the learning trajectory as an object of study
in itself, aiming to understand when data matters during development.

A mechanism for implicit curricula. The concept of a curriculum—learning from easier to harder
data—has been argued consistently for more efficient neural learning (Bengio et al., 2009; Wang
et al., 2021; Lee et al., 2024). However, the efficacy of this technique has been shown to be limited
in practice (Wu et al., 2020; Mannelli et al., 2024). One prevalent explanation is that an implicit
curriculum is adopted by learning through gradient descent in neural networks (Graves et al., 2017;
Rahaman et al., 2019; Saxe et al., 2019a; Valle-Perez et al., 2018). Our findings provide a new,
more granular mechanism for understanding this phenomenon. The stagewise evolution of influence
demonstrates how different data points become “important” at different moments, effectively creating
a dynamic, self-organizing curriculum.

9
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Limitations and future work. Our framework points toward several avenues for future research.
The primary theoretical gap remains the link between the Bayesian learning process of SLT and
the non-equilibrium dynamics of SGD. On the empirical front, a key direction is to move from
a behavioral to a mechanistic account of influence. Ultimately, model generalization is grounded
in the circuits and internal structure a model acquires over training. A more complete science of
interpretability therefore understands not just which samples are most influential (data attribution),
but when they are most influential (stagewise attribution), and how they shape model internals such
as features and circuits (mechanistic interpretability).

From pointwise to stagewise data attribution. Ultimately, this paper argues for a shift in how we
approach training data attribution. The static perspective, which assigns a single, global influence
score to each data point, only at the end of training, offers an incomplete and, at times, misleading
picture. By demonstrating that influence is inseparable from development, we advocate for moving
from point-wise to stagewise data attribution.

This developmental lens is essential for tackling a key scientific challenge: understanding the
correspondence between data structure, loss landscape geometry, learning dynamics, and model
internals (Wang et al., 2025b). Stagewise data attribution, by tracking influence dynamics, provide a
concrete tool to map these connections, opening new possibilities for interpreting, debugging, and
ultimately steering how models learn.

REPRODUCIBILITY STATEMENT

We describe our primary method, the Bayesian Influence Function (BIF) estimated via RMSPropS-
GLD, in Appendix B. We first validate our predictions in a controlled toy model (Section 3), providing
analytical derivations, Leave-One-Out (LOO) verification, and all hyperparameters in Appendix C.
We then demonstrate our findings at scale using public Pythia language models on The Pile dataset
(Section 4), with all experimental specifics, token classification schemes, and hyperparameters
detailed in Appendix D.

LLM USAGE STATEMENT

We used large language models (LLMs) to assist in the preparation of this manuscript. Their role
included proofreading, correcting grammatical errors, and rephrasing sentences to improve clarity and
flow. Beyond surface-level edits, we utilized LLMs as a collaborative tool for brainstorming options
for narrative structures and receiving feedback on the clarity of our arguments. LLMs also served as
coding assistants in implementing our experiments and generating visualizations. Additionally, we
used LLMs to aid in the research process, for instance, by suggesting relevant theoretical concepts
such as the Law of Total Covariance for the decomposition in Section 2. In all instances, the final
content, including all code, theoretical claims, and text, was reviewed, validated, and is the sole
responsibility of the authors.
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Appendix
1. Appendix A: Phase Transitions. This section provides a formal outline of how phase

transitions arise in singular models and how they impact influence functions.

2. Appendix B: Bayesian Influence Functions. This section provides additional experimental
details on estimating the local BIF.

3. Appendix C: Toy Model Details and Additional Results. This subsection describes the
hierarchical dataset, model architecture, and Leave-One-Out (LOO) training procedure.
It also contains additional LOO results and the full analytical derivation of the influence
dynamics in the deep linear network model.

4. Appendix D: Language Model Details and Additional Results. This subsection describes
the structural token classification scheme, provides RMSPropSGLD hyperparameters for
the Pythia experiments, and details additional validation experiments.

A PHASE TRANSITIONS

In this appendix, we provide a theoretical justification for the claims made in Section 2 regarding
phase transitions and their effect on model predictions and influence, grounded in statistical physics
and the theory of Bayesian statistics. This theoretical treatment motivates our empirical investigation
into the interaction between stagewise development and influence functions for models trained via
standard stochastic optimizers.

A.1 BIF AS SUSCEPTIBILITY

Setup. We begin with the model-truth-prior triplet:

1. The model p(z | w) assigns a probability to a sample z ∈ Z for a given choice of weights
w ∈ W ⊆ Rd.

2. The truth or data-generating distribution q(z) generates a dataset of i.i.d. samples =
{zi}ni=1.

3. The prior φ(w) assigns an initial probability distribution to each choice of weights.

From this triplet, we obtain a posterior through (the repeated application of) Bayes’ rules:

p(w | D) = p(D | w)φ(w)

p(D) , (4)

where p(D | w) =
∏

i p(zi | w) is the likelihood, and p(D) =
∫
W p(D | w)φ(w)dw is the

marginal likelihood. Often, we’re interested in a tempered Bayesian posterior:

pβ(w | D) =
pβ(D | w)φ(w)

pβ(D)
=

e−β·ℓ(w)φ(w)

pβ(D)
, (5)

where β is a vector of per-sample importance weights, and ℓ(w) is the vector of per-sample losses
for a given weight w.

The (global) free energy formula. The (global) free energy is the negative log marginal likelihood,
Fβ
n = − log pβ(D). A central result of singular learning theory (SLT; Watanabe 2009) is an

asymptotic (in the limit of infinite data) expression for this quantity. For a critical point w∗ in a
neighborhoodW , the free energy asymptotically expands as

Fn := Fβ
n

∣∣∣∣
β=1

= nLn(w
∗) + λ(w∗) log n+Op(log log n), (6)

where λ(w∗) is the learning coefficient, a degeneracy-aware measure of complexity (that coincides
with half the effective parameter count for minimally singular models).
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Free energy as moment-generating function. In statistical physics and thermodynamics, the
free energy is the central object of study. This is because, if one manages to obtain a closed-form
expression for the free energy, it is possible to calculate arbitrary expectation values simply by
differentiating the free energy. Expectation values are of primary interest because they correspond to
the things we can measure in an experimental setting.

For example, in the learning theory setting, the expected (per-sample) loss can be expressed as

E[ℓi(w)] =
∂Fβ

n

∂βi

∣∣∣∣
β=1

. (7)

Combining Equation (7) with Equation (2), lets us express the BIF as a 2nd-order derivative of the
free energy, assuming both samples are in the training dataset:

BIF(zi, zj) =
∂Eβ[ℓj(w)]

∂βi

∣∣∣∣
β=1

=
∂2Fβ

n

∂βi∂βj

∣∣∣∣
β=1

. (8)

Susceptibilities are defined as second-order derivatives of the free energy, which makes the BIF an
example of a generalized susceptibility.

A.2 INTERNAL MODEL SELECTION

The (local) free energy formula. The local free energy formula is defined analogously to the
global free energy, but with the domain of integration restricted to a particular region of parameter
space or “phase” W ⊆ W:

Fβ
n (W ) = − log

∫
W

pβ(D | w)φ(w)dw. (9)

This admits an analogous asymptotic form to Equation (6):

Fn(W ) := Fβ
n (W )

∣∣∣∣
β=1

= nLn(w
∗) + λ(w∗) log n+Op(log log n), (10)

but where now w∗ is a local minimum within W , and λ is the local learning coefficient associated
with that local minimum (Lau et al., 2025).

Coarse-graining. Given a partitioning of parameter space into multiple disjoint “phases”W =
∪iWi, the global free energy can be computed from the local per-phase free energies as follows:

Fn = − log

∫
W

e−nLn(D|w)φ(w)dw (11)

= − log
∑
i

∫
Wi

e−nLn(D|w)φ(w)dw (12)

= − log
∑
i

e−Fn(Wi) (13)

≈ min
i

Fn(Wi). (14)

The last line follows from the well-known use of a log-sum exponential as a smooth approximation
for the max function. This is to say that globally, the free energy is determined primarily by the phase
with the lowest free energy, with exponentially suppressed contributions from all other regions of
phase space.

Competition between phases. Assume the posterior distribution is concentrated in just two distinct
neighborhoods, which we label U and V , and is vanishing everywhere else. That is, these two phases
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constitute a degenerate set of minimizers of the free energy. We can then write the posterior as a
mixture distribution:

p(w | D) = p(w | U)p(U | D) + p(w | V)p(V | D)
where p(w | U) is the posterior distribution conditioned on the model being in phase U , and p(U | D)
is the total posterior probability of this phase, with πU + πV ≈ 1.

First-order phase transitions. This free energy formula predicts the existence of first-order
“Bayesian” phase transitions. When two solutions compete, e.g., u with neighborhood U and v

with neighborhood V , then the posterior log-odds evolve as log pn(U)
pn(V) = n∆Ln + log(n)∆λ +

Op(log log n), where ∆Ln = Ln(v)−Ln(u) and ∆λ = λ(v)−λ(u). If u has higher loss but lower
complexity (∆Ln < 0, ∆λ > 0), the posterior initially prefers the simple solution U but switches to
the complex solution V when log(n)/n < −∆Ln/∆λ. This is a “Type-A” transition (Carroll et al.,
2025; Hoogland et al., 2025), see Figure 1.

Alternatively, if the two phases agree on the linear term (they have the same minimum loss), then
the trade-off will be pushed down into lower-order terms, and there can be a “Type-B” transition, in
which complexity (as measured by the LLC) decreases, in exchange for an increase in lower-order
terms.

B BAYESIAN INFLUENCE FUNCTIONS

Estimating the BIF with SGMCMC. To estimate the BIF in practice, we use an RMSProp-
preconditioned SGLD sampler (Welling & Teh, 2011; Li et al., 2016) to estimate a posterior from each
checkpoint w∗ This approximates Langevin dynamics with loss gradients and locality regularization
from initial w∗ modulated by localization strength γ,

ws+1 = ws −
ϵ̂s
2

( ∑
i∈|D|

∇wℓi(ws) + γ(ws −w∗)

)
+N (0, ϵ̂s). (15)

The update rule takes advantage of an adaptive learning rate ϵ̂s compared to vanilla SGLD and is more
robust to varying step size (Hitchcock et al., 2025). The full algorithm is described in Appendix B.

Practical considerations with the BIF. As mentioned in the main body and following the discus-
sion at length in Kreer et al. (2025), we consider several practical modification of the local BIF. First,
we use a normalized BIF for the language-modeling experiments, which involves computing the
Pearson correlation instead of the covariance over losses. Empirically, we find that this behaves more
stably than the raw covariance and thus is easier to track over time. Second, we consider a per-token
BIF, which can be trivially obtained by avoiding the loss accumulation over token indices and saving
all per-token losses at each SGLD draw. Finally, to avoid potentially spuriously high covariances,
we drop same-token influence scores when computing aggregate group influence scores, as in Adam
et al. (2025).

Addressing influence from unseen training samples. A potential objection to our developmental
analysis is that at early checkpoints, the model’s optimizer has not yet encountered every training
sample. It might therefore seem paradoxical to measure the “influence” of a sample the model has
not yet “seen.”

This concern can be straightforwardly resolved. The BIF is defined as the sensitivity of an observable
to a sample’s contribution weight, βi, to the total loss. For a sample zi that has already been processed,
we measure influence by considering perturbations around its baseline weight of βi = 1. For a sample
the optimizer has not yet encountered, we can simply treat its current weight as βi = 0 and evaluate
the same derivative at that point.

The resulting quantity remains well-defined, with a slightly different interpretation: it measures the
model’s sensitivity to the initial introduction of a new sample, rather than the re-weighting of an
existing one. Our practical implementation naturally accommodates this, as we use independent data
sources for the SGLD gradient updates and the forward passes used to compute the loss covariance.
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Algorithm 1 RMSPropSGLD for Bayesian influence

Input: Initial model parameters w∗ ∈ w, training dataset D = (zi)
n=8
i=1 , loss functions ℓi :=

ℓ(zi;−) : w → R for each i ∈ [n], observables ϕj : w → R for each j ∈ [n], RMSPropSGLD
hyperparameters ϵ (step size), β (inverse temperature), γ (localization), m (sampling batch size),
C (number of chains), T (chain length), b (decay rate), α (stability constant).
Output: B = (BIF(zi, ϕj))1≤i≤n,1≤j≤m ∈ Rn×m

L← 0n×CT ,Φ← 0m×CT

for 1 ≤ c ≤ C do
w ← w∗

for 1 ≤ t ≤ T do
for 1 ≤ i ≤ n do

Li,(c−1)C+t ← ℓi(w) ▷ Compute train losses
end for
for 1 ≤ j ≤ m do

Φj,(c−1)C+t ← ϕj(w) ▷ Compute observables
end for
Sample full batch B = D of size m = n for small toy dataset.
Vt ← bVt−1[i] + (1− b)∇wℓ

2

V̂t ← 1
1−btVt

ϵ̂t ← ϵ√
V̂t+α

ηt ← η ∼ N (0, 1)

w ← w − ϵ̂t
2

(
βn
m

∑
k∈Bt

∇wℓk(w) + γ(w −w∗)
)
+
√
ϵ̂tηt ▷ SGLD update

end for
end for

B ← 1

CT − 1
L

(
ICT −

1

CT
1CT1

⊤
CT

)2

Φ⊤ ▷ Covariance between L and Φ

Return B

Scalability of BIF. Besides the theoretical advantages discussed in Section 2.2, the BIF also has
several practical advantages over classical IF approximations, as discussed in Kreer et al. (2025).

First, classical approximations like EK-FAC (Grosse et al., 2023) incur a substantial up-front compu-
tational cost to “fit” the inverse Hessian estimate. The BIF, in contrast, has no upfront fitting cost.
This comes at the cost of having a higher compute cost per individual query. This means that the BIF
is more computationally efficient for smaller datasets, while the classical IF is more efficient for larger
datasets, where it can amortize the upfront costs over many queries. For the settings we considered,
where the focus is studying development, the priority was coverage over many checkpoints rather
than coverage over the entire dataset. These tradeoffs favored the BIF as the more tractable choice.

Furthermore, our focus on fine-grained structural attribution places us in the specific regime where
BIF is most efficient: computing dense, per-token influence matrices for targeted subsets of data.
Unlike Hessian-based methods, which typically require sequential scoring passes to isolate each
individual token contribution, the BIF estimator computes the full set of token-by-token influences
in a single batched process without additional memory overhead for backpropagating individual
per-token gradients.

C TOY MODEL OF DEVELOPMENT

In this section, we provide details of the toy model experimental details and analytical investigation of
deep linear neural network learning dynamics under the data perturbation introduced in Section 3. It
includes a training setup of toy data with a 2-layer deep linear neural network and BIF hyperparameter
sweeps, and extended results of the Leave-One-Out (LOO) experiments and BIF measurements.
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C.1 TOY DATASET

We use the semantic hierarchical dataset introduced in Saxe et al. (2019a). We set the number of
data points N = 8 with hierarchy level H = 3, that is, the data can be organized by 4 levels of
hierarchy, e.g., dog belongs to the lowest hierarchy level 1 of living organism, and level 2 of animals
(vs. plants), and level 3 of mammals (vs. birds). The input is a data index given by an identity matrix
of size N × N . The model needs to learn to associate with the feature of each data point, which
forms the above hierarchical structure, the output size of N ×O with O = 15.

We train a 2-layer bias-free linear neural network with 50 hidden neurons, which is overparameterized
for our rank 8 dataset. We initialize the network with small weights by sampling from a Gaussian
distribution N ∼ (0, σ2), σ = 1e−3. We train the network on mean squared error (MSE) loss with a
small learning rate 5e−3 and train for 10K epochs with full batch unless mentioned otherwise.

C.2 BIF ADDITIONAL RESULTS AND HYPERPARAMETERS SWEEP

For a principled decision of hyperparameters for the SGLD sampler, we perform a preliminary
hyperparameter sweep on the SGLD sampler using the same deep linear neural network architecture
and the data to estimate LLC. Since ground truth LLC is known for deep linear neural networks
(Aoyagi, 2024), we can select a range of hyperparameters by choosing ones that have a well-
matched LLC estimate to the ground truth. Based on this procedure, we validate the superiority of
RMSPropSGLD to vanilla SGLD and also the insensitivity of the sampler quality to decay rate b and
stability constant α in a certain range and fixed the value to reduce the grid search dimension. We
also narrowed down the localization strength range.

The range of the conducted hyperparameter sweeps for BIF measurement is summarized in Table 1.
The values given in the range were sampled on a logarithmic scale. RMSPropSGLD sampling
procedure is shown in B.

Table 1: Summary of hyperparameter sweep range for BIF experiments on toy model.

Hyperparameter Range

ϵ (step size) [1e-7 - 1e-2]
β (inverse temperature) [1e+1 - 1e+4]
γ (localization strength) [1e-2 - 1e+6]
m (batch size) 8 (full batch)
C (number of chains) [2,4,8]
T (chain length) [200, 400, 800, 1000]
b (decay rate) [0.8, 0.9, 0.95, 0.99]
α (stability constant) [1e-4 - 1.0]

We present the Pearson correlation coefficient between Leave-One-Out (LOO) loss difference trajec-
tory and BIF trajectory over learning over varying hyperparameter choices of inverse temperature
β, localization strength γ and step size ϵ in Figure 6. In Figure 6, we see that the correlation co-
efficient changes smoothly as we vary the hyperparameters. In the main Section 3 Figure 3, we
showed the BIF measured with the hyperparameters that have the highest correlation with LOO
(β = 1000, ϵ = 1e-3, γ = 5e+ 3).

C.3 LEAVE-ONE-OUT (LOO) EXPERIMENT

For the Leave-One-Out (LOO) experiment, which is also referred to as retraining, we mask the
corresponding data index to 0 for both input and output. We use the same hyperparameter as above
and we report the loss difference of data j after ablating data i at each time, ∆ℓj,t = ℓDj,t − ℓ

D\i
j,t .

C.4 CLASSICAL INFLUENCE FUNCTION

We measure classical influence over the training trajectory of the toy model
IFt(zi, ϕ) = −∇wtϕ(wt)

⊤H−1(wt)∇wtℓi(wt), (16)
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Figure 6: BIF–LOO trace correlation with varying inverse temperature β, localization strength
γ and step size ϵ. On a single grid point between two hyperparameters (e.g. γ, ϵ in the leftmost),
multiple points refer to different values of the remaining hyperparameter (β in the leftmost). In
general, high γ and low ϵ gave the highest correlation with the gold standard LOO experiment, and β
was less significant in the toy model.

BIF 

query

pine

sparrow penguin cat dog

oak rose lily

Figure 7: BIF for perturbing each data point. The subtitle indicates the perturbed data point.

at time t. Note that we do not use the global minimum w∗ but the minimum at that specific
measurement time t. Since the Hessian H of the overparameterized neural network is non-invertible
due to multiple zero / near-zero eigenvalues, we take the approximation methods as in Koh & Liang
(2020); Grosse et al. (2023). First is to add a constant dampening term γ to the Hessian,

H̃ = H + γ∗I. (17)

Suitable γ enforces H̃ to have positive eigenvalues. Grosse et al. (2023); Martens & Grosse (2015);
Bae et al. (2022) used damped Gauss-Newton-Hessian (GNH), an approximation to H which
linearizes the network’s parameter-output mapping around the current parameters,

G = E[J⊤HJ] (18)

H̄ = G+ λ∗I. (19)

Using approximated damped-Hessian (H̃) and damped GNH (H̄), we measure classical influence
function over time (Eq. 16) with varying dampening constant γ.
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Leave-One-Out Loss Difference

query

pine

sparrow penguin cat dog

oak rose lily

Figure 8: Leave-One-Out (LOO) loss difference for perturbing each data point. The title indicates
the ablated data point.

The dampening constant γ∗ is scaled with α, the maximum absolute value of all eigenvalues of the H

γ∗ = γα, (20)

and we vary γ in range of [1e-3, 10] in logarithmic scale.

IF
IF

Damped Hessian

Figure 9: Influence with damped Hessian approximation. We measure the classical influence of
the dog sample with damped Hessian approximation H̃ with varying dampening constant γ.

C.5 TIME-SPECIFIC ABLATION EXPERIMENT

Our observation that influence is a time-dependent function proposes another perspective – perturbing
the same data point but at different training times would lead to non-identical influence. That is, the
exact moment the network interacts with each data point matters. Here we probe this hypothesis
with a simple retraining experiment in the toy model. We hypothesize that the measured influence
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IF
IF

Damped Gauss-Newton-Hessian

Figure 10: Influence with damped Gauss-Newton-Hessian approximation. We measure the
classical influence of the dog sample with damped Gauss-Newton-Hessian approximation H̃ with
varying dampening constant γ.

trajectory tells us which time point would be most critical for a model to learning each sample. For
example, the influence of dog on cat makes a peak around t = 6000, which implies ablating dog
around that time would be most helpful in learning cat. We probe this hypothesis with a retraining
experiment with a brief ablation at different stages of learning.

In Figure 11, we ablate a data point dog during the duration of D epochs from t and show the
integrated loss difference compared to the baseline (no ablation) during D. As we expected, the loss
difference is the biggest around t = 6000, when the highest influence occurs, indicating ablating
dog was helpful the most at this stage. Similarly, we observe the negative peak of integrated loss
difference around t = 3000, which also matches the negative minimum in the influence measurement,
implying that learning of the cat was the most detrimental at this time point when dog is ablated. We
show that the most important stage changes with the query data that belongs to a different hierarchy,
e.g., sparrow. Collectively, we strengthen our claim that influence over time shows us how a
sample interacts with “what” data “when”, and that it is often correlated with the structure of the data,
such as hierarchy.

C.6 ANALYTICAL INVESTIGATION OF TOY MODEL

In this section, we analytically derive the dynamics of the influence function in a deep linear neural
network. First, we introduce deep linear neural network learning dynamics studied in Saxe et al.
(2013; 2019b) and then we show the time dependency of the influence function and its relation to
progressive learning of the hierarchical structure.

DEEP LINEAR NEURAL NETWORK LEARNING DYNAMICS

Following the singular modes learning formulation in Saxe et al. (2019a; 2013), we can describe each
data point i’s loss into the singular modes basis. We assume whitened input X ∈ RN×D, XTX = I
and output Y ∈ RN×O. The input-output correlation and its singular value decomposition (SVD)
become

C := Σyx = Y TX (21)

SV D(Σyx) = USV⊤. (22)

With squared error loss, individual data point at data i is ℓi = 1
2∥yi − ŷi∥2. We project data xi to V

space (object analyzer) and its component becomes εik = xiVk, where V is a column vector of V .
Similarly, we project ηik = yiUk and with rank r = rank(C),
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In
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Ablation Ablation

Figure 11: Brief ablation of dog. For each experiment, we ablate dog for duration D = 100 epochs
starting from timepoint t. Starting time t is sampled uniformly with an interval of 200 epochs. For
each experiment, we integrate the loss difference to the baseline during D. We show the integrated
loss of query (a) cat and (b) sparrow over different ablation windows. The most critical period of
influence from the dog on the two samples is different. The higher level hierarchy (animals) sharing
sample sparrow has an earlier critical point than the lower level hierarchy (mammals) sharing
sample cat.

ℓi =
1

2

r∑
(ηir − grεir)

2, (23)

gk is a singular mode strength of mode k of the network obtained from

W (t) = W2(t)W1(t) = UG(t)V ⊤, (24)

assuming the network and the data shares the aligned right and left singular vectors U ,V . This
assumption holds with small initialization and small learning rate.

Now, we can compute the loss gradient with respect to the parameter space and decoupled mode
space. In parameter space,

∇LW1
= W⊤

2 (Σyx −W2W1) (25)

∇LW2
= (Σyx −W2W1)W

⊤
1 . (26)

We can substitute the terms in singular decomposed form,

∇LW1 = U(S −G)A1 (27)

∇LW2
= A2(S −G)V ⊤ (28)

W1 = RA1V
T ,W2 = UA2R

T ,A2A1 = G. (29)

The effective singular values from each layer W1,2 are A1,2 and RTR = I , which eventually aligns
the effective weights’ singular vectors to that of the data correlation Σyx. In general, we cannot
assume a1k = a2k throughout learning, but the equality holds with the strictly balanced initialization.
With the small initialization assumption, the first-order approximation of equality holds, which
eventually allows us to write down the effective singular value trajectory throughout learning as in
Saxe et al. (2019a).

Importantly, G(t) is a time-varying variable, evolving throughout the training that could be written in
closed form with sk being corresponding diagonal singular value of S from data covaraince,

Gkk(t) =
ske

2skt/τ

e2skt/τ − 1 + sk/G0
kk

, G0
kk = Gkk(t = 0), (30)

and the model that learned the training data recovers

W ∗ = UGV = C. (31)
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For convenience, we will drop the notation of time dependence in the rest of this section. For an
end-to-end linear map W = W2W1 ∈ RO×D define its representation in the data singular basis and
the singular mode strength gk,

G := U⊤WV , gk := Gkk = u⊤
k W vk. (32)

For a data point p = (xp, yp) write the coordinates in the original basis

γp := V ⊤xp ∈ Rr, ηp := U⊤yp ∈ Rr, (33)

the per-sample residual in mode space

ϕp := G γp − ηp (34)

and the per-sample loss gradient in mode space

ℓp := ϕpγ
⊤
p . (35)

INFLUENCE FUNCTION IN TOY MODEL USING SINGLE DATA POINT PERTURBATION

Following Cook & Weisberg (1982); Koh & Liang (2020), we will derive influence function, that is,
the change in model prediction with a targeted perturbation of training data. In the following, we will
derive the response of original U ,V and S as a function of a single data point perturbation to derive
the influence function in singular basis. With those in hand, we can use the closed-form dynamics on
Eq. 30 to get time-dependent dynamics.

First, we consider a perturbation by upweighting a single data point p with factor ε. The perturbed
cross-covariance becomes

Cp(ε) = Up(ε)Sp(ε)Vp(ε)
⊤ =

∑
p ̸=j

yjx
⊤
j + (1 + ε)ypx

⊤
p = C+ εypx

⊤
p . (36)

Let C′ be the first-order derivative of the data covariance with ε-upweighting of a single data point p,

C′
p :=

∂Cp(ε)

∂ε

∣∣∣∣
ε=0

. (37)

With the perturbed dataset, the learned 2-layer linear network mapping at time t becomes

Wp(ε, t) = Up(ε)Gp(Sp(ε), t)V
⊤
p (ε), (38)

Gt(S, t) = diag(gt(s1), ...gt(sr)) (39)

where s is a singular value from diagonals of S and gt(·) follows a closed form dynamics as given
in Eq. 30. We assume that the network will have aligned singular basis with the perturbed data
covariance, given in U(ε) and V (ε). For convenience, we will move the parameter ε to a subscript
and drop the perturbed data index p.

We apply product rule to C′
ε,

C′
ε = U ′

εSV
⊤ +US′

εV
⊤ +USV ′⊤

ε . (40)

We project the above perturbation to the singular mode coordinates,

Qε := U⊤C′
εV = U⊤

(
U ′

εSV
⊤ +US′

εV
⊤ +USV ′⊤

ε

)
V . (41)

Since U ,V are orthonormal matrices,

U⊤U = I, V ⊤V = I (42)

and differentiating these orthonormality constraints with respect to the perturbation ε

∂

∂ε

(
U⊤U

)∣∣∣
ε=0

= U ′⊤
ε U +U⊤U ′

ε = 0. (43)

∂

∂ε

(
V ⊤V

)∣∣∣
ε=0

= V ′⊤
ε V + V ⊤V ′

ε = 0. (44)
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Due to orthonormality, U ′
ε,V

′⊤
ε lie in the tangent space of U ,V ⊤. We can define

A := U⊤Uε
′, B := V ′⊤

ε V , (45)

where the orthonormal constraints give

A⊤ +A = 0, B +B⊤ = 0, (46)

and A,B become skew-symmetric, A = −A⊤, B = −B⊤. Intuitively, A,B is equivalent to the
in-subspace angular velocity (rotation rate) of the columns of U and V ⊤ due to the perturbation,
respectively.

With this, we can rewrite Eq. 41

Q = AS+ S′
ε + SB, (47)

where diag(A) = diag(B) = 0 since A,B are both skew symmetric.

Now, we solve Eq. 47 for A,B and S′
ε. First, we consider a case where the singular values

diag(S) are non-degenerate. Due to the diagonal constraint of singular values, the response from the
perturbation should also be diagonal for the singular values

S′
ε,ii = Qε,ii = U⊤

i C′
εVi. (48)

The response of the singular basis is obtained from Eq. 45,

U ′
ε = UA, V ′⊤

ε = BV⊤, (49)

where

Ajk =

{
U⊤

j C′
εVk

sk−sj
, j ̸= k,

0, j = k.
(50)

Bkj =

{
U⊤

k C′
εVj

sk−sj
, j ̸= k,

0, j = k.
(51)

When S has degenerate singular values or a near-zero gap, above is ill-defined as the denominator
sk − sj = 0. In this case, we apply block perturbation, treating the whole invariant subspace (sharing
the degenerate singular values) all at once.

We take the sets of the degenerate singular values {sb : sj = sb,∀sj ∈ diag(S)}, define the block
coupling by projecting the perturbation C′ on this block,

Q̄ε := Ū⊤C′
εV̄ , (52)

where Ū and V̄ ⊤ are sets of the degenerate singular values corresponding to sets of columns of U
and V . It can be further decomposed into a symmetric and a symmetric-skewed part,

M̄ε =
1

2
(Q̄ε + Q̄⊤

ε ), K̄ε =
1

2
(Q̄ε − Q̄⊤

ε ), M̄ε + K̄ε = Q̄ε. (53)

Due to diagonality constraints of singular values and zero-diagonals in the skew-symmetric part K̄ε,
the first-order singular value consistency reduces to M̄ε = Ḡ′

ε. To have diagonal singular value
matrix S̄′

ε, we choose R such that

M̄ε = S̄′
ε = R⊤ΛR, (54)

where diag(Λ) becomes the first-order splits within the degenerate block with preferred direction
defined by R. Skewed part K̄ε sets the in-block angular velocity,

Ā = B̄ =
1

2sb
K̄ε. (55)

Then,

S̄′
ε,ii = Λii, Ū ′

ε = ŪĀ, V̄ ′
ε = V̄ B̄. (56)
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Now we are equipped with U ′
ε,V

′
ε ,S

′
ε described by original we define influence on W (t, ε) from

the perturbation on a data point p at fixed time t by applying derivative on Eq. 38,

Ip :=
∂W

∂ε

∣∣∣∣
ε=0

= U ′
εG(S, t)V ⊤ +UG(S′

ε, t)V
⊤ +UG(S, t)V ′⊤

ε (57)

= UAG(S, t)V ⊤ +U(diag(g′t(s))⊙ diag(S′
ε)))V

⊤ +UG(S, t)BV⊤. (58)

We can further derive influence on measurable ϕi in singular basis using the chain rule,

I(zp, ϕ) =
〈
rix

⊤
i ,

∂W

∂ε

〉
= r⊤i

(∂W
∂ε

xi

)
= r⊤i U(AGt +G′

ε,t +GtB)V ⊤xi, (59)

where ϕi is a squared loss of data point i and zp is the perturbed data point. This perturbation is
expected to hold with a small perturbation ε ≈ 0. We use down-weighting ε = −0.1 to approximate
the ablation effect in Figure 3.

Analytic IF

query

pine

sparrow penguin cat dog

oak rose lily

Figure 12: Analytical loss difference from perturbing each data point. The title indicates the
perturbed data point (ε = −0.1).

D LANGUAGE MODELS

This section discusses additional experimental details for the language model experiments.

D.1 STRUCTURAL TOKEN CLASSIFICATION

Here, we present additional details and further experiments conducted to investigate the development
of influence with respect to how tokens structure text. These experiments were conducted using the
14 million parameter Pythia model. Tokens are generated using the same tokenizer as the Pythia
models use in order to be able to use these tokens with the model suite.

D.1.1 TOKEN CLASSES

Tokens are classified based on their role in structuring text. The classes we used are based on the
classes used by Baker et al. (2025). Figure 13 demonstrates these classes graphically, with tokens
outlined in bold indicating class membership, and distinct colors representing distinct classes.
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Word Part Word End Formatting

wa vel ength

di!ere nces

wa vel ength

di!ere nces

#### :// =”

\\ ******* \n\n
Induction Pattern Delimiters

A B . . . A B
( ... ) “ ... ”

〈 ... 〉 [ ... ]

Figure 13: Examples of structural classification of tokens. Bold outline indicates class membership.

The classes are as follows:

Word Part Tokens that constitute a part of a word that is not the end of the word. This class excludes
tokens that represent entire words or entire words with the addition of additional characters
(e.g. a space and an entire word).

Word End Tokens that constitute the ending of a multi-token word. This class also excludes tokens
that represent entire words and entire words with the addition of additional characters.

Formatting Tokens that are generally used to format text including newlines and repeated characters.

Induction Pattern Tokens that appear in a context in which the token is preceded by another
particular token, and the same token has been preceded by the same other token earlier in
the context.

Left Delimiters Tokens that are generally eventually followed by an equivalent right delimiter with
interceding text generally considered to occupy a distinct scope.

Right Delimiters Tokens that close the scope opened by a paired left delimiter.

D.1.2 RMSPROPSGLD HYPERPARAMETERS

Table 2: Summary of hyperparameter grid search for BIF experiments on Pythia 14M.

Hyperparameter Range

n (number of sequences) 600
J (sequence length) 55
ϵ (step size) 1e− 6
nβ (inverse temperature) {256, 1024}
γ (localization strength) {500, 1000}
m (batch size) 64
C (number of chains) 4
T (chain length) 200
burn in steps 0
k (nearest neighbors) 30

We found that the overall dynamics expressed by the BIF did not vary substantially among hyper-
parameters chosen in this setting. Plots in the main paper were selected based on the parameters
that optimized the average class recall on the KNN experiment which is discussed in section Ap-
pendix D.1.3

D.1.3 SAME-CLASS PREDICTION WITH BIF K-NEAREST NEIGHBORS

One way to investigate the ability of the BIF to capture what sorts of text structure a model has
learned is to use it to predict which structural class a token belongs to based on the classes that token
shares high influence with.
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We query the predictive capacity of token-level influences using a simple nearest-neighbors approach.
The predictive model is as follows:

yi(xi) = argmaxa

1

ra(xi)

∑
xj∈mi

1a(xj),

where 1a is the indicator function for elements of class a, and ra is the token-dependent class
frequency in the dataset:

ra(x) =
1∑

x′ 1{x}c(x′)

∑
x′

1{x}c(x′)1a(x
′),

with {x}c denoting the set of all tokens that are not x. Tokens are thus predicted to have the majority
label of their corresponding top-influence set mi, adjusted for class rates overall.

Figure 14: KNN BIF predictions change over time. Using the BIF in order to select the top 30
highest influence tokens and taking the majority class from among them (adjusted for class rates), we
plot the recall minus the class rate for each class. This means that 0 represents the random baseline.
We see that the BIF selects for in-class tokens above random for all categories by the end of training,
indicating that it is sensitive to the class structure learned by the model.

Figure 14 shows the results of this experiment. We observe that the classes of high-influence other
tokens act as a better than random predictor for all classes by the end of training, with recall generally
improving as the model progresses through training.

D.1.4 INFLUENCE DYNAMICS EARLY IN TRAINING

Wang et al. (2025a) demonstrates that significant changes in model dynamics occur early in training
for semantic-based token classes like the ones that we use in Section 4. In order to evaluate these
effects, we estimate the BIF at logarithmically spaced model checkpoints, in contrast with the linear
ones demonstrated in Figure 5. The results of this investigation are shown in Figure 15

We observe the inflection in influence between induction tokens noted previously (line at 32k training
steps), but furthermore, observe additional changes in direction and even sign of the BIF occurring at
early stages in training that were not observed in Figure 5. There is an additional inflection point in
both the induction-induction BIF and formatting-formatting BIF at 128 training steps. We also more
clearly see the early dynamics between right delimiters and tokens capturing the ends of words, with
an inflection point at 2048 training steps. Furthermore, we observe clear changes in the overall sign
of the BIF both between formatting-formatting tokens and between word parts and right delimiters.
Taken together, these results indicate stagewise changes in the BIF, where, on average, tokens from a
particular class can have differing effects on the loss of tokens both within the same class, and across
classes, depending on when in training these effects are considered.

D.2 PER-TOKEN INFLUENCE DYNAMICS

In Figure 16, we observe that different subgroups of tokens impose different magnitudes and signs of
influence, which again can change over time. We see a few interpretable features. For example, we
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Figure 15: Token-class relationships at logarithmic checkpoints. In early stages of learning, we
observe dynamic relationships between token classes, and non-monotonicity in the BIF. Dashed lines
represent points at which the direction of changes to the BIF across training inverts.

see that the same subtypes of brackets can assist learning as training goes by, even if the directionality
is different (observed in curly bracket, square bracket, and angle bracket but not in parenthesis),
which might be due to the paired nature of the bracket signs.

D.3 INFLUENCE DYNAMICS OF INDUCTION HEAD FORMATION

Our initial experiments with the public Pythia checkpoints (Biderman et al., 2023) suggest a signal for
the learning of induction patterns. However, the checkpoint frequency was too coarse in the vicinity
of checkpoints 1k to 10k to observe the fine-grained dynamics of this developmental transition. To
investigate this critical phase in more detail, we trained a Pythia-14M model from scratch, saving
checkpoints every 100 steps for the first 20,000 training steps. Though we train on the same Pile
data (Gao et al., 2021), it is in a different order and on different hardware, which means this training
run is not the same as the original Pythia-14M training run.

We constructed a synthetic dataset with sequences where the second half repeats the first, e.g.,
Sequence 1: A B . . . A B and Sequence 2: C D . . . C D . Sequences were constructed as to not share
tokens. The first half of each sequence is made up of random tokens, and so the only structure that
can be used for prediction is the repetition of the second half of the context.

During SGLD we collect losses on this dataset, but sample using the Pile, meaning that loss on
these synthetic samples does not affect our sampling trajectory. We compute the BIF matrices at
each checkpoint of our homemade Pythia-14M and then look at the mean correlation between the
different parts of our sequence (Namely repeated tokens with repeated tokens from other sequences,
non-repeated tokens with non-repeated tokens from other sequences, and non-repeated tokens with
repeated tokens from other sequences).

The results are shown in Figure 17. The influence between tokens in the repeated segments of each
sequence (top panel, blue line) undergoes a sudden, large increase, peaking and then stabilizing.
Meanwhile, the BIF between non-repeated segments or across non-repeated and repeated segments
shows no such change.
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Figure 16: Intra-classes (delimiters subtype) BIFs in Pythia-14M. We plot BIFs between more
fine-grained syntactic token classes of delimiters.
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Figure 17: Influence dynamics during induction head formation. We trained a small transformer
from scratch with high-frequency checkpointing to capture the formation of induction heads. (Top)
The normalized BIF between corresponding tokens in repeated sequences (blue) shows a sharp
increase and peak, while correlations between non-repeated samples (red) or between non-repeated
and repeated segments (green) remain low. (Bottom) The induction score for the attention heads
that become induction heads rises together with the posterior correlation, while other heads remain
inactive.

Simultaneously, we measure the “induction score” of the model’s attention heads—a standard metric
from mechanistic interpretability that quantifies how strongly a head implements the induction
algorithm (Olsson et al., 2022). As shown in the bottom panel, the induction score for the heads
that become the “induction heads” begins to rise right before the BIF increases between the repeated
groups.

D.4 INTERVENING IN INDUCTION HEAD FORMATION

To validate the causal implications of stagewise influence, we conducted an intervention experiment
targeting the acquisition of induction (Olsson et al., 2022). Following the results from the previous
section that show that the influence of induction patterns can vary significantly over training, we
predict that upweighting the same subset of data should have different effects on model development
depending on when that upweighting occurs. In particular, we expect upweighting induction samples
will have a larger effect on model behavior if this occurs during or after the “induction bump.”

Setup. We trained a 3 million parameter transformer on 13 million tokens from The Pile for a
total of 30,000 steps. To isolate the effect of timing, we created five experimental runs where we
upweighted “induction-heavy” tokens (defined as tokens that can be predicted from in-context bigram
and multigram statistics) by a factor of 4× during specific 2500-step windows: 0–2.5k, 2.5k–5k,
5k–7.5k, 7.5k–10k, 10k–12.5k, and 12.5k–15k. We compared these against a control model trained
with no upweighting. All models shared identical initialization and data ordering; thus, deviations in
dynamics are strictly attributable to the timing of the intervention.
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Figure 18: Stagewise intervention accelerates induction head formation. A comparison of
the maximum induction score across Layer 0 heads for each intervention window. The baseline
model (green) naturally forms induction heads at step ∼23k. Upweighting induction data during
the critical developmental window (Windows 4 and 5, dark blue lines) significantly accelerates this
capability, causing heads to form as early as step 15k. In contrast, interventions applied too early (e.g.,
Window 0) fail to produce stable induction heads, while intermediate windows have diminishing
effects. This confirms the prediction that the model is most sensitive to induction data during specific
developmental stages.

We track the formation of the induction circuit using the induction score metric described in Ap-
pendix D.3. We track the induction for each individual head in Figure 19 and compare the induction
scores for each model’s highest-scoring head in Figure 18.

Results. We find that the timing of the upweighting window significantly alters the developmental
trajectory of the induction circuit, confirming that the influence of data is stage-dependent. In the
control setting, the induction circuit emerges gradually, with the induction score peaking relatively
late in the training process at timestep 23k. Intervening during these later stages (windows 10k–12.5k
and 12.5k–15k) successfully accelerates this process, causing the induction capabilities to peak earlier
than in the baseline. Conversely, upweighting the exact same patterns during intermediate phases
(2.5k–5k and 5k–7.5k) results in induction being learned later than the control. Upweighting during
steps 0-2500 appears to “stunt” the development of induction by causing induction to be learned to a
weak degree very early on. Only much later does a second induction head start to form.

We note also that the heads that become induction heads (Olsson et al., 2022) differ only for the
early window runs. Upweighting induction patterns later in training leads to layer 1 head 4 being the
primary induction head, whereas upweighting earlier (windows 0 and 1) leads to various other heads
specializing.

These results provide causal evidence for our stagewise framework. Upweighting a data pattern
outside the phase where the model is receptive to it yields diminished returns or developmental delays,
whereas upweighting it inside the critical window accelerates its acquisition.
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Figure 19: Induction score trajectories for individual Layer 0 heads under different intervention
schedules. Each subplot represents a separate training run where induction-pattern tokens were
upweighted during the indicated step interval (pink shaded region). The “Baseline” plot shows the
natural emergence of induction heads (dominated by Head 7, grey line) occurring around step 23k.
Interventions applied during the critical developmental windows identified by BIF (Window 4 and
Window 5) successfully accelerate this formation, shifting the phase transition earlier to steps ∼17k
and ∼15k respectively.
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