

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INFLUENCE DYNAMICS AND STAGEWISE DATA ATTRIBUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Current training data attribution (TDA) methods treat the influence one sample has on another as static, but neural networks learn in distinct stages that exhibit changing patterns of influence. In this work, we introduce a framework for stagewise data attribution grounded in singular learning theory. We predict that influence can change non-monotonically, including sign flips and sharp peaks at developmental transitions. We first validate these predictions analytically and empirically in a toy model, showing that dynamic shifts in influence directly map to the model’s progressive learning of a semantic hierarchy. Finally, we demonstrate these phenomena at scale in language models, where token-level influence changes align with known developmental stages. [This is a REBUTTAL VERSION](#)

1 INTRODUCTION

Training data attribution (TDA) studies how training data shapes model behavior, a central problem in AI interpretability and safety (Cheng et al., 2025; Lehalleur et al., 2025). Understanding attribution requires accounting for the role of stagewise development and learning dynamics: *when* a model encounters a given sample affects *how* the model learns from that sample. What helps the model learn “dog” in early training may actively harm its ability to distinguish “poodle” from “terrier” later.

Currently, however, most approaches to TDA still ignore the role of development. In particular, influence functions (IFs) assume that data ordering has no effect on influence, which implies that influence is static and global over the course of training (Cook, 1977; Cook & Weisberg, 1980). This perspective, inherited from the analysis of regular statistical models, breaks down catastrophically for deep neural networks (see Section 2.1).

The cause of this breakdown is degeneracy: neural networks have degenerate loss landscapes with non-isolated critical points and non-invertible Hessians. Singular learning theory (SLT) predicts that this degeneracy gives rise to stagewise development, where models undergo phase transitions marked by changes in degeneracy and Hessian rank (Watanabe, 2009; 2018). Taken together, this suggests

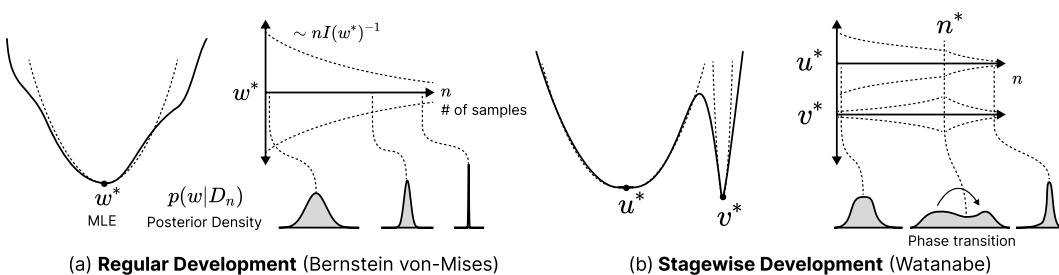


Figure 1: **Stagewise learning requires stagewise data attribution.** (a) In regular models, development is a uniform, monotonic process of posterior concentration around a single solution (Bernstein-von Mises). (b) In singular models, development is a stagewise process where the posterior undergoes phase transitions (Watanabe’s singular learning theory). This stagewise development means the influence one sample has on another can profoundly change over the course of the learning process.

054 that data attribution should take account of stagewise development, which motivates our work to
 055 connect influence functions and developmental phase transitions.
 056

057 **Contributions.** We put forth three contributions:
 058

- 059 1. **A developmental framework for influence:** We introduce a theoretical framework,
 060 grounded in Singular Learning Theory (SLT), that connects influence functions to stagewise
 061 development. This predicts that influence is not static but can change non-monotonically
 062 (including sign flips and sharp peaks) at the phase transitions that define stagewise learning.
 063 This motivates a shift to **stagewise data attribution** that studies the dynamics of influence
 064 over time.
- 065 2. **Validation in a controlled system:** We analytically derive and empirically confirm our
 066 predictions in a hierarchical feature-learning model (Saxe et al., 2019a). We provide a
 067 concrete proof-of-concept showing that dynamic shifts in influence directly correspond to
 068 the model’s sequential learning of the data’s hierarchical structure.
- 069 3. **Application at scale in language models:** We demonstrate that these developmental
 070 phenomena are observable at scale in language models. In particular, we show that influence
 071 functions for tokens with key structural roles (e.g., delimiters, induction patterns) undergo
 072 non-monotonic, sudden changes that align with known transitions.

073 Our findings challenge the foundational assumptions of the static influence paradigm, providing a
 074 new framework for understanding not just which data points matter, but *when* and *why* they matter
 075 during the learning process.
 076

078 2 THEORY

080 This section develops our theoretical framework for stagewise data attribution. In Section 2.1, we
 081 review the theory of stagewise development according to singular learning theory (SLT). We then,
 082 in Section 2.2, re-evaluate influence functions through this developmental lens, which motivates a
 083 shift from the global, point-wise approach of classical influence functions to a local, distributional
 084 variant. Finally, in Section 2.3, we derive our central predictions: influence is not a fixed property but
 085 changes non-monotonically, peaking at the phase transitions that define stagewise learning.
 086

087 2.1 FROM UNIFORM TO STAGewise DEVELOPMENT

089 **Developmental Interpretability: from SGD to Bayes and back again.** While stochastic op-
 090 timizers (such as SGD and Adam) are the *de facto* approach to training deep learning systems,
 091 their complex dynamics make direct theoretical analysis difficult. To make progress, we follow the
 092 recipe of Developmental Interpretability (Lehalleur et al., 2025; Wang et al., 2025b): we model
 093 the optimizer’s learning trajectory with an idealized Bayesian learning process, then apply singular
 094 learning theory (SLT; Watanabe 2009) to make predictions about stagewise development, and finally
 095 test those predictions empirically in real networks trained via stochastic optimization.
 096

097 **The regular learning process (Bernstein–von Mises).** In *regular* statistical models (with a unique
 098 MLE and invertible Fisher information matrix, FIM), the Bernstein–von Mises (BvM) theorem
 099 predicts a smooth, monotonic learning process where the posterior narrows around a single solu-
 100 tion (Van der Vaart, 2000). More precisely, as the number of samples n increases, the Bayesian
 101 posterior converges to a Gaussian centered at the minimum \mathbf{w}^* of the population loss with covariance

$$(n\mathbf{I}(\mathbf{w}^*))^{-1}, \text{ where } \mathbf{I}(\mathbf{w}^*) \text{ is the FIM.}$$

102 **The singular learning process (Watanabe).** Neural networks violate the regularity assumptions
 103 required for the Bernstein–von Mises theorem to hold. Not only do they have no unique minimum,
 104 but the loss landscape is *degenerate*: the Fisher information matrix is not everywhere invertible. SLT
 105 provides a framework for studying these *singular* models. Watanabe (2009) showed that degeneracy
 106 can give rise to stagewise learning, where neural networks undergo a succession of phase transitions
 107 between qualitatively distinct solutions, see Figure 1.

108 In this framework, development is driven by a competition between data fit (or empirical loss,
 109 $L_n(\mathbf{w}) = \sum_i \ell_i(\mathbf{w})$ over a dataset \mathcal{D} of n samples) and model complexity (as measured via a
 110 measure of degeneracy known as the local learning coefficient, $\lambda(\mathbf{w})$). This evolving tradeoff can
 111 lead to first-order phase transitions, where the model abruptly shifts from concentrating in one
 112 region to another, and which can change the model’s generalization behavior (see Appendix A for
 113 a formal treatment). As we will show in Section 2.3, these transitions are also responsible for the
 114 non-monotonic dynamics of influence functions throughout the learning process.

115

116 2.2 FROM STATIC TO DEVELOPMENTAL INFLUENCE FUNCTIONS

117

118 The stagewise development of singular models requires a corresponding shift in our tools for data
 119 attribution, moving from global, point-wise measures to local, distributional ones.

120

121 **Classical influence functions: a static view.** Classical influence functions (IFs) are a standard
 122 technique for training data attribution, quantifying how an infinitesimal upweighting of a training
 123 point \mathbf{z}_i affects an observable ϕ evaluated at the final model parameters \mathbf{w}^* (Cook, 1977). The
 124 influence is given by:

125

$$126 \text{IF}(\mathbf{z}_i, \phi) = \frac{\partial}{\partial \beta_i} \phi(\mathbf{w}^*(\beta)) \Big|_{\beta=1} = -\nabla_{\mathbf{w}} \phi(\mathbf{w}^*)^\top \mathbf{H}^{-1}(\mathbf{w}^*) \nabla_{\mathbf{w}} \ell_i(\mathbf{w}^*), \quad (1)$$

127

128 where $\mathbf{H}(\mathbf{w}^*)$ is the Hessian of the total loss evaluated at the solution \mathbf{w}^* .

129

130 Crucially, the classical IF relies on the same regularity assumptions required for the Bernstein–von
 131 Mises theorem: the existence of a single, stable local minimum \mathbf{w}^* , and an invertible loss Hessian
 132 $\mathbf{H}(\mathbf{w}^*)$ at that minimum. As discussed, singular models like neural networks violate these conditions.
 133 Their loss landscapes are degenerate, featuring non-isolated minima and rank-deficient Hessians. This
 134 renders the classical IF theoretically ill-defined and practically unstable, which requires a dampening
 135 factor (see Appendix C.4), especially at intermediate checkpoints that are unconverged and away
 136 from minima.

137

138 **Bayesian influence functions: a developmental tool.** The Bayesian Influence Function (BIF)
 139 provides a principled alternative that is well-suited to the dynamics of singular models (Giordano
 140 et al., 2017; Kreer et al., 2025). Instead of measuring the change in a point estimate $\phi(\mathbf{w}^*)$, the
 141 BIF measures how the *posterior expectation* of an observable $\mathbb{E}[\phi(\mathbf{w})]$ changes. This derivative is
 142 equivalent to the negative covariance between the observable and the sample’s loss:

143

$$144 \text{BIF}(\mathbf{z}_i, \phi) = \frac{\partial}{\partial \beta_i} \mathbb{E}_{p_{\beta}(\mathbf{w}|\mathcal{D})}[\phi(\mathbf{w})] \Big|_{\beta=1} = -\text{Cov}_{p(\mathbf{w}|\mathcal{D})}(\ell_i(\mathbf{w}), \phi(\mathbf{w})). \quad (2)$$

145

146 This formulation is ideal for studying development for three main reasons:

147

- 148 • It is **distributional**. Its definition in terms of expectations over posteriors makes it a natural
 149 tool for the Bayesian learning framework of SLT.
- 150 • It is inherently **Hessian-free**. By replacing the problematic Hessian inverse with a covariance
 151 estimation, it remains well-defined even on degenerate loss landscapes.
- 152 • It is **well-defined at any point** in the training trajectory, not just at stable local minima. This
 153 is essential for studying influence as a dynamic quantity that evolves over time.

154

155 Moreover, when the regularity assumptions hold, the BIF asymptotically recovers the classical IF in
 156 the large-data limit (Kreer et al., 2025); that is, the BIF is a natural higher-order generalization of the
 157 classical influence function. For these reasons, we adopt the BIF as our primary tool for measuring
 158 influence.

159

160

161

162 **Estimating (local) Bayesian influence functions.** To measure the BIF in practice, we use an
 163 estimator based on stochastic-gradient MCMC introduced in Kreer et al. (2025). This also introduces
 164 a dampening term that enables localizing the BIF to individual model checkpoints. For more details,
 165 see Appendix B, where we also discuss practical scaling advantages of the BIF compared to other
 166 popular IF methods, such as EK-FAC (Grosse et al., 2023).

162 2.3 STAGEWISE DATA ATTRIBUTION
163

164 **Influence and susceptibility.** In the language of statistical physics, the BIF is an example of a
165 generalized *susceptibility* that measures a system’s response (in this case, a model’s loss on sample j)
166 to a perturbation (in this case, change in importance of sample i). In physical systems, susceptibilities
167 diverge at phase transitions, which makes them macroscopically the most legible signal that a phase
168 transition is taking place. This suggests using (Bayesian) influence functions to *discover* transitions
169 during the learning process.

170 **Setup: a bimodal posterior.** A first-order phase transition is characterized by the posterior distribution
171 $p(\mathbf{w} | \mathcal{D})$ having significant mass in two distinct neighborhoods, which we label \mathcal{U} and \mathcal{V} . We
172 can model this as a mixture distribution:

$$173 \quad p(\mathbf{w} | \mathcal{D}) = \pi_{\mathcal{U}} p(\mathbf{w} | \mathcal{U}) + \pi_{\mathcal{V}} p(\mathbf{w} | \mathcal{V})$$

175 where $\pi_{\mathcal{U}}$ and $\pi_{\mathcal{V}}$ are the posterior probabilities of being in phase \mathcal{U} or \mathcal{V} respectively, with $\pi_{\mathcal{U}} + \pi_{\mathcal{V}} = 1$. At the peak of a phase transition, $\pi_{\mathcal{U}} \approx \pi_{\mathcal{V}} \approx 0.5$. Away from the transition, one of the weights is
176 close to 1 and the other is close to 0.
177

178 **Decomposing influence with the law of total covariance.** The BIF between samples i and j is
179 defined as $\text{BIF}(\mathbf{z}_i, \ell_j) = -\text{Cov}_{p(\mathbf{w} | \mathcal{D})}(\ell_i(\mathbf{w}), \ell_j(\mathbf{w}))$. We can decompose this total covariance using
180 the Law of Total Covariance, conditioning on the phase ($Z \in \{\mathcal{U}, \mathcal{V}\}$):

$$181 \quad \text{Cov}(\ell_i, \ell_j) = \underbrace{\mathbb{E}[\text{Cov}(\ell_i, \ell_j | Z)]}_{\text{Average Within-Phase Influence}} + \underbrace{\text{Cov}(\mathbb{E}[\ell_i | Z], \mathbb{E}[\ell_j | Z])}_{\text{Between-Phase Influence}}$$

183 Let’s analyze each term:
184

- 185 **1. Average Within-Phase Influence:** This term is the weighted average of the influence
186 calculated strictly within each phase:

$$187 \quad \mathbb{E}[\text{Cov}(\ell_i, \ell_j | Z)] = \pi_{\mathcal{U}} \text{Cov}_{\mathcal{U}}(\ell_i, \ell_j) + \pi_{\mathcal{V}} \text{Cov}_{\mathcal{V}}(\ell_i, \ell_j)$$

188 This represents the “baseline” influence. If there were no phase transition (e.g., $\pi_{\mathcal{U}} = 1$),
189 this is the only term that would exist.
190

- 191 **2. Between-Phase Influence:** This term captures the covariance that arises because the
192 expected losses themselves change as the model switches phases. Let $\mu_{i,\mathcal{U}} = \mathbb{E}[\ell_i | \mathcal{U}]$ be
193 the expected loss of sample i in phase \mathcal{U} , and likewise for j and \mathcal{V} . The term expands to:

$$194 \quad \text{Cov}(\mathbb{E}[\ell_i | Z], \mathbb{E}[\ell_j | Z]) = \pi_{\mathcal{U}} \pi_{\mathcal{V}} (\mu_{i,\mathcal{U}} - \mu_{i,\mathcal{V}})(\mu_{j,\mathcal{U}} - \mu_{j,\mathcal{V}})$$

195 **Predicting stagewise changes in influence.** This decomposition predicts dynamic changing in-
196 fluence patterns over learning. The departure from the classical view arises because influence is
197 phase-dependent: the baseline “within-phase” influence may differ significantly across the transition
198 ($\text{Cov}_{\mathcal{U}} \neq \text{Cov}_{\mathcal{V}}$), and the “between-phase” term introduces an additional effect during the transition.
199 In particular, we derive two predictions that diverge from the classical view:
200

- 201 **Influence Can Change Sign:** If the within-phase influences of the two phases have sig-
202 nificantly different values or if the between-phase term is large enough to dominate the
203 average baseline influence during the transition, then transitions can cause a large change in
204 magnitude or even a change in sign.
- 205 **Influence Peaks at Transitions:** The between-phase influence term is maximized when the
206 posterior mass is evenly split ($\pi_{\mathcal{U}} \approx \pi_{\mathcal{V}} \approx 0.5$), causing a sharp peak in total influence at
207 the critical point of a transition. The magnitude of the between-phase term is proportional to
208 $(\mu_{i,\mathcal{U}} - \mu_{i,\mathcal{V}})$, which means the influence spike is largest for the samples on which the two
209 phases disagree the most: peaks in influence identify the specific samples that *characterize*
210 a given transition.

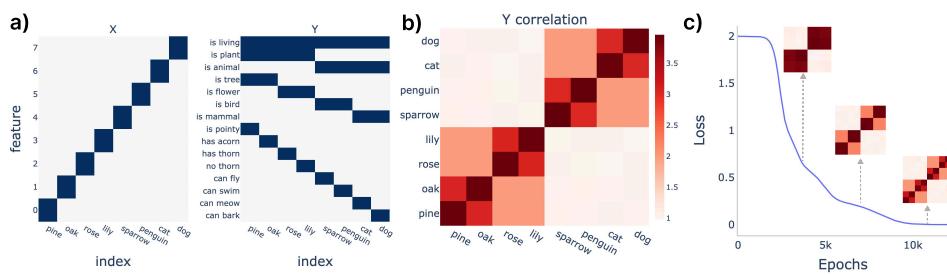
211 **Towards stagewise data attribution.** These theoretical predictions call for a shift from the classical
212 static view of training data attribution to what we term *stagewise data attribution*: the analysis of
213 influence as a dynamic trajectory over the entire learning process. The goal is to attribute learned
214 behaviors not only to the data that influenced it, but also to the specific period of time in which that
215 data had its effect. In the rest of this paper, we turn to testing the basic predictions above in order to
validate this developmental framework.

216 3 TOY MODEL OF DEVELOPMENT

218 The acquisition of semantic knowledge involves the dynamic development of hierarchical structure
 219 in neural representations. Often, broader categorical distinctions are learned prior to finer-grained
 220 distinctions, and abrupt conceptual reorganization marks the non-static nature of knowledge acquisi-
 221 tion, studied in both psychology and deep learning literature (Keil, 1979; Inhelder & Piaget, 1958;
 222 Hinton, 1986; Rumelhart & Todd, 1993; McClelland, 1995; Rogers & McClelland, 2004). For a
 223 principled understanding of the dynamical aspect of influence over training, we study a toy model of
 224 hierarchical feature learning introduced by Saxe et al. (2019a), for which ground truth and analytical
 225 tools are accessible.

226 We confirm our theoretical predictions in Section 2.3 by finding that the dynamics of influence
 227 coincide with the stagewise development of hierarchical structure. Sign flips occur as the model shifts
 228 to learning progressively finer levels of hierarchical distinctions, and peaks occur when the model
 229 begins learning a new level of distinction.

231 **Setup: a hierarchical semantic dataset.** We train a 2-layer deep linear network with MSE loss on
 232 a hierarchical semantic dataset from Saxe et al. (2019a). The dataset consists of one-hot input vectors
 233 representing objects, and each input maps to an output vector representing a collection of features
 234 that the object possesses (Figure 2). Importantly, this toy model mathematically shows that deep
 235 neural network architecture develops neural representation that reflects hierarchical differentiation in
 236 a progressive manner: learning animal vs. plants first, then mammals vs. birds, and then dogs vs. cats.
 237 See Appendix C for a detailed description of the toy model and its analytical treatment.



247 **Figure 2: A toy model of hierarchical semantic knowledge acquisition.** (a) A toy dataset adopted
 248 from Saxe et al. (2019a). Each object maps to a feature vector that describes the hierarchical structure
 249 of semantic knowledge, e.g., ‘penguin’ and `cat` are all living animals, but ‘penguin’ is a bird and
 250 `cat` is a mammal. (b) The correlation matrix of the feature output shows a hierarchical structure.
 251 (c) The hierarchical structure is acquired progressively during the training of the deep linear neural
 252 network.

255 **Measuring influence dynamics.** First, we probe the local BIF (Kreer et al., 2025) on the toy model
 256 over the entire learning trajectory. We use RMSProp-preconditioned SGLD sampler (described in
 257 Appendix B) to estimate a posterior from each checkpoint w_t^* at training time t . See Appendix B for
 258 details of the local BIF implementation and Appendix C.2 for the hyperparameter sweep. Furthermore,
 259 we derive the dynamics of the influence function analytically, leveraging the mathematical tractability
 260 of the toy model (see Appendix C.6).

261 **Leave-one-out (LOO) verification.** To confirm our observation from the BIF and analytical
 262 treatment, we conduct retraining experiments. Specifically, we consider the Leave-One-Out (LOO)
 263 setting, where we ablate one data point and measure the loss difference of other data points compared
 264 to the baseline loss without ablation. We measure the loss difference *over training time t*:

$$266 \Delta \ell_{j,t}^i = \ell_{j,t}^{\mathcal{D}} - \ell_{j,t}^{\mathcal{D}_{\setminus i}}, \quad (3)$$

268 measured at time t where \mathcal{D} is the full dataset, $\mathcal{D}_{\setminus i}$ is the dataset with data index i ablated, and j
 269 is the index of the data point that we are querying. In Figure 3, we observe that the loss difference
 from LOO results in a similar pattern to what we see in the BIF and the analytical derivation, and

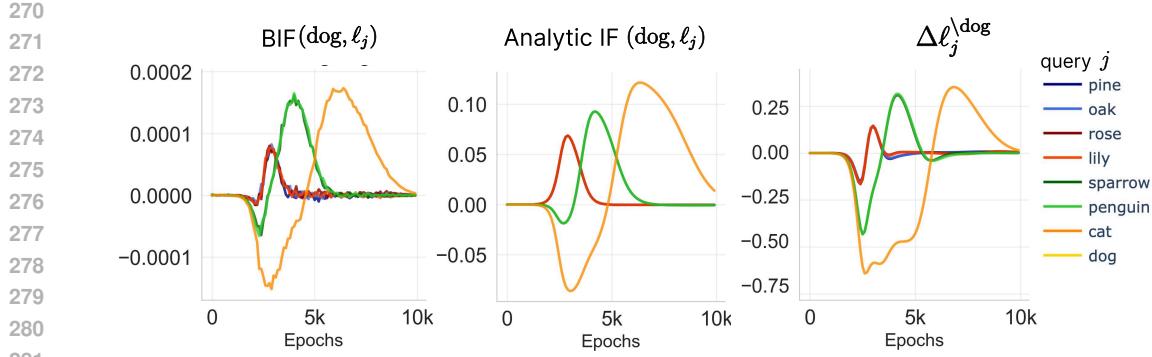


Figure 3: **Influence over time on a hierarchical semantic dataset.** We measure the influence of `dog` sample on other query samples j with the following: (Left) BIF ($\beta = 1000$, $\epsilon = 1e-3$, $\gamma = 5e-3$). (Center) Analytical IF (see full derivation in Appendix C.6). (Right) Loss difference from Leave-One-Out (LOO) retraining experiment. All three measures agree that the influence one sample has on another can vary non-monotonically over the course of training as discussed in Section 3. See Appendix C.2 for additional pairs of samples and experimental details.

validates their use. The additional results on perturbing other data points show consistent trend in Appendix C.2 and are also visible in the damped classical IF Appendix C.4.

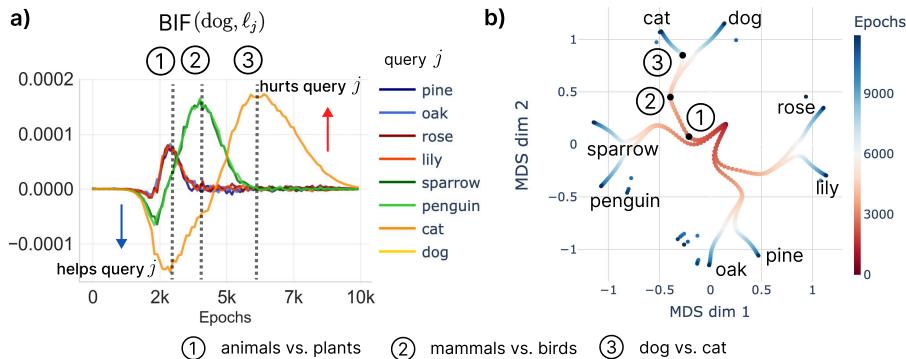
With these results, we confirm the predictions from Section 2: (1) influence changes over time non-monotonically and can change sign, and (2) peaks in influence are correlated with key developmental transitions in model behavior. In the rest of the section, we will establish how these observations are reflected in the progressive learning of the hierarchical structure in our toy model.

“When” matters for measuring influence. We clearly observe that influence goes through non-monotonic change over the course of training, strengthening our argument that a static interpretation of influence is fallacious. In Appendix C.6, we analytically derive that influence is a function of singular mode strength of data input-output covariance learned by the network, which is a time-dependent variable and thus justifies studying data attribution from a dynamic perspective. Over the course of training, each data point induces a non-static influence on other data points. The influence can flip sign—the same data can be either helpful or harmful, depending on when it is presented. It can also mark clear peaks at a specific time point on different query data points. Furthermore, the influence over time from one data point to another point is specific to those points. The influence from `dog` to `cat` might be the same as `dog` to ‘`penguin`’ early on, but they are distinguished later in the learning process.

To confirm that these influence dynamics represent a causal effect on model performance, we perform an additional retraining experiment in Appendix C.5. Instead of removing a sample for the full training run, we ablate specific data points only during short temporal windows. We find that ablating data precisely during the stage where the BIF assigns it peak influence induces the largest loss difference compared to ablation at other times. This demonstrates that our measure correctly identifies the critical window in which a specific sample drives the learning process.

Change of influence reflects stagewise learning. During the phase where one hierarchical distinction (e.g., animal vs. plant) is being learned, upweighting a data point in the same class (`dog`) is helpful for learning a query data point (`sparrow`) as indicated by a negative influence (positive covariance). In contrast, upweighting a data point that belongs to a different class harms learning that query data point (`pine`), reflected in a positive influence. A data point `dog` is helpful (negative influence) to learning `sparrow` early on in the learning, while learning to distinguish animal vs. plant, but it is harmful (positive) later on when learning to distinguish mammal vs. bird. In Figure 4 b), we show Multi-Dimensional Scaling (MDS, Torgerson 1952; Cox & Cox 2008) of hidden representation of each data over time as in Saxe et al. (2019a) where learning of each hierarchical level is reflected on the branching node (numbered). We observe that the time point of the branching node matches the peaks in influence. That is, at the transition, where the model learns

324 to distinguish mammal vs bird within the animals and form a new hierarchy level, the influence
 325 between mammal and bird is the highest.
 326



339
 340 Figure 4: **BIF captures developmental influence.** (a) The peak positive influence from dog to
 341 data points is noted with ①, ②, and ③. (b) MDS of the hidden representations in the
 342 network over the course of learning. The peaks in influence match the branching points of the MDS
 343 trajectory, where each hierarchical category develops (black points).
 344

345 4 LANGUAGE MODELS

346 To investigate the dynamics of influence in a real-world setting, we study the acquisition of token-level
 347 syntactic knowledge using language models from the Pythia Scaling Suite (Biderman et al., 2023).

348 We confirm our theoretical predictions in Section 2.3 by finding non-monotonic influence trajectories,
 349 with large changes in magnitude, sign flips, and peaks that correspond to known developmental
 350 changes like the formation of the induction circuit.

351 **Per-token influence functions.** One clear benefit of the BIF in the language-modeling setting is
 352 that computing influence at the level of individual tokens rather than sequences incurs no additional
 353 computational cost. Loss is computed on a per-token basis during RMSprop-SGLD, which is already
 354 necessary when considering the autoregressive losses that represent the standard for LLM pretraining:
 355

$$\ell_i(\mathbf{w}) = \sum_k \ell(x_{i,k} \mid x_{i,0} \dots x_{i,k-1}, \mathbf{w}),$$

356 where $x_{i,j}$ is the j th token in the i th text sequence. These per-token losses can then be stored
 357 individually and used to estimate the per-token BIF matrix for the relevant dataset.

358 **Classifying tokens into syntactic classes.** Following the experimental setup of Baker et al. (2025),
 359 we classify individual tokens according to how they are used to give structure to text. These classes
 360 include strictly syntactic tokens (left delimiters, right delimiters, and formatting tokens—such as
 361 newlines), morphological roles (parts of words and word endings), and a broader structural class—
 362 tokens that have been used in conjunction earlier in the context, forming an inductive pattern. We
 363 note that this classification is not exhaustive, nor is it exclusive—not all tokens have a class, and some
 364 may occupy multiple classes at once. A full classification is provided in Appendix D.1.1.

365 **Calculating group influence.** To estimate patterns of influence between tokens across classes, we
 366 make use of the following procedure:

- 367 1. Using a subset of The Pile (Gao et al., 2021), we compute the *normalized* BIF (Kreer et al.,
 368 2025) between all pairs of tokens, sampled from the SGLD-estimated model posterior, as
 369 described in Appendix B.
- 370 2. Each token is classified in accordance with the listed structural classes based on pattern-
 371 matching, following Baker et al. (2025).

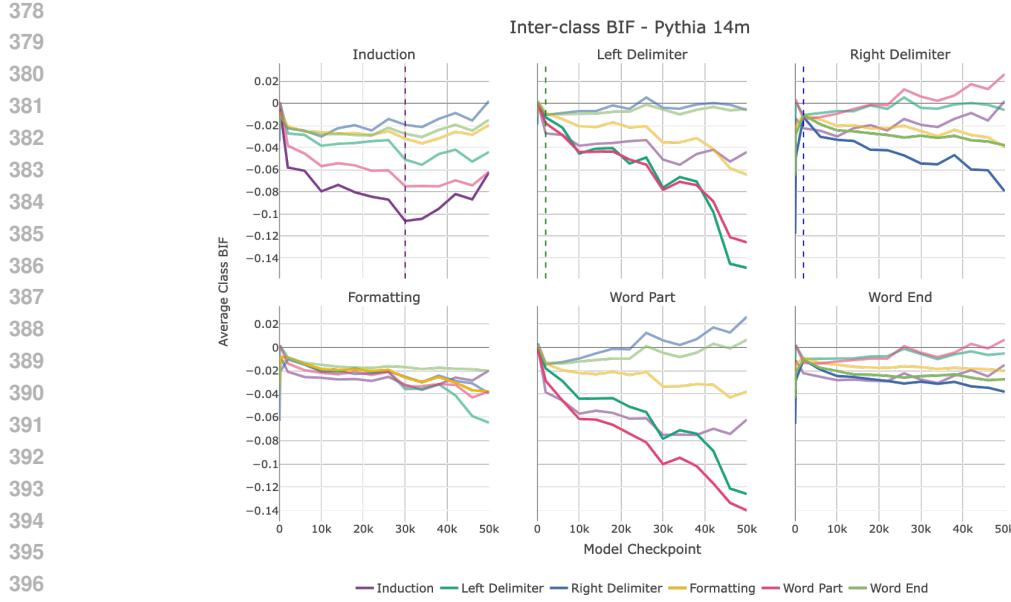


Figure 5: **Token-class relationships.** BIF between structural classes through training. We observe structural relationships between tokens reflected in influence patterns between classes, including strong intra-class relationships, development of induction, and relationships between word elements and corresponding delimiter token classes. Dashed lines indicate major inflection points in the BIF. Opacity captures strongly influencing pairs of tokens. [For additional resolution into the early stages of training, see Appendix D.1.4](#)

3. For every possible pair of classes, we compute the average (or “group”) influence between tokens in these classes, excluding influences between the same token in different classes.

These inter-class influences can then be used to provide insight into how much influence tokens from one class have tokens from other classes.

Learning induction. In Figure 5, we plot the inter-class influence for each query class across all class pairings at several model checkpoints. From these plots, some clear dynamics emerge. We see that the formation of model structures capturing induction relationships in the BIF starts as early as 1000 steps into learning, and continues to strengthen for the next 30k training steps before appearing to peak and fall, corresponding with the results of Tigges et al. (2024), which finds that Pythia models begin to learn the induction circuit at this time, and exhibit an apex at 30k training steps before diminishing.

In Appendix D.3, we study a small language model trained from scratch and track the influence on a targeted set of synthetic samples to automatically identify the induction bump. We find that the influence of induction-pattern tokens sharply rises as the induction circuit is being learned. We further validate the practical utility of these insights with a stagewise intervention experiment in Appendix D.4. We find that upweighting induction patterns specifically when the induction circuit begins to form accelerates the formation of induction heads significantly more than upweighting them before this window. This confirms the prediction derived from the influence dynamics: influence cannot be fully understood from a static analysis at the end of training.

Learning where to end. Another notable pattern occurs in the influence traces of left delimiters and right delimiters. Both classes appear among high-influence tokens for the other class very early in training, but this relationship quickly inverts, with tokens from the opposite delimiter class progressively becoming increasingly negative as the model learns to distinguish between these classes. We also see increasing influence between left and right delimiters and related classes that may perform similar roles in structuring text. Left delimiters share high influence with parts of words but not the ends of words, while right delimiters share uplifted influence with ends of words but not word

432 parts. These relationships are also visible in the reverse direction (from word parts / word ends to
 433 left / right delimiters). These relationships develop over time, with a particularly notable spike in
 434 the relationship between word parts and left delimiters later in model training. [For additional more](#)
 435 [granular influence trajectories between individual pairs of tokens, see Appendix D.2](#)

437 **Dynamics of influence.** Taken together, these results demonstrate that influence between different
 438 classes of tokens is not a static property but a dynamic one that evolves throughout training. We
 439 observe changes in both the magnitude and sign of influence, with the timing of these shifts varying
 440 depending on the specific structural capability being learned. For instance, the influence related to
 441 induction patterns exhibits a non-monotonic peak that aligns with the known developmental phase
 442 transition for this circuit. Similarly, the relationship between left and right delimiters undergoes
 443 a sign flip, indicating a qualitative shift in how the model processes scope and pairing. These
 444 findings confirm the predictions of our stagewise framework: different data becomes influential
 445 at different times, reflecting the model’s progressive, stage-by-stage acquisition of syntactic and
 446 structural knowledge.

448 5 DISCUSSION & CONCLUSION

450 **Stagewise data attribution and developmental interpretability.** This work places data attribution
 451 within the context of Developmental Interpretability. We follow the established methodology of
 452 using singular learning theory (SLT) as a theoretical lens to study the dynamics of models trained
 453 with stochastic optimizers. Prior work has successfully used this pipeline to explain phenomena
 454 like phase transitions in toy models of superposition (Chen et al., 2023), algorithm selection in
 455 transformers (Carroll et al., 2025), stagewise learning in toy transformers (Urdshals & Urdshals,
 456 2025), and the stagewise emergence of structure (e.g., n-grams, induction, parenthesis-matching,
 457 space-counting) in language models (Hoogland et al., 2024; Wang et al., 2025b; Baker et al., 2025;
 458 Wang et al., 2025a). Our contribution is to use the SLT account of phase transitions to predict and
 459 subsequently verify that a training sample’s influence is not static but a dynamic quantity that evolves
 460 with the model’s development.

462 **Stagewise vs. unrolling-based attribution.** Our work complements another important line of
 463 research that moves beyond static influence functions: trajectory-based or “unrolling” methods like
 464 TracIn (Pruthi et al., 2020), HyDRA (Chen et al., 2021), and SOURCE (Bae et al., 2024). These
 465 techniques approximate the total influence of a sample by integrating its contributions (such as
 466 gradient updates or local influence scores) across numerous checkpoints along the full training path.
 467 This approach provides a more faithful account of the path-dependent nature of SGD and can offer
 468 more accurate attribution scores than single-point estimates.

469 However, our findings regarding influence dynamics raise the possibility of cancellation effects in
 470 these unrolling-based measures. Since influence can flip signs during training, opposing contributions
 471 from different stages could potentially offset each other when integrated. While such a score may still
 472 accurately reflect the expected cumulative impact, it risks obscuring the data point’s role in driving
 473 specific developmental stages. Fundamentally, the goal of these methods differs from ours: unrolling
 474 techniques compute a single, cumulative summary of a sample’s total impact, treating the learning
 475 process as a black box. In contrast, our framework treats the learning trajectory as an object of study
 476 in itself, aiming to understand *when* data matters during development.

477 **A mechanism for implicit curricula.** The concept of a curriculum—learning from easier to harder
 478 data—has been argued consistently for more efficient neural learning (Bengio et al., 2009; Wang
 479 et al., 2021; Lee et al., 2024). However, the efficacy of this technique has been shown to be limited
 480 in practice (Wu et al., 2020; Mannelli et al., 2024). One prevalent explanation is that an *implicit*
 481 *curriculum* is adopted by learning through gradient descent in neural networks (Graves et al., 2017;
 482 Rahaman et al., 2019; Saxe et al., 2019a; Valle-Perez et al., 2018). Our findings provide a new,
 483 more granular mechanism for understanding this phenomenon. The stagewise evolution of influence
 484 demonstrates how different data points become “important” at different moments, effectively creating
 485 a dynamic, self-organizing curriculum.

486 **Limitations and future work.** Our framework points toward several avenues for future research.
 487 The primary theoretical gap remains the link between the Bayesian learning process of SLT and
 488 the non-equilibrium dynamics of SGD. On the empirical front, a key direction is to move from
 489 a behavioral to a mechanistic account of influence. Ultimately, model generalization is grounded
 490 in the circuits and internal structure a model acquires over training. A more complete science of
 491 interpretability therefore understands not just *which samples* are most influential (data attribution),
 492 but *when* they are most influential (stagewise attribution), and *how* they shape model internals such
 493 as features and circuits (mechanistic interpretability).

494 **From pointwise to stagewise data attribution.** Ultimately, this paper argues for a shift in how we
 495 approach training data attribution. The static perspective, which assigns a single, global influence
 496 score to each data point, only at the end of training, offers an incomplete and, at times, misleading
 497 picture. By demonstrating that influence is inseparable from development, we advocate for moving
 498 from point-wise to stagewise data attribution.

500 This developmental lens is essential for tackling a key scientific challenge: understanding the
 501 correspondence between data structure, loss landscape geometry, learning dynamics, and model
 502 internals (Wang et al., 2025b). Stagewise data attribution, by tracking influence *dynamics*, provide a
 503 concrete tool to map these connections, opening new possibilities for interpreting, debugging, and
 504 ultimately steering how models learn.

506 REPRODUCIBILITY STATEMENT

508 We describe our primary method, the Bayesian Influence Function (BIF) estimated via RMSPropS-
 509 GLD, in Appendix B. We first validate our predictions in a controlled toy model (Section 3), providing
 510 analytical derivations, Leave-One-Out (LOO) verification, and all hyperparameters in Appendix C.
 511 We then demonstrate our findings at scale using public Pythia language models on The Pile dataset
 512 (Section 4), with all experimental specifics, token classification schemes, and hyperparameters
 513 detailed in Appendix D.

515 LLM USAGE STATEMENT

517 We used large language models (LLMs) to assist in the preparation of this manuscript. Their role
 518 included proofreading, correcting grammatical errors, and rephrasing sentences to improve clarity and
 519 flow. Beyond surface-level edits, we utilized LLMs as a collaborative tool for brainstorming options
 520 for narrative structures and receiving feedback on the clarity of our arguments. LLMs also served as
 521 coding assistants in implementing our experiments and generating visualizations. Additionally, we
 522 used LLMs to aid in the research process, for instance, by suggesting relevant theoretical concepts
 523 such as the Law of Total Covariance for the decomposition in Section 2. In all instances, the final
 524 content, including all code, theoretical claims, and text, was reviewed, validated, and is the sole
 525 responsibility of the authors.

526 REFERENCES

528 Maxwell Adam, Zach Furman, Wilson Wu, Philipp Alexander Kreer, and Jesse Hoogland. The loss
 529 kernel: A geometric probe for deep learning interpretability, 2025.

530 Miki Aoyagi. Consideration on the learning efficiency of multiple-layered neural networks with
 531 linear units. *Neural Networks*, 172:106132, 2024.

533 Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger Grosse. If Influence Functions are
 534 the Answer, Then What is the Question? 2022. CitationKey: pbrf-if.

536 Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger B. Grosse. Training data attribution
 537 via approximate unrolling. In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
 538 gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in
 539 Neural Information Processing Systems 38: Annual Conference on Neural Information
 Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15*,

540 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/7af60ccb99c7a434a0d9d9c1fb00ca94-Abstract-Conference.html.
 541
 542

543 Garrett Baker, George Wang, Jesse Hoogland, and Daniel Murfet. Structural Inference: Studying
 544 Small Language Models with Susceptibilities, April 2025. URL <http://arxiv.org/abs/2504.18274>. arXiv:2504.18274 [cs].
 545
 546

547 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
 548 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.
 549
 550

551 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan,
 552 Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
 553 Lintang Sutawika, and Oskar Van Der Wal. Pythia: a suite for analyzing large language models
 554 across training and scaling. In *Proceedings of the 40th International Conference on Machine
 555 Learning*, ICML'23. JMLR.org, 2023.
 556
 557

558 Liam Carroll, Jesse Hoogland, Matthew Farrugia-Roberts, and Daniel Murfet. Dynamics of Transient
 559 Structure in In-Context Linear Regression Transformers, January 2025. URL <http://arxiv.org/abs/2501.17745>. arXiv:2501.17745 [cs].
 560
 561

562 Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. HyDRA: Hypergradient
 563 Data Relevance Analysis for Interpreting Deep Neural Networks. *Proceedings of the AAAI
 564 Conference on Artificial Intelligence*, 35(8):7081–7089, May 2021. ISSN 2374-3468. doi: 10.
 565 1609/aaai.v35i8.16871. URL <https://ojs.aaai.org/index.php/AAAI/article/view/16871>. Number: 8 CitationKey: HyDRA.
 566
 567

568 Zhongtian Chen, Edmund Lau, Jake Mendel, Susan Wei, and Daniel Murfet. Dynamical versus
 569 bayesian phase transitions in a toy model of superposition. *arXiv preprint arXiv:2310.06301*, 2023.
 570
 571

572 Deric Cheng, Juhan Bae, Justin Bullock, and David Kristofferson. Training Data Attribution (TDA):
 573 Examining Its Adoption & Use Cases, January 2025. URL <http://arxiv.org/abs/2501.12642>. arXiv:2501.12642 [cs].
 574
 575

576 R. Dennis Cook. Detection of influential observation in linear regression. *Technometrics : a
 577 journal of statistics for the physical, chemical, and engineering sciences*, February 1977. ISSN
 578 0040-1706. URL <https://www.tandfonline.com/doi/abs/10.1080/00401706.1977.10489493>. tex.copyright: Copyright Taylor and Francis Group, LLC.
 579
 580

581 R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
 582 detecting influential cases in regression. *Technometrics*, 22(4):495–508, 1980.
 583
 584

585 R. Dennis Cook and Sanford Weisberg. *Residuals and influence in regression*. Monographs on
 586 statistics and applied probability. Chapman and Hall, New York, 1982. ISBN 0-412-24280-0. URL
 587 <https://hdl.handle.net/11299/37076>.
 588
 589

590 Michael AA Cox and Trevor F Cox. Multidimensional scaling. In *Handbook of data visualization*,
 591 pp. 315–347. Springer, 2008.
 592
 593

594 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 595 Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
 596 An 800gb dataset of diverse text for language modeling. *CoRR*, abs/2101.00027, 2021. URL
 597 <https://arxiv.org/abs/2101.00027>.
 598
 599

600 Ryan Giordano, Tamara Broderick, and Michael I. Jordan. Covariances, robustness, and variational
 601 Bayes. *Journal of Machine Learning Research*, 19:51:1–51:49, 2017. URL <https://api.semanticscholar.org/CorpusID:53238793>.
 602
 603

604 Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
 605 curriculum learning for neural networks. In *international conference on machine learning*, pp.
 606 1311–1320. Pmlr, 2017.

594 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
 595 Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilé Lukošiūtė, Karina Nguyen,
 596 Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying Large
 597 Language Model Generalization with Influence Functions, August 2023. URL <http://arxiv.org/abs/2308.03296>. arXiv:2308.03296 [cs].

598

599 Geoffrey E Hinton. Learning distributed representations of concepts. In *Proceedings of the Annual
 600 Meeting of the Cognitive Science Society*, volume 8, 1986.

601

602 Rohan Hitchcock, Gary W Delaney, Jonathan H Manton, Richard Scalzo, and Jingge Zhu. Emergence
 603 of computational structure in a neural network physics simulator. *arXiv preprint arXiv:2504.11830*,
 604 2025.

605 Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
 606 Murfet. The developmental landscape of in-context learning. *arXiv preprint arXiv:2402.02364*,
 607 2024.

608

609 Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
 610 Murfet. Loss landscape degeneracy and stagewise development in transformers. *Transactions
 611 on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=45qJyBG80j>.

612

613 Bärbel Inhelder and Jean Piaget. *The growth of logical thinking from childhood to adolescence: An
 614 essay on the construction of formal operational structures*. Routledge, 1958.

615

616 Frank C Keil. *Semantic and conceptual development: An ontological perspective*. Harvard University
 617 Press, 1979.

618

619 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions,
 December 2020. URL <http://arxiv.org/abs/1703.04730>. arXiv:1703.04730 [stat]
 620 CitationKey: deep-influence-functions.

621

622 Philipp Alexander Kreer, Wilson Wu, Maxwell Adam, Zach Furman, and Jesse Hoogland. Bayesian
 623 influence functions for hessian-free data attribution, 2025.

624

625 Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The local learning
 626 coefficient: a singularity-aware complexity measure. In *The 28th international conference on
 627 artificial intelligence and statistics*, 2025. URL <https://openreview.net/forum?id=1av51Z1suL>.

628

629 Jin Hwa Lee, Stefano Sarao Mannelli, and Andrew Saxe. Why do animals need shaping? a theory of
 630 task composition and curriculum learning. *arXiv preprint arXiv:2402.18361*, 2024.

631

632 Simon Pepin Lehalleur, Jesse Hoogland, Matthew Farrugia-Roberts, Susan Wei, Alexander Gietelink
 633 Oldenziel, George Wang, Liam Carroll, and Daniel Murfet. You Are What You Eat – AI Alignment
 634 Requires Understanding How Data Shapes Structure and Generalisation, February 2025. URL
 635 <http://arxiv.org/abs/2502.05475>. arXiv:2502.05475 [cs].

636

637 Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic
 638 gradient langevin dynamics for deep neural networks. In *Proceedings of the AAAI conference on
 639 artificial intelligence*, volume 30, 2016.

640

641 Stefano Sarao Mannelli, Yaraslav Ivashynka, Andrew Saxe, and Luca Saglietti. Tilting the odds at
 642 the lottery: the interplay of overparameterisation and curricula in neural networks. *Journal of
 643 Statistical Mechanics: Theory and Experiment*, 2024(11):114001, 2024.

644

645 James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
 646 curvature. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference
 647 on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 2408–2417,
 648 Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/martens15.html>.

649

650 JL McClelland. A connectionist perspective on knowledge and development. In *Developing cognitive
 651 competence*, pp. 157–204. Psychology Press, 1995.

648 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 649 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 650 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 651 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 652 and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
 653 <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

654 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating
 655 Training Data Influence by Tracing Gradient Descent. In *Advances in Neu-
 656 ral Information Processing Systems*, volume 33, pp. 19920–19930. Curran Asso-
 657 ciates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/e6385d39ec9394f2f3a354d9d2b88eec-Abstract.html>. CitationKey: TracIn.

658 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 659 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference
 660 on machine learning*, pp. 5301–5310. PMLR, 2019.

661 Timothy T Rogers and James L McClelland. *Semantic cognition: A parallel distributed processing
 662 approach*. MIT press, 2004.

663 David E Rumelhart and Peter M Todd. 1 learning and connectionist. *Attention and performance
 664 XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience*, 14:
 665 3, 1993.

666 Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
 667 of learning in deep linear neural networks. *arXiv preprint arXiv:1312.6120*, 2013.

668 Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
 669 development in deep neural networks. *Proceedings of the National Academy of Sciences*, 116(23):
 670 11537–11546, 2019a. doi: 10.1073/pnas.1820226116. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1820226116>.

671 Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
 672 development in deep neural networks. *Proceedings of the National Academy of Sciences*, 116(23):
 673 11537–11546, June 2019b. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1820226116. URL
 674 <https://pnas.org/doi/full/10.1073/pnas.1820226116>.

675 Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. LLM Circuit Analyses Are Consistent
 676 Across Training and Scale. In *The Thirty-eighth Annual Conference on Neural Information
 677 Processing Systems*, November 2024.

678 Warren S Torgerson. Multidimensional scaling: I. theory and method. *Psychometrika*, 17(4):401–419,
 679 1952.

680 Einar Urdshals and Jasmina Urdshals. Structure development in list-sorting transformers. *arXiv
 681 preprint arXiv:2501.18666*, 2025.

682 Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes because the
 683 parameter-function map is biased towards simple functions. *arXiv preprint arXiv:1805.08522*,
 684 2018.

685 Aad W Van der Vaart. *Asymptotic statistics*, volume 3. Cambridge university press, 2000.

686 George Wang, Garrett Baker, Andrew Gordon, and Daniel Murfet. Embryology of a Language Model,
 687 August 2025a. URL <http://arxiv.org/abs/2508.00331>. arXiv:2508.00331 [cs].

688 George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differentiation
 689 and Specialization of Attention Heads via the Refined Local Learning Coefficient. In *Proceedings
 690 of The 13th International Conference on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=SUc1UOWndp¬eId=MCoFYhi7ZE>.

691 Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. *IEEE transactions on
 692 pattern analysis and machine intelligence*, 44(9):4555–4576, 2021.

702 Sumio Watanabe. *Algebraic Geometry and Statistical Learning Theory*. Cambridge Monographs on
703 Applied and Computational Mathematics. Cambridge University Press, 2009.
704

705 Sumio Watanabe. *Mathematical theory of Bayesian statistics*. Chapman and Hall, 2018.

706 Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics.
707 In *Proceedings of the 28th International Conference on International Conference on Machine*
708 *Learning*, ICML'11, pp. 681–688, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.
709

710 Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work? *arXiv preprint*
711 *arXiv:2012.03107*, 2020.

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 757 758 Appendix

759 1. **Appendix A: Phase Transitions.** This section provides a formal outline of how phase
760 transitions arise in singular models and how they impact influence functions.

761 2. **Appendix B: Bayesian Influence Functions.** This section provides additional experimental
762 details on estimating the local BIF.

763 3. **Appendix C: Toy Model Details and Additional Results.** This subsection describes the
764 hierarchical dataset, model architecture, and Leave-One-Out (LOO) training procedure.
765 It also contains additional LOO results and the full analytical derivation of the influence
766 dynamics in the deep linear network model.

767 4. **Appendix D: Language Model Details and Additional Results.** This subsection describes
768 the structural token classification scheme, provides RMSPropSGLD hyperparameters for
769 the Pythia experiments, and details additional validation experiments.

771 A PHASE TRANSITIONS

774 In this appendix, we provide a theoretical justification for the claims made in Section 2 regarding
775 phase transitions and their effect on model predictions and influence, grounded in statistical physics
776 and the theory of Bayesian statistics. This theoretical treatment motivates our empirical investigation
777 into the interaction between stagewise development and influence functions for models trained via
778 standard stochastic optimizers.

779 A.1 BIF AS SUSCEPTIBILITY

780 **Setup.** We begin with the model-truth-prior triplet:

781 1. The **model** $p(\mathbf{z} \mid \mathbf{w})$ assigns a probability to a sample $\mathbf{z} \in \mathcal{Z}$ for a given choice of weights
782 $\mathbf{w} \in \mathcal{W} \subseteq \mathbb{R}^d$.

783 2. The **truth** or data-generating distribution $q(\mathbf{z})$ generates a dataset of i.i.d. samples =
784 $\{\mathbf{z}_i\}_{i=1}^n$.

785 3. The **prior** $\varphi(\mathbf{w})$ assigns an initial probability distribution to each choice of weights.

786 From this triplet, we obtain a posterior through (the repeated application of) Bayes' rules:

$$787 p(\mathbf{w} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \mathbf{w})\varphi(\mathbf{w})}{p(\mathcal{D})}, \quad (4)$$

788 where $p(\mathcal{D} \mid \mathbf{w}) = \prod_i p(\mathbf{z}_i \mid \mathbf{w})$ is the likelihood, and $p(\mathcal{D}) = \int_{\mathcal{W}} p(\mathcal{D} \mid \mathbf{w})\varphi(\mathbf{w})d\mathbf{w}$ is the
789 marginal likelihood. Often, we're interested in a *tempered* Bayesian posterior:

$$790 p_{\beta}(\mathbf{w} \mid \mathcal{D}) = \frac{p_{\beta}(\mathcal{D} \mid \mathbf{w})\varphi(\mathbf{w})}{p_{\beta}(\mathcal{D})} = \frac{e^{-\beta \cdot \ell(\mathbf{w})}\varphi(\mathbf{w})}{p_{\beta}(\mathcal{D})}, \quad (5)$$

791 where β is a vector of per-sample importance weights, and $\ell(\mathbf{w})$ is the vector of per-sample losses
792 for a given weight \mathbf{w} .

793 **The (global) free energy formula.** The (global) free energy is the negative log marginal likelihood,
794 $F_n^{\beta} = -\log p_{\beta}(\mathcal{D})$. A central result of singular learning theory (SLT; Watanabe 2009) is an
795 asymptotic (in the limit of infinite data) expression for this quantity. For a critical point \mathbf{w}^* in a
796 neighborhood \mathcal{W} , the free energy asymptotically expands as

$$801 F_n := F_n^{\beta} \Big|_{\beta=1} = nL_n(\mathbf{w}^*) + \lambda(\mathbf{w}^*) \log n + O_p(\log \log n), \quad (6)$$

802 where $\lambda(\mathbf{w}^*)$ is the learning coefficient, a degeneracy-aware measure of complexity (that coincides
803 with half the effective parameter count for minimally singular models).

810 **Free energy as moment-generating function.** In statistical physics and thermodynamics, the
 811 free energy is the central object of study. This is because, if one manages to obtain a closed-form
 812 expression for the free energy, it is possible to calculate arbitrary expectation values simply by
 813 differentiating the free energy. Expectation values are of primary interest because they correspond to
 814 the things we can measure in an experimental setting.

815 For example, in the learning theory setting, the expected (per-sample) loss can be expressed as
 816

$$817 \quad \mathbb{E}[\ell_i(\mathbf{w})] = \frac{\partial F_n^\beta}{\partial \beta_i} \Big|_{\beta=1}. \quad (7)$$

820 Combining Equation (7) with Equation (2), lets us express the BIF as a 2nd-order derivative of the
 821 free energy, assuming both samples are in the training dataset:
 822

$$823 \quad \text{BIF}(\mathbf{z}_i, \mathbf{z}_j) = \frac{\partial \mathbb{E}_\beta[\ell_j(\mathbf{w})]}{\partial \beta_i} \Big|_{\beta=1} = \frac{\partial^2 F_n^\beta}{\partial \beta_i \partial \beta_j} \Big|_{\beta=1}. \quad (8)$$

826 Susceptibilities are defined as second-order derivatives of the free energy, which makes the BIF an
 827 example of a generalized susceptibility.
 828

829 A.2 INTERNAL MODEL SELECTION

831 **The (local) free energy formula.** The local free energy formula is defined analogously to the
 832 global free energy, but with the domain of integration restricted to a particular region of parameter
 833 space or “phase” $W \subseteq \mathcal{W}$:

$$834 \quad F_n^\beta(W) = -\log \int_W p_\beta(\mathcal{D} \mid \mathbf{w}) \varphi(\mathbf{w}) d\mathbf{w}. \quad (9)$$

837 This admits an analogous asymptotic form to Equation (6):
 838

$$839 \quad F_n(W) := F_n^\beta(W) \Big|_{\beta=1} = n L_n(\mathbf{w}^*) + \lambda(\mathbf{w}^*) \log n + O_p(\log \log n), \quad (10)$$

842 but where now \mathbf{w}^* is a local minimum within W , and λ is the local learning coefficient associated
 843 with that local minimum (Lau et al., 2025).

844 **Coarse-graining.** Given a partitioning of parameter space into multiple disjoint “phases” $\mathcal{W} =$
 845 $\cup_i W_i$, the global free energy can be computed from the local per-phase free energies as follows:
 846

$$848 \quad F_n = -\log \int_{\mathcal{W}} e^{-n L_n(\mathcal{D} \mid \mathbf{w})} \varphi(\mathbf{w}) d\mathbf{w} \quad (11)$$

$$851 \quad = -\log \sum_i \int_{W_i} e^{-n L_n(\mathcal{D} \mid \mathbf{w})} \varphi(\mathbf{w}) d\mathbf{w} \quad (12)$$

$$853 \quad = -\log \sum_i e^{-F_n(W_i)} \quad (13)$$

$$856 \quad \approx \min_i F_n(W_i). \quad (14)$$

858 The last line follows from the well-known use of a log-sum exponential as a smooth approximation
 859 for the max function. This is to say that globally, the free energy is determined primarily by the phase
 860 with the lowest free energy, with exponentially suppressed contributions from all other regions of
 861 phase space.

862 **Competition between phases.** Assume the posterior distribution is concentrated in just two distinct
 863 neighborhoods, which we label \mathcal{U} and \mathcal{V} , and is vanishing everywhere else. That is, these two phases

864 constitute a degenerate set of minimizers of the free energy. We can then write the posterior as a
 865 mixture distribution:

$$867 \quad p(\mathbf{w} \mid \mathcal{D}) = p(\mathbf{w} \mid \mathcal{U})p(\mathcal{U} \mid \mathcal{D}) + p(\mathbf{w} \mid \mathcal{V})p(\mathcal{V} \mid \mathcal{D})$$

868 where $p(\mathbf{w} \mid \mathcal{U})$ is the posterior distribution conditioned on the model being in phase \mathcal{U} , and $p(\mathcal{U} \mid \mathcal{D})$
 869 is the total posterior probability of this phase, with $\pi_{\mathcal{U}} + \pi_{\mathcal{V}} \approx 1$.

870 **First-order phase transitions.** This free energy formula predicts the existence of first-order
 871 “Bayesian” phase transitions. When two solutions compete, e.g., u with neighborhood \mathcal{U} and v
 872 with neighborhood \mathcal{V} , then the posterior log-odds evolve as $\log \frac{p_n(\mathcal{U})}{p_n(\mathcal{V})} = n\Delta L_n + \log(n)\Delta\lambda +$
 873 $O_p(\log \log n)$, where $\Delta L_n = L_n(v) - L_n(u)$ and $\Delta\lambda = \lambda(v) - \lambda(u)$. If u has higher loss but lower
 874 complexity ($\Delta L_n < 0, \Delta\lambda > 0$), the posterior initially prefers the simple solution \mathcal{U} but switches to
 875 the complex solution \mathcal{V} when $\log(n)/n < -\Delta L_n/\Delta\lambda$. This is a “Type-A” transition (Carroll et al.,
 876 2025; Hoogland et al., 2025), see Figure 1.

877 Alternatively, if the two phases agree on the linear term (they have the same minimum loss), then
 878 the trade-off will be pushed down into lower-order terms, and there can be a “Type-B” transition, in
 879 which complexity (as measured by the LLC) *decreases*, in exchange for an increase in lower-order
 880 terms.

883 B BAYESIAN INFLUENCE FUNCTIONS

884 **Estimating the BIF with SGMCMC.** To estimate the BIF in practice, we use an RMSProp-
 885 preconditioned SGLD sampler (Welling & Teh, 2011; Li et al., 2016) to estimate a posterior from each
 886 checkpoint \mathbf{w}^* . This approximates Langevin dynamics with loss gradients and locality regularization
 887 from initial \mathbf{w}^* modulated by localization strength γ ,

$$890 \quad \mathbf{w}_{s+1} = \mathbf{w}_s - \frac{\hat{\epsilon}_s}{2} \left(\sum_{i \in |\mathcal{D}|} \nabla_{\mathbf{w}} \ell_i(\mathbf{w}_s) + \gamma(\mathbf{w}_s - \mathbf{w}^*) \right) + \mathcal{N}(0, \hat{\epsilon}_s). \quad (15)$$

893 The update rule takes advantage of an adaptive learning rate $\hat{\epsilon}_s$ compared to vanilla SGLD and is more
 894 robust to varying step size (Hitchcock et al., 2025). The full algorithm is described in Appendix B.
 895

896 **Practical considerations with the BIF.** As mentioned in the main body and following the discussion
 897 at length in Kreer et al. (2025), we consider several practical modification of the local BIF. First,
 898 we use a normalized BIF for the language-modeling experiments, which involves computing the
 899 Pearson correlation instead of the covariance over losses. Empirically, we find that this behaves more
 900 stably than the raw covariance and thus is easier to track over time. Second, we consider a per-token
 901 BIF, which can be trivially obtained by avoiding the loss accumulation over token indices and saving
 902 all per-token losses at each SGLD draw. Finally, to avoid potentially spuriously high covariances,
 903 we drop same-token influence scores when computing aggregate group influence scores, as in Adam
 904 et al. (2025).

905 **Addressing influence from unseen training samples.** A potential objection to our developmental
 906 analysis is that at early checkpoints, the model’s optimizer has not yet encountered every training
 907 sample. It might therefore seem paradoxical to measure the “influence” of a sample the model has
 908 not yet “seen.”

909 This concern can be straightforwardly resolved. The BIF is defined as the sensitivity of an observable
 910 to a sample’s contribution weight, β_i , to the total loss. For a sample \mathbf{z}_i that has already been processed,
 911 we measure influence by considering perturbations around its baseline weight of $\beta_i = 1$. For a sample
 912 the optimizer has not yet encountered, we can simply treat its current weight as $\beta_i = 0$ and evaluate
 913 the same derivative at that point.

914 The resulting quantity remains well-defined, with a slightly different interpretation: it measures the
 915 model’s sensitivity to the *initial introduction* of a new sample, rather than the *re-weighting* of an
 916 existing one. Our practical implementation naturally accommodates this, as we use independent data
 917 sources for the SGLD gradient updates and the forward passes used to compute the loss covariance.

Algorithm 1 RMSPropSGLD for Bayesian influence

918
 919 **Input:** Initial model parameters $\mathbf{w}^* \in \mathbf{w}$, training dataset $\mathcal{D} = (\mathbf{z}_i)_{i=1}^{n=8}$, loss functions $\ell_i := \ell(\mathbf{z}_i; -)$: $\mathbf{w} \rightarrow \mathbb{R}$ for each $i \in [n]$, observables $\phi_j: \mathbf{w} \rightarrow \mathbb{R}$ for each $j \in [n]$, RMSPropSGLD hyperparameters ϵ (step size), β (inverse temperature), γ (localization), m (sampling batch size), C (number of chains), T (chain length), b (decay rate), α (stability constant).
 920 **Output:** $\mathbf{B} = (\text{BIF}(\mathbf{z}_i, \phi_j))_{1 \leq i \leq n, 1 \leq j \leq m} \in \mathbb{R}^{n \times m}$
 921 $\mathbf{L} \leftarrow \mathbf{0}_{n \times CT}, \mathbf{\Phi} \leftarrow \mathbf{0}_{m \times CT}$
 922 **for** $1 \leq c \leq C$ **do**
 923 $\mathbf{w} \leftarrow \mathbf{w}^*$
 924 **for** $1 \leq t \leq T$ **do**
 925 **for** $1 \leq i \leq n$ **do**
 926 $\mathbf{L}_{i, (c-1)C+t} \leftarrow \ell_i(\mathbf{w})$ ▷ Compute train losses
 927 **end for**
 928 **for** $1 \leq j \leq m$ **do**
 929 $\mathbf{\Phi}_{j, (c-1)C+t} \leftarrow \phi_j(\mathbf{w})$ ▷ Compute observables
 930 **end for**
 931 Sample full batch $\mathcal{B} = \mathcal{D}$ of size $m = n$ for small toy dataset.
 932 $\mathbf{V}_t \leftarrow b\mathbf{V}_{t-1}[i] + (1-b)\nabla_{\mathbf{w}}\ell^2$
 933 $\hat{\mathbf{V}}_t \leftarrow \frac{1}{1-b^t}\mathbf{V}_t$
 934 $\hat{\epsilon}_t \leftarrow \frac{\epsilon}{\sqrt{\hat{\mathbf{V}}_t + \alpha}}$
 935 $\eta_t \leftarrow \eta \sim \mathcal{N}(0, 1)$
 936 $\mathbf{w} \leftarrow \mathbf{w} - \frac{\hat{\epsilon}_t}{2} \left(\frac{\beta n}{m} \sum_{k \in \mathcal{B}_t} \nabla_{\mathbf{w}}\ell_k(\mathbf{w}) + \gamma(\mathbf{w} - \mathbf{w}^*) \right) + \sqrt{\hat{\epsilon}_t}\eta_t$ ▷ SGLD update
 937 **end for**
 938 **end for**
 939 $\mathbf{B} \leftarrow \frac{1}{CT-1} \mathbf{L} \left(\mathbf{I}_{CT} - \frac{1}{CT} \mathbf{1}_{CT} \mathbf{1}_{CT}^\top \right)^2 \mathbf{\Phi}^\top$ ▷ Covariance between \mathbf{L} and $\mathbf{\Phi}$
 940 **Return** \mathbf{B}
 941
 942
 943
 944
 945
 946
 947
 948

949 **Scalability of BIF.** Besides the theoretical advantages discussed in Section 2.2, the BIF also has
 950 several practical advantages over classical IF approximations, as discussed in Kreer et al. (2025).

951 First, classical approximations like EK-FAC (Grosse et al., 2023) incur a substantial up-front computational cost to “fit” the inverse Hessian estimate. The BIF, in contrast, has no upfront fitting cost.
 952 This comes at the cost of having a higher compute cost per individual query. This means that the BIF
 953 is more computationally efficient for smaller datasets, while the classical IF is more efficient for larger
 954 datasets, where it can amortize the upfront costs over many queries. For the settings we considered,
 955 where the focus is studying development, the priority was coverage over many checkpoints rather
 956 than coverage over the entire dataset. These tradeoffs favored the BIF as the more tractable choice.
 957

958 Furthermore, our focus on *fine-grained* structural attribution places us in the specific regime where
 959 BIF is most efficient: computing dense, per-token influence matrices for targeted subsets of data.
 960 Unlike Hessian-based methods, which typically require sequential scoring passes to isolate each
 961 individual token contribution, the BIF estimator computes the full set of token-by-token influences
 962 in a single batched process without additional memory overhead for backpropagating individual
 963 per-token gradients.

964
 965 **C TOY MODEL OF DEVELOPMENT**
 966
 967

968
 969 In this section, we provide details of the toy model experimental details and analytical investigation of
 970 deep linear neural network learning dynamics under the data perturbation introduced in Section 3. It
 971 includes a training setup of toy data with a 2-layer deep linear neural network and BIF hyperparameter
 972 sweeps, and extended results of the Leave-One-Out (LOO) experiments and BIF measurements.

972
973

C.1 TOY DATASET

974
975
976
977
978
979

We use the semantic hierarchical dataset introduced in Saxe et al. (2019a). We set the number of data points $N = 8$ with hierarchy level $H = 3$, that is, the data can be organized by 4 levels of hierarchy, e.g., `dog` belongs to the lowest hierarchy level 1 of living organism, and level 2 of animals (vs. plants), and level 3 of mammals (vs. birds). The input is a data index given by an identity matrix of size $N \times N$. The model needs to learn to associate with the feature of each data point, which forms the above hierarchical structure, the output size of $N \times O$ with $O = 15$.

980
981
982
983

We train a 2-layer bias-free linear neural network with 50 hidden neurons, which is overparameterized for our rank 8 dataset. We initialize the network with small weights by sampling from a Gaussian distribution $\mathcal{N} \sim (0, \sigma^2)$, $\sigma = 1e^{-3}$. We train the network on mean squared error (MSE) loss with a small learning rate $5e^{-3}$ and train for $10K$ epochs with full batch unless mentioned otherwise.

984
985

C.2 BIF ADDITIONAL RESULTS AND HYPERPARAMETERS SWEEP

986
987
988
989
990
991
992
993

For a principled decision of hyperparameters for the SGLD sampler, we perform a preliminary hyperparameter sweep on the SGLD sampler using the same deep linear neural network architecture and the data to estimate LLC. Since ground truth LLC is known for deep linear neural networks (Aoyagi, 2024), we can select a range of hyperparameters by choosing ones that have a well-matched LLC estimate to the ground truth. Based on this procedure, we validate the superiority of RMSPropSGLD to vanilla SGLD and also the insensitivity of the sampler quality to decay rate b and stability constant α in a certain range and fixed the value to reduce the grid search dimension. We also narrowed down the localization strength range.

994
995
996
997

The range of the conducted hyperparameter sweeps for BIF measurement is summarized in Table 1. The values given in the range were sampled on a logarithmic scale. RMSPropSGLD sampling procedure is shown in B.

998
999

Table 1: Summary of hyperparameter sweep range for BIF experiments on toy model.

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

Hyperparameter	Range
ϵ (step size)	[1e-7 - 1e-2]
β (inverse temperature)	[1e+1 - 1e+4]
γ (localization strength)	[1e-2 - 1e+6]
m (batch size)	8 (full batch)
C (number of chains)	[2,4,8]
T (chain length)	[200, 400, 800, 1000]
b (decay rate)	[0.8, 0.9, 0.95, 0.99]
α (stability constant)	[1e-4 - 1.0]

1010
1011
1012
1013
1014
1015

We present the Pearson correlation coefficient between Leave-One-Out (LOO) loss difference trajectory and BIF trajectory over learning over varying hyperparameter choices of inverse temperature β , localization strength γ and step size ϵ in Figure 6. In Figure 6, we see that the correlation coefficient changes smoothly as we vary the hyperparameters. In the main Section 3 Figure 3, we showed the BIF measured with the hyperparameters that have the highest correlation with LOO ($\beta = 1000, \epsilon = 1e-3, \gamma = 5e+3$).

1016

C.3 LEAVE-ONE-OUT (LOO) EXPERIMENT

1017
1018
1019
1020
1021

For the Leave-One-Out (LOO) experiment, which is also referred to as retraining, we mask the corresponding data index to 0 for both input and output. We use the same hyperparameter as above and we report the loss difference of data j after ablating data i at each time, $\Delta \ell_{j,t} = \ell_{j,t}^{\mathcal{D}} - \ell_{j,t}^{\mathcal{D} \setminus i}$.

1022
1023

C.4 CLASSICAL INFLUENCE FUNCTION

1024
1025

We measure classical influence over the training trajectory of the toy model

$$\text{IF}_t(\mathbf{z}_i, \phi) = -\nabla_{\mathbf{w}_t} \phi(\mathbf{w}_t)^\top \mathbf{H}^{-1}(\mathbf{w}_t) \nabla_{\mathbf{w}_t} \ell_i(\mathbf{w}_t), \quad (16)$$



Figure 6: **BIF-LOO trace correlation with varying inverse temperature β , localization strength γ and step size ϵ .** On a single grid point between two hyperparameters (e.g. γ, ϵ in the leftmost), multiple points refer to different values of the remaining hyperparameter (β in the leftmost). In general, high γ and low ϵ gave the highest correlation with the gold standard LOO experiment, and β was less significant in the toy model.

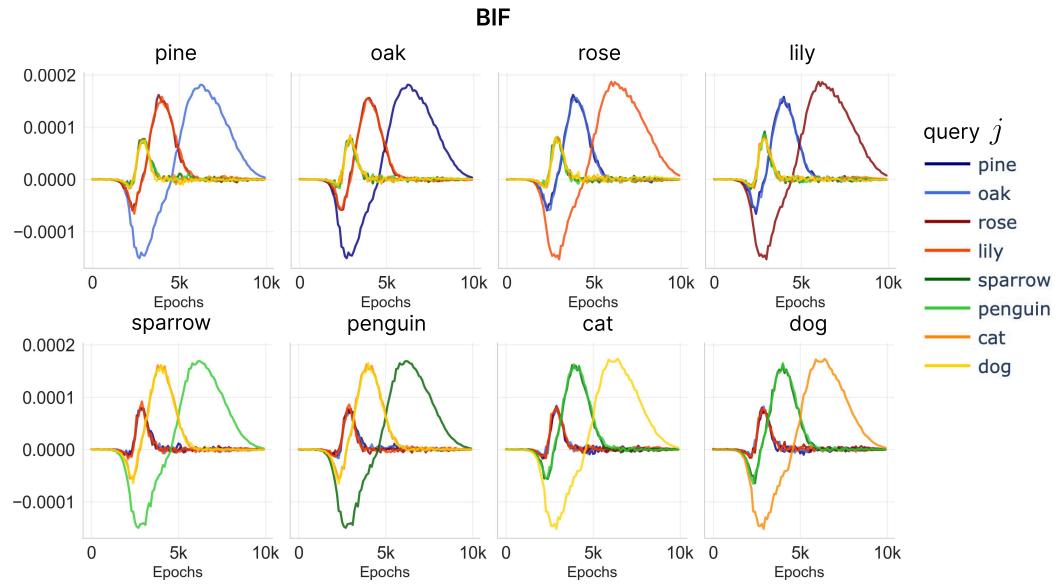


Figure 7: **BIF for perturbing each data point.** The subtitle indicates the perturbed data point.

at time t . Note that we do not use the global minimum \mathbf{w}^* but the minimum at that specific measurement time t . Since the Hessian \mathbf{H} of the overparameterized neural network is non-invertible due to multiple zero / near-zero eigenvalues, we take the approximation methods as in Koh & Liang (2020); Grosse et al. (2023). First is to add a constant dampening term γ to the Hessian,

$$\tilde{\mathbf{H}} = \mathbf{H} + \gamma^* \mathbf{I}. \quad (17)$$

Suitable γ enforces $\tilde{\mathbf{H}}$ to have positive eigenvalues. Grosse et al. (2023); Martens & Grosse (2015); Bae et al. (2022) used damped Gauss-Newton-Hessian (GNH), an approximation to \mathbf{H} which linearizes the network's parameter-output mapping around the current parameters,

$$\mathbf{G} = \mathbb{E}[\mathbf{J}^\top \mathbf{H} \mathbf{J}] \quad (18)$$

$$\bar{\mathbf{H}} = \mathbf{G} + \lambda^* \mathbf{I}. \quad (19)$$

Using approximated damped-Hessian ($\tilde{\mathbf{H}}$) and damped GNH ($\bar{\mathbf{H}}$), we measure classical influence function over time (Eq. 16) with varying dampening constant γ .

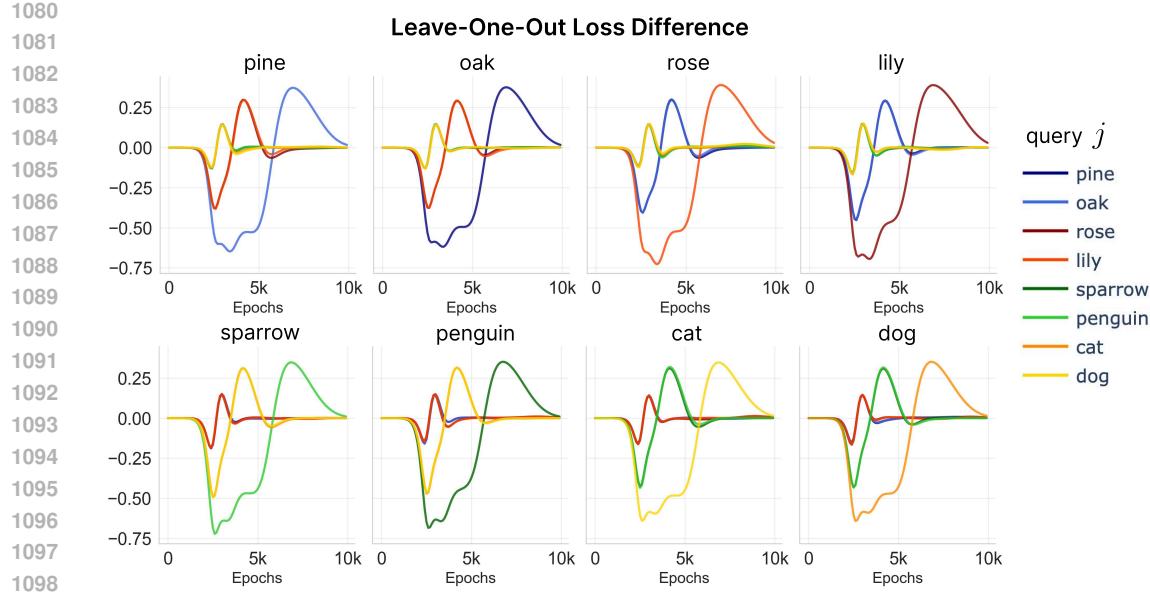


Figure 8: **Leave-One-Out (LOO) loss difference for perturbing each data point.** The title indicates the ablated data point.

The dampening constant γ^* is scaled with α , the maximum absolute value of all eigenvalues of the \mathbf{H}

$$\gamma^* = \gamma\alpha, \quad (20)$$

and we vary γ in range of $[1e-3, 10]$ in logarithmic scale.

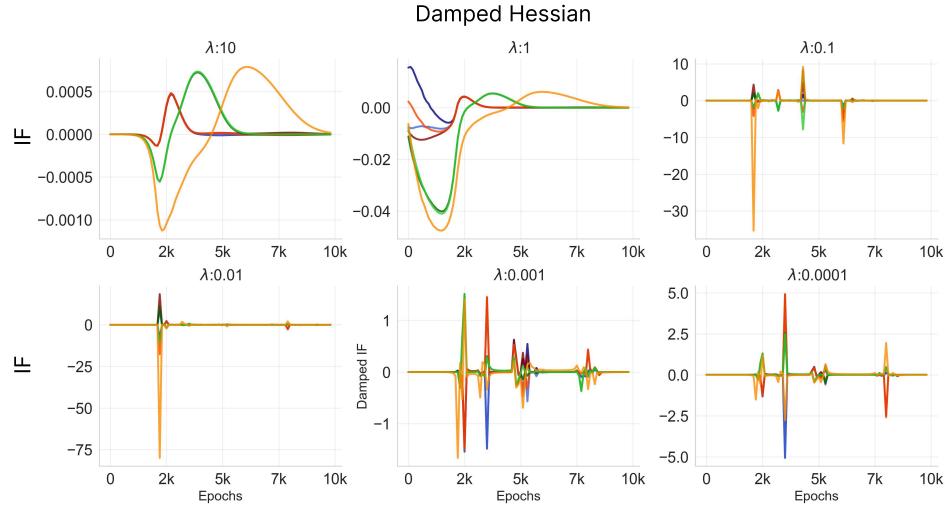


Figure 9: **Influence with damped Hessian approximation.** We measure the classical influence of the `dog` sample with damped Hessian approximation $\tilde{\mathbf{H}}$ with varying dampening constant γ .

C.5 TIME-SPECIFIC ABLATION EXPERIMENT

Our observation that influence is a time-dependent function proposes another perspective – perturbing the same data point but at different training times would lead to non-identical influence. That is, the exact moment the network interacts with each data point matters. Here we probe this hypothesis with a simple retraining experiment in the toy model. We hypothesize that the measured influence

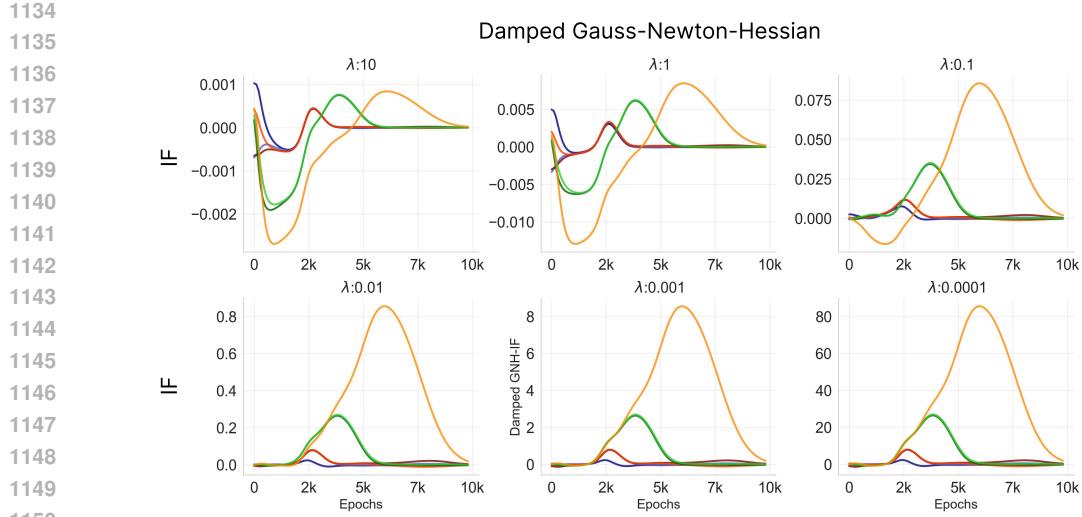


Figure 10: **Influence with damped Gauss-Newton-Hessian approximation.** We measure the classical influence of the dog sample with damped Gauss-Newton-Hessian approximation $\tilde{\mathbf{H}}$ with varying dampening constant γ .

trajectory tells us which time point would be most critical for a model to learning each sample. For example, the influence of dog on cat makes a peak around $t = 6000$, which implies ablating dog around that time would be most helpful in learning cat. We probe this hypothesis with a retraining experiment with a brief ablation at different stages of learning.

In Figure 11, we ablate a data point dog during the duration of D epochs from t and show the integrated loss difference compared to the baseline (no ablation) during D . As we expected, the loss difference is the biggest around $t = 6000$, when the highest influence occurs, indicating ablating dog was helpful the most at this stage. Similarly, we observe the negative peak of integrated loss difference around $t = 3000$, which also matches the negative minimum in the influence measurement, implying that learning of the cat was the most detrimental at this time point when dog is ablated. We show that the most important stage changes with the query data that belongs to a different hierarchy, e.g., sparrow. Collectively, we strengthen our claim that influence over time shows us how a sample interacts with “what” data “when”, and that it is often correlated with the structure of the data, such as hierarchy.

C.6 ANALYTICAL INVESTIGATION OF TOY MODEL

In this section, we analytically derive the dynamics of the influence function in a deep linear neural network. First, we introduce deep linear neural network learning dynamics studied in Saxe et al. (2013; 2019b) and then we show the time dependency of the influence function and its relation to progressive learning of the hierarchical structure.

DEEP LINEAR NEURAL NETWORK LEARNING DYNAMICS

Following the singular modes learning formulation in Saxe et al. (2019a; 2013), we can describe each data point i ’s loss into the singular modes basis. We assume whitened input $\mathbf{X} \in \mathbb{R}^{N \times D}$, $\mathbf{X}^T \mathbf{X} = \mathbf{I}$ and output $\mathbf{Y} \in \mathbb{R}^{N \times O}$. The input-output correlation and its singular value decomposition (SVD) become

$$\mathbf{C} := \Sigma_{yx} = \mathbf{Y}^T \mathbf{X} \quad (21)$$

$$SVD(\Sigma_{yx}) = \mathbf{U} \mathbf{S} \mathbf{V}^\top. \quad (22)$$

With squared error loss, individual data point at data i is $\ell_i = \frac{1}{2} \|\mathbf{y}_i - \hat{\mathbf{y}}_i\|^2$. We project data \mathbf{x}_i to \mathbf{V} space (object analyzer) and its component becomes $\varepsilon_{ik} = \mathbf{x}_i^\top \mathbf{V}_k$, where \mathbf{V} is a column vector of \mathbf{V} . Similarly, we project $\eta_{ik} = \mathbf{y}_i^\top \mathbf{U}_k$ and with rank $r = \text{rank}(\mathbf{C})$,

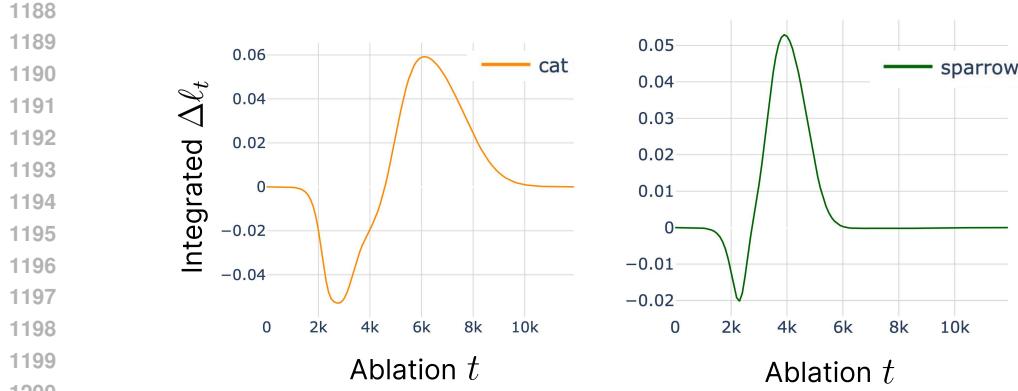


Figure 11: **Brief ablation of dog.** For each experiment, we ablate `dog` for duration $D = 100$ epochs starting from timepoint t . Starting time t is sampled uniformly with an interval of 200 epochs. For each experiment, we integrate the loss difference to the baseline during D . We show the integrated loss of query (a) `cat` and (b) `sparrow` over different ablation windows. The most critical period of influence from the `dog` on the two samples is different. The higher level hierarchy (animals) sharing sample `sparrow` has an earlier critical point than the lower level hierarchy (mammals) sharing sample `cat`.

$$\ell_i = \frac{1}{2} \sum^r (\eta_{ir} - g_r \varepsilon_{ir})^2, \quad (23)$$

g_k is a singular mode strength of mode k of the network obtained from

$$\mathbf{W}(t) = \mathbf{W}_2(t)\mathbf{W}_1(t) = \mathbf{U}\mathbf{G}(t)\mathbf{V}^\top, \quad (24)$$

assuming the network and the data shares the aligned right and left singular vectors \mathbf{U}, \mathbf{V} . This assumption holds with small initialization and small learning rate.

Now, we can compute the loss gradient with respect to the parameter space and decoupled mode space. In parameter space,

$$\nabla L_{\mathbf{W}_1} = \mathbf{W}_2^\top (\Sigma_{yx} - \mathbf{W}_2 \mathbf{W}_1) \quad (25)$$

$$\nabla L_{\mathbf{W}_2} = (\Sigma_{yx} - \mathbf{W}_2 \mathbf{W}_1) \mathbf{W}_1^\top. \quad (26)$$

We can substitute the terms in singular decomposed form,

$$\nabla L_{\mathbf{W}_1} = \mathbf{U}(\mathbf{S} - \mathbf{G})\mathbf{A}_1 \quad (27)$$

$$\nabla L_{\mathbf{W}_2} = \mathbf{A}_2(\mathbf{S} - \mathbf{G})\mathbf{V}^\top \quad (28)$$

$$\mathbf{W}_1 = \mathbf{R}\mathbf{A}_1\mathbf{V}^\top, \mathbf{W}_2 = \mathbf{U}\mathbf{A}_2\mathbf{R}^\top, \mathbf{A}_2\mathbf{A}_1 = \mathbf{G}. \quad (29)$$

The effective singular values from each layer $\mathbf{W}_{1,2}$ are $\mathbf{A}_{1,2}$ and $\mathbf{R}^\top \mathbf{R} = \mathbf{I}$, which eventually aligns the effective weights' singular vectors to that of the data correlation Σ_{yx} . In general, we cannot assume $a_{1k} = a_{2k}$ throughout learning, but the equality holds with the strictly balanced initialization. With the small initialization assumption, the first-order approximation of equality holds, which eventually allows us to write down the effective singular value trajectory throughout learning as in Saxe et al. (2019a).

Importantly, $\mathbf{G}(t)$ is a time-varying variable, evolving throughout the training that could be written in closed form with s_k being corresponding diagonal singular value of \mathbf{S} from data covariance,

$$\mathbf{G}_{kk}(t) = \frac{s_k e^{2s_k t/\tau}}{e^{2s_k t/\tau} - 1 + s_k/\mathbf{G}_{kk}^0}, \quad \mathbf{G}_{kk}^0 = \mathbf{G}_{kk}(t=0), \quad (30)$$

and the model that learned the training data recovers

$$\mathbf{W}^* = \mathbf{U}\mathbf{G}\mathbf{V} = \mathbf{C}. \quad (31)$$

For convenience, we will drop the notation of time dependence in the rest of this section. For an end-to-end linear map $\mathbf{W} = \mathbf{W}_2 \mathbf{W}_1 \in \mathbb{R}^{O \times D}$ define its representation in the data singular basis and the singular mode strength g_k ,

$$\mathbf{G} := \mathbf{U}^\top \mathbf{W} \mathbf{V}, \quad g_k := \mathbf{G}_{kk} = u_k^\top \mathbf{W} v_k. \quad (32)$$

For a data point $p = (x_p, y_p)$ write the coordinates in the *original* basis

$$\gamma_p := \mathbf{V}^\top x_p \in \mathbb{R}^r, \quad \eta_p := \mathbf{U}^\top y_p \in \mathbb{R}^r, \quad (33)$$

the per-sample residual in mode space

$$\phi_p := \mathbf{G} \gamma_p - \eta_p \quad (34)$$

and the per-sample loss gradient in mode space

$$\ell_p := \phi_p \gamma_p^\top. \quad (35)$$

INFLUENCE FUNCTION IN TOY MODEL USING SINGLE DATA POINT PERTURBATION

Following Cook & Weisberg (1982); Koh & Liang (2020), we will derive *influence function*, that is, the change in model prediction with a targeted perturbation of training data. In the following, we will derive the response of original \mathbf{U} , \mathbf{V} and \mathbf{S} as a function of a single data point perturbation to derive the influence function in singular basis. With those in hand, we can use the closed-form dynamics on Eq. 30 to get time-dependent dynamics.

First, we consider a perturbation by upweighting a single data point p with factor ε . The perturbed cross-covariance becomes

$$\mathbf{C}_p(\varepsilon) = \mathbf{U}_p(\varepsilon) \mathbf{S}_p(\varepsilon) \mathbf{V}_p(\varepsilon)^\top = \sum_{p \neq j} \mathbf{y}_j \mathbf{x}_j^\top + (1 + \varepsilon) \mathbf{y}_p \mathbf{x}_p^\top = \mathbf{C} + \varepsilon \mathbf{y}_p \mathbf{x}_p^\top. \quad (36)$$

Let \mathbf{C}' be the first-order derivative of the data covariance with ε -upweighting of a single data point p ,

$$\mathbf{C}'_p := \frac{\partial \mathbf{C}_p(\varepsilon)}{\partial \varepsilon} \Big|_{\varepsilon=0}. \quad (37)$$

With the perturbed dataset, the learned 2-layer linear network mapping at time t becomes

$$\mathbf{W}_p(\varepsilon, t) = \mathbf{U}_p(\varepsilon) \mathbf{G}_p(\mathbf{S}_p(\varepsilon), t) \mathbf{V}_p^\top(\varepsilon), \quad (38)$$

$$\mathbf{G}_t(\mathbf{S}, t) = \text{diag}(g_t(s_1), \dots, g_t(s_r)) \quad (39)$$

where s is a singular value from diagonals of \mathbf{S} and $g_t(\cdot)$ follows a closed form dynamics as given in Eq. 30. We assume that the network will have aligned singular basis with the perturbed data covariance, given in $\mathbf{U}(\varepsilon)$ and $\mathbf{V}(\varepsilon)$. For convenience, we will move the parameter ε to a subscript and drop the perturbed data index p .

We apply product rule to \mathbf{C}'_ε ,

$$\mathbf{C}'_\varepsilon = \mathbf{U}'_\varepsilon \mathbf{S} \mathbf{V}^\top + \mathbf{U} \mathbf{S}'_\varepsilon \mathbf{V}^\top + \mathbf{U} \mathbf{S} \mathbf{V}'_\varepsilon^\top. \quad (40)$$

We project the above perturbation to the singular mode coordinates,

$$\mathbf{Q}_\varepsilon := \mathbf{U}^\top \mathbf{C}'_\varepsilon \mathbf{V} = \mathbf{U}^\top \left(\mathbf{U}'_\varepsilon \mathbf{S} \mathbf{V}^\top + \mathbf{U} \mathbf{S}'_\varepsilon \mathbf{V}^\top + \mathbf{U} \mathbf{S} \mathbf{V}'_\varepsilon^\top \right) \mathbf{V}. \quad (41)$$

Since \mathbf{U} , \mathbf{V} are orthonormal matrices,

$$\mathbf{U}^\top \mathbf{U} = \mathbf{I}, \quad \mathbf{V}^\top \mathbf{V} = \mathbf{I} \quad (42)$$

and differentiating these orthonormality constraints with respect to the perturbation ε

$$\frac{\partial}{\partial \varepsilon} \left(\mathbf{U}^\top \mathbf{U} \right) \Big|_{\varepsilon=0} = \mathbf{U}'^\top \mathbf{U} + \mathbf{U}^\top \mathbf{U}' = 0. \quad (43)$$

$$\frac{\partial}{\partial \varepsilon} \left(\mathbf{V}^\top \mathbf{V} \right) \Big|_{\varepsilon=0} = \mathbf{V}'^\top \mathbf{V} + \mathbf{V}^\top \mathbf{V}' = 0. \quad (44)$$

1296 Due to orthonormality, $\mathbf{U}'_\varepsilon, \mathbf{V}'^\top_\varepsilon$ lie in the tangent space of $\mathbf{U}, \mathbf{V}^\top$. We can define
 1297

$$1298 \quad \mathbf{A} := \mathbf{U}^\top \mathbf{U}'_\varepsilon, \quad \mathbf{B} := \mathbf{V}'^\top_\varepsilon \mathbf{V}, \quad (45)$$

1299 where the orthonormal constraints give
 1300

$$1301 \quad \mathbf{A}^\top + \mathbf{A} = 0, \quad \mathbf{B} + \mathbf{B}^\top = 0, \quad (46)$$

1302 and \mathbf{A}, \mathbf{B} become skew-symmetric, $\mathbf{A} = -\mathbf{A}^\top, \mathbf{B} = -\mathbf{B}^\top$. Intuitively, \mathbf{A}, \mathbf{B} is equivalent to the
 1303 in-subspace angular velocity (rotation rate) of the columns of \mathbf{U} and \mathbf{V}^\top due to the perturbation,
 1304 respectively.
 1305

1306 With this, we can rewrite Eq. 41

$$1307 \quad \mathbf{Q} = \mathbf{A}\mathbf{S} + \mathbf{S}'_\varepsilon + \mathbf{S}\mathbf{B}, \quad (47)$$

1308 where $\text{diag}(\mathbf{A}) = \text{diag}(\mathbf{B}) = 0$ since \mathbf{A}, \mathbf{B} are both skew symmetric.
 1309

1310 Now, we solve Eq. 47 for \mathbf{A}, \mathbf{B} and \mathbf{S}'_ε . First, we consider a case where the singular values
 1311 $\text{diag}(\mathbf{S})$ are non-degenerate. Due to the diagonal constraint of singular values, the response from the
 1312 perturbation should also be diagonal for the singular values
 1313

$$1314 \quad \mathbf{S}'_{\varepsilon,ii} = \mathbf{Q}_{\varepsilon,ii} = \mathbf{U}_i^\top \mathbf{C}'_\varepsilon \mathbf{V}_i. \quad (48)$$

1315 The response of the singular basis is obtained from Eq. 45,

$$1316 \quad \mathbf{U}'_\varepsilon = \mathbf{U}\mathbf{A}, \quad \mathbf{V}'^\top_\varepsilon = \mathbf{B}\mathbf{V}^\top, \quad (49)$$

1318 where

$$1319 \quad \mathbf{A}_{jk} = \begin{cases} \frac{\mathbf{U}_j^\top \mathbf{C}'_\varepsilon \mathbf{V}_k}{s_k - s_j}, & j \neq k, \\ 0, & j = k. \end{cases} \quad (50)$$

$$1320 \quad \mathbf{B}_{kj} = \begin{cases} \frac{\mathbf{U}_k^\top \mathbf{C}'_\varepsilon \mathbf{V}_j}{s_k - s_j}, & j \neq k, \\ 0, & j = k. \end{cases} \quad (51)$$

1325 When \mathbf{S} has degenerate singular values or a near-zero gap, above is ill-defined as the denominator
 1326 $s_k - s_j = 0$. In this case, we apply block perturbation, treating the whole invariant subspace (sharing
 1327 the degenerate singular values) all at once.
 1328

1329 We take the sets of the degenerate singular values $\{s_b : s_j = s_b, \forall s_j \in \text{diag}(\mathbf{S})\}$, define the block
 1330 coupling by projecting the perturbation \mathbf{C}' on this block,
 1331

$$1332 \quad \bar{\mathbf{Q}}_\varepsilon := \bar{\mathbf{U}}^\top \mathbf{C}'_\varepsilon \bar{\mathbf{V}}, \quad (52)$$

1333 where $\bar{\mathbf{U}}$ and $\bar{\mathbf{V}}^\top$ are sets of the degenerate singular values corresponding to sets of columns of \mathbf{U}
 1334 and \mathbf{V} . It can be further decomposed into a symmetric and a symmetric-skewed part,
 1335

$$1336 \quad \bar{\mathbf{M}}_\varepsilon = \frac{1}{2}(\bar{\mathbf{Q}}_\varepsilon + \bar{\mathbf{Q}}_\varepsilon^\top), \quad \bar{\mathbf{K}}_\varepsilon = \frac{1}{2}(\bar{\mathbf{Q}}_\varepsilon - \bar{\mathbf{Q}}_\varepsilon^\top), \quad \bar{\mathbf{M}}_\varepsilon + \bar{\mathbf{K}}_\varepsilon = \bar{\mathbf{Q}}_\varepsilon. \quad (53)$$

1338 Due to diagonality constraints of singular values and zero-diagonals in the skew-symmetric part $\bar{\mathbf{K}}_\varepsilon$,
 1339 the first-order singular value consistency reduces to $\bar{\mathbf{M}}_\varepsilon = \bar{\mathbf{G}}'_\varepsilon$. To have diagonal singular value
 1340 matrix $\bar{\mathbf{S}}'_\varepsilon$, we choose \mathbf{R} such that
 1341

$$1342 \quad \bar{\mathbf{M}}_\varepsilon = \bar{\mathbf{S}}'_\varepsilon = \mathbf{R}^\top \Lambda \mathbf{R}, \quad (54)$$

1343 where $\text{diag}(\Lambda)$ becomes the first-order splits within the degenerate block with preferred direction
 1344 defined by \mathbf{R} . Skewed part $\bar{\mathbf{K}}_\varepsilon$ sets the in-block angular velocity,
 1345

$$1346 \quad \bar{\mathbf{A}} = \bar{\mathbf{B}} = \frac{1}{2s_b} \bar{\mathbf{K}}_\varepsilon. \quad (55)$$

1347 Then,
 1348

$$1349 \quad \bar{\mathbf{S}}'_{\varepsilon,ii} = \Lambda_{ii}, \quad \bar{\mathbf{U}}'_\varepsilon = \bar{\mathbf{U}} \bar{\mathbf{A}}, \quad \bar{\mathbf{V}}'_\varepsilon = \bar{\mathbf{V}} \bar{\mathbf{B}}. \quad (56)$$

Now we are equipped with $\mathbf{U}'_\varepsilon, \mathbf{V}'_\varepsilon, \mathbf{S}'_\varepsilon$ described by original we define influence on $\mathbf{W}(t, \varepsilon)$ from the perturbation on a data point p at fixed time t by applying derivative on Eq. 38,

$$\mathcal{I}_p := \frac{\partial \mathbf{W}}{\partial \varepsilon} \Big|_{\varepsilon=0} = \mathbf{U}'_\varepsilon \mathbf{G}(\mathbf{S}, t) \mathbf{V}^\top + \mathbf{U} \mathbf{G}(\mathbf{S}'_\varepsilon, t) \mathbf{V}^\top + \mathbf{U} \mathbf{G}(\mathbf{S}, t) \mathbf{V}'^\top \quad (57)$$

$$= \mathbf{U} \mathbf{A} \mathbf{G}(\mathbf{S}, t) \mathbf{V}^\top + \mathbf{U} (\text{diag}(g'_t(s)) \odot \text{diag}(\mathbf{S}'_\varepsilon)) \mathbf{V}^\top + \mathbf{U} \mathbf{G}(\mathbf{S}, t) \mathbf{B} \mathbf{V}^\top. \quad (58)$$

We can further derive influence on measurable ϕ_i in singular basis using the chain rule,

$$\mathcal{I}(z_p, \phi) = \left\langle r_i x_i^\top, \frac{\partial \mathbf{W}}{\partial \varepsilon} \right\rangle = r_i^\top \left(\frac{\partial \mathbf{W}}{\partial \varepsilon} x_i \right) = r_i^\top \mathbf{U} (\mathbf{A} \mathbf{G}_t + \mathbf{G}'_{\varepsilon, t} + \mathbf{G}_t \mathbf{B}) \mathbf{V}^\top x_i, \quad (59)$$

where ϕ_i is a squared loss of data point i and z_p is the perturbed data point. This perturbation is expected to hold with a small perturbation $\varepsilon \approx 0$. We use down-weighting $\varepsilon = -0.1$ to approximate the ablation effect in Figure 3.

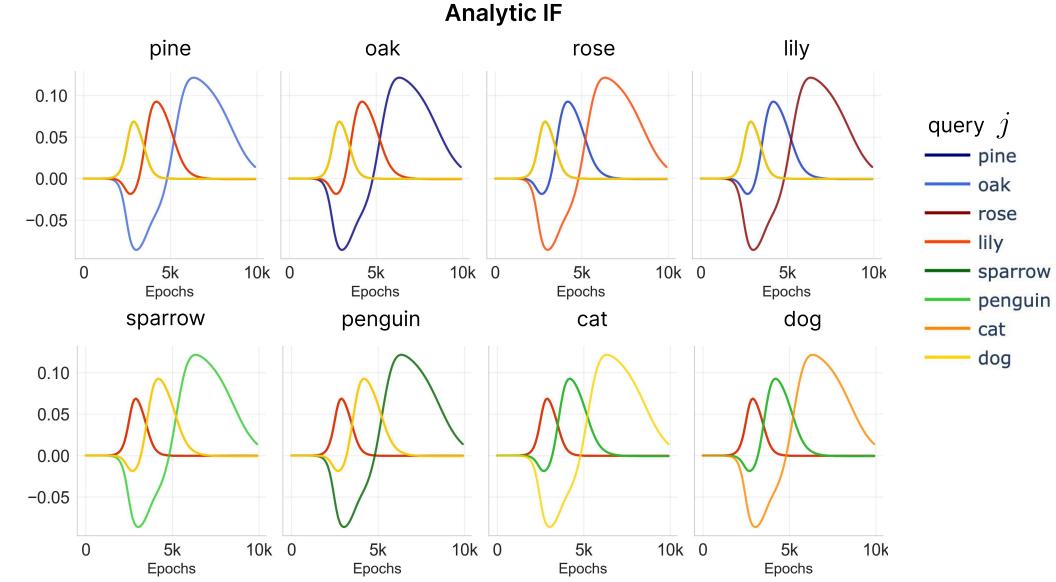


Figure 12: **Analytical loss difference from perturbing each data point.** The title indicates the perturbed data point ($\varepsilon = -0.1$).

D LANGUAGE MODELS

This section discusses additional experimental details for the language model experiments.

D.1 STRUCTURAL TOKEN CLASSIFICATION

Here, we present additional details and further experiments conducted to investigate the development of influence with respect to how tokens structure text. These experiments were conducted using the 14 million parameter Pythia model. Tokens are generated using the same tokenizer as the Pythia models use in order to be able to use these tokens with the model suite.

D.1.1 TOKEN CLASSES

Tokens are classified based on their role in structuring text. The classes we used are based on the classes used by Baker et al. (2025). Figure 13 demonstrates these classes graphically, with tokens outlined in bold indicating class membership, and distinct colors representing distinct classes.

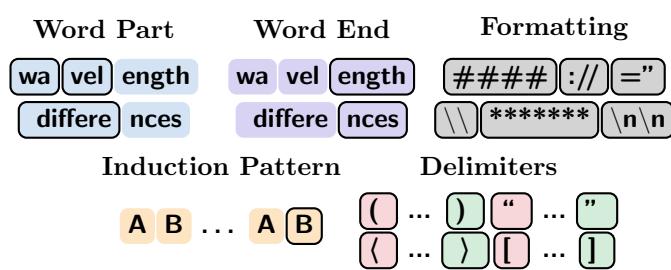


Figure 13: Examples of structural classification of tokens. Bold outline indicates class membership.

The classes are as follows:

Word Part Tokens that constitute a part of a word that is not the end of the word. This class excludes tokens that represent entire words or entire words with the addition of additional characters (e.g. a space and an entire word).

Word End Tokens that constitute the ending of a multi-token word. This class also excludes tokens that represent entire words and entire words with the addition of additional characters.

Formatting Tokens that are generally used to format text including newlines and repeated characters.

Induction Pattern Tokens that appear in a context in which the token is preceded by another particular token, and the same token has been preceded by the same other token earlier in the context.

Left Delimiters Tokens that are generally eventually followed by an equivalent right delimiter with interceding text generally considered to occupy a distinct scope.

Right Delimiters Tokens that close the scope opened by a paired left delimiter.

D.1.2 RMSPROPSGLD HYPERPARAMETERS

Table 2: Summary of hyperparameter grid search for BIF experiments on Pythia 14M.

Hyperparameter	Range
n (number of sequences)	600
J (sequence length)	55
ϵ (step size)	1e - 6
$n\beta$ (inverse temperature)	{256, 1024}
γ (localization strength)	{500, 1000}
m (batch size)	64
C (number of chains)	4
T (chain length)	200
burn in steps	0
k (nearest neighbors)	30

We found that the overall dynamics expressed by the BIF did not vary substantially among hyperparameters chosen in this setting. Plots in the main paper were selected based on the parameters that optimized the average class recall on the KNN experiment which is discussed in section Appendix D.1.3

D.1.3 SAME-CLASS PREDICTION WITH BIF K-NEAREST NEIGHBORS

One way to investigate the ability of the BIF to capture what sorts of text structure a model has learned is to use it to predict which structural class a token belongs to based on the classes that token shares high influence with.

We query the predictive capacity of token-level influences using a simple nearest-neighbors approach. The predictive model is as follows:

$$y_i(x_i) = \operatorname{argmax}_a \frac{1}{r_a(x_i)} \sum_{x_j \in m_i} \mathbf{1}_a(x_j),$$

where $\mathbf{1}_a$ is the indicator function for elements of class a , and r_a is the token-dependent class frequency in the dataset:

$$r_a(x) = \frac{1}{\sum_{x'} \mathbf{1}_{\{x\}^c}(x')} \sum_{x'} \mathbf{1}_{\{x\}^c}(x') \mathbf{1}_a(x'),$$

with $\{x\}^c$ denoting the set of all tokens that are not x . Tokens are thus predicted to have the majority label of their corresponding top-influence set m_i , adjusted for class rates overall.

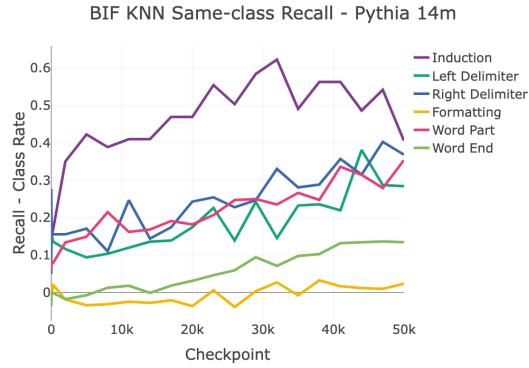


Figure 14: **KNN BIF predictions change over time.** Using the BIF in order to select the top 30 highest influence tokens and taking the majority class from among them (adjusted for class rates), we plot the recall minus the class rate for each class. This means that 0 represents the random baseline. We see that the BIF selects for in-class tokens above random for all categories by the end of training, indicating that it is sensitive to the class structure learned by the model.

Figure 14 shows the results of this experiment. We observe that the classes of high-influence other tokens act as a better than random predictor for all classes by the end of training, with recall generally improving as the model progresses through training.

D.1.4 INFLUENCE DYNAMICS EARLY IN TRAINING

Wang et al. (2025a) demonstrates that significant changes in model dynamics occur early in training for semantic-based token classes like the ones that we use in Section 4. In order to evaluate these effects, we estimate the BIF at logarithmically spaced model checkpoints, in contrast with the linear ones demonstrated in Figure 5. The results of this investigation are shown in Figure 15

We observe the inflection in influence between induction tokens noted previously (line at 32k training steps), but furthermore, observe additional changes in direction and even sign of the BIF occurring at early stages in training that were not observed in Figure 5. There is an additional inflection point in both the induction-induction BIF and formatting-formatting BIF at 128 training steps. We also more clearly see the early dynamics between right delimiters and tokens capturing the ends of words, with an inflection point at 2048 training steps. Furthermore, we observe clear changes in the overall sign of the BIF both between formatting-formatting tokens and between word parts and right delimiters. Taken together, these results indicate stagewise changes in the BIF, where, on average, tokens from a particular class can have differing effects on the loss of tokens both within the same class, and across classes, depending on when in training these effects are considered.

D.2 PER-TOKEN INFLUENCE DYNAMICS

In Figure 16, we observe that different subgroups of tokens impose different magnitudes and signs of influence, which again can change over time. We see a few interpretable features. For example, we

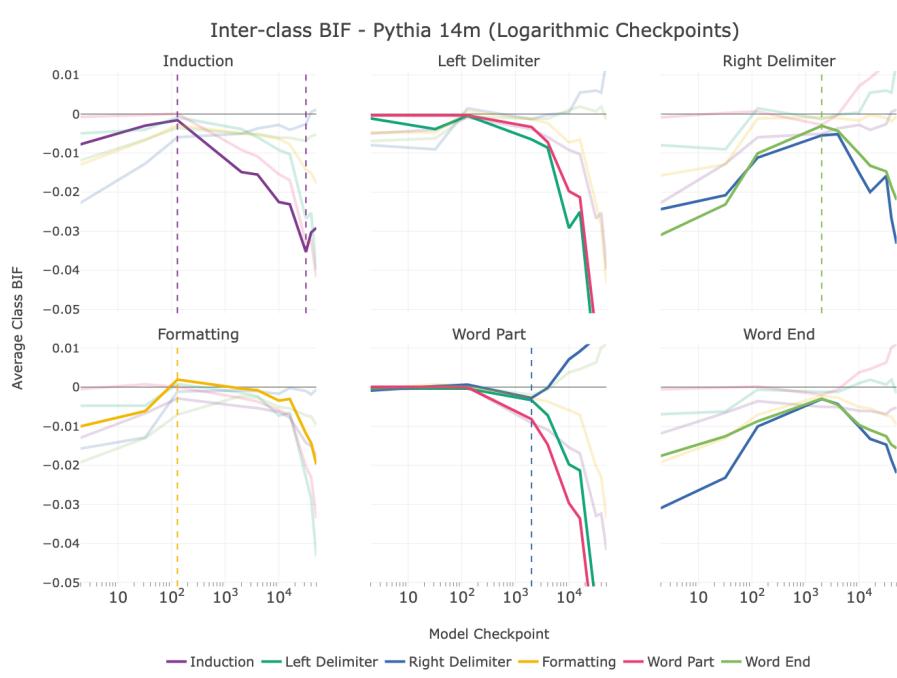


Figure 15: **Token-class relationships at logarithmic checkpoints.** In early stages of learning, we observe dynamic relationships between token classes, and non-monotonicity in the BIF. Dashed lines represent points at which the direction of changes to the BIF across training inverts.

see that the same subtypes of brackets can assist learning as training goes by, even if the directionality is different (observed in curly bracket, square bracket, and angle bracket but not in parenthesis), which might be due to the paired nature of the bracket signs.

D.3 INFLUENCE DYNAMICS OF INDUCTION HEAD FORMATION

Our initial experiments with the public Pythia checkpoints (Biderman et al., 2023) suggest a signal for the learning of induction patterns. However, the checkpoint frequency was too coarse in the vicinity of checkpoints 1k to 10k to observe the fine-grained dynamics of this developmental transition. To investigate this critical phase in more detail, we trained a Pythia-14M model from scratch, saving checkpoints every 100 steps for the first 20,000 training steps. Though we train on the same Pile data (Gao et al., 2021), it is in a different order and on different hardware, which means this training run is not the same as the original Pythia-14M training run.

We constructed a synthetic dataset with sequences where the second half repeats the first, e.g., *Sequence 1*: A B ... A B and *Sequence 2*: C D ... C D. Sequences were constructed as to not share tokens. The first half of each sequence is made up of random tokens, and so the only structure that can be used for prediction is the repetition of the second half of the context.

During SGLD we *collect* losses on this dataset, but *sample* using the Pile, meaning that loss on these synthetic samples does not affect our sampling trajectory. We compute the BIF matrices at each checkpoint of our homemade Pythia-14M and then look at the mean correlation between the different parts of our sequence (Namely repeated tokens with repeated tokens from other sequences, non-repeated tokens with non-repeated tokens from other sequences, and non-repeated tokens with repeated tokens from other sequences).

The results are shown in Figure 17. The influence between tokens in the *repeated* segments of each sequence (top panel, blue line) undergoes a sudden, large increase, peaking and then stabilizing. Meanwhile, the BIF between non-repeated segments or across non-repeated and repeated segments shows no such change.

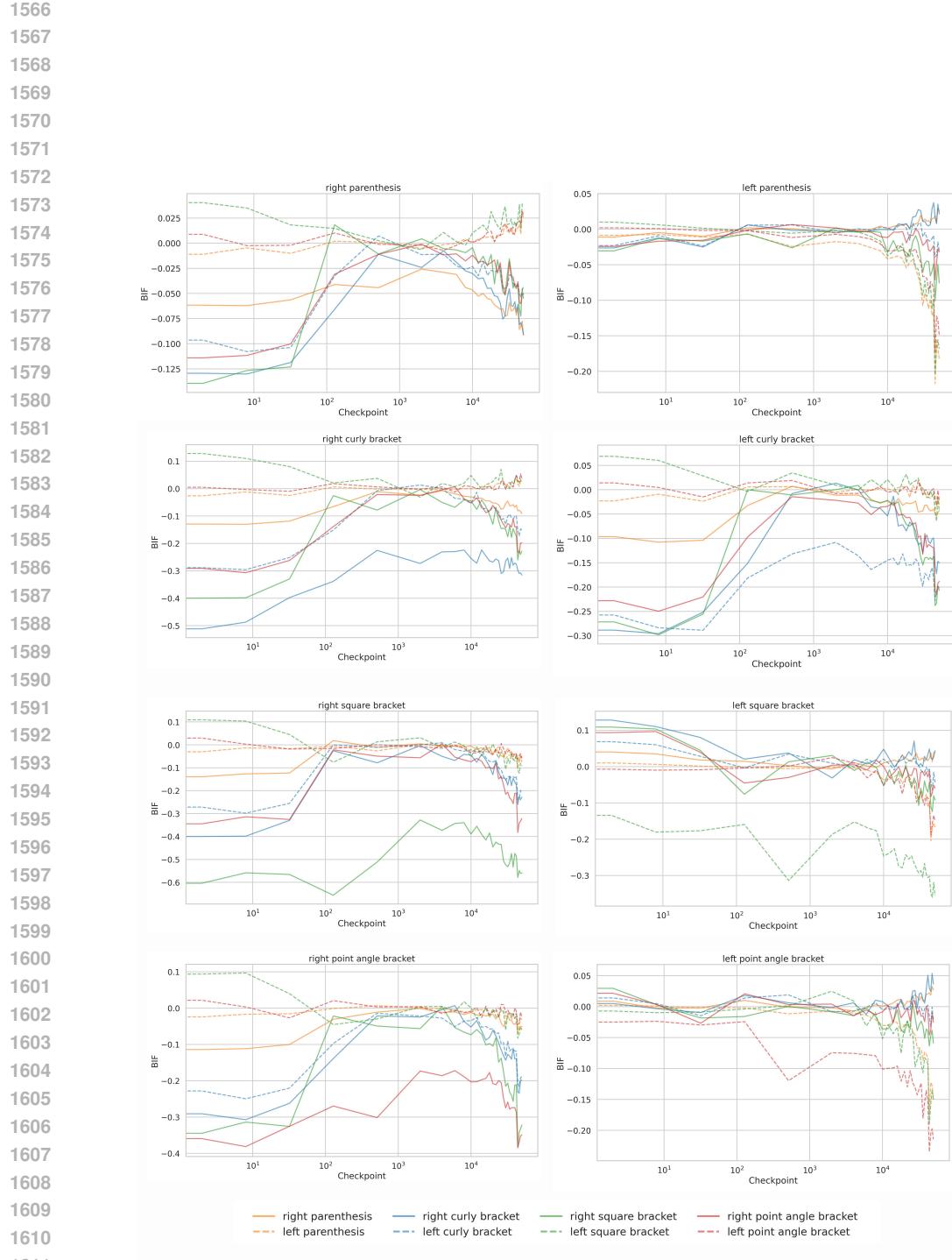


Figure 16: **Intra-classes (delimiters subtype) BIFs in Pythia-14M.** We plot BIFs between more fine-grained syntactic token classes of delimiters.

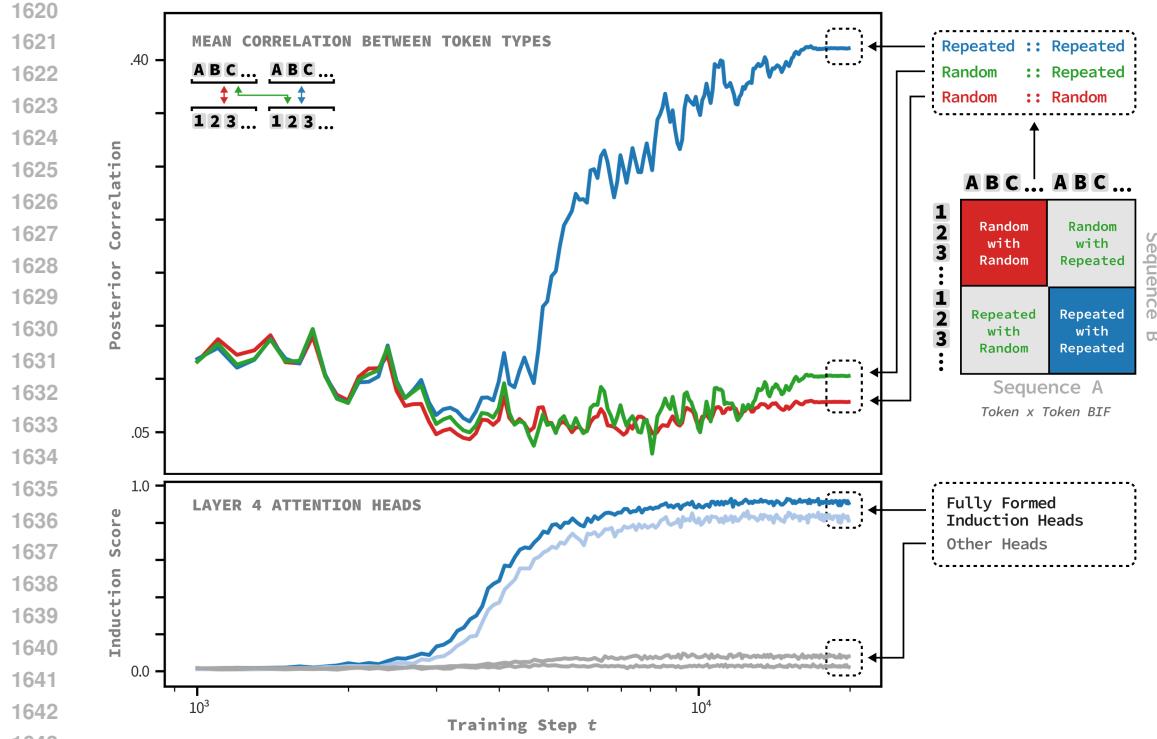


Figure 17: **Influence dynamics during induction head formation.** We trained a small transformer from scratch with high-frequency checkpointing to capture the formation of induction heads. (Top) The normalized BIF between corresponding tokens in repeated sequences (blue) shows a sharp increase and peak, while correlations between non-repeated samples (red) or between non-repeated and repeated segments (green) remain low. (Bottom) The induction score for the attention heads that become induction heads rises together with the posterior correlation, while other heads remain inactive.

Simultaneously, we measure the “induction score” of the model’s attention heads—a standard metric from mechanistic interpretability that quantifies how strongly a head implements the induction algorithm (Olsson et al., 2022). As shown in the bottom panel, the induction score for the heads that become the “induction heads” begins to rise right before the BIF increases between the repeated groups.

D.4 INTERVENING IN INDUCTION HEAD FORMATION

To validate the causal implications of stagewise influence, we conducted an intervention experiment targeting the acquisition of induction (Olsson et al., 2022). Following the results from the previous section that show that the influence of induction patterns can vary significantly over training, we predict that upweighting the same subset of data should have different effects on model development depending on *when* that upweighting occurs. In particular, we expect upweighting induction samples will have a larger effect on model behavior if this occurs during or after the “induction bump.”

Setup. We trained a 3 million parameter transformer on 13 million tokens from The Pile for a total of 30,000 steps. To isolate the effect of timing, we created five experimental runs where we upweighted “induction-heavy” tokens (defined as tokens that can be predicted from in-context bigram and multigram statistics) by a factor of 4× during specific 2500-step windows: 0–2.5k, 2.5k–5k, 5k–7.5k, 7.5k–10k, 10k–12.5k, and 12.5k–15k. We compared these against a control model trained with no upweighting. All models shared identical initialization and data ordering; thus, deviations in dynamics are strictly attributable to the timing of the intervention.

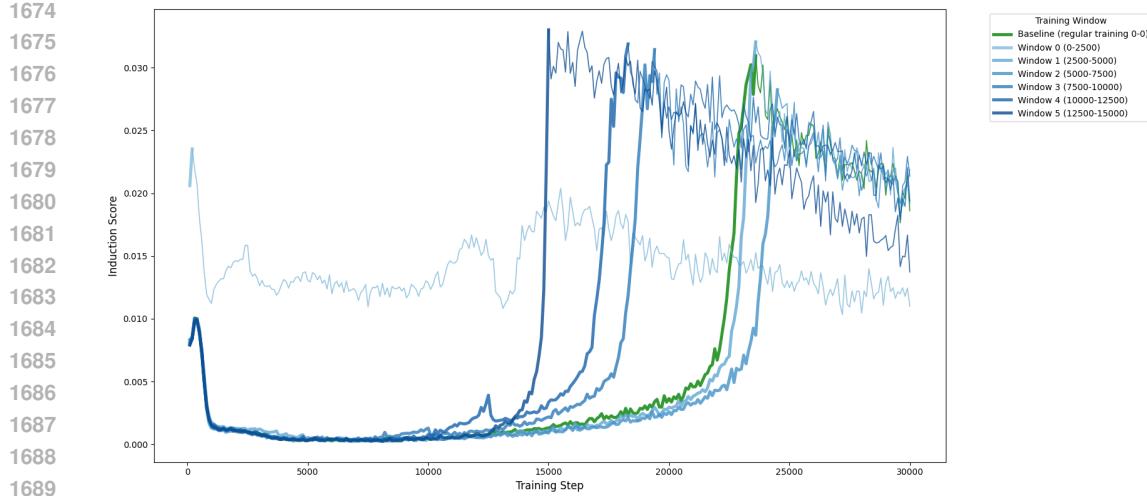


Figure 18: **Stagewise intervention accelerates induction head formation.** A comparison of the maximum induction score across Layer 0 heads for each intervention window. The baseline model (green) naturally forms induction heads at step $\sim 23k$. Upweighting induction data during the critical developmental window (Windows 4 and 5, dark blue lines) significantly accelerates this capability, causing heads to form as early as step 15k. In contrast, interventions applied too early (e.g., Window 0) fail to produce stable induction heads, while intermediate windows have diminishing effects. This confirms the prediction that the model is most sensitive to induction data during specific developmental stages.

We track the formation of the induction circuit using the induction score metric described in Appendix D.3. We track the induction for each individual head in Figure 19 and compare the induction scores for each model’s highest-scoring head in Figure 18.

Results. We find that the timing of the upweighting window significantly alters the developmental trajectory of the induction circuit, confirming that the influence of data is stage-dependent. In the control setting, the induction circuit emerges gradually, with the induction score peaking relatively late in the training process at timestep 23k. Intervening during these later stages (windows 10k–12.5k and 12.5k–15k) successfully accelerates this process, causing the induction capabilities to peak earlier than in the baseline. Conversely, upweighting the exact same patterns during intermediate phases (2.5k–5k and 5k–7.5k) results in induction being learned *later* than the control. Upweighting during steps 0–2500 appears to “stunt” the development of induction by causing induction to be learned to a weak degree very early on. Only much later does a second induction head start to form.

We note also that the heads that become induction heads (Olsson et al., 2022) differ only for the early window runs. Upweighting induction patterns later in training leads to layer 1 head 4 being the primary induction head, whereas upweighting earlier (windows 0 and 1) leads to various other heads specializing.

These results provide causal evidence for our stagewise framework. Upweighting a data pattern outside the phase where the model is receptive to it yields diminished returns or developmental delays, whereas upweighting it inside the critical window accelerates its acquisition.

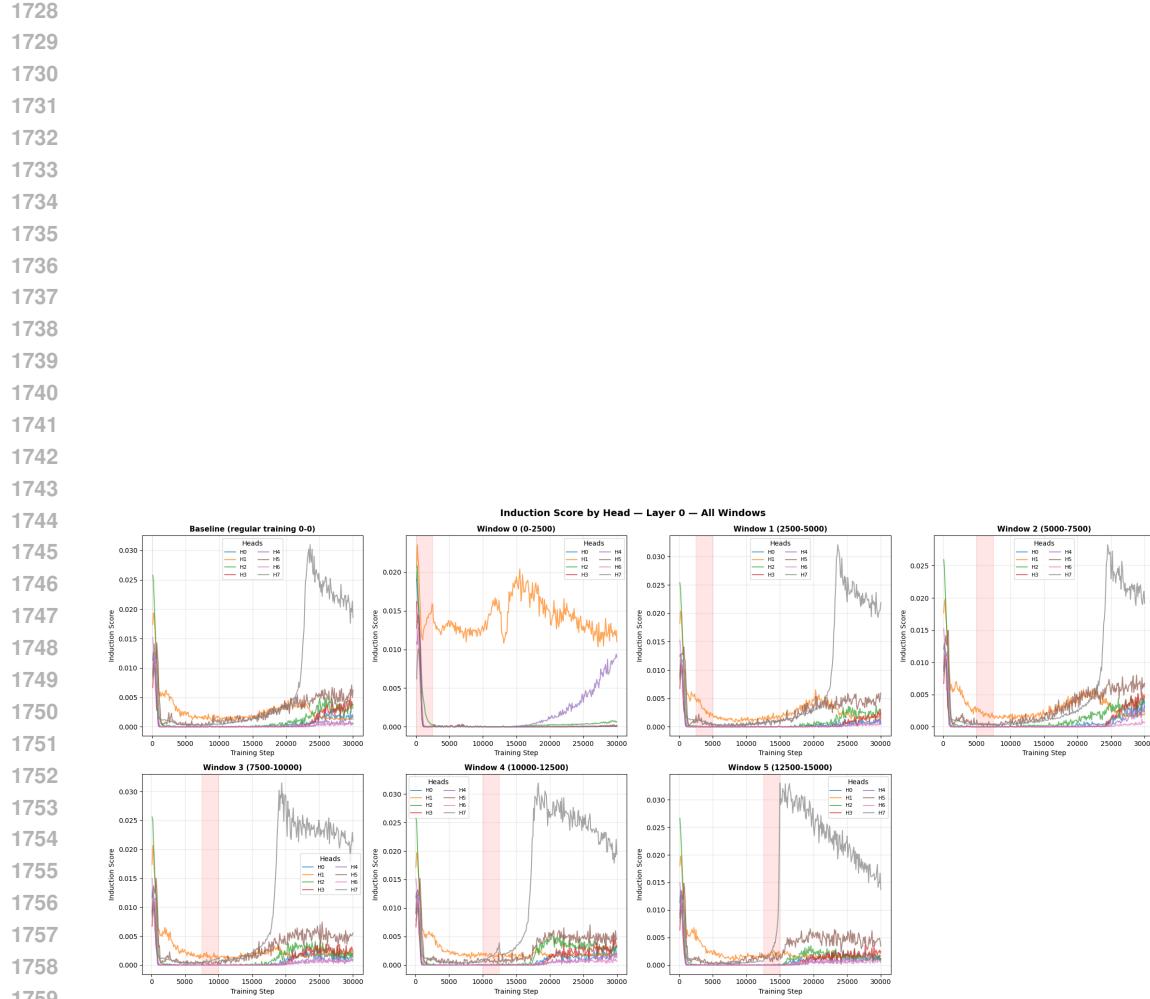


Figure 19: **Induction score trajectories for individual Layer 0 heads under different intervention schedules.** Each subplot represents a separate training run where induction-pattern tokens were upweighted during the indicated step interval (pink shaded region). The “Baseline” plot shows the natural emergence of induction heads (dominated by Head 7, grey line) occurring around step 23k. Interventions applied during the critical developmental windows identified by BIF (Window 4 and Window 5) successfully accelerate this formation, shifting the phase transition earlier to steps $\sim 17k$ and $\sim 15k$ respectively.

1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781