
CVPR
#*****

CVPR
#*****

CVPR 2024 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Modular World Models with Competitive Independent Mechanisms

Anonymous CVPR submission

Paper ID *****

Abstract

Taking inspiration from the Independent Causal Mecha-001
nisms principle in the context of world models, we present002
COmpetitive Mechanisms for Efficient Transfer (COMET),003
a modular world model which leverages reusable, indepen-004
dent mechanisms across different environments. COMET005
is trained on multiple environments with varying dynam-006
ics via a two-step process: competition and composition.007
This enables the model to recognise and learn transfer-008
able mechanisms. Specifically, in the competition phase,009
COMET is trained with a winner-takes-all gradient allo-010
cation, encouraging the emergence of independent mecha-011
nisms. These are then re-used in the composition phase,012
where COMET learns to re-compose learnt mechanisms in013
ways that capture the dynamics of new environments. In so014
doing, COMET explicitly reuses prior knowledge, enabling015
efficient and interpretable adaptation. In contrast to com-016
petitive baselines, we demonstrate that COMET captures017
recognisable mechanisms without supervision and is able018
to adapt to new environments.019

1. Introduction020

To reason about environments as rich and complex as our021
physical world requires the ability to learn efficiently and022
to flexibly adapt prior knowledge to unseen settings. This023
is of particular importance to embodied intelligence, as024
robots often need to adapt to changes in the environment.025
Whilst humans seem able to generalise knowledge across026
myriad tasks and situations effortlessly, building artificial027
agents that can do so with minimal training data remains028
a significant challenge. At the heart of this challenge029
are crucial distinctions between what and how humans030
and machines learn. It has been conjectured that humans031
represent knowledge internally in a structured and modular032
way, i.e., by distilling past experience into general princi-033
ples about the world, which can be applied or selectively034
updated in novel settings [9, 23, 36, 39]. By contrast,035
current learning-based world models are mostly based036
on monolithic architectures, and the resulting entangled037
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Figure 1. Illustration of training phases. In the first phase, the
model learns a set of reusable mechanisms. In the second phase,
the model applies these in a new environment.

representations of the world limit the selective re-using of 038
prior knowledge in new environments. Therefore, learning 039
methods that afford modularity are key to world models 040
that can adapt efficiently in diverse settings. In this paper, 041
we address this challenge by developing a model capable 042
of discovering a toolbox of generalisable concepts that can 043
be reused across different contexts. 044

045
Recent works on object-centric world models [21, 25] 046
have made progress towards a compositional understanding 047
of the world. By decomposing an observed scene into 048
discrete object slots, these methods model the interaction 049
between entities in the scene. We argue that, just as the state 050
representation of the scene can be factorised into object 051
slots, the transition dynamics, too, can be factorised into 052
discrete and independent mechanisms. Our work is moti- 053
vated by the observation that, while different environments 054
can exhibit different dynamics, we can often explain the 055
behaviour of objects by a small set of interaction primitives, 056
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such as ”A rests on top of B” and ”C collides with D”.057
The goal of this work is to acquire such a set of versatile058
mechanisms from observations without supervision.059

060
Conceptually, our motivation is closely related to the061
Independent Causal Mechanisms principle (ICM) [36],062
which posits that the causal generative process of a system063
is composed of independent modules that do not inform064
each other. Taking inspiration from the ICM literature,065
we employ a competition of expert training scheme [33],066
where, during training, we keep a set of independently067
parameterised mechanisms and only update the module068
which best explains the observed interactions. This serves069
as a natural inductive bias which encourages modules070
to specialise in specific interaction primitives, and is071
consequently conducive to the emergence of reusable072
mechanisms. In the rest of this paper, we give details of073
our model and provide empirical results. We defer the074
discussion of related works to the Appendix.075

2. COMET076

In this section, we present COMET: COmpetitive Mecha-077
nisms for Efficient Transfer. The main idea of the method078
is to learn a set of generalisable and composable modules079
which encode the different modes of interaction between080
objects. Intuitively, while dynamics can vary across081
environments, the ways in which objects or entities interact082
with each other can be explained by a small number of in-083
dependent rules. For example, in a traffic setting, whilst the084
behaviour of vehicles can differ across different locations,085
the act of stopping at a red light (the interaction between086
cars and traffic lights), can be used to explain behaviours087
in a wide range of environments. We argue that the ability088
to selectively update the modules during learning, i.e., to089
recognise parts of the model that are relevant to the data and090
perform modular updates, is instrumental to the emergence091
of such discrete independent mechanisms. To this end, we092
employ the competition of expert training procedure which093
only updates modules that best explains the interaction. In094
this scheme, modules that successfully captures reusable095
interactions automatically ’wins’ more relevant training096
data and further specialises, which encourages a set of097
diverse modules that partitions the training data.098

099
COMET learns from a dataset of observed sequences100
{x1:T }N . Importantly, these sequences are sampled101
from environments with varying dynamics where objects102
can exhibit different behaviours. We assume that each103
observation, xt, can be factorised into latent object-slots,104
{zt0, zt1, ..., ztK}, where the subscript denotes the object-id.105
These object representations can be based on ground-truth106
masks or obtained from object-centric encoders [5, 8, 29].107
COMET consists of two components trained in two phases:108

the mechanisms, which models the interactions between 109
objects and is trained in phase 1, and the composition 110
module, which composes the mechanisms to explain a 111
given environment and is trained is phase 2. 112

113
Mechanisms contains M independently parameterised 114
feedforward networks, fm

mech : R2d → Rd, with parameters 115
θm, where d is the dimension of the object representations. 116
Each mechanism predicts updates to all objects at every 117
timestep, given the state of the object itself and another 118
context object: 119

∆zti(m, j) = fm
mech([z

t
i ⊕ ztj ]), (1) 120

where ⊕ denotes concatenation, i is the index of the ob- 121
ject to be predicted and j is the index of the context object, 122
i.e. the object with which object i interacts. The mecha- 123
nisms are trained during the competition phase where each 124
mechanism learns to specialise to cover a particular mode 125
of interaction between objects. Concretely, for each object, 126
the model makes predictions using all possible mechanism- 127
context pairs in parallel. Comparing the predictions, we 128
update the mechanism-context pair with the most accurate 129
prediction for a given object. Given a state transition pair, 130
(zt1:K , zt+1

1:K), the loss function can be written as: 131

L(θ1:M ) =

K∑
i=0

min
m,j

[
d
(
zti +∆zti(m, j), zt+1

i

)]
, (2) 132

where d is a function that measures the prediction error. 133
In this work, we use the Euclidean distance. Importantly, 134
when performing back-propagation on this loss function, 135
only the parameters of the competition winner are updated. 136

137
In order to predict transitions for objects using the 138

trained mechanisms, the composition module picks the 139
relevant context object and the active mechanism. The 140
composition module acts as a classifier which picks the op- 141
timal mechanism-context pair for each object in the scene. 142
Given the state of object i, for each mechanism-context 143
pair, we compute the confidence score: 144

cti(m, j) = fm
conf ([z

t
i ⊕ ztj ]), (3) 145

where fm
conf is an independently parameterised MLP for 146

mechanism m, i.e. each mechanism has a correspond- 147
ing fm

conf . We predict a categorical distribution over all 148
mechanism-context pairs by taking the softmax over the 149
confidence scores for object i at time step t. Given a 150
small number of observation sequences in a new environ- 151
ment, we obtain the best performing mechanism-context 152
pair (m∗, j∗)ti for each object at each time step by inves- 153
tigating which pair minimises the loss function of the com- 154
petition scheme in Eq. 2. The composition module is then 155
trained using the negative log-likelihood loss. 156
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Figure 2. In the competition phase, predictions are made using all possible mechanism-context pairs for each object. Gradients are only
allocated to the mechanism-context pair with the most accurate prediction. The figure describes the prediction step for a single object.
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Figure 3. Disentanglement plots showing the correlation between mechanisms chosen by the models and ground-truth interaction modes. In
the ideal case, the matrices should look like permutation matrices. Here, COMET is able to learn disentangled mechanisms that correspond
to ground-truth behaviours in all three domains, as indicated by the fact that each interaction mode has one main corresponding learnt
mechanism. In contrast, NPS does not exhibit the same structure.

3. Experiments157

In this section, we demonstrate that COMET is able to dis-158
entangle different modes of interaction between objects and159
can efficiently reuse learnt mechanisms during adaptation.160

Baselines. We evaluate COMET against two competitive161
baselines, C-SWM [21] and Neural Production Systems162
(NPS) [11]. C-SWM learns a world model from observa-163
tion via contrastive learning with a GNN-based dynamics164
model. Similar to COMET, C-SWM operates on an object-165
factorised representation and achieves state-of-the-art pre-166
diction accuracy. COMET further disentangles the inter-167
actions between objects as independent mechanisms rather168
than learning a monolithic model that captures all interac-169
tions. We also compare against NPS, which learns to cap-170
ture object interactions as independent mechanisms. Ar-171
chitecturally, NPS is similar to COMET, except that the172
mechanism-context pair is selected using dot-product atten-173
tion [42] which is trained jointly with the mechanisms. In174
contrast, COMET deploys a competitive training scheme175
which allows the model to recognise shared mechanisms176
across environments. In our experiments, we show that177
competition serves as a strong inductive bias that enables178
the emergence of reusable mechanisms.179

Datasets. We evaluate COMET on two problem domains: 180
Particle Interactions and Traffic. For each of these domains, 181
we define a set of environments where objects can exhibit 182
different behaviours. These environments are designed to 183
test whether COMET can extract meaningful mechanisms 184
and adapt to unseen environments via composition. The 185
Particle Interactions dataset consists of coloured particles 186
that can interact with each other in different ways such as at- 187
traction and repulsion. Environments are defined by a com- 188
bination of rules such as ”red particles repel each other”. 189
The Traffic dataset contains observation sequences of traffic 190
scenarios generated with the CARLA simulator [6]. Here, 191
the environments are defined by traffic rules that apply to 192
different vehicles such as ”blue cars do not need to stop at 193
red lights”. In both cases, the observatiions are given as 194
RGB images with ground-truth object masks such that each 195
object can be encoded into an object-slot. 196

Disentanglement of Mechanisms. We investigate the 197
emergence of recognisable mechanisms from competition. 198
Here, both COMET and NPS are trained on a mixture of 199
environments in each domain. We obtain the ground-truth 200
labels for the object interactions and use these to directly 201
investigate whether the learnt mechanisms correspond to 202
actual interactions without any supervision. These labels 203
are not accessible to the models during training. Fig. 3 204
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Figure 4. Qualitative rollouts. The colour of the tabs on the bottom of each frame indicates the ’winning’ mechanism at each time step.
Across all environments, the competition winner changes as the underlying interaction mode changes. Top: The particles repel each other
when they are close (blue) and moves independently when they are apart (green). Bottom: In this traffic environment, the orange car obeys
a slower speed limit and always pick the slow mechanism (orange). The blue car approaches the red light with normal driving (pink) →
slow down (orange) → stop (green). Note that the orange mechanism is used as slow driving for both cars.
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Figure 5. The average rollout error in an unseen environment with different amount of observed data in the new environment (lower is
better). Shaded areas represent the standard errors of the mean. All models eventually converge to similar errors given enough data.
However, COMET is able to achieve lower errors with few adaptation episodes. This means that COMET can learn to use the correct
mechanisms with a small amount of data, thus corroborates our hypothesis that composing learnt mechanisms enables efficient transfer.

shows the correlation between the ground-truth interactions205
and the winning mechanisms in the competition process.206
COMET achieves successful disentanglement and learns207
mechanisms that corresponds to the ground-truth interac-208
tions, COMET recovering the ground-truth mode of inter-209
actions such as stopping before a red light. In contrast, the210
mechanisms learnt by NPS show no correspondence with211
the ground-truth interactions. This is likely because NPS212
cannot learn from a mixture of environments with varying213
dynamics as it employs a simple dot-product attention for214
picking mechanisms during training. To this end, COMET’s215
ability to learn from diverse environments is uniquely af-216
forded by the competition scheme which assigns relevant217
data to update each mechanism. Fig. 4 qualitatively illus-218
trate that the ’winning’ mechanisms switches as the under-219
lying interaction type changes.220

Adaptation Efficiency One of our main hypotheses is221
that learning to compose learnt mechanisms leads to data-222
efficient adaptation. For each domain, we train all of the223
models on a mixture of environments and adapt the models224
to unseen environments. COMET adapts via the composi-225

tion module, whereas the baselines adapt by finetuning the 226
entire model on new data. Fig. 5 shows the performance 227
of the models when trained on different amounts of data in 228
the new environment. COMET outperforms the baselines 229
in the low-data regime, illustrating that reusing mechanisms 230
improves sample efficiency compared to finetuning. 231

4. Conclusion 232

In this paper, we introduce COMET, a structured world 233
model which encodes discrete abstract mechanisms ex- 234
plicitly from observations. Our model performs selec- 235
tive updates during the training phase, a central capabil- 236
ity which facilitates the emergence of recognisable and 237
reusable mechanisms. We show experimentally that the 238
proposed method is indeed able to disentangle shared mech- 239
anisms across different environments from image observa- 240
tions, and thus enables sample-efficient and interpretable 241
adaptation to novel situations. Looking forward, we believe 242
that the method developed here opens up several promising 243
avenues of research, such as designing agents that learn a 244
growing repertoire of re-usable interaction behaviours and 245
agents that explore the world through the lens of mechanism 246
discovery. 247
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Taco Cohen, and Stratis Gavves. Citris: Causal identifiability 359
from temporal intervened sequences. In International Con- 360
ference on Machine Learning, pages 13557–13603. PMLR, 361
2022. 1 362

5



CVPR
#*****

CVPR
#*****

CVPR 2024 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[28] Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gun-363
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5. Related Works453

Learning internal models of the world enables decision-454
making agents to plan, predict and reason about the world455
[14, 15, 21]. As such, latent world models have attracted456
significant interest in recent years. These methods [e.g.457
21, 31, 44] in general involve learning latent representations458
of the state and forward prediction models. Our work situ-459
ates in this broad context of world model learning and we460
focus our contribution on learning dynamics models which461
are factorised into composable mechanisms. We take recent462
works form object-centric state representations as a starting463
point.464

Object-Centric Representations There has been a grow-465
ing interest in models that reflect the compositional nature466
of real-world scenarios and aim to use object-centric rep-467
resentations to leverage recurring features in scenes. Prior468
works have investigated unsupervised object-centric repre-469
sentation learning from static images [5, 8, 13, 26, 29]. Mo-470
tivated by the assumption that dynamics tend to manifest471
themselves at the object-level [3, 16], subsequent works472
extend this capability to video data via factorised dynam-473
ics models which operate on object-centric latent spaces.474
While most of these object-centric world models (OCWMs)475
are geared towards using temporal inputs to generate future476
video rollouts [7, 19, 21, 22, 25, 30], some more explic-477
itly consider their use in model-based reinforcement learn-478
ing and planning [38, 43, 46, 47]. In particular, graph479
neural networks (GNNs) are often used as a natural way480
to predict future states of objects and enable the mod-481
elling of interactions between objects via message passing482
[21, 25, 34, 38, 40, 41, 43]. We build on these approaches483
by further factorising the dynamics into reusable interaction484
primitives.485

Mechanism-based Models Our work is motivated by the486
conjecture that the organisation of knowledge into high-487
level abstract concepts is crucial to systematic generalisa-488
tion [9]. This idea is similar in spirit to the Independent489
Causal Mechanisms principle [35] and the Sparse Mecha-490
nism Shift hypothesis [36] in the causality literature, which491
respectively posit that data-generating causal mechanisms492
operate independently from one another, and that changes493
in the environment can be attributed to sparse changes to494
such mechanisms. Several works [17, 24, 27] have lever-495
aged causal discovery techniques, e.g., sparsity regularisa-496
tion, to learn dynamics models that are factorised into struc-497
tural causal models.498

Similar to our approach is a class of models which repre- 499
sents the learned dynamics in OCWMs not as a monolithic 500
module, but rather as a collection of independently acting 501
mechanisms – each focusing on a different aspect of the en- 502
vironment’s dynamics. Becker-Ehmck et al. [4] use a vari- 503
ational approach to learn to pick different transition models 504
conditioned on the state, but is limited to linear transitions. 505
RIMs [12] constitute an approach where parts of the state 506
space are represented by independent and sparsely interact- 507
ing recurrent units. Building on this, [10] use a GNN to 508
model environment dynamics but reflect the concept of in- 509
dependent mechanisms by using different sets of GNN pa- 510
rameters depending on an object’s current state. Another 511
approach that follows this line of work is VIM [2] which 512
considers the disentanglement of mechanisms and objects 513
in the setting where object move independently to each 514
other. Closer to our method are Neural Production Systems 515
(NPS) [11], another descendant of RIMs, learning a set of 516
independent mechanisms capturing the interaction between 517
objects. Our method differs from NPS in the application of 518
competition training which, as we demonstrate empirically 519
in Sec. 3, is instrumental to the emergence of composable 520
mechanisms. Furthermore, we propose a novel method for 521
adapting to changes in the environment. 522

Competition of Experts The backbone of our learning 523
algorithm draws from mixture of experts methods [18, 20, 524
37] and in particular from the algorithm of Parascandolo 525
et al. [33]. In the context of learning independent causal 526
mechanisms, Parascandolo et al. [33] demonstrate that the 527
competition of experts algorithm induces the emergence of 528
mechanisms that explain transformations in the data. The 529
idea of utilising a competitive training scheme on modu- 530
lar model architectures has been applied on diverse settings 531
such as lifelong learning [1, 32], generative models [28] and 532
object-centric scene composition [45]. Taking inspiration 533
from this line of work, COMET uses a similar competi- 534
tive training scheme as an inductive bias for disentangling 535
modes of interaction in the setting of world model learning. 536
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