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ABSTRACT

Scalable sampling of molecular states in thermodynamic equilibrium is a
long-standing challenge in statistical physics. Boltzmann generators tackle this
problem by pairing powerful normalizing flows (NF) with importance sampling
to obtain statistically independent samples under the target distribution. In this
paper, we extend the Boltzmann generator framework and introduce SEQUENTIAL
BOLTZMANN GENERATORS (SBG) with two key improvements. The first is a
highly efficient non-equivariant Transformer-based normalizing flow operating
directly on all-atom Cartesian coordinates. The second is inference time scaling
of flow samples with non-equilibrium transport towards the target distribution
and reweighting through a novel application of Sequential Monte Carlo (SMC).
SBG is more computationally efficient as no explicit equivariance constraint is
encoded in the NF, but is instead softly introduced via data augmentations. Further,
SBG improves sample quality by applying SMC along the transport path. SBG
achieves state-of-the-art performance w.r.t. all metrics on molecular systems,
demonstrating the first equilibrium sampling in Cartesian coordinates of tri, tetra,
and hexapeptides that were so far intractable for prior Boltzmann generators.

1 INTRODUCTION

The simulation of molecular systems at the all-atom resolution is of central interest in under-
standing complex natural processes. These include important biophysical processes such as
protein-folding (Noé et al., 2009; Lindorff-Larsen et al., 2011), protein-ligand binding (Buch et al.,
2011), and formation of crystal structures (Parrinello & Rahman, 1980; Matsumoto et al., 2002),
whose understanding can aid in problems that range from long-standing global health challenges
to efficient energy storage (Deringer, 2020).
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Figure 1: SBG uses inference time non-
equilibrium transport to move initial proposal
samples from a normalizing flow.

The dominant paradigm for molecular simulation
involves running Markov Chain Monte Carlo
(MCMC) or Molecular Dynamics (MD) whereby
the equations of motion are integrated with finely
discretized time steps. However, such systems often
exist in thermodynamic equilibrium by remaining for
long time horizons in metastable states before rapidly
transitioning to another metastable state. Such states
are captured in the minima of a complex energy
landscape, associated with the molecular system’s
equilibrium (Boltzmann) distribution at a given
temperature. Unfortunately, drawing uncorrelated
samples from such metastable states via traditional
MD or MCMC methods is prohibitively computa-
tionally expensive, requiring long simulation steps
with small updates on the order of femtoseconds
1fs = 10−15s, as transitions are rare events due
to the presence of high-energy barriers between
well-separated states (Wirnsberger et al., 2020).
An alternative approach is to enhance sampling efficiency by leveraging powerful generative models
such as normalizing flows (Dinh et al., 2017; Rezende & Mohamed, 2015) trained on existing biased
datasets, to produce approximate samples which can then be reweighted via importance sampling
to follow the desired Boltzmann distribution. Such models, called Boltzmann generators (BG) (Noé
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et al., 2019), allow faster sampling through amortization as generation is significantly cheaper
computationally than running MD or MCMC. Despite their appeal, it remains challenging for existing
BGs to generate uncorrelated samples in their native Cartesian coordinates from the energy modes
of the Boltzmann distribution for larger molecular systems at the scale of small peptides (2 amino
acids) (Klein et al., 2023b; Midgley et al., 2023a). The principal drawback inhibiting scalability
stems from the lack of expressive equivariant architectures that are also exactly invertible (Bose et al.,
2021; Midgley et al., 2023a), or the present over-reliance on simple E(n)-GNN’s (Satorras et al.,
2021) based equivariant vector fields used in the design of continuous-time normalizing flows (Chen
et al., 2018). As a result, even the most performant BGs suffer from low overlap with the target
Boltzmann distribution, leading to poor sampling efficiency during importance sampling.
Present work. In this paper, we introduce SEQUENTIAL BOLTZMANN GENERATORS (SBG) a novel
extension to the existing Boltzmann generator framework. SBG makes progress on the scalability
of Boltzmann generators in Cartesian coordinates along two complementary axes: (1) scalable
pre-training of softly SE(3)-equivariant proposal normalizing flows in BGs; and (2) inference time
scaling of proposal flow samples and their importance weights under fast non-equilibrium processes,
e.g. such as Langevin dynamics. The final result yields higher quality generated samples that require
dramatically less correction through reweighting and thus allowing for the computation of important
observable quantities such as free energy differences between metastable states of µtarget(x).

Table 1: Overview of the properties of models for sampling
from target distributions with (possibly biased data).

Method Exact Likelihoods Use Data Use E(x) Transport

NETS (Albergo & Vanden-Eijnden, 2024) ✗ ✗ ✓ ✓
DEM (Akhound-Sadegh et al., 2024) ✗ ✗ ✓ ✗
BGs (Noé et al., 2019) ✓ ✓ ✓ ✗
Continuous BGs Köhler et al. (2020) ✓ ✓ ✓ ✗
SBG (ours) ✓ ✓ ✓ ✓

Our proposed approach SBG scales up pro-
posal normalizing flows in BG’s by follow-
ing recent advances in atomistic genera-
tive modeling, e.g. AlphaFold 3 (Abram-
son et al., 2024). In particular, we opt to
remove the rigid SE(3)-equivariance as an
explicit architectural inductive bias in fa-
vor of softly enforcing it through simpler
and more efficient data augmentation. To
further improve samples and their importance weights—a crucial step in the real-world application of
BGs—we perform inference scaling by designing a target-informed non-equilibrium process. More
precisely, we define an interpolation between the proposal flow energy distribution (i.e., negative
log density of samples) and the known target Boltzmann energy. Crucially, simulating samples at
inference via the transport dynamics can be coupled to an equivalent time evolution of importance
weights—without the need to compute the original numerically unfavorable importance weights—
themselves, converting naturally to the well-established technique of Sequential Monte Carlo (SMC)
in continuous time. As a result, SBG can easily improve over the simple one-step importance
sampling methodology used in existing BGs. We summarize the different aspects of our proposed
SBG in comparison to other learned samplers and Boltzmann generators in Table 1.
We instantiate SBG using exactly invertible architectures by utilizing a modernized non-equivariant
Transformer architecture as the backbone and use best-in-class models in TarFlow (Zhai et al.,
2024). We demonstrate that exactly invertible architectures, because of fast and exact log-likelihood
computations, benefit from inference-scaling. We emphasize this is in stark contrast to continuous
normalizing flows that power prior SOTA Boltzman generators which require both simulation of
the 2nd order divergence operator and differentiating through an ODE solver. Furthermore, we
demonstrate that enforcing equivariance softly along with appropriate normalization strategies
enables us to stably scale the size of proposal flows in SBG. On a theoretical front, we study
the added bias of common numerical tricks in the literature such as thresholding, and propose an
automatic scheme to find the optimal thresholding parameter. Empirically, we observe SBG achieve
state-of-the-art results across all metrics, and due to the enhanced computational efficiency far
outperform continuous BG’s on all datasets. In particular, SBG is the first method to solve tripeptides,
tetrapeptides, hexapeptides, and makes progress towards equilibrium sampling of decapeptides in
Cartesian coordinates while past BG methods were intractable beyond dipeptides.

2 BACKGROUND AND PRELIMINARIES

We are interested in drawing statistically independent samples from the target Boltzmann distribution
µtarget, with partition function Z , defined over Rn×3:

µtarget(x) ∝ exp

(
−E(x)
kBT

)
,Z =

∫
Rd

exp

(
−E(x)
kBT

)
dx.
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The Boltzmann distribution is defined for a system and includes the Boltzmann constant kB, and is
specified for a given temperature T . Additionally, the potential energy of the system E : Rn×3 → R
and its gradient ∇E can be evaluated at any point x ∈ Rn×3, but the exact density µtarget(x) is not
available as the partition function Z associated to the Boltzmann distribution in general is intractable
to evaluate.
In this paper, unlike pure sampling-based settings, we are afforded access to a small biased dataset
of N samples D = {xi}Ni=1, provided as an empirical distribution pD. Consequently, it is possible
to perform an initial learning phase that fits a generative model pθ, with parameters θ, to pD—e.g.
by minimizing the forward KL DKL(pD||pθ)—to act as a proposal distribution that can be corrected.

2.1 NORMALIZING FLOWS

A key desirable property needed for the correction of a trained generative model pθ on a biased dataset
D is the ability to extract an exact likelihood pθ(x). Normalizing flows (Dinh et al., 2017; Rezende
& Mohamed, 2015) represent exactly such a model class as they learn to transform an easy-to-sample
base density to a desired target density using a parametrized diffeomorphism. More formally, given a
sample from a (prior) base density x0 ∼ p0 and a diffeomorphism fθ : Rn×3 → Rn×3 that maps the
initial sample to x1 = fθ(x0). We can obtain an expression for the log density of x1 via the classical
change of variables,

log p1(x1) = log p0(x0)− log det

∣∣∣∣∂fθ(x0)∂x0

∣∣∣∣ . (1)

In Eq. 1 above the log det | · | term corresponds to the Jacobian determinant of fθ evaluated at x0.
Optimizing Eq. 1 is the maximum likelihood objective for training normalizing flows and results in fθ
learning p1 ≈ pdata. There are multiple ways to construct the (flow) map fθ. Perhaps the most popular
approach is to consider the flow to be a composition of a finite number of elementary diffeomorphisms
fθ = fM ◦ fM−1 · · · ◦ f1, resulting in the change in log density to be: log p1(x1) = log p0(x0) −∑M

i=1 log |∂fi,θ(xi−1)/∂xi−1|. We note that the construction of each fi,θ, i ∈ [M ] is motivated such
that both the inverse f−1

i,θ (x) and Jacobian ∂fi,θ(x)/∂x are computationally cheap to compute.

2.2 BOLTZMANN GENERATORS

A Boltzmann generator (Noé et al., 2019) µθ pairs a normalizing flow as the proposal generative
model pθ, which is then corrected to obtain i.i.d. samples under µtarget using importance sampling.
More precisely, as normalizing flows are exact likelihood models, BG’s first draw K independent
samples xi ∼ pθ(x), i ∈ [K] and compute the corresponding importance weights for each sample
w(xi) = exp

(
−E(xi)
kBT

)
/pθ(x

i). Leveraging the collection of importance weights we can compute
a Monte-Carlo approximation to any test function ϕ(x) of interest under µtarget using self-normalized
importance sampling as follows:

Eµtarget(x)[ϕ(x)] = Epθ
[ϕ(x)w̄(x)] ≈

∑K
i=1 w(x

i)ϕ(xi)∑K
i=1 w(x

i)
.

In addition, computing importance weights also enables resampling the pool of samples according
to the collection of normalized importance weights W = {w̄(xi)}Ki=1.

3 SEQUENTIAL BOLTZMANN GENERATORS

We now present SBG which extends and improves over classical Boltzmann generators by adding a
non-equilibrium transport method that leads to higher-quality samples and better importance weights.
We begin by identifying the key limitation in current BG’s as importance sampling with a suboptimal
proposal. Indeed, while the self-normalized importance sampling estimator is consistent, its’ fidelity
is highly dependent on the quality of the actual proposal pθ. In fact, the optimal proposal distribution
is proportional to the minimizer of the variance of ϕ(xi)µtarget(x

i) (Owen, 2013). Unfortunately,
since pθ within a BG framework is trained on a biased dataset D the importance weights computed
typically exhibit large variance—resulting in a small effective sample size (ESS).
We address the need for more flexible proposals in §3.1 with modernized scalable training recipes
for normalizing flows. In §3.2 we outline our novel application of non-equilibrium processes and
Annealed Importance Sampling that powers our inference scaling algorithm that drives proposal
samples and their importance weight towards the metastable states of E(x). We term the overall
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process of combining a pre-trained Boltzmann generator with inference scaling through annealing:
SEQUENTIAL BOLTZMANN GENERATORS.
Symmetries of molecular systems. The energy function E(x) in a molecular system using classical
force fields is known to be invariant under global rotations and translation, which corresponds to
the group SE(3) ∼= SO(3) ⋉ (R3,+). Unfortunately, SE(3) is a non-compact group which does
not allow for defining a prior density p0(x0) on Rn×3. Equivariant generative models circumvent
this issue by defining a mean-free prior which is a projection of a Gaussian prior N (0, I) onto the
subspace R(n−1)×3 (Garcia Satorras et al., 2021). Thus pushing forward a mean free prior with
an equivariant flow provably leads to an invariant proposal p1(x1) (Köhler et al., 2020; Bose et al.,
2021). We next build BG’s by departing from exactly equivariant maps by instead considering
soft-equivariance which opens up the usage of more scalable and efficient architectures.

3.1 SCALING TRAINING OF BOLTZMANN GENERATORS

To improve proposal flows in SBG we favor scalable architectural choices that are more expressive
than exactly equivariant ones. We motivate this choice by highlighting that many classes of normal-
izing flow models are known to be universal density approximators (Teshima et al., 2020; Lee et al.,
2021). Thus, expressive enough non-equivariant flows can learn to approximate any equivariant map.
Soft equivariance. We instantiate SBG with a state-of-the-art TarFlow (Zhai et al., 2024) which
is based on Blockwise Masked Autoregressive Flow (Papamakarios et al., 2017) based on a causal
Vision Transformer (ViT) (Alexey, 2021) modified for molecular systems where patches are over
the particle dimension. Since the data comes mean-free we further normalize the data to a standard
deviation of one. Combined, this allows us to scale both the depth and width of the models stably
as there is no tension between a hard equivariance constraint and the invertibility of the network.
We include a series of strategies to improve training of non-equivariant flows by softly enforcing
SE(3)-equivariance. First, we softly enforce equivariance to global rotations through data
augmentation by sampling random rotations R ∈ SO(3) and applying them to data samples
R ◦ x1 ∼ p1(x1). Secondly, as the data is mean-free and has (n − 1) × d degrees of freedom we
lift the data dimensionality back to n by adding noise to the center of mass. This allows us to easily
train with a non-equivariant prior distribution such as the standard normal p0 = N (0, I). The next
proposition outlines the family of permissible noise.

Proposition 1. Given an SE(3)-invariant µtarget(x) and the noise-adjusted distribution µ′
target(x).

Consider the decomposition of a data sample into its constituent mean-free component, x̃
and center of mass c ∈ R3, x = x̃ + c, where c ∼ µ(c) and µ(c) is SO(3)-invariant. Then
µtarget(x̃) = µ′

target(x̃) if µ′
target(x) = µ(x̃)µ(∥c∥).

We prove Proposition 1 in §B.1, which tells us that any noise distribution that acts on the norm of
the center of mass does not operationally change the target. As a result, we choose to add small
amounts of Gaussian noise c ∼ N (0, σ) to the center of mass of a given data sample. The impact
of this noise is that during reweighting we must account for µ(∥c∥) which follows a χ(3) distribution.
Consequently, we must adjust the model energy to account for the impact of CoM noise during
reweighting as follows:

log pcθ(x) = log pθ(x)−
(
log

(
∥c2∥
σ3

)
+
∥c∥2

2σ2
+ C

)
,

where C = − log
(√

2Γ
(
3
2

))
and Γ is the gamma function.

3.2 INFERENCE TIME SCALING OF BOLTZMANN GENERATORS

Given a trained BG with proposal flow pθ, the simple importance sampling estimator suffers from
a large variance of importance weights as the dimensionality and complexity of µtarget(x) grows in
large molecular systems. We aim to address this bottleneck by proposing an inference time scaling
algorithm that anneals samples xi ∼ pθ(x)—and corresponding unnormalized importance weights
w(xi)—in a continuous manner towards µtarget.
Improving samples through non-equilibrium transport. We leverage a class of methods that
fall under non-equilibrium sampling to improve the base proposal flow samples. One of the simplest
instantiations of this idea is to use Langevin dynamics with reweighting through a continuous-time
variant of Annealed Importance Sampling (AIS). Concretely, we consider the following SDE that
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drives proposal samples towards metastable states of the Boltzmann target:
dxτ = −ϵτ∇Eτ (xτ )dτ +

√
2ϵτdWτ , (2)

where ϵτ ≥ 0 is a time-dependent diffusion coefficient and Wτ is the standard Wiener process.
We distinguish τ , from t used in the context of training pθ, as the time variable that evolves initial
proposal samples at τ = 0 towards the target at τ = 1. The energy interpolation Et is a design choice,
and we opt for a simple linear interpolant Et = (1− τ)E0 + τE1, and set E0(x) = − log pθ(x). We
highlight that unlike past work in pure sampling (Máté & Fleuret, 2023; Albergo & Vanden-Eijnden,
2024) which use the prior energy E0(x) = − log p0(x), our design affords the significantly more
informative proposal given by the pre-trained normalizing flow pθ. As such, there is often no need
for additional learning during this step which we view as extending the inference capabilities of
the original Boltzmann generator µθ(x).
To compute test functions for the transported samples, and thus reweighting, we use a well-known and
celebrated result known as Jarzynski’s equality that enables the calculation of equilibrium statistics
from non-equilibrium processes. We recall the main result, originally derived in Vaikuntanathan
& Jarzynski (2008), and recently re-derived in continuous-time in the context of learning to sample
by Vargas et al. (2024); Albergo & Vanden-Eijnden (2024) that makes explicit the time evolution
of the new importance weights.

Proposition 2 (Albergo & Vanden-Eijnden (2024)). Let (xτ , wτ ) solve the coupled system of
SDE / ODE

dxτ = −ϵτ∇Eτ (xτ )dτ +
√
2ϵτdWτ

d logwτ = −∂τEτ (xτ )dτ with x0 ∼ pθ, w0 = 0

then for any test function ϕ : Rd → R we have∫
Rd

ϕ(x)pτ (x)dx =
E[wτϕ(xτ )]

E[wτ ]
(3)

and
Zτ/Z1 = E[ewτ ] (Jarzynski’s Equality) (4)

The final samples xτ=1 can then be reweighted according to final importance weights wτ=1 that have
lower magnitudes than simple importance sampling in conventional BG’s. It is crucial to highlight
that through inference-time scaling, we never need to compute the high-magnitude importance
weights under the prior p0(x0), and instead the proposal pθ(x0) acts as a new prior for the Langevin
process. It is precisely this learned proposal distribution that d logwτ accounts for within the
parlance of Annealed Importance Sampling. To evolve the Langevin SDE we require,

∇Eτ (xτ ) = (1− τ)∇(− log pθ(xτ )) + τ∇
(
E(xτ )
kBT

)
,

Algorithm 1 SBG Sampling
Require: # particles K, # annealed distributions N ,

Energy annealing schedule Eτ (xτ )
1: x0 ∼ E0(x0); ∆← 1/N
2: for i = 1 to N do
3: xτ+∆ ← xτ − ϵτ∇Eτ (xτ )dτ +

√
2ϵτdWτ

4: logwτ+∆ = logwτ − ∂τE(xτ )dτ
5: τ ← τ +∆
6: if ESS < ESSthreshold then
7: xτ ← RESAMPLE(xτ , wτ )
8: wτ ← 0
9: end if

10: end for

which requires efficient gradient computation
through the log-likelihood estimation under the
normalizing flow pθ. This presents the first point
of distinction between finite flows and CNF’s.
The former class of flows trained using Eq. 1
gives fast exact likelihoods—especially for our
scalable non-equivariant TarFlow model. In
contrast, CNF’s must simulate and differentiate
through an ODE solver to compute∇ log pθ(xτ )
for each step of the Langevin SDE in Eq. 2.
As a result, a TarFlow proposal is considerably
cheaper to simulate and reweight with AIS than
a CNF. In §A we present an alternate interpolant
that does not require the proposal distribution
during sampling which is appealing when only
samples are needed but at the cost of more ex-
pensive computation of log weights. These paths
are of interest in the setting of Boltzmann emulators and other generative models and are of indepen-
dent interest but are not considered further in the context of SBG.
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To further enable a reduced computational footprint we propose a strategy that eliminates the forward
evolution of the initial proposal that already obtain high energy. Specifically, we can simulate a large
number of samples via Eq. 7 and threshold using an energy threshold γ > 0, and evaluate the log
weights of promising samples. We justify our strategy by first remarking a lower bound to the log
partition function of µtarget using a Monte Carlo estimate,

logZ = logEx∼pθ(x)

exp
(

−E(x)
kBT

)
pθ(x)

 ≥ Ex∼pθ(x)

[
−E(x)
kBT

− log pθ(x)

]
= log Ẑ. (5)

Plugging this estimate in the definition of the target Boltzmann distribution we get an upper bound,

logµtarget(x) ≤ log

(
−E(x)
kBT

)
− log Ẑ.

An upper bound on µtarget(x) allows us to threshold samples using the energy function,
E(x) > γ, of the target. Formally, this corresponds to truncating the target distribution
µ̂target(x) := P

(
µtarget(x) ≥ γ

log Ẑ

)
which places zero mass on high energy conformations.

Correcting flow samples with respect to this truncated target introduces an additional bias into the
self-normalized importance sampling estimate, which precisely corresponds to the difference in total
variation distance between the two distributions TV(µ̂target, µtarget). We prove this result using an
intermediate result in Lemma 1 included in Appendix B.
Our next theoretical result provides a prescriptive strategy of setting an appropriate threshold γ as
a function of the number of samples K and effective sample size under µ̂target(x).

Proposition 3. Given an energy threshold E(x) > γ, for γ > 0 large and the resulting truncated

target distribution µ̂target(x) := P
(
µtarget(x) ≥ γ

log Ẑ

)
. Further, assume that the density of

unnormalized importance weights w.r.t. to µ̂target is square integrable (ŵ(x))2 < ∞. Given a
tolerance ρ = 1/ESS and bias of the original importance sampling estimator in total variation
b = TV(µθ, µtarget), then the γ-truncation threshold with K-samples for TV(µθ, µ̂target) is:

γ ≥ 1

λ
log

(
Kb

12ρE[exp(−λX)]

)
+ log Ẑ. (6)

The proof for Proposition 3 is located in §B.3. Proposition 3 allows us to appropriately set a energy
threshold γ as a function of tolerance ρ that depends on ESS. In practice, this allows us to negotiate
the amount of acceptable bias when dropping initial samples that obtain high-energy before any
further AIS correction. Moreover, this gives a firmer theoretical foundation to existing practices
of thresholding high-energy samples (Midgley et al., 2023b;a).
Analogous to thresholding based on E(x), we can also threshold by the probability under the proposal
flow with truncation p̂θ(x) := P(pθ(x) ≥ δ), for small δ > 0. Essentially, this thresholding filters low
probability samples under the model prior to any importance sampling. The additional bias incurred
by performing such thresholding is theoretically analyzed in Proposition 4 and presented in §B.4.

4 EXPERIMENTS

We evaluate SBG on small peptides using classical force-fields as the energy function with exact
experimental setups described in §D. To generate samples and their corresponding weights we
follow Algorithm 1 with resampling (lines 6-9) which is run on initial proposal samples and is
equivalent to performing SMC (Doucet et al., 2001).
Datasets. We consider small peptides composed of varying numbers of alanine amino acids, with
some systems additionally incorporating an acetyl group and an N-methyl group. We investigate
alaine systems of up to 6 amino acids. All datasets are generated from a single MD simulation
in implicit solvent using a classical force field. For each system, the first 1ns is used for training,
the next 0.2ns for validation, and the remainder serves as the test set. Therefore, some metastable
states may not be represented in the training set. An exception is alanine dipeptide, for which we
use the dataset from Klein & Noé (2024). In addition to the alanine systems, we also investigate
the significantly larger protein Chignolin, consisting of 10 amino acids generated with the Anton
supercomputer in Lindorff-Larsen et al. (2011). We provide additional dataset details in §E.
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(a) SE(3)-EACF on AL2 (b) ECNF on AL2 (c) ECNF++ on AL2 (d) SBG on AL2

Figure 2: Energies of samples generated with different methods on alanine dipeptide (ALDP).
Baselines. For baselines, we train prior state-of-the-art equivariant Boltzmann generators.
Specifically, we use SE(3)-augmented coupling flow (Midgley et al., 2023a) as the exactly invertible
and equivariant architecture and the equivariant ECNF employed in Transferrable Boltzmann
Generators (Klein & Noé, 2024). We also include an improved equivariant CNF (ECNF++) as a
stronger baseline, see §D.3 for full details, which uses improved flow matching loss, improved data
normalization, a larger network, improved learning rate schedule, and optimizer.
Metrics. We report interatomic distances as a normalized density between the ground truth data,
and initial proposal samples, as well as the energy histogram of the system for ground truth, initial
proposal samples, transported samples, and the reweighted energy histogram. We also include
Ramachandran plots Ramachandran et al. (1963) for each molecular system studied that visualizes
dihedral angles’ distribution for the ground truth data distribution and the generated samples. We
include additional quantitative metrics that provide a finer grained evaluation of each method.
Concretely, we compute the ESS, Wasserstein-1 distance on the energy distribution, and the
Wasserstein-2 distance of the dihedral angles used in the Ramachandran plot.

4.1 RESULTS

Figure 3: Left: Time in hours for sampling and
reweighing 10k points. Right: T-W2 on AL3 as a func-
tion of inference samples.

We evaluate SBG and our chosen baselines on
alanine dipeptide (ALDP), trialanine (AL3), ala-
nine tetrapeptide (AL4), and hexaalanine (AL6)
with quantitative metrics summarized in Table 2
and Table 3. In SBG @ 10k we generate 10k
samples and directly report metrics on these sam-
ples. In SBG @100k we generate 100k samples
and subsample to 10k after SMC to compute
directly comparable metrics. For SE(3)-EACF
we retrain this baseline on our more challenging
version of ALDP and observe that performance degrades substantially at the selected 0.2% weight
clipping threshold (c.f. §F for higher clipping thresholds). Furthermore, we find that on ALDP,
our improved ECNF++ baseline obtains a 177% relative improvement in ESS over the previous
SOTA ECNF from Klein & Noé (2024). Importantly, we observe SBG is the best method on the
Wasserstein-1 energy distance E-W1 and Wasserstein-2 distance on dihedreal angles T-W2. As SBG
involves resamples on a finite set of points, we observe that the higher number of particles (100k)
results in consistently improved E-W1 and T-W2. These results are further substantiated in Figure 2
which depicts the energy histograms of SBG in relation to the ground truth energy of the system and
depicts a near perfect overlap.
For tripeptides, tetrapeptides, and hexapeptides we remark that the SE(3)-EACF baseline is too
computationally expensive and thus does not scale (c.f. Table 4). Consequently, we report metrics for
our improved ECNF, ECNF++, and SBG. We observe that ECNF fails to learn effectively on the tri
and tetrapeptides with E-W1 exploding over 104, while our improved ECNF++ is orders of magnitude
better. We highlight that SBG is the best method across all metrics, and in particular, we highlight
that the improvements are more prominently driven by inference time scaling of proposal samples as
observed in Section 4.1, Figure 4, and Figure 5. As reweighted samples under SBG show extremely
high overlap with the ground truth µtarget(x), we argue that SBG successfully solves these molecular
systems in comparison to prior BG’s. We also report in §F.1 the Ramachandran plots for each method.
Finally, we include additional ablations such as the utility of CoM augmentation in Appendix F.
Inference scaling. To illustrate the scalability of SBG in relation to other methods we plot
in Figure 3 the log-scale inference time for each dataset. In particular, for inference, we include the
time to generate and reweight 10k samples. We observe an almost exponential scaling of ECNF as
the size of the peptide grows, while SBG is dramatically faster at inference. As an ablation, we also

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(a) ECNF++ on AL3 (b) SBG on AL3 (c) ECNF++ on AL4 (d) SBG on AL4
Figure 4: Energy plots for trialanine (AL3) and tetrapeptide (AL4).

plot T-W2 metric on AL3 as a function of inference samples which shows a monotonic decrease as
the number of samples increase, which is computationally tractable due to cheap inference of SBG.

Table 3: Results on trialanine, alanine tetrapeptide, and hexapeptide. ∗Indicates ESS after resampling.

Datasets→ Tripeptide (AL3) Tetrapeptide (AL4) Hexapeptide (AL6)

Algorithm ↓ ESS ↑ E-W1 ↓ T-W2 ↓ ESS ↑ E-W1 ↓ T-W2 ↓ ESS ↑ E-W1↓ T-W2 ↓
ECNF < 10−4 > 104 7.010 < 10−4 > 104 3.853 - - -
ECNF++ (Ours) 0.036 ± 0.027 1.759 ± 0.788 1.967 ± 0.062 0.123 ± 0.006 4.229 ± 1.284 2.414 ± 0.000 0.015 ± 0.003 8.954 ± 0.646 5.405 ± 0.069

SBG (Ours) @10k 0.732∗ ± 0.189 1.676 ± 0.138 1.244 ± 0.108 0.898∗ ± 0.072 2.155 ± 0.066 2.099 ± 0.004 0.989∗ ± 0.014 1.573 ± 0.464 3.785 ± 0.140
SBG (Ours) @100k 0.882∗ ± 0.193 1.384 ± 0.245 0.940 ± 0.040 0.890∗ ± 0.072 1.837± 0.377 1.804 ± 0.022 0.940∗ ± 0.048 0.474 ± 0.141 3.303 ± 0.078

(a) ECNF++ on AL6 (b) SBG on AL6
Figure 5: Energy plots for hexapeptide (AL6).

5 RELATED WORK Table 2: Results on ALDP. ∗Indicates resampled ESS.

Datasets→ Alanine dipeptide (ALDP)

Algorithm ↓ ESS ↑ E-W1 ↓ T-W2 ↓
SE(3)-EACF < 10−4 14.70 1.738
ECNF 0.084 0.984 0.391
ECNF++ (Ours) 0.233 ± 0.042 0.825 ± 0.038 0.349 ± 0.050

SBG (Ours) @10k 0.893∗ ± 0.167 0.571 ± 0.451 0.476 ± 0.010
SBG (Ours) @100k 0.880∗ ± 0.177 0.394 ± 0.298 0.306 ± 0.025

Boltzmann generators (BGs) (Noé et al., 2019)
have been applied to both free energy estimation
(Wirnsberger et al., 2020; Rizzi et al., 2023;
Schebek et al., 2024) and molecular sampling.
Initially, BGs relied on system-specific rep-
resentations, such as internal coordinates, to
achieve relevant sampling efficiencies (Noé
et al., 2019; Köhler et al., 2021; Midgley et al., 2023b; Köhler et al., 2023; Dibak et al., 2022).
However, these representations are generally not transferable across different systems, leading to
the development of BGs in Cartesian coordinates (Klein et al., 2023b; Midgley et al., 2023a; Klein
& Noé, 2024). While this improves transferability, they are currently limited in scalability, struggling
to extend beyond dipeptides. Scaling to larger systems typically requires sacrificing exact sampling
from the target distribution (Jing et al., 2022; Abdin & Kim, 2023; Jing et al., 2024a; Lewis et al.,
2024), which often includes coarse-graining. An alternative to direct sampling from µtarget(x) is
to generate samples iteratively by learning large steps in time (Schreiner et al., 2023; Fu et al., 2023;
Klein et al., 2023a; Diez et al., 2024; Jing et al., 2024b; Daigavane et al., 2024).

6 CONCLUSION

In this paper, we introduce SBG an extension to the Boltzmann generator framework that scales
inference through the use of non-equilibrium transport. Unlike past BG’s in SBG, we scale training
using a non-equivariant transformer-based TarFlow architecture with soft equivariance penalties
to 6 peptides. In terms of limitations, using non-equilibrium transport as presented in SBG does
not enjoy easy application to CNFs due to expensive simulation, which limits the use of modern
flow matching methods in a SBG context. Considering hybrid approaches that mix CNFs through
distillation to an invertible architecture or consistency-based objectives is thus a natural direction for
future work. Finally, considering other classes of scalable generative models such as autoregressive
ones which also permit exact likelihoods is also a ripe direction orf future work.
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A ALTERNATE PATHS

A.1 PROPOSAL FREE LANGEVIN DYNAMICS

We can also modify the Langevin SDE in Eq. 2 to include an additional drift term ντ (xτ ) ∈ Rd as
follows:

dxτ = −ϵτ∇Et(xτ )dτ + ντ (xτ )dτ +
√
2ϵτdWτ .

Under perfect drift ντ (τ) the log weights do not change and there is no need for correction. For
imperfect drift the corresponding coupled ODE time-evolution of log-weights d logwτ needed to
apply AIS was derived in NETS (Albergo & Vanden-Eijnden, 2024, Proposition 3):

dwτ = ∇ · ντ (xτ )dτ −∇Eτ (xτ ) · ντ (xτ )dτ − ∂τEτ (xτ )dτ.
In contrast to learning a drift as done in NETS (Albergo & Vanden-Eijnden, 2024) we now illustrate
that a judicious choice of ντ (xτ ) eliminates the need to compute the gradient of log-likelihood
under the proposal. For instance, we can choose ντ (xτ ) = ϵτ∇Eτ (xτ ) − ϵτ∇

(
E(xτ )
kBT

)
, which by

straightforward calculation gives the following SDE:
dxτ = −ϵτ∇Et(xτ )dτ + ντ (xτ )dτ +

√
2ϵτdWτ

= −ϵτ∇
(
E(xτ )
kBT

)
dτ +

√
2ϵτdWτ . (7)

This new SDE greatly simplifies the simulation of samples xτ as it is independent of the proposal
energy ∇E0(xτ ) = −∇ log pθ(xτ ). However, the log weights ODE still requires the computation
of the gradient of the proposal energy. The form of Eq. 7 suggests the possibility of massively
parallel simulation schemes under a regular normalizing flow and a CNF. However, due to simulatio
the log weights remains expensive for CNFs due to the need to compute the divergence operator.
Furthermore, while recent advances in divergence-free density estimation via the Itô density
estimator (Skreta et al., 2024; Karczewski et al., 2024) might appear attractive we show that the
log density under this estimator is necessarily biased and may limit the fidelity of self-normalized
importance sampling incurs non-negotiable added bias. For ease of presentation, we present this
theoretical investigation in appendix §C.2 and characterize the added bias in Proposition 5. In totality,
this limits the application of continuous BG’s to only the conventional IS setting, unlike finite flows
like TarFlow which can benefit from non-equilibrium transport and AIS.

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1. Given an SE(3)-invariant µtarget(x) and the noise-adjusted distribution µ′
target(x).

Consider the decomposition of a data sample into its constituent mean-free component, x̃
and center of mass c ∈ R3, x = x̃ + c, where c ∼ µ(c) and µ(c) is SO(3)-invariant. Then
µtarget(x̃) = µ′

target(x̃) if µ′
target(x) = µ(x̃)µ(∥c∥).

Proof. We start by noting x = x̃+ c and thus we can construct the target as a marginalization over c

µtarget(x̃) =

∫
µtarget(x̃, c)dc =

∫
µtarget(x̃|c)µ(c)dc (8)

Now select µ(c) = µ(∥c∥)µ(ϕ)µ(ψ) which gives:∫
µtarget(x̃|c)µ(c)dc =

∫
µtarget(x̃|c)µ(∥c∥)µ(ϕ)µ(ψ)dc. (9)

But the target distribution is SE(3)-invariant and thus this results in the following result,∫
µtarget(x̃|c)µ(∥c∥)dc =

∫
µtarget(x̃)µ(∥c∥)dc = µ′

target(x). (10)

B.2 PROOF OF LEMMA 1

We first prove a useful lemma that computes the total variation distance between the original distribu-
tion of the normalizing flow pθ and the truncated distribution p̂θ before proving the propositions.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Lemma 1. Let pθ be a generative and denote p̂θ(x) the δ-truncated distribution such that
p̂θ(x) := P(pθ(x) ≥ δ), for a small δ > 0. Define the constant β = P(pθ(x) < δ) as the event
where the truncation occurs. Then the total variation distance between the generative model and
its truncated distribution is TV(pθ, p̂θ) = β.

Proof. We begin by first characterizing the total variation distance between flow after correction with
importance sampling p(x) with truncated distribution p̂(x). Recall that the truncated distribution is
defined as follows:

p̂(x) := P(p(x) ≥ δ) = p(x)I{p(x) ≥ δ}∫
I{p(x) ≥ δ}p(x)dx

, (11)

where I is the indicator function. Denote the events α = P(X ≥ δ) and β = P(X < δ) for the
random variance X ∼ p(x). Clearly, α+ β = 1 and α =

∫
I{µ(x) ≥ δ}p(x)dx. Now consider the

total variation distance between these two distributions:

TV(p, p̂) = sup
ϕ∈Φ

∣∣Ex∼p(x)[ϕ(x)]− Ex̂∼p̂(x)[ϕ(x̂)]
∣∣ = 1

2

∫
|p(x)− p̂(x)|dx. (12)

where Φ = {ϕ : ∥ϕ∥∞ ≤ 1}. Next we break up the event space into two regions R1 and R2 which
correspond to the events p(x) < δ and p(x) ≥ δ respectively. Now consider the total variation
distance in the region R1 whereby construction p̂(x) = 0,

1

2

∫
R1

|p(x)− p̂(x)|dx =
1

2

∫
R1

p(x)dx =
β

2
. (13)

A similar computation on R2 gives,
1

2

∫
R2

|pθ(x)− p̂θ(x)|dx =
1

2

∫
R2

∣∣∣∣p(x)− p(x)

α

∣∣∣∣ dx =
1

2

∫
R2

p(x)

∣∣∣∣1− 1

α

∣∣∣∣ dx =
α( 1

α − 1)

2
=
β

2
,

(14)
where we exploited the fact that p̂θ(x) = pθ(x)

α in the first equality and that α =
∫
R2
pθ(x)dx in

the second equality. Combining these results we get the full total variation distance:

TV(p, p̂) =
1

2

∫
|p(x)− p̂(x)|dx =

1

2

∫
R1

|p(x)− p̂(x)|dx+
1

2

∫
R2

|p(x)− p̂(x)|dx = β. (15)

Thus the TV(p, p̂) = β and 0 in the trivial case where α = 1 and the truncated distribution are the
same.

B.3 PROOF OF PROPOSITION 3

Proposition 3. Given an energy threshold E(x) > γ, for γ > 0 large and the resulting truncated

target distribution µ̂target(x) := P
(
µtarget(x) ≥ γ

log Ẑ

)
. Further, assume that the density of

unnormalized importance weights w.r.t. to µ̂target is square integrable (ŵ(x))2 < ∞. Given a
tolerance ρ = 1/ESS and bias of the original importance sampling estimator in total variation
b = TV(µθ, µtarget), then the γ-truncation threshold with K-samples for TV(µθ, µ̂target) is:

γ ≥ 1

λ
log

(
Kb

12ρE[exp(−λX)]

)
+ log Ẑ. (6)

Proof. We start by recalling a well-known result stating the bias of self-normalized importance
sampling found in Agapiou et al. (2017, Theorem 2.1) using K samples from the proposal µ(x):

sup
∥ϕ∥∞≤1

∣∣E [µK
θ (ϕ)− µtarget(ϕ)

]∣∣ ≤ 12ρ

K
, ρ ≈ K

ESS
=
K
∑K

j w(xj)2(∑K
i w(xi)

)2 (16)

where the terms µK
θ (ϕ) =

∑K
i w̄(xi)ϕ(xi) is the self-normalized importance estimator of µtarget

with samples drawn according to xi ∼ pθ(x) and ∥ϕ(x)∥ ≤ 1 is a bounded test function.

14
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By truncating using an energy threshold E(x) < γ, for a large γ > 0, we truncate the support of
µtarget(x) by cutting off low probability regions that constitute high-energy configurations. More

precisely, we have µ̂target := P
(
µtarget(x) ≥ γ

log Ẑ

)
, where log Ẑ is as defined in Eq. 5. Note that

µ̂target(x) is absolutely continuous w.r.t. to µtarget as the support is contained up to modulo measure
zero sets. The importance sampling error incurred by using µ̂target can be bounded as follows:

sup
∥ϕ∥∞≤1

∣∣E [µK
θ (ϕ)− µtarget(ϕ)

]∣∣ ≤ sup
∥ϕ∥∞≤1

∣∣E [µK
θ (ϕ)− µ̂target(ϕ)

]∣∣+ sup
∥ϕ∥∞≤1

|E [µ̂target(ϕ)− µtarget(ϕ)]|

(17)

≤ 12ρ̂

K
+ β1 (18)

≤ 12ρ

K
+ β1. (19)

The first inequality follows from the triangle inequality. Here we note that ρ̂ is the ESS which
corresponds to using importance weights computed with respect to the truncated target µ̂target rather
than µtarget. The constant β1 = TV(µ̂target, µtarget) and follows from an application of Lemma 1.
Further, note that ρ ≥ ρ̂ since ESS must increase—and thereby ρ̂ decreases—as the distributional
overlap between the two distributions decreases. Now observe, β1 = P

(
X < γ

log Ẑ

)
, where

samples follow the law X ∼ µ̂target(x). Then a direct application of Chernoff’s inequality gives us

P
(
X < γ

log Ẑ

)
= β1 ≤ exp

(
λγ

log Ẑ

)
E[exp (−λX)]. Thus the additional bias incurred is,

sup
∥ϕ∥∞≤1

∣∣E [µ̂K
θ (ϕ)− µtarget(ϕ)

]∣∣ ≤ 12ρ

K
+ β1 ≤

12ρ

K
+ exp

(
λγ

log Ẑ

)
E[exp(−λX)]. (20)

Where the term E[exp(−λX)] is the moment generating function. Setting b := TV(µK
θ , µtarget), then

we have

γ ≥ 1

λ
log

(
Kb

12ρE[exp(−λX)]

)
+ log Ẑ. (21)

B.4 PROOF OF PROPOSITION 4

Proposition 4. Assume that the density of the model pθ after importance sampling µθ is
absolutely continuous with respect to the target µtarget. Further, assume that the density of
unnormalized importance weights is square integrable (w(x))2 < ∞. Given a tolerance
ρ = 1/ESS of the original importance sampling estimator under µθ and bias of the importance
sampling estimator in total variation b = TV(µθ, µtarget), then the δ-truncation for the truncated
distribution p̂θ(x) := P(pθ(x) ≥ δ) threshold with K-samples is:

δ ≥ 1

λ
log

(
Kb

12ρE[exp(−λX)]

)
. (22)

Proof. We aim to bound the total variation distance TV(µ̂K
θ , µtarget) of using the truncated distribution

P(pθ(x) > δ) by again recalling the bias of self-normalized importance sampling using K samples
from µθ(x):

sup
∥ϕ∥∞≤1

∣∣E [µK
θ (ϕ)− µtarget(ϕ)

]∣∣ ≤ 12ρ

K
, ρ ≈ K

ESS
=
K
∑K

j w(xj)2(∑K
i w(xi)

)2 (23)

where the terms µK
θ (ϕ) =

∑K
i w̄(xi)ϕ(xi) is the self-normalized importance estimator of µtarget

with samples drawn according to xi ∼ pθ(x) and ∥ϕ(x)∥ ≤ 1 is a bounded test function. We next
characterize the error introduced by using the truncated distribution p̂θ for importance sampling
in place of pθ by first defining the truncated K-sample self-normalized importance estimator

15
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µ̂K
θ (ϕ) =

∑K
j w̄(xj)ϕ(xj), where xj ∼ p̂θ(x). Specifically, we bound the total variation distance:

TV(µθ, µ̂θ) = sup
∥ϕ∥∞≤1

∣∣E [µK
θ (ϕ)− µ̂K

θ (ϕ)
]∣∣ (24)

= sup
∥ϕ∥∞≤1

∣∣∣∣∣∣Exi∼pθ

[
K∑
i=1

w̄(xi)ϕ(xi)

]
− Exj∼p̂θ

 K∑
j=1

w̄(xj)ϕ(xj)

∣∣∣∣∣∣ (25)

=
1

2

Exi∼pθ

[
K∑
i=1

w̄(xi)

]
− Exj∼p̂θ

 K∑
j=1

w̄(xj)

 (26)

Here in the second equality, we used the fact that the test function is bounded ||ϕ∥|∞ ≤ 1 Next, we
apply Lemma 1 and leverage the fact that the self-normalized weights are also bounded and achieve
a bound on the total variation distance,

TV(µ, µ̂) =
1

2

Exi∼pθ

[
K∑
i=1

w̄(xi)

]
− Exj∼p̂θ

 K∑
j=1

w̄(xj)

 (27)

= β2, (28)

where β2 is the probability mass P(X < δ) when X ∼ pθ(x). Like previously, the overall error
can be bounded using the triangle inequality
sup

∥ϕ∥∞≤1

∣∣E [µK
θ (ϕ)− µtarget(ϕ)

]∣∣ ≤ sup
∥ϕ∥∞≤1

∣∣E [µ̂K
θ (ϕ)− µtarget(ϕ)

]∣∣+ sup
∥ϕ∥∞≤1

∣∣E [µK
θ (ϕ)− µ̂K

θ (ϕ)
]∣∣

(29)

≤ 12ρ̂

K
+ β2 (30)

≤ 12ρ

K
+ β2. (31)

Where the last inequality follows from the same logic as in Proposition 3 where ESS goes up
after truncation and therefore ρ > ρ̂. A direct application of Chernoff’s inequality gives us
P(X < δ) = β2 ≤ exp(λδ)E[exp(−λX)] where we used the moment generating function of pθ(x).
Thus the additional bias incurred is,

sup
∥ϕ∥∞≤1

∣∣E [µK
θ (ϕ)− µtarget(ϕ)

]∣∣ ≤ 12ρ

K
+ β2 ≤

12ρ

K
+ exp(λδ)E[exp(−λX)]. (32)

Setting b := TV(µθ, µtarget) as the bias, then we have

δ ≥ 1

λ
log

(
Kb

12ρE[exp(−λX)]

)
. (33)

C ITÔ FILTERING

C.1 FLOW MATCHING SDE

As shown in Domingo-Enrich et al. (2024) we can write Flow Matching with Gaussian conditional
paths and Diffusion models under a unified SDE framework given a reference flow:

xt = βtx0 + αtx1, (34)
where (αt)t∈[0,1], (βt)t∈[0,1] are functions such that α0 = β1 = 0 and α1 = β0 = 1. In the specific
case of flow matching with linear interpolants that we consider we have:

xt = (1− t)x0 + tx1. (35)
The unified SDE for both flow matching and continuous-time diffusion models as introduced
in Domingo-Enrich et al. (2024) is then:

dxt = κtx+

(
σ2
t

2
+ ηt

)
s(xt, t) + σtdWt, κt =

α̇t

αt
, ηt = βt

(
α̇t

αt
βt − β̇t

)
(36)
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where s(xt, t) is the score function estimated by the diffusion model. Thus the flow matching SDE is:

dxt =
(
2ft,θ(t, xt)−

xt
t

)
dt+ σtdWt, σt =

√
(2(1− t)t) (37)

In fact, the Stein score can be estimated from the output of a velocity field and vice-versa:

∇ log pt(xt) =
tft,θ(t, xt)− xt

1− t
, ft,θ(t, xt) =

xt + (1− t)∇ log pt(xt)

t
(38)

Rewriting Eq. 37 in terms of the score function we get,

dxt =
xt
t
+ σ2

t∇ log pt(xt) + σtdWt. (39)

C.2 ITÔ FILTERING

Proposition 5. Assume that the density of the model pθ after importance sampling µθ is
absolutely continuous with respect to the target µtarget. Further, assume that the density of
unnormalized importance weights is square integrable (w(x))2 < ∞. Let r(x0) be the Itô
density estimator for log p0(x0) of the flow matching SDE:

dxt =
xt
t
+ σ2

t∇sθ(t, xt) + σtdWt, σt =
√

(2(1− t)t). (40)

Given ρ = 1/ESS, and ζ > 0 which is the weight clipping threshold. Then the additional bias
of using the Itô density estimator for importance sampling µ̂r,θ with clipping is:

sup
∥ϕ∥∞≤1

∣∣E [µK
r,θ(ϕ)− µtarget(ϕ)

]∣∣ ≤ 12ρ

K
+ β3 + β4, (41)

where β3 = TV(µr,θ, µθ) and β4 = TV(µr,θ, µ̂r,θ).

We now recall Itô’s lemma which states that for a stochastic process,

dxt = ft(t, xt) + gtdWt, (42)
and a smooth function h : R× Rd → R the variation of h as a function of the stochastic SDE can be
approximated using a Taylor approximation:

dh(t, xt) =

(
∂

∂t
h(t, xt) +

∂

∂x
h(t, xt)

T ft(t, xt) +
1

2
σ2
t∆xh(t, xt)

)
dt+σt

∂

∂x
h(t, xt)dWt. (43)

where ∆x is the Laplacian. We will use Itô’s Lemma with h(t, xt) := log pt(xt) to obtain the Itô
density estimator (Skreta et al., 2024; Karczewski et al., 2024) but for flow models

d log pt(xt) =

(
∂

∂t
log pt(xt) +

∂

∂x
log pt(xt)

T f(t, xt) +
1

2
σ2
t∆x log pt(xt)

)
dt+σt

∂

∂x
log pt(xt)dWt,

(44)
To solve for the change in density over time we can start from the log version of the Fokker-Plank
equation:
∂

∂t
log pt(x) = −∇ · (f(t, x)) +

1

2
σ2
t∆x log pt(x)−∇x log pt(x)

T

(
f(t, x)− 1

2
σ2
t∇x log pt(x)

)
(45)

in the general case we end with:

d log pt(xt) =

(
−∇ ·

(
f(t, xt)− σ2

t∇x log pt(xt)
)
+

1

2
σ2
t ∥∇x log pt(xt)∥2

)
dt+σt∇x log pt(xt)

T dWt.

(46)
We now apply this to the flow-matching SDE Eq. 39 written in terms of the score function. In
particular, we have,

d log pt(xt) =

(
−∇ ·

(
σ2
t∇x log pt(xt) +

xt
t
− σ2

t∇x log pt(xt)
)
+

1

2
σ2
t ∥∇x log pt(xt)∥2

)
dt

+ σt∇x log pt(xt)
T dWt

d log pt(xt) =

(
−d/t+ 1

2
σ2
t ∥∇x log pt(xt)∥2

)
dt+ σt∇x log pt(xt)

T dWt. (47)
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The above equation makes an implicit assumption that we have access to the actual ground truth score
function of ∇ logt(xt) rather than the estimated one sθ, expressed via the vector field as in Eq. 38.
When working with imperfect score estimates we have the following SDE:

dxt =
xt
t
+ σ2

t∇sθ(t, xt) + σtdWt. (48)

The score estimation error causes a discrepancy in log pt(xt) estimates whose error is captured in the
theorem from Karczewski et al. (2024)[Theorem 3]:

log r0(x0) = log p0(x0) + Y (49)
where log r0 is the bias of the log density starting at time t = 0 of the auxiliary process that does not
track xt correctly due to the estimation error of the score. Also, Y is a random variable such that that
bias of r0 is given by:

E[Y ] =
1

2
Et∼U(0,1),xt∼pt(xt)

[
σ2
t ||sθ(t, xt)−∇ log pt(xt)||2

]
︸ ︷︷ ︸

≥0

(50)

Thus the Itô density estimator forms an upper bound to the true log density, i.e. r0(x0) ≥ log p0(x0).
This allows us to form an upper bound on the normalized log weights as an expectation,

Ex0∼pθ(x0)[log w̄(x0)] = Ex0∼pθ(x0)

[
−E(x0)
kBT

− log p0(x0)− C
]

≤ Ex0∼pθ(x0)

[
−E(x0)
kBT

− r0(x0)
]
,

where C is a constant. We define log w̄r(x0) := −E(x0)
kBT − r0(x0) as the new normalized importance

weights, module constants. We can now compute the additional bias of self-normalized importance
sampling estimator µK

r,θ

TV(µr,θ, µθ) = sup
∥ϕ∥∞≤1

∣∣E [µK
r,θ(ϕ)− µK

θ (ϕ)
]∣∣ (51)

= sup
∥ϕ∥∞≤1

∣∣∣∣∣∣Exi∼pθ

[
K∑
i=1

w̄r(x
i)ϕ(xi)

]
− Exj∼pθ

 K∑
j=1

w̄(xj)ϕ(xj)

∣∣∣∣∣∣ (52)

=
1

2

Exi∼pθ

[
K∑
i=1

w̄r(x
i)

]
− Exj∼pθ

 K∑
j=1

w̄(xj)

 (53)

=
1

2

(
Exi∼pθ

[
K∑
i=1

exp

(
1

2
Et∼U(0,1),xt∼pt(xt)

[
σ2
t ||sθ(t, xt)−∇ log pt(xt)||2

])])
(54)

:= β3 (55)

The total bias is then

sup
∥ϕ∥∞≤1

∣∣E [µK
r,θ(ϕ)− µtarget(ϕ)

]∣∣ ≤ 12ρ

K
+ β3. (56)

Finally, when clipping weights with ζ > 0 we induce a truncated distribution µ̂r,θ, i.e. r̂0 :=
P(r0x0 > ζ). Using Lemma 1 this creates another constant factor that contributes TV(µr,θ, µ̂r,θ) =
β4 to the overall bias:

sup
∥ϕ∥∞≤1

∣∣E [µK
r,θ(ϕ)− µtarget(ϕ)

]∣∣ ≤ 12ρ

K
+ β3 + β4. (57)
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D EXPERIMENTAL DETAILS

D.1 FURTHER DETAILS ON EXPERIMENTAL SETUP

Metrics and sampling setup. For all metrics we first generate samples, then resample to 10k samples,
and finally compute metrics to control for the error in distribution metrics from empirical sample size.
For all models we draw 10k samples unless otherwise noted. For AL6 ECNF++ due to compute cost
we instead draw 1k samples.
Sampling time calculations. For the sampling time, we compute all times on a single A100. For the
continuous normalizing flow models we use a the maximum power of two batch size that fits on an
A100, and average over at least 10 batches.
Training time. For training times we compute all times on a single A100 80Gb GPU except for
SE(3)-EACF which is trained on a single H100. We compute the total time in hours till convergence
for all methods and report it in the table below.

Table 4: Training time (in hours) for all methods.

Model ALDP AL3 AL4 AL6 Chignolin
SE(3)-EACF 160 - - - -

ECNF 4.17 5.83 8.89
ECNF++ 9.72 12.5 17.17 76.94

SBG 16.83 24.67 41.67 57.5 427.33

D.2 SE(3)-EACF IMPLEMENTATION DETAILS

Equivariant augmented coupling flow (EACF) (Midgley et al., 2023a). We adopt the original
model configuration from (Midgley et al., 2023a) for our EACF baseline on ALDP. We choose the
most stable Spherical-projection EACF with a 20-layer configuration. Each layer has two ShiftCoM
layer and two core-transformation blocks. The EGNN used in the core transformation block consists
of three message-passing layers with 128 hidden states. Stability enhancement tricks like stable MLP
and dynamic weight clipping on each layer’s output are fully applied. The model has been trained for
50 epochs with a batch size of 20 using Adam optimizer and peak learning rate of 1e-4. We use the
default 20 samples to estimate likelihoods using importance sampling.
EACF as a Boltzmann generator. EACF is augmented, and therefore to estimate the likelihood of a
sample x under an EACF model, we need to use an estimate based on samples from the augmented
dimension a. Specifically, for a Gaussian distributed augmented variable a, we can estimate the
marginal density of an observation as

q(x) = Ea∼π(·|x)

[
q(x, a)

π(a|x)

]
(58)

however, this is only a consistent estimator of the likelihood and for finite sample sizes has variance.
This makes this unsuitable for our application of large-scale Boltzmann generators, as in this setting
we need to compute exact likelihoods. Variance in likelihood estimation would lead to bias in the
final distribution under self-normalized importance sampling or a SBG strategy. We therefore do not
consider EACF as a viable option for large scale Boltzmann distribution sampling.

D.3 ECNF++ IMPLEMENTATION DETAILS

D.3.1 NETWORK AND TRAINING

Equivariant continuous normalizing flow (ECNF) (Klein & Noé, 2024). We use the supplied
pretrained model from Klein & Noé (2024) for our ECNF baseline on ALDP. Therefore all training
parameters are equivalent to, and specified in, that work. We use the specification for the model
“TBG+Full” in that work.

ECNF++ We note five improvements to the ECNF, which together substantially improve perfor-
mance.

1. Flow matching loss. In Klein & Noé (2024) a flow matching algorithm with smoothing
is employed which provides extra stability during training. This is depicted in Alg. 2,
however this smooths out the optimal target distribution (Tong et al., 2023, Proposition 3.3).
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ECNF uses σ = 0.01 where we use σ = 0. We find that σ > 0 in this case causes some
poor molecular structures to be generated as the bond lengths are not able to be controlled
precisely enough. We note that σ = 0 is used in most recent large scale flow matching
models Liu et al. (2024); Esser et al. (2024).

2. Data normalization strategy. in previous work, data was normalized to Ånstrom (Å) scale.
We find that this is too small for stable neural network training. We employ the standard
scheme of standardization based on the training data. Specifically, we subtract the center of
mass of each atom, and divide by the standard deviation of the data. Typically this would be
done with a per-dimension standard deviation. However, to maintain SE(3) equivariance
we use a single standard deviation for the whole dataset. On ALDP, the standard deviation
of the normalized training data is approximately 0.16. This means we scale up the training
data roughly 6.25× on ALDP. We find this greatly improves the training dynamics and final
structure precisions.

3. 4x wider layers. Empirically, we find the EQCNF to be underparameterized. We did a
grid search over parameter widths and depths to find a balance between performance and
speed on ALDP. We found empirically that a width of 256 with 5 blocks provided the best
tradeoff between speed and performance on ALDP. We used the same parameters for larger
moleculer systems.

4. Improved optimizer and LR scheduler We find using an AdamW with fairly large weight
decay improves performance and stability. Prior work has found weight decay helps to keep
the Lipschitz constant of the flow low and avoids stiff dynamics which enables accurate
ODE solving during training. We also use a smoothly varying cosine schedule with warmup
enables a larger maximum learning rate and faster training than the two step schedule used
previously.

5. Exponential moving average we use an exponential moving average (EMA) on the weights
with decay 0.999. This is a standard trick in flow models, which improves performance.

These five elements together greatly improve the ECNF training and provide a strong foundation for
future Boltzmann generator training on molecular systems using equivariant continuous normalizing
flows. Qualitatively, we find ECNFs quite stable to train and robust to training parameters relative to
invertible architectures. However, it is very slow to compute the exact likelihood which is necessary
for self-normalized importance sampling.

Other parameters For both models we use default optimizer parameters for β1, β2, ϵ, we use
a Dormand-Prince 45 (dopri5) adaptive step size solver with absolute tolerance 10−4 and relative
tolerance 10−4.

Likelihood evaluation Evaluating the likelihood of a continuous normalizing flow model requires
calculating the trace of the divergence. This is quite an expensive operation in terms of both time
and memory. While there exist fast unbiased approximations of the likelihood using Hutchinson’s
trace estimator Hutchinson (1990); Grathwohl et al. (2019), these are unfortunately unsuitable for
Boltzmann generator applications where variance in the likelihood estimator leads to biased weights
under self-normalized importance sampling.
We therefore calculate the Jacobian using autograd which can be quite memory and time intensive.
For example, on AL6, the maximum batch size that can fit on an 80GB A100 is 8. This batch takes
around two minutes for 84 integration steps. We also use an improved vectorized Jacobian trace
implementation for all continuous normalizing flows which reduces memory by roughly half and
time by roughly 3x over the pre-TORCH.VMAP implementation which loops over dimensions. We
note that these numbers are approximate and depend heavily on both the batch size and the input
dimension.

On using a CNF with SBG In principle it is possible to drop in replace our NF architecture with a
CNF in SBG. However, there are several drawbacks to suck an approach. The largest of which, is
efficiency. CNFs are extremely computationally inefficient to sample a likelihood from as previously
discussed. We find on the order of 100 SBG steps are necessary for best performance. This would
make CNFs at least two orders of magnitude slower to sample from, when we are aleady at the edge
of tractibility for the current importance sampling estimates. We leave it to future work to consider
faster CNFs and note that our SBG algorithm could be applied there immediately.
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Dataset Layers per Block Number Blocks Channels Number Parameters (M)

ALDP 4 4 256 12.7
3-peptide 6 6 256 28.5
4-peptide 6 6 384 64.0
5-peptide 6 6 384 64.0
6-peptide 6 6 384 64.0
10-peptide 8 8 512 202.0

Table 5: TarFlow configurations across different datasets

Algorithm 2 ECNF flow matching training

Input: Prior q0, Empirical samples from data q1, bandwidth σ, batchsize b, initial network vθ.
while Training do
x0 ∼ q0(x0); x1 ∼ q1(x1) {Sample batches of size b i.i.d. from the dataset}
t ∼ U(0, 1)
µt ← tx1 + (1− t)x0

x ∼ N (µt, σ
2I)

L(θ)← ∥vθ(t, x)− (x1 − x0)∥2
θ ← Update(θ,∇θL(θ))

end while
Return vθ

D.4 SBG IMPLEMENTATION DETAILS

As advised by Zhai et al. (2024) we scale the layers per block alongside the number of blocks.

E DATASETS

For all datasets besides AD2 we use a training set of 100k contiguous samples (1ns simulation time)
from a single MCMC chain, a validation set of the next 20k contiguous samples, and a test set of
100k uniformly sampled samples from the rest of the dataset. Since these are highly multimodal
energy functions, this leaves us with biased training data relative to the Boltzmann distribution. We
split this way to test the model in a challenging and realistic setting — where some biased samples
from MD exist and we would like to generate more uncorrelated and unbiased samples. We describe
the datasets below and present the simulation parameters in Table 7.
Alanine Dipeptide (AD2). For this dataset we use the data and data split from Klein & Noé (2024).
Here the training set is purposely biased with an overrepresentation of an underrepresented mode,
i.e. the positive φ state. This bias makes it easier to reweight to the target Boltzmann distribution.
Alanine Dipeptide consist of one Alanine amino acids, an acetyl group, and an N-methyl group.
Trialanine (AD3) and Hexaalanine (AD6). For the peptides composed of multiple alanine amino
acids, we generate MD trajectories using the OpenMM library (Eastman et al., 2017). All simulations
are conducted in implicit solvent, with the simulation parameters detailed in Table 7. These systems
do not include any additional capping groups, such as those present in alanine dipeptide (AD2) and
alanine tetrapeptide (AD4), as they are generated in the same manner as described in Klein et al.

Table 6: Overview of continuous normalizing flow training setup.

Training Parameter ECNF ECNF++

Optimizer ADAM ADAM-W (Loshchilov, 2017)
Learning Rate 5× 10−4 5× 10−4

Weight Decay 0.0 0.01
width 64 256
n blocks 5 5
EMA Decay 1.0 0.999
Parameters 152 K 2.317 M
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Table 7: Overview of simulation parameters

Peptide Force field Temperature Time step

Alanine dipeptide (ALDP) Amber ff99SBildn 300K 1fs
Trialanine (AL3) Amber 14 310K 1fs
Alanine tetrapeptide (AL4) Amber ff99SBildn 300K 1fs
Hexaalanine (AL6) Amber 14 310K 1fs

(a) Ramachandran plots for AL4 test dataset

(b) Ramachandran plots for AL4 train dataset

Figure 6: Ramachandran plots for the AL4 dataset with test (a) and training (b) histograms over φ
and ψ angles. We can see that the training set is slightly biased with underrepresentation of the small
right mode at ψ2 ≈ 0 and φ2 ≈ 1 in the training set as compared to the test set samples.
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(a) Ramachandran plots for AL3 test dataset
(b) Ramachandran plots for AL2 test
dataset

(c) Ramachandran plots for AL3 train dataset
(d) Ramachandran plots for AL2
train dataset

Figure 7: Ramachandran plots for the AL3 test (a) and train (c) histograms over φ and ψ angles
and the AL2 dataset with the test (b) and train (d) datasets. For AL3 we can see that the training set
is completely missing the right mode in ψ1, φ1. For AL2 we can see that the right mode has been
oversampled relative to that of the test set.
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(2023a). There are two peptide bonds in alanine tripeptide (AD3) and five in alanine hexapeptide
(AD6), resulting in two and five distinct Ramachandran plots, respectively.
Alanine Tetrapeptide (AD4). For this dataset we use the same system setup as in Dibak et al. (2022),
but treat all bonds as flexible. The original dataset kept all hydrogen bonds fixed, as the Boltzmann
Generator was operating in internal coordinates. The MD simulation to generate the dataset is then
performed as described above. Alanine Tetrapeptide consist of three Alanine amino acids, an acetyl
group, and an N-methyl group. Therefore, there are four distinct Ramachandran plots.
Chignolin. In addition to the small peptide systems, we also investigate the small protein Chignolin,
which consists of ten amino acids. Generating a fully converged all-atom simulation for this system
is computationally expensive. Therefore, we use the trajectory provided by (Lindorff-Larsen et al.,
2011), which was generated using a specialized supercomputer. In contrast to our other datasets, this
simulation was performed in explicit solvent and with a different force field. Since our models do not
incorporate additional water molecules, we treat the dataset as if it were in implicit solvent and use the
same force field as for the other datasets, namely Amber 14. As a result, the trajectory originates from
a slightly different distribution than given by the force-field, likely introducing some bias. Therefore,
the task is to generate samples from the equilibrium distribution in implicit solvent while only having
access to training data obtained from explicit solvent simulations. As before, we use only the first
100k samples for training. This again highlights the strength of Boltzmann generator based methods,
which do not require equilibrium training data. However, it also presents an evaluation challenge,
as we lack access to equilibrium samples for the implicit solvent simulation to serve as a reference.
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F ADDITIONAL RESULTS

F.1 RAMACHANDRAN PLOTS

In this appendix we include the Ramachandran plots for each model on each peptide. Please note that
the ground truth training and test Ramachandran plots are located in Appendix E.
To create the Ramachandran plots we take our samples and try to enforce equal chirality. We find
some samples either have the wrong topology or are the wrong chirality. For chirality we attempt to
fix all chiralities to the same direction. If we fail to do so, then we filter this point out. This leaves us
with Ramachandran plots with fewer samples, but all with the correct chirality. The incorrect chirality
can show up as a symmetric mode on Ramachandran plots. We note that this filtering step can lead to
blank Ramachandran plots if all points are sampled out. This is the case for the ECNF for AL3 and
AL4.
Alanine dipeptide (ALDP). In Figure 8 we can see the Ramachandran plot for resampled points.
We find that that ECNFF++ models the distribution well, but drops the right mode. Which is quite
interesting as the right mode is oversampled in the training data (see Figure 7).

(a) ECNF on ALDP (b) ECNF++ on ALDP

(c) SBG on ALDP

Figure 8: Alanine dipeptide Ramachandran plots for various models.

Trialanine (AL3).
Alanine tetrapeptide (AL4).
Hexaalanine (AL6).

F.2 ABLATION STUDIES

Center of Mass Augmentation. We now ablate the utility of performing the CoM augmentation
with the corresponding model energy adjustment. Specifically, we ablate the CoM augmentation as a
function of number of samples used during inference and also as a function of a number of inference
timesteps. Each of these ablations is performed on the trialanine tripeptide (AL3). We find that CoM
augmentation reduces the Torus Wasserstein distance ( T-W2) fairly consistently across timesteps
and number of samples.
Ablation on EACF Importance Weight Clipping. We report the additional results on EACF trained
on ALDP dataset. We chose to use 0.2% clip threshold on the importance weights for fair comparison.
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(a) ECNF on AL3 (b) ECNF++ on AL3

(c) SBG on AL3

Figure 9: Trialanine Ramachandran plots for various models. For ECNF none of the samples pass
our filtering thresholds, and thus the Ramachandran plot for ECNF depicts zero samples.

Nevertheless, in the resampling process, we observe a significant degradation in sample diversity,
as evidenced by the energy histograms and Rama plots. From the qualitative results in Figure 13,
we can see that EACF generates highly unreliable importance weights, particularly visible in the
energy histograms where there are extreme spikes and poor alignment with the true data distribution.
This leads to poor resampling quality, as demonstrated in the corresponding Rama plots where the
resampled points fail to capture the true data distribution. While increasing the clipping threshold to
10% shows some improvement, the fundamental issue of inaccurate importance weight estimation by
EACF persists across different clipping ratios.
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(a) ECNF on AL4

(b) ECNF++ on AL4

(c) SBG on AL4

Figure 10: Ramachandran plots for various models on AL4 dataset. We note that for the ECNF model
none of the samples passed our filter. We find that SBG manages to still capture the right mode where
ECNF++ often drops this mode.

(a) ECNF++ on AL6

(a) SBG on AL6
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(a) Clip 0.2% (b) Clip 2% (c) Clip 10%
Figure 13: Energy histogram and Rama Plots of EACF under different clipping ratio [0.2%, 2%, 10%].

Figure 14: Standard and center of mass augmented energy at a variety of sampling set sizes.

Figure 15: Standard and center of mass augmented energy at a variety of Langevin time discretizations.
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Figure 16: Standard and center of mass augmented energy at a variety of ESS resampling thresholds.
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