
Using Model Calibration to Evaluate Link Prediction in
Knowledge Graphs

Anonymous Author(s)

Abstract
Link prediction models assign scores to predict new, plausible edges
to complete knowledge graphs. In link prediction evaluation, the
score of an existing edge (positive) is ranked w.r.t. the scores of
its synthetically corrupted counterparts (negatives). An accurate
model ranks positives higher than negatives, assuming ascending
order. Since the number of negatives are typically large for a single
positive, link prediction evaluation is computationally expensive.
As far as we know, only one approach has proposed to replace
rank aggregations by a distance between sample positives and
negatives. Unfortunately, the distance does not consider individual
ranks, so edges in isolation cannot be assessed. In this paper, we
propose an alternative protocol based on posterior probabilities of
positives rather than ranks. A calibration function assigns posterior
probabilities to edges that measure their plausibility. We propose to
assess our alternative protocol in various ways, including whether
expected semantics are captured when using different strategies
to synthetically generate negatives. Our experiments show that
posterior probabilities and ranks are highly correlated. Also, the
time reduction of our alternative protocol is quite significant: more
than 77% compared to rank-based evaluation. We conclude that
link prediction evaluation based on posterior probabilities is viable
and significantly reduces computational costs.

CCS Concepts
• General and reference→ Reliability; Evaluation; • Computing
methodologies→ Semantic networks.

Keywords
Knowledge Graph Embedding, Link Prediction, Model Calibration
ACM Reference Format:
Anonymous Author(s). 2024. Using Model Calibration to Evaluate Link
Prediction in Knowledge Graphs. In Proceedings of TheWebConf’24: The
ACMWeb Conference (TheWebConf’24). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Knowledge graphs contain entities of interest (vertices) and rela-
tionships between them (directed, labeled edges) [19]. These graphs
enable a focus on concepts rather than strings, so they are at the
core of search engines, social networks, product catalogs, health and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TheWebConf’24, May 13–17, 2024, Singapore
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

life-science services, and more [11, 14, 25, 31]. Knowledge graphs
are typically incomplete due to knowledge acquisition problems
that happen during their creation, such as extraction errors, un-
reliable information and information disparity [8, 26]. Knowledge
graphs comprise (subject, predicate, object) triples, where subject
and object are entities, and predicate is the relationship’s label.

Link prediction consists of training a machine learning model to
predict missing triples [9]. Link prediction models typically output
a score measuring the plausibility of a prediction that needs to be
assessed against other scores [2, 7, 30, 32, 33, 39]. Assuming certain
training, validation and test splits, the protocol to evaluate accuracy
is as follows [9]: for each triple in the validation/test split, rank its
score in ascending order with respect to the scores obtained when
the triple’s subject is replaced by all available entities. All these new
triples are considered negatives. Then, obtain a similar rank but
replacing the triple’s object. A link prediction model is considered
accurate if it outputs low ranks, i.e., if the positive triples are ranked
higher than their negative counterparts. Note that this protocol
corresponds to the transductive case in which all entities are known
during training [3], which is our focus in this paper.

The evaluation protocol has two shortcomings: 1) It is compu-
tationally expensive since it requires to generate many negatives
per positive, compute their scores, and compare them to determine
ranks; and 2) Assessing the plausibility of a single triple is not pos-
sible, since it is mandatory to compare its score w.r.t. the scores of
other triples derived from it. To address the first shortcoming, Bas-
tos et al. [5] proposed to compute a distance between samples of
positive and negative predictions made by a link prediction model.
This distance is correlated to rank aggregations like mean rank.
However, the distance provides a single value for the whole link
prediction evaluation, and it does not take individual ranks into
account; therefore, Bastos et al. [5] do not address the second short-
coming. To address the second one, two studies explored model
calibration for knowledge graphs, which outputs the posterior prob-
ability (the probability to be plausible) for an input triple [34, 38].
Unfortunately, these two studies did not analyze link prediction
evaluation, but triple classification and predicate prediction evalua-
tion. Hence, these studies do not address the first shortcoming. As
a result, to the best of our knowledge, there is no approach in the
literature that has jointly addressed these two shortcomings. Such
an approach is appealing since link prediction evaluation requires
significant computational resources [5, 30], assessing individual
triples is a must in production, and there is uncertainty about nega-
tives due to the open-world assumption, i.e., it is unknown whether
missing knowledge is correct or incorrect [26].

In this paper, we propose an alternative protocol for link pre-
diction evaluation based on the posterior probabilities output by a
calibration function. This function is learned during the validation
step when training the link prediction model. We use the triple
scores output by the link prediction model at hand, and align those

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TheWebConf’24, May 13–17, 2024, Singapore Anon.

scores with expected positives and negatives. Instead of ranks, our
alternative protocol considers only the posterior probabilities of
the triples present in the test split (positives). Thus, generating neg-
atives is no longer necessary, significantly reducing computation
time (first shortcoming). The posterior probability of a triple ti deter-
mines its plausibility: ti is negative or positive if f (x (ti)) ∈ [0, 0.5)
or f (x (ti)) ∈ [0.5, 1], respectively, where f is the calibration func-
tion, and x the function that assigns a plausibility score to ti . Hence,
we can determine the plausibility of ti without comparing it to
other triples (second shortcoming).

How accurate and reliable are calibration functions for link
prediction evaluation? Are the posterior probabilities output by
these functions statistically correlated to ranks? What is the time
reduction of the alternative protocol based on posterior proba-
bilities? Can we rely on posterior probabilities to compare link
prediction models side by side? We experimentally answer these
questions using nine different link prediction methods that are
diverse [1, 9, 16, 23, 35, 37, 41, 46, 47], i.e., they exploit a variety
of mathematical constructs to compute scores, such as complex
numbers, quaternions, and more. Calibration functions are learned
using both Platt scaling and isotonic regression [24, 29], i.e., two
different approaches to compute posterior probabilities. Our ex-
perimental results show that calibration functions achieve high
accuracy and reliability. The posterior probabilities output by these
functions exhibit high correlation with ranks used to evaluate link
prediction. The time reduction of the original vs. our alternative
protocols is significant, between 77% and 99%. When comparing
models side by side, more than 78% of the individual comparisons
are preserved between the original and our alternative protocols.

The summary of our contributions is as follows:
• We discuss how to learn a calibration function for link pre-
diction evaluation using Platt scaling and isotonic regression.
As far as we know, it is the first time this has been studied.

• We propose an alternative protocol for link prediction evalu-
ation based on the output of the calibration function learned.
This new protocol only works with positives.

• We propose several ways of assessing the accuracy and reli-
ability of the calibration function learned, and of our alter-
native protocol to evaluate link prediction.

• We conduct experiments involving popular methods, such
as BoxE, HAKE, QuatE and TransE, and datasets, such as
FB15K-237, NELL-995, WN18RR and YAGO3-10.

The rest of the paper is organized as follows: Section 2 introduces
link prediction evaluation andmodel calibration. Section 3 discusses
our alternative protocol. Sections 4 and 5 respectively present how
to learn and assess calibration functions. Section 6 describes our
experiments and results. Section 7 presents the related work. Finally,
Section 8 presents conclusions and future work.

2 Background
A knowledge graph G is a set of (s, p, o) triples, where s and o are
entities and p is a predicate. We use E to denote the set of entities
in G, which is partitioned into training, validation and test, i.e.,
GTR , GVA and GTE . A link prediction model comprises a number of
embeddings (numerical vectors) that are associated to entities and
predicates [43]. Each model exploits a scoring function x (s, p, o)

that assigns scores to input triples. These models are trained to
minimize a loss function such that the model assigns low scores for
positive triples (triples that belong to the graph), and high scores
for negative triples (they do not belong to the graph).

Below, we introduce link prediction evaluation (Section 2.1) and
model calibration (Section 2.2).

2.1 Link prediction evaluation
Currently, link prediction is evaluated using ranking-based met-
rics [9]. Since the goal is to predict low scores for positives, it
follows that the metrics should measure a model’s ability to do
so. The idea is to register the position, rank, of a positive w.r.t. its
negative counterparts when sorted by score in ascending order.

Problem statement. Link prediction evaluation consists of, for
each triple ti = (s, p, o) ∈ GTE , computing ranks rsi and r

o
i as follows:

rei = 1 + |{t′i | t
′
i ∈ N e

LW (ti,G) ∧ x (ti) ≤ x (t′i)}| (1)

where e can be either s or o, and x (ti) is the scoring function of the
model under evaluation applied over ti .1

Above, N e
LW (ti,G) computes the negative counterparts of ti con-

sidering G. Generating negative counterparts is challenging: knowl-
edge graphs only contain positive triples [19], and they usually
operate under the open-world assumption, i.e., triples that are not
present in the graph at handmay be either missing or negatives [13].
Different strategies generate the negative counterparts of a positive
triple (s, p, o). The local-closed world assumption (LCWA) is the
most popular one [9], which is as follows:

N s
LW ((s, p, o),G) = {(s′, p, o) | (s′, p, o) ∉ G ∧ s′ ∈ E}

N o
LW ((s, p, o),G) = {(s, p, o′) | (s, p, o′) ∉ G ∧ o′ ∈ E}

(2)

Intuitively, LCWA uses every entity present in G as long as the
corrupted triple is not in G. This is known as the filtered setting
since the wholeG (no splits) is used to filter corrupted triples out [9].
The raw setting uses GTE only to filter corrupted triples out. Since
the number of training and validation triples is typically larger than
those in the test split, i.e., |GTR ∪ GVA | ≫ |GTE |, the raw setting
may consider many negatives that are present in GTR ∪ GVA and,
therefore, are indeed positives. As a result, the filtered setting is
preferred for link prediction evaluation [9].

Metrics. We focus on MR, the mean of the ranks of the positive
triples.MR is recommended to evaluate link prediction since others
like the mean reciprocal rank are problematic [17, 20, 39], e.g., when
using reciprocal ranks, the difference between 1 and 2 is the same
as between 2 and∞.2 MR is computed as follows:

MR =
1

2 |GTE |
∑︁

ti∈GTE

rsi + roi (3)

The MR value of an accurate link prediction model is expected
to be closer to one (MR ∈ [1,∞)).

1In practice, we compute fractional ranks that differentiate between scores that are
strictly less than x (ti) and tied to x (ti) . Fractional ranks are preferred to mitigate the
effect of ties in model scores [20].
2The difference is 0.5 in both cases since 1

1 − 1
2 = 1

2 − 1
∞ = 0.5

Using Model Calibration to Evaluate Link Prediction in Knowledge Graphs TheWebConf’24, May 13–17, 2024, Singapore

2.2 Model calibration
Given a machine learning model, the goal is to learn a transfor-
mation function f to produce a posterior probability [24], i.e., the
probability of belonging to a class, positive or negative, based on
the score output by the model. This is formalized as follows:

ŷi = f (xi) (4)
where ŷi is the posterior probability and xi is a score.

Platt scaling [29] defines a transformation function as follows:

ŷi = 𝜎 (a xi + b) (5)
where 𝜎 is the sigmoid function and a and b are two scalars that are
learned using gradient descent. This implies that batches of scores
can be provided to compute the calibration function.

Isotonic regression [24] is another method that uses a monoton-
ically increasing transformation function m as follows:

ŷi = m(xi) (6)
Different from Platt scaling, function m cannot be learned us-

ing gradient descent, which entails that all of the scores must be
provided at once to compute the calibration function.

Metrics. The weighted Brier score [45] is as follows:

BSw =

∑
i wi (ŷi − yi)2∑

i wi
(7)

where wi is the weight assigned to ŷi , and yi is the ground truth
probability: one (zero) if triple ti is positive (negative). An accurate
calibration function has a BSw value close to zero (BSw ∈ [0, 1]).

The weighted coefficient of determination [15] is as follows:

R2
w = 1 −

∑
i wi (ŷi − yi)2∑
i wi (ȳ − yi)2 (8)

where ȳ is the mean of the posterior probabilities ŷi . An accurate
calibration function has an R2

w value close to one (R2
w ∈ [0, 1]).

Using posterior probabilities, the 0.5 threshold separates posi-
tives and negatives. We compute true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) as follows:

TP = |{ŷi | ŷi ≥ 0.5 ∧ yi = 1}|; FP = |{ŷi | ŷi ≥ 0.5 ∧ yi = 0}|
TN = |{ŷi | ŷi < 0.5 ∧ yi = 0}|; FN = |{ŷi | ŷi < 0.5 ∧ yi = 1}|

(9)
As discussed below, these values are aggregated to compute

various measurements like true positive and negative rates.

3 Discussion
Focusing on Equation 2, we determine that the algorithmic complex-
ity of link prediction evaluation is O(|GTE | |E | |G |). For every triple
in GTE , we corrupt either its subject or object using all entities (E),
and check whether each corrupted triple is in G (we assume linear
search). The algorithmic complexity is simplified to O(|E |) if we
make the following assumptions: 1) Checking corrupted triples in
G is O(1), e.g., there exists a hashing function; and 2) |GTE | ≪ |E |,
which is common in practice. Iterating through all the entities
to compute corrupted triples is thus the main component in the
algorithmic complexity of link prediction evaluation.

We aim to find an alternative protocol for link prediction evalu-
ation that reduces the O(|E |) algorithmic complexity. Specifically,
a desirable complexity is O(|GTE |) since it does not depend on the
size of G and, therefore, it is scalable. To accomplish our goal, we
turn our attention to model calibration.

Alternative protocol. Assume that there exists a calibration
function f defined over the scores output by a link prediction model.
Link prediction evaluation consists of, for each triple ti = (s, p, o) ∈
GTE , computing ŷi = f (x (ti)). A model’s accuracy is measured
using the mean of the posterior probabilities as follows:

ȳ =
1

|GTE |
∑︁

ti∈GTE

ŷi (10)

Roadmap. Our alternative protocol requires us to study the
following: 1) How to learn a calibration function f for a given link
prediction model; and 2) How to assess reliability and accuracy of
the alternative w.r.t. the original protocol based on ranks.

4 Learning f
As discussed by Platt [29], there are several considerations when
learning a calibration function f . The main one is which split to use
with the goal of reducing overfitting and bias. We also need to con-
sider efficiency. Training a link prediction model is computationally
expensive [30], so it is desirable that learning f associated to the
link prediction model has a low computational cost. The following
observations are typically fulfilled in real-world datasets: 1) The
training split is larger than the validation split, |GTR | ≫ |GVA |. It is
even common that GTR contains 85% or more of the total number
of triples in G; and 2) The number of negatives synthetically gener-
ated is significantly larger than the number of positives. Commonly,
there are close to 2|E | number of negatives per positive.

Because of these considerations and observations, there are sev-
eral shortcomings when using GTR to learn f . First, the larger num-
ber of positives in GTR compared to GVA makes the learning of f
computationally expensive. This is exacerbated if we consider the
negatives that are synthetically generated. Therefore, it is generally
unfeasible to learn f using the whole training split. Thus, positives
and negatives must be sampled. As a result, the accuracy of the
calibration functions heavily depends on said sampling process.
Second, training both link prediction model and calibration func-
tion using the same protocol will lead to both reflecting the same
biases. Hence, it is appealing to use a different split to learn f .

Using GVA is thus more appealing than using GTR to mitigate
the previous shortcomings. Learning f can therefore be accom-
plished during the training process of the link prediction model.
The validation step evaluates early stopping criteria. Note that this
step already computes scores for positives and negatives (as well
as ranks) using GVA. Learning f consists of gathering these scores
and fitting the function, without requiring extra resources.

Because of the second observation above, there are a significantly
smaller number of positives in GVA than synthetically generated
negatives. The training split of the calibration function is thus
highly and intrinsically imbalanced. Tabacof and Costabello [38]
proposed to sample a random subset of negatives per positive triple
and apply a weighting scheme based on such selection. Since this

TheWebConf’24, May 13–17, 2024, Singapore Anon.

sampling can be biased depending on the negative counterparts
selected, we propose to use the whole set of negatives, and the
following weights for positives and negatives, respectively:

w+ =
1

|GVA |
; w− =

1
|NLW (GVA,GTV) |

(11)

where GTV = GTR ∪ GVA and NLW (GVA,GTV) are the negatives
generated by LCWA as follows:

NLW (GVA,GTV) =
⋃

t∈GVA

N s
LW (t,GTV) ∪ N o

LW (t,GTV) (12)

Eq. 12 applies the filtered setting over the training and validation
splits, i.e., the test split remains unseen since it will be used for
evaluation purposes only.

Expected behavior. Even though LCWA is the de facto standard
strategy, we can use other strategies to identify negatives within
LCWA. The main benefit is that these negatives have certain ex-
pected semantics and, therefore, they are useful to shed light on
the behavior of the calibration function. Bansal et al. [4] defined
the following strategies: global naïve (GB) and type-constrained
LCWA (TC). These are extra conditions applied to LCWA. For a
given triple t = (s, p, o), the GB strategy is as follows [4]:

N s
GB (t,G) = {t′ | t′ = (s′, p, o) ∈ N s

LW (t,G) ∧ s′ ∉ S(G)}
N o
GB (t,G) = {t′ | t′ = (s, p, o′) ∈ N o

LW (t,G) ∧ o′ ∉ O(G)}
(13)

where S(G) = {s | (s, p, o) ∈ G} and O(G) = {o | (s, p, o) ∈
G}. Intuitively, s′ and o′ are entities that are never subjects and
objects in G, respectively. For instance, assume a graph such that
locations only appear as objects; negatives generated using GB
contain locations as subjects, which is never the case in this graph.
GB is expected to generate nonsensical negatives: entities that are
never subjects (objects) are forced to be subjects (objects).

Similarly, the TC strategy is as follows [4]:

N s
TC (t,G) = {t′ | t′ = (s′, p, o) ∈ N s

LW (t,G) ∧ s′ ∈ S(G, p)}
N o
TC (t,G) = {t′ | t′ = (s, p, o′) ∈ N o

LW (t,G) ∧ o′ ∈ O(G, p)}
(14)

where S(G, p) = {s | (s, p, o) ∈ G} and O(G, p) = {o | (s, p, o) ∈ G},
i.e., s′ and o′ are entities that are subjects and objects in G for the
predicate p, respectively. Following the same example presented
above, negatives generated using TC contain locations as objects,
which is always the case in the graph at hand. TC is expected to
generate negatives that are semantically plausible, i.e., they are
more prone to be actual missing triples than other negatives.

We propose a third strategy, local naïve (LC), as follows:

N s
LC (t,G) = {t′ | t′ = (s′, p, o) ∈ N s

LW (t,G) ∧ s′ ∈ COS (G, p)}
N o
LC (t,G) = {t′ | t′ = (s, p, o′) ∈ N o

LW (t,G) ∧ o′ ∈ CSO (G, p)}
(15)

where COS (G, p) = O(G, p) \ S(G, p) and CSO (G, p) = S(G, p) \
O(G, p). The expected semantics of these negatives is also nonsen-
sical. However, different from GB, s′ is an entity that is object but
never subject of predicate p (similarly for o′). LC is more restrictive
than GB: using the same example above, if a predicate does not

have any locations as objects, these locations are never used to
corrupt subjects, while these locations appear when applying GB.

5 Assessing f
Once f has been learned, we aim to evaluate its reliability and
accuracy. The weighted Brier score (BSw) and the weighted coeffi-
cient of determination (R2

w) presented above are proper assessment
measurements. We use the test split, GTE , for evaluation purposes,
which has the same drawback as the validation split: it is highly im-
balanced. We propose to use the same weighting scheme as define
in Equation 11, where we consider the total number of negatives
for a given strategy that synthetically generates negatives.

We also compute true and false positives and negatives as de-
scribed above (Equation 9), and we aggregate them to compute
different measurements like precision and recall. However, certain
aggregations are more appealing than others. The reason why we
rely on negative generation strategies is because knowledge graphs
typically operate under the open-world assumption. This entails
that positive triples in the test split are generally true.3 However,
we are uncertain whether generated negative triples are indeed
negatives. We thus expect TP and TN to be large and FN to be
small. However, we cannot make any assumptions about FP : some
negatives may be considered positives because they are indeed
positives. To mitigate this issue, we propose to use aggregations
that consider positives and negatives independently. We focus on
true positive and negative rates as follows:

TPR =
TP

TP + FN
; TNR =

TN
TN + FP

(16)

Note that other aggregations like precision will yield poor results
because of the imbalanced nature of the datasets. This is the case for
every aggregation that combines TP and FP , or TN and FN , which
have different upper bounds. Both TPR and TNR can be combined
into a single balanced accuracy measurement as follows:

BA =
TPR + TNR

2
(17)

Expected behavior. Even though LCWA is the most common
strategy, other negative generation strategies are also appealing to
assess calibration functions. Specifically, using the expected seman-
tics of these strategies is useful to gain additional insights on these
functions. Since GB and LC are expected to generate nonsensical
negatives, calibration functions should easily discern between pos-
itives and negatives. BSw and BA values when using GB and LC
should thus remain low and high, respectively. Similarly, calibration
functions should not be as accurate when using the TC strategy,
since negatives are expected to be semantically plausible. BSw and
BA values should thus increase and decrease, respectively.

Comparison with ranks. Wewish to assess our alternative and
the original protocols for link prediction evaluation. To do so, we
propose to compare the relationship between posterior probabilities
output by f , and the ranks computed during link prediction evalua-
tion, i.e., rs and ro for each triple in the test split. The ideal scenario
is that, for a given pair of link prediction model and calibration

3Some of the triples may be incorrect due to acquisition errors. We assume that, if any,
the number of incorrect triples is small, so we ignore the presence of errors.

Using Model Calibration to Evaluate Link Prediction in Knowledge Graphs TheWebConf’24, May 13–17, 2024, Singapore

function, ranks are linearly correlated with posterior probabilities.
We thus focus on the Pearson correlation coefficient as follows:

rxy =

∑
i (xi − x̄) (ŷi − ȳ)√︁∑

i (xi − x̄)2
√︁∑

i (ŷi − ȳ)2 (18)

where xi is either rs or ro for a given triple, and x̄ is the mean rank,
i.e., MR. Correlation values range between -1 and 1, such that high
correlation implies that rxy ≃ −1 or rxy ≃ 1, while rxy = 0 means
no correlation. There are two considerations. On one hand, ranks
have different upper bounds [39]: for a triple t with ranks rs and
ro , rs and ro are respectively upper-bounded by |N s

LW (t,G) | and
|N o

LW (t,G) |. Therefore, we adjust ranks as follows:

r̆s = 1 − rs − 1
|N s

LW (t,G) | ; r̆o = 1 − ro − 1
|N o

LW (t,G) | (19)

On the other hand, a single triple has two relative ranks associ-
ated to it, r̆s or r̆o , but a single posterior probability, ŷ. We duplicate
posterior probabilities and produce the following two pairs for each
triple: (r̆s, ŷ) and (r̆o, ŷ), which we use to compute rxy .

6 Experiments
In this section, we discuss the experiments we conducted. We
present the datasets we used, and how we trained and learned
link prediction models and calibration functions (Section 6.1). We
discuss accuracy and reliability results (Section 6.2), as well as time
results and comparisons between protocols (Section 6.3).

6.1 Datasets and models
The datasets we used in our experiments and their total number of
entities (|E |), predicates (|R|) and triples (|T |) are as follows:

|E | |R| |T |
BioKG [42] 105,524 17 2,067,998
FB15K [9] 14,951 1,345 592,213
FB15K-237 [40] 14,541 237 310,116
Hetionet [18] 45,158 24 2,250,197
NELL-995 [44] 75,492 200 139,874
WN18 [9] 40,943 18 151,442
WN18RR [12] 40,943 11 93,003
YAGO3-10 [36] 123,182 37 1,089,040

These are commonly used to evaluate link prediction [2, 7, 30, 32,
33, 39], are publicly available, and already partitioned into training,
validation and test splits. BioKG integrates a number of biological
databases into a single knowledge graph. FB15K and FB15K-237
were extracted from Freebase [6], Hetionet from the Hetionet inte-
grative network constructed using millions of biomedical stud-
ies [18], NELL-995 from the Never-Ending Language Learning
project [28], WN18 and WN18RR from WordNet [22], and YAGO3-
10 from YAGO [21]. Note that FB15K-237 and WN18RR are subsets
of FB15K andWN18, respectively, in which redundancy has been re-
duced. Furthermore, the validation and test splits publicly available
for NELL-995 contain 0.4% and 2.6% of the triples, respectively. How-
ever, we found that the size of the validation split and the variety

of the triples contained in it were detrimental to learn calibration
functions. Therefore, we decided to reconfigure these validation
and test splits to contain 1.6% of the triples each.

We trained a number of link prediction models 4 using the follow-
ing link prediction methods: BoxE [1], ComplEx [41], HAKE [47],
HolE [23], QuatE [46], RotatE [37], RotPro [35], TorusE [16], and
TransE [9]. These methods are diverse and use a variety of ap-
proaches: rectangles in the Euclidean space, complex numbers,
points in a polar coordinate system, circular correlations in the
Euclidean space, quaternion and rotations in the quaternion space,
rotations and projection functions in the complex space, toruses in
the Euclidean space, and Euclidean or Manhattan distances over
real numbers. (See Appendix A for training details.)

For each link prediction model, we learned a single calibration
function using isotonic regression, and six additional functions
using Platt scaling, where we varied parameter initialization as
follows: {a, b} ⊆ {−1, 0, 1}. We used the validation split to learn f ,
and LCWA to generate negatives as described above.

6.2 Accuracy and reliability results
What is the reliability and accuracy of the best calibration functions?
Which calibration approach is superior, Platt scaling or isotonic
regression? Are posterior probabilities correlated to relative ranks?
Is the behavior of the calibration functions as expected when using
different negative generation strategies?

We used R2
w over the validation split to determine the best cali-

bration function for each link prediction model. Figure 1 presents
the five-number summary (min, max, mean, and first and third
quartiles) of the accuracy of these models over the test split. We
aggregate all of the R2

w values for the datasets and group by link
prediction method. We observe that all mean values are between
0.7 and 0.9 (see Figure 1a). This indicates that the posterior proba-
bilities output by the calibration functions are good approximations
of the ground truth of positive and synthetically-generated nega-
tives. Similarly, the BSw mean values are less or equal than 0.1 (see
Figure 1b), which entails that posterior probabilities are properly
calibrated. These best calibration functions also exhibit high BA val-
ues with mean values greater or equal than 0.9 (see Figure 1c). They
are thus able to accurately discern between positives and negatives
using the 0.5 threshold over the posterior probabilities. We also
studied the correlation between relative ranks and posterior proba-
bilities (see Figure 1d). Even though the rxy mean values are greater
than 0.55, we observe differences among calibration functions. The
functions for the ComplEx, HolE and QuatE models are the ones
achieving the best and most consistent correlation results, with
mean rxy values close to 0.8. In the next group, HAKE and TorusE
achieve mean values closer to 0.6. RotPro and TransE are the next
ones, with RotPro exhibiting a larger min value. Finally, BoxE and
RotatE exhibit different behavior: the former achieves consistent
correlation values around 0.6, while the range of values for RotatE
is uneven between 0.4 and 0.8 with a mean of 0.7 (approximately).
We note that the BoxE and RotatE link prediction models achieve
uneven accuracy using ranks (described below), which is the reason
why these correlation results deviate.

4Models, source code and results are publicly available. We will disclose the URL after
the double-blind review process.

TheWebConf’24, May 13–17, 2024, Singapore Anon.

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE
0.0

0.2

0.4

0.6

0.8

1.0

(a) R2
w

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(b) BSw

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(c) BA

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(d) rxy

Figure 1: Five-number summary assessing the best calibration functions using LCWA to generate negatives. We aggregate the
results obtained over the test split of each dataset under evaluation and group by link prediction method.

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(a) BSw , GB and LC

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(b) BSw , TC

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(c) BA, GB and LC

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(d) BA, TC

Figure 2: Five-number summary assessing the best calibra-
tion functions using the GB and LC (nonsensical) and the TC
(semantically plausible) strategies, respectively. Results are
aggregated and grouped by link prediction method.

To study expected behavior, we combine the GB and LC strate-
gies presented above, which are expected to output nonsensical
negatives only. We also study TC that is expected to output seman-
tically plausible negatives only. Figure 2 compares the results for
both settings side by side. All the calibration functions behave as ex-
pected: the functions are able to better discern between nonsensical
negatives and positives than between semantically-plausible nega-
tives and positives. BoxE and TransE achieve best and second-best
consistent behavior. Using these results, we can better understand
some of previous results. For instance, we observe that RotatE and

RotPro achieve a wider range of BSw and BA values. Specifically,
RotPro exhibits better values discerning negatives generated using
TC than GB and LC, which is unappealing.

Takeaways. Calibration functions generally achieve competi-
tive accuracy measured using R2

w , BSw and BA. Without exception,
all of the calibration functions that achieve the best R2

w results over
the validation split were learned using isotonic regression. In other
words, none of the functions learned using Platt scaling achieved
better results than those using isotonic regression. Furthermore,
many calibration functions exhibit high correlation (rxy) between
posterior probabilities and relative ranks. The exceptions are BoxE,
RotatE and RotPro, which achieve the worse correlation results and,
at the same time, exhibit uneven accuracy results measured using
ranks. Calibration functions generally behave as expected when
different strategies to generate negatives are exploited.

6.3 Time and comparison results
Does the time taken to compute link prediction using our alter-
native protocol improve w.r.t. the original protocol? For the best-
performing calibration functions, we study the time reduction be-
tween both protocols. Specifically, tA is the time taken to learn f
over GVA plus the time taken to compute posterior probabilities
over GTE . The time difference is %Δt = 100 (tA + tLP)/tLP , where
tLP is the time taken to evaluate link prediction using the original
protocol. In Table 1, the time reduction is significant, more than
90%, in many cases. We also observe that RotPro and TorusE are
generally the most and the least benefited from the alternative pro-
tocol, respectively. However, there is still a 77% time reduction for
the TorusE model over NELL-995, which is the overall minimum.

The next question we aim to answer is: can we compare models
side by side based on posterior probabilities instead of ranks? Even
though there may not be a strong linear correlation (rxy) between
ranks and posterior probabilities, this correlation considers both
positives and negatives, while our alternative protocol focuses on
positives only. To answer the question, we sort link prediction mod-
els and calibration functions by accuracy. For presentation purposes,
we scale MR as follows: MR′ = 1 − (MR −min(MR))/(max (MR) −
min(MR)), where min(MR) and max (MR) are the minimum and
maximum MR values obtained for all the models over the dataset

Using Model Calibration to Evaluate Link Prediction in Knowledge Graphs TheWebConf’24, May 13–17, 2024, Singapore

Table 1: Time in seconds taken to evaluate link prediction using our alternative protocol (tA) and time difference between
original vs. alternative protocols (%Δt). Best and worst results are in bold and underlined, respectively.

BioKG FB15K FB15K-237 Hetionet NELL-995 WN18 WN18RR YAGO3-10
tA %Δt tA %Δt tA %Δt tA %Δt tA %Δt tA %Δt tA %Δt tA %Δt

BoxE 533.7 -92.8 766.4 -98.4 352.5 -97.3 191.5 -92.6 153.2 -90.6 192.7 -92.5 113.8 -91.4 587.8 -91.8
ComplEx 544.4 -88.2 752.8 -98.7 230.0 -96.4 195.1 -87.9 154.9 -82.7 195.0 -87.6 116.9 -84.8 608.2 -87.5
HAKE 610.4 -89.1 926.8 -98.5 273.4 -96.6 200.5 -87.8 180.8 -81.2 240.8 -96.1 114.3 -86.1 644.4 -87.4
HolE 488.0 -85.3 732.3 -98.9 229.6 -96.8 192.1 -87.0 191.8 -80.8 186.3 -87.2 109.1 -83.0 578.1 -85.2
QuatE 538.5 -91.9 837.7 -98.3 220.8 -96.6 208.5 -91.5 188.0 -89.7 227.0 -92.3 128.4 -90.8 623.8 -91.6
RotatE 536.0 -90.1 838.9 -98.7 240.1 -96.4 199.3 -89.2 165.1 -95.2 183.2 -91.2 112.1 -87.4 601.5 -89.1
RotPro 479.6 -91.9 933.2 -98.7 282.2 -97.1 201.9 -93.9 141.2 -91.1 262.3 -96.2 142.7 -96.9 638.0 -92.6
TorusE 673.2 -92.9 777.4 -98.7 300.5 -98.3 199.2 -87.0 157.1 -77.0 177.8 -86.2 112.9 -82.0 613.7 -87.1
TransE 553.1 -93.4 995.4 -98.6 286.3 -97.1 194.6 -92.6 179.4 -89.9 285.2 -93.7 151.4 -95.1 567.1 -85.6

Table 2: Link prediction models and calibration functions sorted using scaled MR (MR′) and mean posterior probability of
positives (ȳ). We also present the overlap between the individual comparisons of both orders. Names are abbreviated as follows:
Bo=BoxE, Co=ComplEx, HA=HAKE, Ho=HolE, Qu=QuatE, Rt=RotatE, RP=RotPro, To=TorusE, Tr=TransE.

Dataset Sorted by accuracy Overlap

BioKG MR′ Tr (1.00), HA (1.00), Co (0.94), Ho (0.94), Qu (0.90), To (0.86), Bo (0.86), Rt (0.51), RP (0.00)
ȳ HA (0.97), Tr (0.96), Ho (0.96), Co (0.96), To (0.95), Qu (0.94), Bo (0.94), Rt (0.93), RP (0.89) 92%

FB15K MR′ Tr (1.00), Bo (1.00), To (0.69), HA (0.66), Rt (0.65), RP (0.52), Co (0.42), Qu (0.30), Ho (0.00)
ȳ Tr (0.96), Bo (0.96), Rt (0.94), To (0.94), RP (0.94), HA (0.93), Co (0.93), Qu (0.91), Ho (0.91) 92%

FB15K-237 MR′ Tr (1.00), Bo (0.96), To (0.73), Rt (0.67), HA (0.63), Qu (0.57), Co (0.42), Ho (0.20), ’RP (0.00)
ȳ Tr (0.93), Bo (0.92), Rt (0.89), To (0.89), Qu (0.88), Co (0.87), Ho (0.84), HA (0.84), RP (0.84) 89%

Hetionet MR′ HA (1.00), RP (0.94), Bo (0.87), Rt (0.85), Tr (0.59), To (0.46), Co (0.28), Ho (0.02), ’Qu (0.00)
ȳ RP (0.90), Rt (0.89), HA (0.89), To (0.89), Ho (0.88), Bo (0.88), Tr (0.88), Co (0.88), Qu (0.87) 78%

NELL-995 MR′ Bo (1.00), Tr (0.83), To (0.72), Co (0.71), Qu (0.58), HA (0.54), Ho (0.49), RP (0.37), ’Rt (0.00)
ȳ Bo (0.78), Tr (0.75), Qu (0.71), Co (0.71), To (0.67), Ho (0.66), HA (0.65), RP (0.61), Rt (0.55) 89%

WN18 MR′ Tr (1.00), To (0.91), RP (0.64), Bo (0.37), Ho (0.35), HA (0.23), Rt (0.23), Qu (0.19), Co (0.00)
ȳ Tr (0.96), To (0.95), RP (0.95), Qu (0.94), Ho (0.94), HA (0.94), Co (0.92), Bo (0.92), Rt (0.92) 78%

WN18RR MR′ Tr (1.00), To (0.79), RP (0.75), Rt (0.56), Bo (0.32), Ho (0.26), Co (0.20), Qu (0.19), ’HA (0.00)
ȳ Tr (0.80), To (0.74), RP (0.73), Rt (0.70), Ho (0.67), Qu (0.67), Co (0.66), HA (0.63), Bo (0.62) 86%

YAGO3-10 MR′ Tr (1.00), Bo (0.96), HA (0.90), Co (0.90), To (0.86), Qu (0.85), Ho (0.78), RP (0.26), ’Rt (0.00)
ȳ Tr (0.93), Co (0.89), HA (0.88), Bo (0.87), Qu (0.86), To (0.85), Ho (0.85), RP (0.71), Rt (0.65) 89%

at hand. The best link prediction model achieves MR′ = 1, and the
worst performing model achieves MR′ = 0. Let L = ⟨l0, l1, . . . , l8⟩
be a sequence of link prediction models or calibration functions li
sorted by accuracy (either MR′ or ȳ), and L′ = {l0 > l1, l0 > l2, . . . }
be the set of individual comparisons in L. For each dataset, we com-
pute the overlap between L′MR′ and L

′
ȳ , i.e., the number of individual

comparisons that are shared when we sort by accuracy using MR′

and ȳ, respectively.
In Table 2, we observe that overlap values greater or equal than

78%. The order between models and functions was computed with-
out rounding; there are no ties among the non-rounded values.
In many cases, we observe that the ȳ values are very close and,
therefore, the order is altered. For instance, in Hetionet and WN18,
the worst cases, all these values are between 0.90 and 0.87, and 0.96
and 0.92, respectively. These close values are the main reason why
the overlap is only 78%. In the other datasets where ȳ values are
not so close, the overlap increases to 86% or more.

Takeaways. With up to -98.9%, the time reduction of our alterna-
tive protocol is significant. The mean of the posterior probabilities
using positives can be indeed used to compare models side by side
in a given dataset instead of ranks.

7 Related work
We discuss link prediction evaluation (Section 7.1), and model cali-
bration for knowledge graphs (Section 7.2).

7.1 Link prediction evaluation
Bastos et al. [5] is the most related approach. Given a link prediction
model, they construct two subgraphs by sampling positive and
negative triples, respectively. Each triple in these new subgraphs are
labeled with the scores assigned by the link prediction model under
evaluation. The distance between both subgraphs is computed using
persistent homology, a method that serves to compare topological
features. This distance is correlated with rank aggregations like
mean rank and mean reciprocal rank. This approach outputs a

TheWebConf’24, May 13–17, 2024, Singapore Anon.

single, global value for each link prediction model (the distance
between the sampled positive and negative subgraphs). In our case,
we deal with individual predictions made by link prediction models,
which entails that our approach has a finer level of granularity.
Additionally, calibration functions can be used in production to
assign posterior probabilities to new, unseen triples, and decide
whether they are positives or negatives without comparing to other
triples. This is not possible with the approach by Bastos et al. [5].

Pezeshkpour et al. [27] conducted an experiment in which triple
scores from link prediction models were directly transformed into
posterior probabilities applying the sigmoid function, i.e., 𝜎 (x (ti))
for a given triple ti . The experiment compared positive triples with
a sample of negative triples that were selected using three different
strategies: LCWA, TC and another strategy similar to LC that takes
types into account. The authors found that link prediction models
are generally overconfident. The experiment did not consider Platt
scaling or isotonic regression to compute posterior probabilities.
The experiment relied on negative sampling, which is unappeal-
ing since different results may be observed for different samples.
Applying the sigmoid function directly to model scores can be detri-
mental. The sigmoid function assumes that input values lie in the
range of (−∞,∞). However, distance-based methods like RotatE
and TransE produce scores in the (0,∞) range, which implies that
all these posterior probabilities will lie in the (0.5, 1] range, i.e.,
they are all considered positives. Chen et al. [10] evaluated two
types of functions to compute posterior probabilities: 𝜎 (a x (ti) + b),
equivalent to Platt scaling, and min(max (a x (ti) + b, 0), 1). Their
proposal aims to enable link prediction for uncertain knowledge
graphs rather than link prediction evaluation.

There have been many studies in the context of link prediction
evaluation [2, 7, 30, 32, 33, 39]. All of them focus on different aspects
of the link prediction evaluation protocol, e.g., how hyperparameter
optimization, graph splits and/or loss functions affect reported
accuracy results. These studies are complementary to our work:
model calibration can be applied to link prediction models learned
in various ways.

7.2 Model calibration for knowledge graphs
Tabacof and Costabello [38] focused on triple classification evalua-
tion. Different from link prediction, triple classification is a binary
classification task that places every triple into one of two classes:
positives that belong to the graph or negatives that do not. Taba-
cof and Costabello [38] applied model calibration to several triple
classification models in which the calibration function was learned
by sampling synthetically-generated negatives instead of those
available in the ground truth. These learned calibration functions
achieved comparable results to those learned using negatives in
the ground truth. We focus on link prediction evaluation in which
there is no ground truth of negatives available. Furthermore, sam-
pling synthetically-generated negatives may significantly alter the
output of the calibration function and, therefore, the learning is not
deterministic. In our case, we use the whole set of synthetically-
generated negatives, so the learning process of our calibration
functions is deterministic.

Safavi et al. [34] studied the difference in the effectiveness of
model calibration between open-world and closed-world assump-
tions for predicate prediction. Different from link prediction, predi-
cate prediction aims to determine the missing predicate between
two entities, subject and object. They used multiclass model cali-
bration, in which each class is a given predicate in the knowledge
graph at hand. The authors showed that model calibration for the
closed-world assumption results in low expected calibration errors
and high accuracy. We focus on link prediction rather than pred-
icate prediction, which is more challenging since the number of
predicates in knowledge graphs is generally orders of magnitude
smaller than the number of entities. For the same reason, multiclass
model calibration for link prediction is unfeasible.

8 Conclusions
There are a large number of link prediction methods that aim to
predict missing triples. These methods are evaluated following a
well-defined protocol: for every positive triple, generate a num-
ber of negative counterparts by corrupting its subject and object,
but not both at the same time. Positives and negatives are sorted
by score and the ranks of the positives are recorded. Accuracy is
measured based on rank aggregations and it is expected that these
ranks are close to one. Evaluating accuracy is thus a challenging
task. Reducing the computational cost of this task is appealing;
however, only a single approach has focused on such a reduction,
as far as we know. The reduction consists of computing a single
measurement for the whole evaluation that is correlated to rank
aggregations. Unfortunately, this does not solve other shortcomings
like determining the plausibility of an individual triple in isolation.

We explore the use of model calibration for efficient link predic-
tion evaluation. A calibration function transforms link prediction
scores into posterior probabilities such that 0.5 is the threshold to
distinguish between positives and negatives. In our approach, first,
each posterior probability indicates the plausibility of an individual
triple. Second, learning calibration functions is accomplished at
the validation step during the training of a link prediction model.
Evaluation consists of computing the mean of the posterior prob-
abilities of the positive triples, so negative counterparts can be
avoided. Third, different strategies to generate negatives can be
exploited when training and evaluating calibration functions. Our
experiments show that the computational cost of link prediction
evaluation is significantly reduced, that there is a high correlation
between ranks and posterior probabilities, and that model com-
parisons using the mean of the posterior probabilities is similar to
comparisons using mean ranks.

As future work, we aim to train a variety of link prediction mod-
els by altering the strategies to generate negatives, loss functions
and graph splits. We will learn calibration functions for these link
prediction models, and we will study their posterior probabilities.
Besides being more efficient, we hypothesize that posterior prob-
abilities will help shed more light on model behavior than ranks.
We aim to apply posterior probabilities to interpret link prediction
evaluation.

Using Model Calibration to Evaluate Link Prediction in Knowledge Graphs TheWebConf’24, May 13–17, 2024, Singapore

References
[1] Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori.

2020. BoxE: A Box EmbeddingModel for Knowledge Base Completion. InNeurIPS.
9649–9661.

[2] Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and
Chengkai Li. 2020. Realistic Re-evaluation of Knowledge Graph Completion
Methods: An Experimental Study. In SIGMOD. 1995–2010.

[3] Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker
Tresp, and Jens Lehmann. 2022. Improving Inductive Link Prediction Using
Hyper-Relational Facts (Extended Abstract). In IJCAI. 5259–5263.

[4] Iti Bansal, Sudhanshu Tiwari, and Carlos R. Rivero. 2020. The Impact of Negative
Triple Generation Strategies and Anomalies on Knowledge Graph Completion.
In CIKM. 45–54.

[5] Anson Bastos, Kuldeep Singh, Abhishek Nadgeri, Johannes Hoffart, Manish
Singh, and Toyotaro Suzumura. 2023. Can Persistent Homology provide an
efficient alternative for Evaluation of Knowledge Graph Completion Methods?.
In TheWebConf. 2455–2466.

[6] Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In SIGMOD. 1247–1250.

[7] Stephen Bonner, Ian P. Barrett, Cheng Ye, Rowan Swiers, Ola Engkvist, and
William L. Hamilton. 2021. Understanding the Performance of Knowledge Graph
Embeddings in Drug Discovery. CoRR abs/2105.10488 (2021).

[8] Antoine Bordes and Evgeniy Gabrilovich. 2014. Constructing and mining web-
scale knowledge graphs: KDD 2014 tutorial. In KDD. 1967.

[9] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NeurIPS. 2787–2795.

[10] Xuelu Chen, Muhao Chen, Weijia Shi, Yizhou Sun, and Carlo Zaniolo. 2019.
Embedding Uncertain Knowledge Graphs. In AAAI. 3363–3370.

[11] The UniProt Consortium. 2018. UniProt: A worldwide hub of protein knowledge.
NAR 47, D1 (11 2018), D506–D515.

[12] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2D Knowledge Graph Embeddings. In AAAI. 1811–1818.

[13] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge Vault:
A Web-Scale Approach to Probabilistic Knowledge Fusion. In KDD. 601–610.

[14] Xin Luna Dong. 2019. Building a Broad Knowledge Graph for Products. In ICDE.
25.

[15] Norman R. Draper and Harry Smith. 1998. Applied Regression Analysis, 3rd Edition.
Wiley.

[16] Takuma Ebisu and Ryutaro Ichise. 2018. TorusE: Knowledge Graph Embedding
on a Lie Group. In AAAI. 1819–1826.

[17] Norbert Fuhr. 2017. Some Common Mistakes In IR Evaluation, And How They
Can Be Avoided. SIGIR Forum 51, 3 (2017), 32–41.

[18] Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman,
Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E
Baranzini. 2017. Systematic integration of biomedical knowledge prioritizes
drugs for repurposing. Elife 6 (2017), e26726.

[19] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,
Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, SabbirM. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine
Zimmermann. 2022. Knowledge Graphs. ACM Comput. Surv. 54, 4 (2022), 71:1–
71:37.

[20] Charles Tapley Hoyt, Max Berrendorf, Mikhail Galkin, Volker Tresp, and Ben-
jamin M. Gyori. 2022. A Unified Framework for Rank-based Evaluation Metrics
for Link Prediction in Knowledge Graphs. CoRR abs/2203.07544 (2022).

[21] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3: A
Knowledge Base from Multilingual Wikipedias. In CIDR.

[22] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39–41.

[23] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. 2016. Holographic
Embeddings of Knowledge Graphs. In AAAI. 1955–1961.

[24] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting Good Probabilities
With Supervised Learning. In ICML, Vol. 119. 625–632.

[25] Natalya Fridman Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson,
and Jamie Taylor. 2019. Industry-scale knowledge graphs: lessons and challenges.
CACM 62, 8 (2019), 36–43.

[26] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Sem. Web. 8, 3 (2017), 489–508.

[27] Pouya Pezeshkpour, Yifan Tian, and Sameer Singh. 2020. Revisiting Evaluation
of Knowledge Base Completion Models. In AKBC.

[28] Emmanouil Antonios Platanios, Abulhair Saparov, and Tom M. Mitchell. 2020.
Jelly Bean World: A Testbed for Never-Ending Learning. In ICLR.

[29] John C. Platt. 1999. Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods. In Advances in Large Margin

Classifiers, Alexander J. Smola, Peter Bartlett, Bernhard Schölkopf, and Dale
Schuurmans (Eds.). MIT Press, Chapter 10, 61–74.

[30] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo
Merialdo. 2021. Knowledge Graph Embedding for Link Prediction: A Comparative
Analysis. TKDD 15, 2 (2021), 14:1–14:49.

[31] Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David
Sontag. 2017. Learning a Health Knowledge Graph from Electronic Medical
Records. Sci. Rep. 7 (2017), 5994. Issue 1.

[32] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. 2020. You CAN Teach
an Old Dog New Tricks! On Training Knowledge Graph Embeddings. In ICLR.

[33] Afshin Sadeghi, HirraMalik, Diego Collarana, and Jens Lehmann. 2021. Relational
Pattern Benchmarking on the Knowledge Graph Link Prediction Task. In NeurIPS
Datasets and Benchmarks.

[34] Tara Safavi, Danai Koutra, and Edgar Meij. 2020. Evaluating the Calibration
of Knowledge Graph Embeddings for Trustworthy Link Prediction. In EMNLP.
8308–8321.

[35] Tengwei Song, Jie Luo, and Lei Huang. 2021. Rot-Pro: Modeling Transitivity by
Projection in Knowledge Graph Embedding. In NeurIPS. 24695–24706.

[36] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core
of semantic knowledge. In WWW. 697–706.

[37] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Knowl-
edge Graph Embedding by Relational Rotation in Complex Space. In ICLR Posters.

[38] Pedro Tabacof and Luca Costabello. 2020. Probability Calibration for Knowledge
Graph Embedding Models. In ICLR.

[39] Sudhanshu Tiwari, Iti Bansal, and Carlos R. Rivero. 2021. Revisiting the Evalua-
tion Protocol of Knowledge Graph Completion Methods for Link Prediction. In
TheWebConf. 809–820.

[40] Kristina Toutanova and Danqi Chen. 2015. Observed Versus Latent Features for
Knowledge Base and Text Inference. In ACL Workshops. 57–66.

[41] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In ICML,
Vol. 48. 2071–2080.

[42] Brian Walsh, Sameh K. Mohamed, and Vít Novácek. 2020. BioKG: A Knowledge
Graph for Relational Learning On Biological Data. In CIKM. 3173–3180.

[43] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph
Embedding: A Survey of Approaches and Applications. TKDE 29, 12 (2017),
2724–2743.

[44] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. DeepPath: A
Reinforcement Learning Method for Knowledge Graph Reasoning. In EMNLP.
564–573.

[45] R. M. B. Young. [n. d.]. Decomposition of the Brier Score for Weighted Forecast-
Verification Pairs. RMetS 136, 650 ([n. d.]), 1364–1370.

[46] Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019. Quaternion Knowledge Graph
Embeddings. In NeurIPS. 2731–2741.

[47] Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. 2020. Learning
Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction. In AAAI.
3065–3072.

A Training details
Link prediction methods have a number of hyperparameters that
must be fine-tuned. For each method, we used a Sobol sequence to
generate quasi-random, low-discrepancy combinations of hyper-
parameter values with the goal of evenly cover the space formed
by these hyperparameters [39]. We evaluated the accuracy of each
model after ten epochs using MR over the validation split. These
MR values were provided to a Bayesian optimizer that suggested
new combinations of values to explore, which were evaluated in the
same fashion. We selected the best model after exploring twenty
combinations. We relied on the Ax platform.5 We used LCWA to
generate negatives and sampled a number of them to form batches
during training; therefore, the link prediction models were trained
using stochastic gradient descent in mini-batch mode [9].

B Platt scaling
Without exception, all the best performing calibration functions
use isotonic regression. The question is: what is the accuracy of
Platt scaling?

5https://ax.dev/

https://ax.dev/

TheWebConf’24, May 13–17, 2024, Singapore Anon.

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE
0.0

0.2

0.4

0.6

0.8

1.0

(a) R2
w

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(b) BSw

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(c) BA

Bo
xE

Co
m

pl
Ex

HA
KE

Ho
lE

Qu
at

E
Ro

ta
tE

Ro
tP

ro
To

ru
sE

Tr
an

sE

0.0

0.2

0.4

0.6

0.8

1.0

(d) rxy

Figure 3: Five-number summary of the accuracy of the calibration functions learned using Platt scaling and LCWA to generate
negatives. Results are aggregated and grouped by link prediction method.

Figure 3 presents the accuracy results for these calibration func-
tions. The R2

w and BSw values are significantly lower and higher,
respectively, than those achieved by isotonic regression. It is no-
table that the mean of the R2

w values is negative in the cases of HolE
and TransE. These results indicate that the learned functions are
not properly calibrated. Similarly, all BA values are also lower than
those achieved by the functions learned using isotonic regression.
However, some functions achieve reasonable accuracy with a mean
greater than 0.75: BoxE, HAKE, RotatE, RotPro and TorusE.

Correlation results for these functions are uneven. Many cali-
bration functions using Platt scaling achieve lower rxy values than
their isotonic regression counterparts, e.g., RotPro. We also observe
that the calibration functions for the TransE models have a wide
range of values, which was not the case for isotonic regression.

Finally, the functions for the ComplEx models also have a wider
range of values than using isotonic regression, and some of these
values slightly outperform the previous results. This is more evident
in the QuatE models, which achieve better correlation results than
the isotonic regression functions.

We conclude that functions learned using Platt scaling are gener-
ally not well calibrated. Even though, a few of them achieve better
correlation results than isotonic regression, it is unappealing to
rely on poor calibrated functions. Isotonic regression is thus pre-
ferred in the context of link prediction evaluation. Also, learning f
using Platt scaling is more efficient than using isotonic regression.
However, the performance of isotonic regression is generally quite
superior.

	Abstract
	1 Introduction
	2 Background
	2.1 Link prediction evaluation
	2.2 Model calibration

	3 Discussion
	4 Learning f
	5 Assessing f
	6 Experiments
	6.1 Datasets and models
	6.2 Accuracy and reliability results
	6.3 Time and comparison results

	7 Related work
	7.1 Link prediction evaluation
	7.2 Model calibration for knowledge graphs

	8 Conclusions
	References
	A Training details
	B Platt scaling

