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Abstract

Real-world datasets collected from sensors or human inputs are prone to noise and
errors, posing significant challenges for applying offline reinforcement learning
(RL). While existing methods have made progress in addressing corrupted actions
and rewards, they remain insufficient for handling corruption in high-dimensional
state spaces and for cases where multiple elements in the dataset are corrupted
simultaneously. Diffusion models, known for their strong denoising capabilities,
offer a promising direction for this problem—but their tendency to overfit noisy
samples limits their direct applicability. To overcome this, we propose Ambient
Diffusion-Guided Dataset Recovery (ADG), a novel approach that pioneers the
use of diffusion models to tackle data corruption in offline RL. First, we introduce
Ambient Denoising Diffusion Probabilistic Models (DDPM) from approximated
distributions, which enable learning on partially corrupted datasets with theoreti-
cal guarantees. Second, we use the noise-prediction property of Ambient DDPM
to distinguish between clean and corrupted data, and then use the clean subset to
train a standard DDPM. Third, we employ the trained standard DDPM to refine the
previously identified corrupted data, enhancing data quality for subsequent offline
RL training. A notable strength of ADG is its versatility—it can be seamlessly
integrated with any offline RL algorithm. Experiments on a range of benchmarks,
including MuJoCo, Kitchen, and Adroit, demonstrate that ADG effectively miti-
gates the impact of corrupted data and improves the robustness of offline RL un-
der various noise settings, achieving state-of-the-art results. Our code is available
athttps://github.com/sand-nine/ADG.

1 Introduction

Offline reinforcement learning (RL) has emerged as a prominent paradigm for learning decision-
making policies from offline datasets [20, 11]. Existing approaches can be broadly categorized
into MDP-based methods [11, 10, 18, 19, 4, 5, 12] and non-MDP methods [6, 16, 29]. However,
due to the data-dependent nature of offline RL, it encounters significant challenges when dealing
with offline data subjected to random noise or adversarial corruption [42, 41, 22, 36, 37]. Such
disturbances can cause substantial performance degradation or result in a pronounced deviation from
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Figure 1: Overview of the training processes for the detector and denoiser (left) and the dataset
recovery process (right) in the proposed ADG method.

|
=
A

the intended policy objectives. Therefore, ensuring robust policy learning is crucial for offline RL
to function effectively in real-world scenarios.

Several previous studies have focused on the theoretical properties and certification of offline RL
under corrupted data [43, 40, 33, 7, 39]. Empirical efforts have resulted in the development of
uncertainty-weighted algorithms utilizing Q-ensembles [40] and robust value learning through Hu-
ber loss and quantile Q estimators [37]. Additionally, sequence modeling techniques have been
applied to mitigate the effects of data corruption while iteratively refining noisy actions and rewards
in the dataset [34]. However, as noted in [34], recovering observations remains challenging due to
the high dimensionality.

In recent years, diffusion-based generative models [30, 14, 31] have gained considerable attention
for their ability to effectively model complex data distributions, making them increasingly important
in offline RL [15, 3, 23]. One promising application of these models is their usage in reducing or
mitigating noise in data, thanks to their inherent denoising capabilities. For instance, DMBP [38]
proposed a diffusion-based framework aimed at minimizing noise in observations during the testing
phase. Despite its success, this approach is specifically designed to work with clean training data
and only addresses data perturbations during testing. It cannot manage perturbations in the training
dataset, as current diffusion models typically assume the dataset is entirely clean or has a consistent
noise distribution across all data points [1, 8]. Therefore, naive diffusion methods can encounter
challenges, such as overfitting to noise data, when applied to partially corrupted data during training.

To gain deeper insight into which aspects of corrupted datasets degrade the performance of offline
RL algorithms, we evaluate several offline RL methods on three types of datasets: a clean dataset,
a partially corrupted dataset, and a filtered dataset, which is created by removing the noisy portions
from the corrupted data, as illustrated in Figure 2 (a—c). Surprisingly, We find that current offline RL
algorithms fail to fully restore their performance on the filtered dataset, particularly when the dataset
size is limited. These results imply that the loss of critical sequential information plays a key role
in performance degrading of decision-making. Additionally, while sequence modeling methods [6,
34] exhibit robustness against data corruption, they fail to function when faced with incomplete
trajectories. This finding indicates that simply filtering out noisy samples is insufficient for
handling corrupted datasets, underscoring the importance of recovering corrupted data.

To address this issue, we introduce the first diffusion-based denoising framework for handling cor-
ruption robust offline RL. Our approach recovers clean data purely from the corrupted dataset, with-
out requiring any external information or supervision. We name this novel three-stage diffusion-
based method Ambient Diffusion-Guided Dataset Recovery (ADG). The detailed diagram is pre-
sented in Figure 1. In the first stage, we introduce Ambient Denoising Diffusion Probabilistic Mod-
els (DDPM) from approximated distributions, which enable diffusion training on partially corrupted
datasets with theoretical guarantees. In the second stage, leveraging the noise-prediction property of
the well-trained ambient DDPM, we identify the corrupted data within the dataset. The remaining
clean data is then used to train a denoiser within the framework of standard DDPM. Finally, in the
third stage, we apply the standard DDPM to refine the previously identified corrupted data. The
corrected data is combined with the clean data to form a high-quality dataset, which is subsequently
used for offline RL training.
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Figure 2: The performance of baseline algorithms (CQL, IQL, RIQL, DT, and RDT) is evaluated
under four dataset conditions: Clean (original dataset without corruption), Noised (dataset corrupted
using Random State Attack as described in Appendix C.1), Filtered (Noised dataset with corrupted
samples removed), and Recovered (dataset recovered using ADG). The comparison results show
the average normalized scores across three MuJoCo tasks (halfcheetah, hopper, and walker2d) using
the “medium-replay-v2” datasets. We include the results for both the 100% dataset and 10% dataset
settings. ADG effectively restores performance close to the results on clean datasets.

We find that ADG is overall competitive with the ideal case of perfectly filtering out all noisy samples
for MDP-based algorithms and significantly outperforms the filtering method for sequence modeling
methods, as shown in Figure 2(d). Additionally, we provide a comprehensive analysis of ADG’s per-
formance under both random and adversarial data corruption scenarios, examining various levels of
data availability, whether full or limited dataset size, as described in Section 5. Our empirical studies
demonstrate that ADG consistently enhances the performance of all baseline algorithms, achieving
a remarkable overall improvement. These findings indicate that ADG is versatile and compatible
with any offline RL approach, including their robust variants. Notably, ADG exhibits consistent and
robust performance across a variety of dataset qualities, corrupted scales, and corrupted ratios.

2 Related Works

Robust Offline RL. Several works have focused on testing-time robustness against environment
shifts [28, 35, 26, 38, 34]. For training-time robustness, Li et al. [21] investigate various reward
attack strategies in offline RL and reveal that certain biases can unintentionally enhance robustness
to reward corruption. Wu et al. [33] introduce a certification framework to determine the tolerable
number of poisoning trajectories based on different certification criteria. From a theoretical per-
spective, Zhang et al. [43] propose a robust offline RL algorithm utilizing robust supervised learning
oracles. Ye et al. [40] introduce uncertainty weighting to address reward and dynamics corruption,
offering theoretical guarantees. Ackermann et al. [2] develop a contrastive predictive coding-based
approach to tackle non-stationarity in offline RL datasets. Yang et al. [37] utilize the Huber loss to
manage heavy-tailedness and adopt quantile estimators to balance penalization for corrupted data.
Additionally, Xu et al. [34] introduce a sequential modeling method to iteratively correct corrupted
data for offline RL.

Diffusion Models in Offline RL. Diffusion-based generative models [30, 14, 31] have been ex-
tensively utilized for synthesizing high-quality images from text descriptions [27]. More recently,
they have gained significant attention in the RL community, serving as behavior policy replicators
[32, 13], trajectory generators [15, 3, 23], and state denoisers [38].

3 Preliminaries

RL and Offline RL. Reinforcement Learning (RL) is typically formulated as a Markov Decision
Process (MDP) defined by the tuple (S, A, P,r,~), where S and A represent the state and action
spaces, P denotes the transition function, r is the reward function, and v € [0, 1] is the discount
factor. The objective of RL is to learn a policy 7(a|s) that maximizes the expected cumulative
return. In offline RL, access to the online environment is restricted. Instead, the objective is to
optimize the RL objective using a previously collected dataset, D = { (s}, ai,ri, st 1)} 7; which
consists of IV transitions in total.



Corruption-robust Offline RL. We adopt a unified trajectory-based storage approach,
as proposed in prior works [34]. An original trajectory is represented as T =
(so0,a0,70,---,ST7—1,ar—1,77—1), Where each trajectory consists of three components: states, ac-
tions, and rewards. This trajectory can be reorganized into sequence data for DT [6] and RDT [34],

or split into transitions (s¢, a, re, st+1)tT::)2 for Markov Decision Process (MDP)-based methods
such as CQL [19] and IQL [18].

We investigate the impact of injecting random or adversarial noise into the dataset under two cor-
ruption scenarios. First, we examine state corruption, where only the states in the trajectories are
affected. Second, we introduce noise into state-action-reward triplets, which we refer to as “full-
element” in the following context.

Random corruption refers to the addition of noise drawn from a uniform distribution. For ex-
ample, corrupting the state with uniform noise of corruption scale o can be written as 59 =
so+ A -std(s), A ~ Uniform[—a,a]?, where d; is the dimensionality of the state, and std(s)
represents the ds-dimensional standard deviation of all states in the offline dataset. On the other
hand, adversarial corruption employs a Projected Gradient Descent (PGD) attack [25] with pre-
trained value functions. We build upon prior work [34] by introducing learnable noise to the target
elements and optimizing it through gradient descent to minimize the pretrained value functions.
Further details refer to Appendix C.1.

Diffusion Models. Given any clean sample x, the forward process of diffusion models is a Markov

chain that gradually adds Gaussian noise to data according to a variance schedule o, . .., ak:
K
(@t |20 = JLale |57, afe |57 =A@k Vet (1 D). )

The reverse process is likewise a Markov chain characterized by learned Gaussian transitions (pa-
rameterized by ), typically initiated at p(2%) = N (20, I):

po (") = Hpe U ER), pe(at Tt 2F) = N (@ e (k) B (2 K)).
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To ensure high-quality generation, the diffusion model learning process typically demands clean
original data, i.e., we have direct access to . Building on the foundation of initial Denoising
Diffusion Probabilistic Models (DDPM) introduced by Ho et al. [14], the most widely adopted
training loss for diffusion models is formulated as:

Loppm(0) := Ek~[1,K],e~N(0,I)[||€9(wk, k) — €|?], 3)

where ¥ = \/a;x + /T — aze with ay, := Hf «;, and € is a randomly sampled Gaussian noise.
Nevertheless, obtaining completely clean data poses a significant challenge in certain circumstances,
making the loss in Eq. (3) not directly applicable. Recently, several studies have proposed methods
for handling corrupted datasets, while they assume a uniform noise scale across the dataset [1, 8],
leaving the problem of training diffusion models on partially corrupted datasets unresolved.

4 Methodologies

4.1 Motivation

A natural approach to addressing the partially corrupted dataset is to identify the corrupted samples
within the dataset and leverage the uncorrupted samples to train a denoiser, which can subsequently
be used to correct the corrupted samples. However, naive noise detectors trained with supervised
methods relying solely on manually labeled clean and noisy samples may easily fail due to the
inherent ambiguity of noise.

As an alternative, diffusion models have garnered significant attention due to their demonstrated
effectiveness in training on fully corrupted datasets and leveraging the trained models to extract
uncorrupted samples [1, 8]. Moreover, diffusion models have also been shown to be effective as
state denoisers in the realm of offline RL [38].



Nevertheless, a key challenge is that existing diffusion models for corrupted samples typically as-
sume a consistent noise distribution across the dataset, which does not hold for corruption-robust
offline RL. On the other hand, if the naive diffusion process is applied to corrupted samples during
training, even small amounts of noise in the training set can cause the diffusion model to overfit to
these perturbed points, leading to poor performance during subsequent sampling. To address the
discrepancy between clean and corrupted data within the same dataset, the development of a new
diffusion training method is urgently needed.

4.2 Diffusion for Partially Corrupt data

Extending Ambient Diffusion Models to DDPM. Daras et al. [8] demonstrate that diffusion
models can be trained on datasets corrupted by a consistent scale of noise in the context of score-
based continuous diffusion models. We observe that their conclusions can be seamlessly extended
to the discrete DDPM framework. Building upon Theorem A.5 in [8], which addresses score-based
variance preserving diffusion, we derive the following corollary that extends the result to the discrete
DDPM.

Corollary 4.1. (Ambient DDPM) Let k, be a manually defined constant representing a noise-added
diffusion timestep. Suppose we are given samples €%+ = \/ay, 2°++/1T — ag, €. Let x* = \/arx"+
V1 — aye be further en-noised samples with 1 < k, < k. Then, the unique minimizer of the
objective

aka k _ (@ka — @k)EQ(mkvk) _ kaHQ
\/dk'dka \/@ka'@k'(l_@k)

“4)

Ea:’“a ]Ekwl/{(ka,K)Ew"’ |xka ”

have €g-(x*, k) = Ele|z*],Vk > k, (cf. Appendix A.1 for detailed proof).

Notably, Eq. (4) cannot be directly applied in our settings because the noise-consistent data, "=,
are not directly accessible. As discussed in Section 5.1, some portions of our dataset are corrupted
while others remain clean.

Ambient DDPM from Approximated Distribution. It is worth noting that all samples involved
in the Ambient DDPM training process follow Gaussian distributions with parameters that are func-
tions of k. While direct access to noise-consistent data is not available, an ideal alternative is to ap-
proximate these distributions and train the diffusion model using the approximations. Let ¢(x*|x")
denote the ground-truth distribution of samples generated by the DDPM forward process at diffusion
timestep k, as described in Eq. (1), and let o(x*|x°) represent an approximation of this distribution.
To ensure effective learning under this approximation, we make the following.

Assumption 4.2. There exists a positive constant c such that, for any k > k,, if the Kullback-Leibler
(KL) divergence satisfies Dy [q(x*|x%)||o(z*|x°)] < ¢, then the ambient DDPM with k > k,, as
introduced in Corollary 4.1, can be effectively learned from samples drawn from the approximated
distribution o(x*|x?).

Following the standard setup of corruption-robust offline RL, we are provided with samples & that
may or may not contain scaled Gaussian noise ¢ - €. The distribution of such samples at diffusion
timestep k in the DDPM forward process is denoted as ¢(&*|2"). We have the following.

Theorem 4.3. Let Assumption 4.2 hold. For any bounded noise scale i, one can always find a
diffusion timestep k, such that ambient DDPM with k > k., which should have been learned
from samples drawn from q(x*|x), can instead be effectively learned from samples drawn from
q(2*|2°). That is, for any ¢ > 0, one can always find ko such that for any k > k,, the following
inequality holds: Dg 1 [q(z"|x°)||q(2*|2°)] < c.

We provide the detailed proof in Appendix A.2. It is evident that a smaller k, retains more of the
original information, thereby improving the accuracy of the noise predictor. However, a smaller k,
also introduces a more relaxed threshold ¢, which may result in a larger discrepancy between the
original distribution and the approximated distribution. The choice of k, necessitates a trade-off
between these two factors. See Section 5.3 for detailed ablation studies.



4.3 Corrupted Samples Detection

Given a sample & that may or may not contain scaled Gaussian noise ¢ - €, we propose using the
squared Frobenius norm of the noise predictor, ||€y (&, k)||%, to determine whether noise is present.

Proposition 4.4. Assume the noise prediction error for €q(-, k) follows 8y ~ N(0,021). Define the
difference between the noisy and noise-free cases as: A = E[||ep(2%,, k)||%] — E[||les (2, k)[|2],
where &% and dzﬁf denote noisy and noise-free samples with original information consistency oper-
ation, respectively. The Signal-to-Noise Ratio (SNR) of the prediction is then expressed as:

A 2 - Qg

SNR(V) = e, Goor MG~ (L—an) 0% ®

See Appendixa A.3 for detailed proof. Assume that the noise prediction error are the same across
all diffusion timesteps, i.e., o, = o for any k, then SNR(k) achieves maximum value at k = k,, as
@, is a strictly monotonically decreasing function of k.

4.4 Ambient Diffusion-Guided Dataset Recovery (ADG)

Having established the theoretical foundation, we now proceed to introduce our proposed ADG
method for corruption-robust offline RL. As there are two timesteps involved, we use superscripts k
to denote the diffusion timesteps and subscripts ¢ to denote the RL timesteps for clarity.

The ground truth trajectory matrix is defined as 7 := [z:—m,...,2trH] € RM*(H+1)  \where
z € RM represents the RL component (which can correspond to an observation s or a state-action-
reward triplet (s, a,r)), M denotes the dimensionality of z, and H specifies the temporal slice size.
Let 2; denote the RL component that may or may not contain scaled noise ¢ - e. We only have access
to the observed (partially corrupted) trajectory #; = [Z;_ g7, . .., Z¢y | € RM*CHHD)

Ambient DDPM for Corrupted Samples Detection. Following Theorem 4.3, given a partially
corrputed offline RL datastet, we pre-define k, and train the ambient DDPM through

B ar, .p  (ar, —ap)eg(FF k)
#ra

D U KO T [”\/ak'aka T Var, ar (- ap)
a

where 7} = \/Tk %tk” + 4/ a’“gi]:ake. Once the training converges, we obtain the noise predictor

(o798

€9(7, k), which achieves the largest SNR at k = k, as described in Proposition 4.4. It should be
noted that for each sample 7, we focus solely on whether the RL. component at the center position
(2:) is corrupted, rather than evaluating the entire trajectory slice. For this purpose, we further
define eg(2;) = ||€p(Ft, ka)m+1]|%, where ()11 represents the (H+1)-th column of the matrix.
Subsequently, we utilize eg(Z;) to evaluate every samples within the partially corrupted dataset, and
rescale the prediction range to [0, 1]. With a manually defined threshold ¢, samples with eg(Z;) > ¢
are classified as noised samples (D,,), while the remaining samples are considered clean (D,.).

— 7, 6)

Naive DDPM for Corrupted Samples Recovery. Once the corrupted samples have been identi-
fied, the remaining uncorrupted samples can be utilized to train a denoiser (through naive DDPM),
which can subsequently be applied to correct the corrupted samples.

To avoid overfitting of DDPM to misclassified noisy data, we reuse ( to filter out training data for
the naive DDPM. We denote I; as a binary indicator variable that specifies whether 2, is corrupted
(@I; = 0 for eg(2;) > ¢) ornot (I; = 1 for ep(2;) < (). Given the mask defined as m; :=
[T¢—fr, ..., T4y g], the training loss for naive DDPM follows

Et,op. ko1, K e (0,0 Ll [€6 (7, k) — €)] © my|?]. (7)

where © is the Hadamard product. We refer to this training process as selective training in the
following discussion. After the training coverges, we then conduct revese DDPM process py, (‘7}0:’““)
as described in Eq. (2) to all samples within D,,. Finally, we combine the denoised D,, with D, to

form the final dataset. More implementation details of ADG can be found in Appendices B and C.



5 Experiments

In this section, we conduct comprehensive experiments to empirically evaluate ADG by exploring
three key questions: (1) How does ADG enhance the performance of both non-robust and robust
offline RL methods across various data corruption scenarios? (2) What is the individual contribu-
tion of ambient loss and selective training to the overall effectiveness of ADG? (3) What are the
advantages of ADG’s structure, which incorporates two independent diffusion models?

Table 1: Performance under random data corruption. Results are averaged over four random seeds.

Attack |, CQL IQL RIQL DT RDT
Element | % Naive ADG Naive ADG Naive ADG Naive ADG Naive ADG
halfcheetah 159+1.8 239456 192422  28.8+1.7 199421 278445 275425  39.840.4 30.8£1.8 342+1.4
hopper 554464 78.8+£l11.1 47.6+7.1 72247.1  34.0+134 66.3%+159 51.3+£14.0 79.1+6.7 56.6+2.9 65.247.5
walker2d 39.9+52  46.0+£9.7 17.54+6.8 27.9+43.7 142412 39.5+43  47.6+49  55.1+89 534440 = 66.4+29
halfcheetah(10%) | 11.0+1.1 17.3£2.7 6.1£1.3 12.0£0.9 44409 8.3£22 6.3+0.4 26.4+3.0 8.3+£1.5 22.4+0.8
© hopper(10%) 1.840.7 3.1+0.6 13.34+3.3 19.6+6.3 15.54+5.4 15.7+6.1 36.1+7.6 37.4+9.4 40.843.5 42.4+7.9
= walker2d(10%) -0.0£0.1 1.0£1.1 10.9+7.2 157428 9.2+4.4 10.1+£4.3  18.0+£2.5  34.0+55 20.3+2.8 20.54+2.7
A kitchen-complete | 3.8+2.8  15.0+6.8  33.6+73 512445 375464  52.5+43 37.0+£62 61.9+124 52.8+1.8 58.1+10.1
kitchen-partial 0.0+0.0 0.6+1.1 135434  23.8422 259434 269+7.6 31.048.1  43.8+1.3 36.8+5.8 49.4+11.1
kitchen-mixed 0.0+0.0 0.04+0.0 16.24+5.6 41.244.1 21.6+3.7 419432  31.8434 36.3+13.1  41.8443  37.5%17.6
door(1%) -0.3+£0.0  -0440.0 46.6£17.5 633+9.8 39.0+£16.4 77.5£10.2 94.64+4.2 1029404 102.8+2.4 103.94+2.2
hammer(1%) 0.2+0.0 0.24+0.0 64.6+17.3  782+£17.3 70.0+12.6 884452 97.8+123 115.740.7 113.84+1.6  126.64+26.9
relocate(1%) -0.3£0.1  -0.340.1 9.4+3.5 14.4+49 5.245.0 27.8+4.8  61.6+56  67.6+4.0 65.0+£6.2 67.2+4.8
Average Score 10.6 15.4 24.9 374 24.7 40.2 45.0 58.3 519 57.8
Improvement 1 45.28% 50.20% 62.75% 29.56% 11.37%
halfcheetah 0.3+£0.2 33.94+2.6 15.5£1.5 37.4£1.6 22.542.3 32.3+3.6 28.04+5.0 39.2+0.9 20.74+2.9 38.1+1.2
hopper 0.7+£0.0  203+7.3 26.5+19.6 36.1+£20.1 164432 49.4+19.7 53.0+142 551+£11.9 58.6+11.1  51.2420.1
- walker2d -0.1+£0.0 222442 20.3+6.9 21.1+8.2 17.5+3.6 19.9+59 51.0+14.5 55319 56.54+11.0 56.1+15.4
5 halfcheetah(10%) | 0.9+0.2  20.3+4.0  4.2+1.0 18.3+£2.0 2.0+0.5 14.6+2.4 100445  28.3+2.6 16.8+5.1 25.2+42.1
=] hopper(10%) 2.0+12 109+12.1 9.9+0.3 19.1£10.0 11.6+24 142448 28.3+8.8 35.9+6.0 36.5+4.7 38.4+7.6
% walker2d(10%) 0.9+1.6 1.242.0 54427 10.442.1 4.7£1.2 19.7+8.2 18.944.0 32.0£16.6 24.5459 43.4+9.3
53] kitchen-complete | 4.4+3.2 13.14£5.4 23.846.0 48.84+3.8 26.+5.0 48.8+4.5 51.3+9.4 55.04£5.3 60.6+5.7 60.0+4.7
= kitchen-partial 1.9+2.1 0.0+0.0 1.1+1.4 27.5+6.8 0.5+0.9 15.6+8.7 344474  37.5+£73  45.6£23.7 43.849.4
LE kitchen-mixed 0.0+£0.0 2222 0.8+0.8 37.5£5.0 8.4+1.8 43.1+6.2  21.9+13.3 23.84224 39.4+17.1 35.6+9.7
door(1%) -0.3+£0.0  -0.3+£0.0 47.1+£12.7 56.3+13.9 64.3+11.1 71.1£0.8 3394243 45.1+£263 92.1+17.5 105.6+2.0
hammer(1%) 0.24+0.0 0.24+0.0 65.7+£12.7 8454122 88.7+£18.0 95.0+28.3 26.3+169 43.3+384 113.1+23.8 109.2£17.3
relocate(1%) -0.3+£0.0  -0.340.0 7.242.0 10.6£1.7 125415  20.3+82 359+18.7 42.0421.1 56.7+13.2 61.8+3.4
Average Score 0.9 10.2 19.0 34.0 229 37.0 32.7 41.0 51.8 55.7
Improvement 1 1033.33% 78.95% 61.57% 25.38% 7.52%

5.1 Experimental Setups

We assess ADG on various widely used offline RL benchmarks [9], including MuJoCo, Kitchen, and
Adroit. Since prior work [34] has shown that the impact of data corruption becomes more severe
when data is limited, we further evaluate the effectiveness of ADG across different dataset scales by
conducting experiments on down-sampled tasks. Specifically, we down-sample 10% and 1% of the
data from MuJoCo and Adroit tasks as the new testbed. We also include results under different down-
sample ratio of 2% and 5% in Appendix D.7. For MuJoCo, we select “medium-replay” datasets.
Additional results on “medium” and “expert” datasets are deferred to Appendix D.4.

For data corruption, we consider two data corruption scenarios: random and adversarial corruption,
as introduced in Section 3. These scenarios are applied either to states alone or to state-action-reward
triplets (full-element). Following the settings of prior works [37], we set the corruption rate n to 0.3
and the corruption scale « to 1.0. We provide the further implementation details on data corruption
in Appendix C.1. We also investigate ADG under Gaussian noise corruption and under different
noise ratio and scales in Appendix D.3, D.8.

We evaluate a diverse set of offline RL methods, including pessimistic value estimation method
CQL [19], policy constraint methods along with their robust variants IQL [18] and RIQL [37], as
well as sequence modeling methods such as DT [6] and RDT [34]. To ensure the robustness of the
findings, each experiment is conducted using four distinct random seeds, with the standard deviation
across these seeds also reported.

5.2 Evaluation under Different Data Corruption

Results under Random Corruption. We evaluate the improvement brought by ADG on various
offline RL algorithms under random data corruption. The average scores presented in Table 1 show
that ADG provides benefits to both non-robust and robust algorithms across all scenarios. Notably,
ADG brings significant improvements to MDP-based algorithms (CQL, IQL, and RIQL), with an



average performance boost of 69.1%, demonstrating the effectiveness of sequence completion for
missing information. ADG also provides substantial improvements to non-MDP algorithms (DT and
RDT), with an average performance boost of 17.4%. When equipped with ADG, both IQL and DT
outperform their Naive robust variants in nearly all scenarios. This highlights ADG’s core strength:
by modifying only the dataset, it enables standard algorithms to surpass their robust variants explic-
itly designed for noise resistance. Moreover, this advantage can be further amplified using robust
variants, achieving nearly a 60% improvement on RIQL. Additionally, when equipped with ADG,
most algorithms achieve similar performance under both state and full-element corruption, further
demonstrating the scalability of ADG. We provide visualizations of ADG’s detection and denoising
in Appendices D.1 and D.2 to clearly explain its effectiveness, and investigate the effect of using
ADG solely for filtering in Appendix D.5.

Table 2: Performance under adversarial data corruption. Results are averaged over four random
seeds.

) - CQL QL RIQL DT RDT
Attack | Task Naive ADG Naive ADG Naive ADG Naive ADG Naive ADG
halfcheetah 31.2+1.4 35.6+1.3 23.14£6.7 294422 26.5+5.3 27.4+1.9 34.8+0.6 35.6+2.1 345+1.9 35.2+1.3
hopper 553+11.3 572432  51.0469 51.2426.7 41.2+22.7 61.1+18.1 27.24+10.1 55.8421.2 5524283 70.5£7.8
walker2d 442+6.6  433+14 36.2+14.0 424474 16.743.7 324+154 44.148.1 622432 424464  62.2+5.7
halfcheetah(10%) | 10.04+2.0 18.3£1.8 5.6+1.7 13.0+4.4 3.6+0.5 8.4+1.0 7.4+0.6 26.4+2.1 7.5+0.4 22.3+1.8
hopper(10%) 2.0+1.1 24428 20.0+£3.8 19.94+2.3 19.14£6.9  22.6+12.3 38.6+4.7 403459  39.3+5.1 42.246.9
% walker2d(10%) -0.240.1 0.2£0.5 9.8+3.3 14.0+4.3 10.8+4.4 104+42 223424 484+134 21.142.6 41.5+4.8
ﬁ kitchen-complete 3.8+2.8 7.5+7.3 45.6+2.1 53.8£5.7 51.9+3.3 512428  48.4+6.7 73.843.8 58.4+3.7 60.0£3.1
kitchen-partial 0.0+£0.0 2.5+4.3 269+7.6 33.1£13.5 354458 444487 32.6+6.1 39.4+21.9 36.5+8.8 42.5£10.5
kitchen-mixed 0.0+£0.0 1.9+£3.2 41.24+4.5 425456 33.9+112 38.8+45  28.249.9  38.849.6  30.04+5.5 45.6+10.1
door(1%) -0.3+0.0 -0.3£0.0 49.3+114 58.1£10.2 47.3+24.8 61.6£11.2 99.0+£0.9 103.3+£2.0 104.7+0.5 105.5£1.3
hammer(1%) 0.2+0.0 0.240.0 704+154 784489 69.1+£234 94.1£11.7 96.0£2.5 120.3+4.3 116.6£74 93.4+13.1
relocate(1%) -0.24+0.0 -0.2£0.1 7.0+1.4 18.7+8.7 17.1+£9.5 20.5£9.0 76.2+5.0  80.8459  69.0t44  70.9+8.8
Average Score 122 14.0 322 37.9 31.1 394 46.2 60.4 51.3 57.6
Improvement 14.75% 17.70% 26.69 % 30.74% 12.28%
halfcheetah 0.2£0.7 309+1.6  29.3+3.0 384+£15 17.0£59  34.5+4.1 37.0+£2.0  39.5£0.5 36.3+£1.2  39.1+0.3
hopper 1.1+£0.4 12.3£1.3 5144241 68.8+7.7 27.8+12.5 40.0+£0.8 564+11.3 659+185 623+4.6 64.7£10.5
- walker2d -0.3+0.1  37.6+13.0 4224143 52.7+1.8  49.346.5 5744147 52.446.7 60.1+7.4  58.846.0  65.24+6.0
E halfcheetah(10%) | -1.1+0.6 13.1£1.9 4.6+1.2 17.1+£3.4 4.842.1 17.3£3.7 12.7+2.4 24.4+1.7 14.2+1.5 26.7£1.5
g hopper(10%) 1.0+£0.4 3.8+2.4 213454 20.5+2.7 30.3+5.3 35.1+£2.4  40.0£12.1 40.2£3.8 39.743.8  49.4+13.2
,% walker2d(10%) -0.24+0.0 0.7£1.1 10.8+1.8 20.7£4.9 14.7+2.7 24.6+£9.2  28.5+74 374+£113 14.0+7.3 38.0£10.7
s3] kitchen-complete 3.8+2.8 7.5+4.7 46.24+6.2  48.1+6.5 50.0+9.8 56.24+9.4  55.0+6.1 65.6+8.0 59.446.2 58.1+13.8
:1' kitchen-partial 5.0+£4.0 4.4+7.6 29.44+2.7 33.1+6.5 19.4+2.1 38.1+£12.8 269+17.0 42.5+10.2 2254214 30.6£12.0
[-E kitchen-mixed 0.0£0.0 3.8+6.5 344448 37.5+4.7 20.6+4.8 25.6+3.7 38.1+2.1 31.949.1 38.1+15.1 43.14£8.2
door(1%) -0.3+0.0 -04+0.0 669£150 68.1£11.1 37.7£3.2 553+5.7 96.5+£11.3 98.9+3.5 87.94+20.5 94.1+7.0
hammer(1%) 0.1£0.1 0.24£0.0  61.5£10.1 92.6+13.5 50.9+20.5 80.7£13.2 75.1£20.6 7524255 62.5426.5 75.4+353
relocate(1%) -0.24+0.0 -0.3£0.0 5.0+3.4 6.0£3.1 7.9+3.3 7.4+4.1 54.5+143  67.74£53 4.7+4.9 6.8+6.3
Average Score 0.8 9.5 33.6 42.0 275 394 47.8 54.1 41.7 49.3
Improvement 1 1087.50% 25.00% 43.27% 13.18% 18.23%

Results under Adversarial Corruption. We further examine the robustness of ADG under adver-
sarial data corruption. The results, summarized in Table 2, show that ADG consistently improves
baseline performance by an average of 24.41%. Notably, when equipped with ADG, the baselines
IQL and DT outperform their Naive robust variants RIQL and RDT across all scenarios. This fur-
ther supports the conclusions drawn from the random corruption scenarios. These findings highlight
ADG’s ability to adapt to and mitigate adversarial data corruption.
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Figure 3: The FN rate during detector training (left), and the performance of IQL and DT using
these detectors (right). “Kit-c” denotes Kitchen-complete, and “Re” denotes Relocate.

5.3 Ablation Study

We conduct ablation studies to analyze the impact of each component on ADG’s performance.

Impact of Ambient Loss. We assess the impact of ambient loss on detector performance by vary-
ing t,, € {15, 30,50} on the “kitchen-complete-v0” and “relocate-expert-v1” datasets, selected for



their complexity. Following Section 5.1, Random State Attacks are introduced. Samples detected
as corrupted are labeled as positive and others as negative. The detector is trained for 5k steps. We
detect the dataset with ep(2) < ¢ (as in Section 4.4) at each step and plot false negatives (FNs),
which represent the proportion of undetected corrupted samples. We also evaluate the D4RL scores
of baseline algorithms on the datasets recovered using ADG with these trained detectors. As shown
in Figure 3, the detector trained with the naive diffusion loss shows some detection capability ini-
tially, but quickly overfits to the corrupted portion of the training data. Ambient loss significantly
improves it. Notably, ¢,, = 30, which is also used in the main experiments, achieves the lowest false
negatives (FNs), implying that nearly all selected samples remain unaltered by attacks. This ensures
that the denoiser is trained on nearly clean data, making the naive diffusion loss feasible. Moreover,
the D4RL scores of baseline algorithms exhibit a clear correlation with detection performance.

Impact of Selective Training. To evaluate the
impact of selective training on denoiser, we
vary ¢ within the range {0.05,0.10,0.20, 0.50}
and measure the mean squared error (MSE)
between the recovered dataset and the ground
truth. The results are shown in Figure 4. A
very low ¢ = 0.05 leads to poor denoiser per-
formance and eventual overfitting, likely due to
the insufficient information in a small dataset.
Therefore, a very high ¢ = 0.50 also de-
grades performance, possibly due to excessive
corrupted data in the dataset. Moderate values
of ¢ = 0.10 or 0.20 yield similar, good per-
formance, supporting the necessity of selective
training and suggesting that ¢ is somewhat ro-
bust, performing well within a certain range.
The D4RL scores of the baseline algorithms ex-
hibit a strong correlation with the performance of the denoiser, further supporting the necessity of
using ( for the selective training of the denoiser.
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Figure 4: Results on “walker2d-medium-replay-
v2” with Random State Attack (Appendix C.1):
(a) MSE vs. ground truth, and (b) DT perfor-
mance across (. Best results at { = 0.20.

Impact of Using Two Separate Diffusion Mod-
els for Detection and Denoising. As described

[

in Section 4.4, our approach employs a structure § 30

with two independent diffusion models: one serv- 320

ing as the detector and the other as the denoiser. =

However, it is technically possible to employ a £10

single diffusion model for both detection and de- 2,

noising tasks by training it concurrently with both Walker2d (1QL) Walker2d (10%, IQL)

Eq. 4 and Eq. 7. We conduct ablation experiments

on the “walker2d-medium-replay-v2” dataset un- 2 o

der Random State Attack, using both full and §

limited dataset sizes to evaluate this configura- T 40

tion. The results are presented in Figure 5. Al- 2

though ADG with single diffusion consistently gzo -
=z

improves the performance of all baselines, ADG
with two independent diffusion models always
outperforms ADG with a single model. This re-
sult is intuitive, as applying two different losses

Walker2d (DT) Walker2d (10%, DT)

Naive mmm ADG (w/ SD) mm ADG

to a single diffusion model can easily cause inter-
ference, leading the network to converge to local
minima. Using two independent models effec-
tively addresses this issue by decoupling the mu-
tual interference. For more implementation de-
tails and results, refer to Appendix D.10.

Additionally, we also include the ablation study

Figure 5: Comparison results among Naive,
ADG with a single diffusion model, and ADG
with separate diffusion models for IQL (upper)
and DT (lower). ADG (w/ SD) denotes ADG
using a single diffusion model.

on the length of the slice window by varying the values of H in Appendix D.6. The performance of
ADG shows a positive correlation with the hyperparameter H as it increases from 0, and becomes



robust to further changes once H reaches a certain range. This demonstrates the importance of
incorporating sequential information and the robustness of ADG.

6 Conclusion

We propose Ambient Diffusion-Guided Dataset Recovery (ADG), the first diffusion-based denoising
framework for offline RL under data corruption during the training process. We introduce Ambient
Denoising Diffusion Probabilistic Models (DDPM), which enable the diffusion model to distinguish
between corrupted and clean samples. This mechanism effectively filters the training data, allowing
training a naive diffusion model to serve as a denoiser. Comprehensive empirical studies on D4RL
benchmarks demonstrate that ADG consistently improves the performance of existing offline RL
algorithms across various types, scales, and ratios of data corruption, and in most cases, allows
baseline algorithms to outperform their robust variants. We hope that this work establishes a new
paradigm for more robust learning from noisy or corrupted data, ultimately benefiting the application
of offine RL in real-world scenarios.

References

[1] Asad Aali, Giannis Daras, Brett Levac, Sidharth Kumar, Alexandros G Dimakis, and Jonathan I
Tamir. Ambient diffusion posterior sampling: Solving inverse problems with diffusion models
trained on corrupted data. arXiv preprint arXiv:2403.08728, 2024.

[2] Johannes Ackermann, Takayuki Osa, and Masashi Sugiyama. Offline reinforcement learning
from datasets with structured non-stationarity. arXiv preprint arXiv:2405.14114, 2024.

[3] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision making? In The
Eleventh International Conference on Learning Representations, 2023.

[4] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified g-ensemble. Advances in neural information process-
ing systems, 34:7436-7447, 2021.

[5] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and
Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learn-
ing. arXiv preprint arXiv:2202.11566, 2022.

[6] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084—15097,
2021.

[7] Yiding Chen, Xuezhou Zhang, Qiaomin Xie, and Xiaojin Zhu. Exact policy recovery in offline
rl with both heavy-tailed rewards and data corruption. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 11416-11424, 2024.

[8] Giannis Daras, Alex Dimakis, and Constantinos Costis Daskalakis. Consistent diffusion meets
tweedie: Training exact ambient diffusion models with noisy data. In Forty-first International
Conference on Machine Learning, 2024.

[9] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[10] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learn-
ing. Advances in neural information processing systems, 34:20132-20145, 2021.

[11] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning with-

out exploration. In International conference on machine learning, pages 2052-2062. PMLR,
2019.

10



[12] Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. Advances
in Neural Information Processing Systems, 35:18267—-18281, 2022.

[13] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey
Levine. IDQL: Implicit Q-learning as an actor-critic method with diffusion policies. arXiv
preprint arXiv:2304.10573, 2023.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in Neural Information Processing Systems, 33:6840-6851, 2020.

[15] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pages 9902—
9915. PMLR, 2022.

[16] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34:1273—
1286, 2021.

[17] Cevahir Koprulu, Franck Djeumou, et al. Neural stochastic differential equations for
uncertainty-aware offline rl. In The Thirteenth International Conference on Learning Rep-
resentations.

[18] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. arXiv preprint arXiv:2110.06169, 2021.

[19] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179—
1191, 2020.

[20] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems, 2020.

[21] Angi Li, Dipendra Misra, Andrey Kolobov, and Ching-An Cheng. Survival instinct in offline
reinforcement learning. Advances in neural information processing systems, 36, 2024.

[22] Xize Liang, Chao Chen, Jie Wang, Yue Wu, Zhihang Fu, Zhihao Shi, Feng Wu, and Jieping
Ye. Robust preference optimization with provable noise tolerance for llms. arXiv preprint
arXiv:2404.04102, 2024.

[23] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adapt-
diffuser: Diffusion models as adaptive self-evolving planners. In International Conference on
Machine Learning, pages 20725-20745. PMLR, 2023.

[24] Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive
advantage-guided policy regularization for offline reinforcement learning. arXiv preprint
arXiv:2405.19909, 2024.

[25] Aleksander Madry. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.

[26] Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust re-

inforcement learning using offline data. Advances in neural information processing systems,
35:32211-32224, 2022.

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684—10695, 2022.

[28] Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning

with near-optimal sample complexity. Journal of Machine Learning Research, 25(200):1-91,
2024.

11



[29] Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S Du, and Huazhe Xu. Unleashing the power of pre-
trained language models for offline reinforcement learning. arXiv preprint arXiv:2310.20587,
2023.

[30] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256-2265. PMLR, 2015.

[31] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[32] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. In The Eleventh International Conference on
Learning Representations, 2022.

[33] Fan Wu, Linyi Li, Chejian Xu, Huan Zhang, Bhavya Kailkhura, Krishnaram Kenthapadi, Ding
Zhao, and Bo Li. Copa: Certifying robust policies for offline reinforcement learning against
poisoning attacks. arXiv preprint arXiv:2203.08398, 2022.

[34] Jiawei Xu, Rui Yang, Shuang Qiu, Feng Luo, Meng Fang, Baoxiang Wang, and Lei Han.
Tackling data corruption in offline reinforcement learning via sequence modeling. In The
Thirteenth International Conference on Learning Representations, 2025.

[35] Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl:
Robust offline reinforcement learning via conservative smoothing. Advances in neural infor-
mation processing systems, 35:23851-23866, 2022.

[36] Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden
states enables learning generalizable reward model for llms. arXiv preprint arXiv:2406.10216,
2024.

[37] Rui Yang, Han Zhong, Jiawei Xu, Amy Zhang, Chongjie Zhang, Lei Han, and Tong Zhang.
Towards robust offline reinforcement learning under diverse data corruption. In The Twelfth
International Conference on Learning Representations, 2024.

[38] Zhihe Yang and Yunjian Xu. Dmbp: Diffusion model-based predictor for robust offline rein-
forcement learning against state observation perturbations. In The Twelfth International Con-
ference on Learning Representations, 2024.

[39] Chenlu Ye, Jiafan He, Quanquan Gu, and Tong Zhang. Towards robust model-based reinforce-
ment learning against adversarial corruption. arXiv preprint arXiv:2402.08991, 2024.

[40] Chenlu Ye, Rui Yang, Quanquan Gu, and Tong Zhang. Corruption-robust offline reinforcement
learning with general function approximation. Advances in Neural Information Processing
Systems, 36, 2024.

[41] Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

[42] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui
Hsieh. Robust deep reinforcement learning against adversarial perturbations on state observa-
tions. Advances in Neural Information Processing Systems, 33:21024-21037, 2020.

[43] Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Corruption-robust offline rein-
forcement learning. In International Conference on Artificial Intelligence and Statistics, pages
5757-5773. PMLR, 2022.

12



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: There are three main claims laid out in the abstract. These concern ADG’s
ability to recover near-original trajectories under heavy corruption, the tradeoff between
corruption detection precision and policy learning stability, and improved performance
from boundary-biased diffusion sampling. All of these points are addressed in the main
text through theoretical analysis and empirical validation.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitations of our work in Appendix E.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proof of most statements are layed out in the supplemental, to save on
space.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We explained our settings in Section 5 and hyperparameters in Appendix C.3.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We upload the codes and instructions to recover the results. Once the blind
review period is finished, we’ll open-source all codes, instructions, and model checkpoints.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and test details (including hyperparameters, optimizer settings, and
data splits) are specified in Section 5 and Appendix C.3.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show the standard error in most training curves, with an average of over
four random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have a Appendix C.5 on this.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not believe that our work has any harmful consequences as layed out
in the Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work involves small models and simulated datasets. It does not impact
society at large, beyond improving our understanding of certain aspects of deep learning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such models or datasets are involved.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]|
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We have no human participants in our study.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology, scientific rigorousness, or originality of the research.
Guidelines:
e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Interpretations
A.1 Proof for Corollary 4.1

Firstly, we define ke = o‘zkawo ++/1—ay, €1 and x* = Jarz® + /1 — agey, where €1,€Ey ~
N (0, I). According to the forward process in DDPM, x* can be expressed as a function of x*«

b= arz® + V1 — ages

k —
x — /1 —ayp €
= \/ QL — ka 1+\/170_ék62
1/04],C

— (8)
F a+\/m Vary1= an,

NG

Followmg the proof sketch of Lemma A.4in [8], we apply Tweedie’s formula to the pair of z* and

x:
VarE[z0|z*] —
VIngk(:L’k) _ k [1 |_ } 9)
—ag
Similarly, applying Tweedie’s formula to the pair of * and "=, we derive:
i o’i-k E[xFae |xF] — zF
VIngk("B ) = Qhy —ak (10)
(o7
Equating Eq. (9) and Eq. (10), we obtain:
- — (1_a
E[a:k“ |wk] _ Ak, kg E[w0|mk] + V Ok, ( aka) a,:k (11)

B \/@ka'(l—@k) Vag - (1 —ag)
Since we aim to predict the Gaussian noise rather than the original signal, the forward process of
DDPM provides the relationship:

E[z’|x*] = 2~ VT~ aiEfele’]

— 12)
VO (
Substituting Eq. (12) into Eq. (11), we relate E[e|z*] to E[x"«|z*]:
- - k
E[wk’a |wk] — aka k (Oék Oék;) [ |'CB ] (13)

vV O_lk : O_lk,,, \/ak ]. — ak)
Building on Theorem A.3 in [8], we minimize the objective:
Eoro Exnti(ko, ) Egrjaro [1go(2®, k) — z|?], (14)

where the minimizer satisfies go- (%, k) = E[x*«|2¥]. Substituting Eq. (13) into Eq. (14), we have
the final form of the optimization objective:

Qag, (@ka — dk)EQ(.’Bk k)
EmkaEkNZ/l(ka)]Ewklwko ”mxk - \/dk (1= 70,%) - kaH2

with the minimizer e+ (2", k) = E[e|x*],Vk > k,. This completes the proof.

15)

A.2 Proof for Theorem 4.3

Let & be the samples that may or may not contain scaled Gaussian noise ¢ - €. It can be expressed in
the form of:

&=z + ¢ Thoise - € (16)
where 9 € R™*" is the noise-free matrix, ¢ is the noise scale, € € R"*" is the matrix of Gaussian
noise with i.i.d. entries €;; ~ N(0,1), and T,0isc is an unknown indicator variable that determines
whether noise is present. Accordingly, we define the samples that contain consistent Gaussian noise
L - €, which is expressed as:

z=xz"4. e (17)
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Lemma A.l. Given & and & as defined in Egs. (16) and (17) respectively, let q(-*|-°) denote the
distribution of DDPM forward process at diffusion timestep k, the following inequality always holds:

Drcr[a(z" ") lg(2"|2°)] < Drrla(x"|2°)llg("|z°)). (18)

Proof. We first denote the probability density function for distirbution q(x*|x%), q(&*|£°), and
q(&*|&°) as Pr(-), Pr(-), and Pr(-) respectively. According to the definition of KL divergence, we

have:
D [q(a"[2°)]|g(2"|2°)] — Drcr[g("|°)]|g(*|&°)]

:/ Pr(z)log :Eg - / Pr(w)log :Eg (19)

P
:/ Pr(x) log ~r(m)-
x Pr(x)
Note that the probability density function for q(*|2") can be expressed as a mixture of two com-
ponents: Pr(z) = yPr(x) + (1 — 7)Pr(x), where v € [0, 1] represents the probability that the
indicator variablel,,ise = 1. Substituting this relation into Eq. (19), we have:
Drcr[g(@"[°)]lq(2"|2°)] — Dxrla(z"|2")lg(&"|2°))
P 1—7)P
[ Pyt 1)+ 00t
® Pr(x)
13
=— / Pr(z)log — x(2)
@ vPr(z) + (1 — 7)Pr(z)
Pr(x)
7Pr(z) + (1 — v)Pr(z) (20)
Pr(x)
Pr(x)" - Pr(z)* ™

=— log/ Pr(x)” - P;r(:n)(liw

114

= ~log [ 7Pr(@) + (1 -9) - Fi(a)

=log[y + (1 = )] =0,

where the inequality (¢) holds due to Jensen’s inequality, and inequality (i,7i:) follows from
weighted Arithmetic-Geometric mean inequality. They all hold with equality if v = 1, i.e., the
indicator takes I,4i5¢ = 1 for all samples.

é— log/ Pr(x)

g— log/ Pr(x)

Lemma A.2. For any ¢ > 0, with the bounded Gaussian noise scale v and the samples & from
Eq. (17), one can always find k, such that for any k > kq, the KL divergence between q(x*|z°) and
q(2*|2) satisfying:

Drcr[g(x® ") [lo(z"|2%)] < c. @1

Proof. According to the definition of DDPM forward process as in Eq. (8), we have
x| = ara® + /1 — age (22)
fﬁk\jo = \/@50 + V1 —age
=Var(@® + - €) + V1 - are (23)
_ Vara® 4 /1= G+ 2 - ape

Note that € € R™*™ is the matrix of Gaussian noise with i.i.d. entries ¢;; ~ N(0, 1). By flattening
the matrix into a vector, we can explicitly express the probability density function of the distribution
q(x*|z°) as follows:

1

1
Pr(azk|m0) = W - exp (—2($k — mmO)TE_l(wk — \/@3}0)> (24)
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where ¥ € R™" is a diagonal matrix with all diagonal elements equal to 1 — &j. Similarly, the
probability density function of the distribution q(2*|Z°) follows:

1

~ 1 =
Pr(&"|z°) = S - exp (_2(# —Vare®) TS &k - \/57km°)> (25)

where 3 € R™" is a diagonal matrix with all diagonal elements equal to 1 — ay, + ¢t?a&y. Then we
can derive the KL divergence between ¢(x*|x") and ¢(&*|z°):

D [q(z"[2")[lo(z"]2°))

_1 3| S 1

b [log 5] +tr{37 3} - mn} (26)
mn 1 —ay + 2oy 1—ag

=1 -1
2 {Og T—ar | 1_art 2ay

Let f(k) = %, where @y, is a monotonically decreasing function of k with &y € [0,1).
It is straightforward to deduce that f(k) is also a monotonically decreasing function of k, with

f(k) € [1,00) if ¢« is bounded. Substituting this expression into Eq. (26), we obtain:

D [g(a*|20)|q(*]2°)] = = | log f (k) +

5 27

1 1]
fk)y
which is a monotonically increasing function of f (k) within the range of f (k). It attains its minimum
value of 0 when f (k) = 1. Therefore, for any ¢ > 0, we can always find k, such that for any & > &,
the inequality in Eq. (21) holds.

By combining Lemma A.1 and Lemma A.2, and under the validity of Assumption 4.2, the proof of
Theorem 4.3 is complete.

A.3 Proof for Proposition 4.4

We begin with the noise prediction at diffusion timestep k. If the noise is perfectly predicted, it

should follow the form: . _
€ = x" — Jagx (28)
pre V1—ay

Notebly, any noised/un-noised sample can be expressed as & = 0 4+ - Loise - €, Where 0 € R™X"
is the noise-free matrix, ¢ is the noise scale, € € R™*™ is the matrix of Gaussian noise with i.i.d.
entries €;; ~ N(0,1), and L,oise is an unknown indicator variable that determines whether noise
is present. To predict the noise within & using diffusion timestep k, the first step is to perform the
original information consistency operation:

hi(€) = Vag - & = Vag - (2% 4 ¢ - Lngige - €). (29)
Then substituting Eq.(29) into Eq.(28), we obtain:
vV Qg - L- Hnoise
€pred = — 7/——=— €
V1—ay

Assume we have a noise predictor €g(-, k) with prediction error §5 ~ N(0,2I). Given a sample
& that may or may not contain noise, we have the following two criteria:

(30)

Case 1: Noise-free data (I,,,;sc = 0) Under such circumstance, the model’s prediction is entirely
determined by the prediction error:

€o(&", k) = €prea + 85 = 0+ 55, 31)
thereby the expected Frobenius norm squared of the prediction is:

Ellleo(z", k)] = Ell|d5 %]

= E[Zl Zj(5§,ij)2] (32)

=m-n-oy
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Case 2: Noisy data (I,,;sc = 1) For noisy data, the model’s prediction includes both the actual
noise and the prediction error. Specifically, we have:

Vo -t Tnoise
V1—ay
The expected squared Frobenius norm of the prediction is then given by:

Ellles (2", k)| 7]

Gg(ii'k, k?) = €pred + (55 = - €+ 55, (33)

— B[ e gy

LR )y B+ ey
= O el o of 40

(ii)'m'”+m'”'“’3

The last term in equality (i) vanishes because € and §5 are mutually independent. Combining the
results of Eq. (32) and Eq. (34), and substituting into the definition of the Signal-to-Noise Ratio
(SNR) from Eq. (5), we derive:

Efle(@t, B3] - Ellea(@t,, K)2]
SNR(E) = Elleo (@5, k)[2)

nf?

L ak . . . . 2_ . . 2
 Tan m-n+m-n-op—m-n-oj (35)
- 2
m-n- oy
L2~6ék

which complete the proof.

B Algorithm Pseudocode

We provide the pseudocode of our proposed Ambient Diffusion-Guided Dataset Recovery (ADG)
in Algorithm 1 for a comprehensive overview.

C Implementation Details

C.1 Data Corruption Details during Training Phase

We study two types of corruption: random noise and adversarial noise. For each type, we in-
vestigate two categories of elements to attack: (1) State corruption, where only the states in a
portion of the samples are corrupted. According to Section 3, an original trajectory is defined as
7 = (S0,a0,70,---,ST7—1,a7-1,77—1). In MDP-based methods like IQL and CQL, corrupting a
state s; affects two transitions: ($;—1,a¢—1,7¢—1,St) and (s, at, ¢, S¢+1). (2) Full-element corrup-
tion, where the states, actions, and rewards (s, a, ;) in a portion of the samples are corrupted,
introducing a stronger challenge for robust offline RL algorithms.

We consider the tasks including MuJoCo, Kitchen and Adroit [9]. We select the “medium-replay-
v2” datasets in the MuJoCo tasks for our main experiments, using both the full datasets and down-
sampled versions (reduced to 10% of the original size). For Adroit tasks, we choose “expert-v0”
datasets and down-sample them to 1% of their original dataset. We use the full datasets for the
tasks in the Kitchen, as their original dataset size is already limited. To control the overall level of
corruption within the datasets, we introduce two parameters n and . The parameter 7 represents
the proportion of corrupted data within a dataset, while « indicates the scale of corruption across
each individual dimension. These settings are consistent with prior works [40, 37, 34]. We outline
two types of random data corruption as follows:
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Algorithm 1 Ambient Diffusion-Guided Dataset Recovery (ADG)

Require: Offline partially corrupted dataset D, initialized noise predictors detector €y and the de-
NOISer €.
Step 1: Update the detector ¢y using Ambient Loss
for each iteration do
Sample a trajectory mini-batch B = {(Zt—p, ..., Z:1n)} ~ D, where Z represents either the
state s or the concatenation of (s, a, ) may or may not contain noise
Sample uniformly distributed diffusion timestep k& ~ {k,, ..., K}
Sample random Gaussian noise €¥ ~ A(0, I)
Produce noised element through 28 = /a5, 2; + /1 — ager

Get trajectory 7y = [Z4_p1, ..., 24 ] € RM*(ZH+D)
Update the ¢y through Eq. 4.
end for

Step 2: Update the denoiser ¢, using Naive loss
for each iteration do
Sample a trajectory mini-batch B = {(Zt—p, ..., Z:11m)} ~ D, where Z represents either the
state s or the concatenation of (s, a, ) may or may not contain noise
Sample uniformly distributed diffusion timestep k ~ {1,..., K}
Sample random Gaussian noise €¥ ~ A(0, I)
Produce noised element through 28 = /a5, 2; + /1 — ager
Get trajectory 7y = [Z4_p1, ..., 24 ] € RM*(ZH+D)
Get eg(2;) using detector €y (74, k) with k = k,
Get mask my := [[;_p,...,I;1g], where I; = 0 foregp(2) > Cand I; = 1 forep(2) < ¢
Update the €4 through Eq. 7.
end for
Step 3: Detect and Recover the noised dataset
for each z, in the noised dataset with eg(2) > ¢ do
Get the trajectory 71 := [Zt—m, ..., Z¢1 1]
Recover the trajectory 7, = \/%7 ['tk — V1 — apeg (ftk, k:)]
Replace Z; with (7;) g 41, which represents the (H+1)-th column of +
end for

* Random State Attack: We randomly sample n- N - T states from all trajectories, where N
refers to the number of trajectories and 7" represents the number of steps in a trajectory. The
selected states are then modified as § = s+ A - std(s), where A ~ Uniform|[—a, a]%:. Here,
d represents the dimension of states, and std(s) is the d-dimensional standard deviation
of all states in the offline dataset. The noise is scaled based on the standard deviation of
each dimension and is independently added to each respective dimension.

* Random Full-element Attack: We randomly sample 7 - N - T state-action-reward triplets
(s¢, at, ) from all trajectories, and modify the action @ = a+A-std(a), # ~ Uniform[—30-
@,30 - )%, where A ~ Uniform[—a, a]%, d, represents the dimension of actions and
std(a) is the d,-dimensional standard deviation of all actions in the offline dataset. The
corruption to rewards is multiplied by 30, following the setting in RDT [34], since offline
RL algorithms tend to be resilient to small-scale random rewards corruption.

The two types of adversarial data corruption are detailed as follows:

+ Adversarial State Attack: We first pretrain IQL agents with a Q-function @), and policy
function 7, on clean datasets. Then, we randomly sample 7 - IV - T' states and modify them
as follows. Specifically, we perform the attack by solving for § = minscg,(s,a) @p(3,a).
Here, By(s,€) = {5]|§ — s |< € - std(s)} regularizes the maximum difference for each
state dimension. The optimization is implemented through Projected Gradient Descent,
similar to prior works [25, 42, 37, 34]. In this approach, we first initialize a learnable
vector v € [—a, a]?, and then conduct a 100-step gradient descent with a step size of 0.01
for § = s+ v - std(s). After each update, we clip each dimension of z within the range
[—a, al.
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* Adversarial Full-element Attack: We use the pretrained IQL agent with a Q-function
Q@p and a policy function m,. Then, we randomly sample 7 - N - T' state-action-reward
triplets (s, as,7¢), and modify u = (s,a) to & = Mingep, (u,a) @p(u). Here, By(u, ) =
{a||t— v |< a-std(u)} regularizes the maximum difference for each dimension of u. The
optimization is implemented through Projected Gradient Descent, as discussed above. The
rewards in these triplets are also modified to: ¥ = —a - 7.

C.2 ADG Network Structure

Both detector and denoiser in ADG is classical diffusion models [31] with Unet Structure as shown
in 6. The diffusion models are unconditional, which do not need to introduce extra knowledge except
the noised input, make ADG can be simply applied to new scenarios. For the noised prediction
generation, we utilize a 3 Layer MLP with Mish activation. Further details including the hyper-
parameters refer to Section C.3.

ST T T T T T T T T T T T T ~
} —l— - > (k) ! Residual Temporal Block A\
, [ e
| 3
| < Group Norm Group Norm
4 | z Mish Mish
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|
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= Residual Temporal Block
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Figure 6: Neural network structure of ADG.

C.3 Hyperparameters
We present the hyperparameters and other details of ADG in Table 3 and 4.

Table 3: Generic hyperparameters of ADG.

Hyper-parameter \ Value

Batch size 256

Total diffusion step (K) 100

Ambient Nature Timestep (K) 30

Threshold ¢ 0.20

Temporal slice size H 5

Learning Rate (Ir) 5

Noise prediction network FC(256,256,256) with Mish activations
Dropout for predictor network 0.1

Variance schedule Variance Preserving (VP)
Learning Rate le-4

Table 4: Hyperparameters of ADG for different benchmark environments and datasets.

Tasks | Embedded Dimension  Denoising Diffusion Steps  Total Training Steps
MuJoCo 128 100 20k
MuJoCo (10%) 128 100 20k
Kitchen 512 10 40k
Adroit (1%) 512 10 40k

C.4 Dataset Details

Since we conduct the experiments on both the full and down-sampled datasets, we provide detailed
information about the number of transitions and trajectories as shown in Table 5.
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Dataset halfcheetah hopper walker2d

# Transitions 202000 402000 302000

# Trajectories 202 2041 1093
Dataset halfcheetah(10%)  hopper(10%)  walker2d(10%)
# Transitions 20000 32921 27937

# Trajectories 20 204 109

Dataset kitchen-complete  kitchen-partial ~ kitchen-mixed
# Transitions 3680 136950 136950

# Trajectories 19 613 613
Dataset door hammer relocate

# Transitions 10000 10000 10000

# Trajectories 50 50 50

Table 5: Detailed information about the number of transitions and trajectories.

C.5 Computation Overhead

In Table 6, we compare the computational cost of ADG with baseline algorithms on a single GPU
(P40). Each algorithm is trained on the “walker2d-medium-replay-v2” dataset, and we record the
total training time. CQL requires significantly more time due to its reliance on a larger number of
Q ensembles and other computationally intensive processes. IQL and DT exhibit similar computa-
tional costs to their robust counterparts, RIQL and RDT. Notably, ADG achieves substantially lower
computational costs than all baselines, demonstrating its ability to deliver significant performance
gains with minimal additional overhead. The total time and per-step time for training the detector
and denoiser, as well as for dataset recovery, are also reported.

Table 6: Training time of ADG and offline RL baseline algorithms.

Tasks \ CQL 1IQL RIQL DT RDT ADG
Epoch Num 1000 1000 1000 100 100 10
Total Time (h) 9.39 390 414 122 127 0.78
Detector Training (h) 0.37 (0.07s/step)

Denoiser Training (h) 0.22 (0.04s/step)

Dataset Recovering (h) 0.19

D Additional Experimental Results

We present additional experimental results in this section. The network architecture and hyperpa-
rameters remain the same as those specified in Table 3. All results are averaged over four seeds.

D.1 Visualization of e¢(2) Predicted by the Detector

To demonstrate the effectiveness of ADG’s detection capability, we visualize the squared Frobenius
norm e(&) of each sample & across the MuJoCo, Kitchen, and Adroit datasets using trained detec-
tors. Consistent with the experiments in Section 5, we use “medium-replay” datasets for MuJoCo
and “expert” datasets for Adroit. The results are shown in Figure 7 using box plots. From the results,
we observe a clear difference between the clean samples and corrupted samples in the distribution
of e(&).

D.2 Visualization of the Recovered Trajectories

To demonstrate the effectiveness of our proposed approach, ADG, we visualize a partial trajectory of
“hopper” in Figure 8. From the results, we observe that ADG can effectively detect and recover the
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Figure 7: Visualization of the distribution of e(&) for samples in the datasets, including halfcheetah,
hopper, walker2d, kitchen-complete, kitchen-mixed, kitchen-partial, door, hammer, and relocate,
denoted as “ha”, “ho”, “wa”, “kit-c”, “kit-m”, “kit-p”, “do”, “hm”, and “re”, respectively. We
distinguish clean and corrupted samples using different colors.

corrupted samples. The partially noised trajectory has its discontinuity significantly reduced after
recovery. Additionally, ADG introduces nearly no further corruption to the clean samples during the
recovery process.
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Figure 8: Visualization of the denoising effect of ADG on the “hopper-medium-replay-v2” dataset.
In (a), we present the complete trajectories, while in (b), we provide a partial view of the trajectories
along with their scatter plot representations to highlight the differences in trajectory coherence. In
both subfigures, the first row depicts the clean trajectories from the offline dataset, the second row
shows the trajectories perturbed with Random State Attack as described in Section C.1, and the
third row illustrates the trajectories restored using ADG, which have largely corrected the corrupted
samples.

D.3 Performance Under Gaussian Noise

As presented in Section 5.2, we evaluated the performance of ADG under both random and ad-
versarial noise. We further analyze the robustness of ADG against Gaussian noise in the state.
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The implementation simply changes the noise from Uniform [—a, a]% in C.1 to Gaussian noise
N(0,a?). We set n = 0.3 and a = 1.0, as in the other experiments. The results are presented in
Table 7, where ADG consistently improves the performance of the baselines, including IQL and DT,
further highlighting its efficiency.

Table 7: Results under Gaussian noise.

IQL DT
Attack | Task Naive ADG Naive ADG
halfcheetah 172446  279+13 36.1£1.8 36.1+1.1
hopper 33.3+9.1 549+2.6 41.8+12.6 60.8£13.7
o walker2d 18.0£5.6 40.3+16.0 509452 58.2+10.1
§ halfcheetah(10%) | 13.6+3.5 15.6£3.7 12.8£2.1  24.8£1.7
n hopper(10%) 254+11.7 32.6+45 39.0+74  443+7.7
walker2d(10%) 15.3£5.3 6.7£3.1 27.1£82  33.7£4.0
Average 20.5 29.7 34.6 43.0
Improvement ¢ 44.88 % 24.28 %
- halfcheetah 10.3£39 325425 341423 445473
g hopper 28.049.9 319426 38.14£9.2 49.7494
= walker2d 8942.7 38.7£13.4 59.3+£72  60.2£3.1
= halfcheetah(10%) | 5.9+1.6 17.84£2.8 11.842.0 21.742.8
U.'] hopper(10%) 15.6+£3.8 13.4+1.7  25.5+£79 37.84£12.2
:5' walker2d(10%) 11.74£5.7 158434 242463 27.6+15.8
a8 Average 13.4 25.0 322 40.2
Improvement 1 86.57 % 24.84 %

D.4 Performance Under MuJoCo Dataset with Different Quality Levels

We evaluate the robustness of ADG under varying dataset quality levels. Specifically, we select the
“medium-v2” and “expert-v2” datasets from MuJoCo tasks and downsample each to 2% of their
original size, resulting in datasets containing 20k samples. For comparison, we include RIQL, DT,
and RDT as baselines. We do not include the results of CQL and IQL as they perform poorly on these
down-sampled datasets. The results, summarized in Table 8, demonstrate that ADG consistently

enhances the performance of these baselines across different dataset quality levels.

Table 8: Results on “medium-v2” and “expert-v2” datasets under Random State Attack.

RIQL DT RDT

Dataset | Task Naive ADG Naive  ADG  Naive  ADG
halfcheetah(2%) | 18.0+1.5 24.8+2.1 15.7+1.3 31.1£14 2234+1.1 22.0+£3.0
hopper(2%) 47.5+7.3 44.1£2.7 48.643.2 51.4+4.0 522457 54.1+4.9

medium | walker2d(2%) 254450 264+4.0 20.5+6.0 50.0+4.7 28.0+8.0 46.84+3.6
Average 30.3 31.8 28.3 44.2 34.2 41.0
Improvement 1 4.95% 56.18% 19.88 %
halfcheetah(2%) | 0.54+1.2 1.2+0.7 2.9+0.8 4.2+1.0 4.4+0.2 2.024+0.6
hopper(2%) 32.0+4.4 39.7+12.9 385474 413+4.3 48.6+7.0 42.6+7.0

expert | walker2d(2%) 21.7£4.6  46.6+2.7 40.744.8 532432 41.6+42 55.346.1
Average 18.1 29.2 274 329 31.5 333
Improvement 1 61.33% 20.07 % 5.71%

D.5 Filtered Datasets vs. Recovered Datasets in MDP-based Algorithms

For MDP-based algorithms such as IQL and RIQL, which do not take sequences as input, filtering
out corrupted samples from the dataset using a detector, without recovery, is also a viable method to
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mitigate the impact of corrupted data. Specifically, we construct the filtered dataset by excluding all
@ for which eg(&) > ¢ = 0.20 using ADG. To further investigate this approach, we also evaluate
filtering with ¢ = 0.10 to assess whether a stricter threshold improves performance. Although ADG
demonstrates strong detection capabilities, some corrupted data may remain in the filtered dataset.
Therefore, we also evaluate the performance of the filtered dataset after removing the remaining
corrupted data, which we refer to as the purified dataset. We then perform IQL and RIQL on these
datasets. The results, shown in Figure 9, reveal the following insights: (1) The filtered dataset does
not consistently improve the performance of the MDP-based algorithms. (2) The recovered dataset
shows better robustness, even when compared to the purified dataset. (3) Using a lower value of ¢
to filter the dataset more aggressively does not improve performance, possibly due to the reduced
information content in the dataset. These findings highlight that dataset size is a crucial factor for RL
performance, suggesting that filtering the dataset without recovery does not outperform recovery-
based approaches. This emphasizes the importance of recovery in ADG.
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Figure 9: The performance of IQL (left) and RIQL (right) on the noised, filtered, purified, and
restored datasets. Performance on the noised data is referred to as “Naive”.

D.6 Evaluation of Performance Across Different Temporal Slice Sizes (H)

In this section, we evaluate ADG with varying temporal slice sizes by setting H € {0,1,3,5,7}.
As described in Section 4.4, the temporal slice size is defined as 2 - H + 1. Notably, H = 0 means
the diffusion model takes only a single step as input and cannot access sequential information. The
results are presented in Figure 10. From the results, we observe that the performance of the detector
and denoiser in ADG improves significantly as H increases from 0 to 3, and remains robust for
H = 3,5,7. The performance of IQL strongly correlates with that of the detector and denoiser,
showing significant improvement for H = 3,5,7 compared to = 0, 1. In contrast, DT is more
resilient to variations in ADG’s recovery performance across different values of H, likely due to its
inherent ability to leverage temporal information and mitigate the effects of corruption. This obser-
vation aligns with the findings in RDT [34]. These results highlight the critical role of incorporating
temporal slices in enhancing the performance of the detector, denoiser, and overall RL performance
on the denoised dataset.
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Figure 10: The performance of the ADG detector and denoiser under varying temporal slice sizes
(H) is shown in (a), while (b) presents the corresponding performance of the baseline algorithms,
IQL and DT, on the “walker2d-medium-replay-v2” dataset. FN represents the False Negative ratio
(the proportion of corrupted samples incorrectly identified as clean), and MSE indicates the mean
squared error between the restored dataset and the ground-truth dataset.
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D.7 Evaluation under Various Dataset Scales

We further examine the robustness of ADG on MuJoCo tasks with dataset sizes of 20% and 50% of
the “medium-replay-v2” datasets. We investigate corruption types including Random State Attack
and Random Full-element Attack as described in Section C.1. The comparison results are shown
in Figure 11. From the results, we observe that the performance of both the algorithms and their
robust variants on both corrupted and restored datasets is positively correlated with dataset size.
Moreover, ADG outperforms the baselines across most dataset sizes, validating the effectiveness
and importance of dataset recovery.
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Figure 11: Performance of ADG under random corruption across different dataset scales.

D.8 Varying Corruption Rates and Scales

We evaluate the robustness of ADG under various corruption rates {0.0,0.1,0.3,0.5} and scales
{0.0,1.0,2.0}. We choose the “walker2d-medium-replay-v2” dataset downsampled to 10% of its
original size to make the results more sensitive to corruption rates and scales. As shown in Figure 12,
increasing corruption rates and scales progressively degrade the performance of baseline algorithms
like IQL and DT due to greater deviations between the corrupted and clean datasets. Nevertheless,
ADG consistently enhances the overall performance of these baselines.
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Figure 12: Results under various corruption rates (a) and scales (b) on the “walker2d-medium-
replay-v2” dataset, which is downsampled to 10% of the original size.

D.9 Impact of ¢ in Dataset Splitting

As outlined in Section 4.4, we introduce a threshold hyperparameter ¢ to differentiate between
noisy and clean samples. To emphasize the importance of selective sampling during training, we
evaluate ADG with a trained denoiser by varying ¢ over the range {0.02,0.05,0.1,0.2,0.5,1.0}.
Note that when ( = 1, the dataset remains unchanged. The results are presented in Figure 13.
A higher ( incorporates more noisy samples into the restored dataset without applying restoration,
increasing the risk of overfitting in the naive diffusion model. In contrast, a lower ¢ results in more
clean samples being misclassified as noisy, leading to unnecessary restoration and a loss of original
dataset information. There is a trade-off in choosing the threshold ¢, and ¢ = 0.20 yields the lowest
MSE between the restored and clean datasets, as well as the best D4RL score across all baseline
algorithms.
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Figure 13: Results of (a) the detection performance in the dataset recovery process and (b) D4RL
score under various (¢ on the “walker2d-medium-replay-v2” dataset. In (a), we label noisy samples
as positive and clean samples as negative. The False Positive (FP) rate represents the ratio of clean
samples incorrectly classified as noisy, while the False Negative (FN) rate corresponds to the ratio
of noisy samples misclassified as clean. Both are expected to be low for a better dataset splitting
result. Scaled MSE is the MSE scaled to [0, 1], which directly reflects the deviation of the restored
dataset from the clean dataset.

D.10 Additional Experiments Comparing the Use of Single vs. Double Diffusion Models

In this section, we provide further details on the implementation of ADG using a single diffusion
model. We reorganize Algorithm 1 to merge Step 1 and Step 2 into a single loop. In each step, the
diffusion model is updated using both Eq. 4 and Eq. 7. We continue to use k, to detect corrupted
data in the partially corrupted dataset. The results for “halfcheetah-medium-replay-v2” and “hopper-
medium-replay-v2” datasets are presented in Figure 14 to complete the analysis. Employing a single
diffusion model improves performance in 4 out of 6 tasks compared to the baselines. However, ADG
with two independent models still achieves significantly higher performance. These findings align
with the conclusions in Section 5.3.
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Figure 14: Comparison results among Naive, ADG with a single diffusion model, and ADG with
separate diffusion models for IQL (upper) and DT (lower) under “halfcheetah-medium-replay-v2”
and “hopper-medium-replay-v2” datasets. ADG (w/ SD) denotes ADG using a single diffusion
model.

D.11 Missing data

While our main focus is on additive corruption, ADG is theoretically applicable to a broader class of
noise, including missing data such as dropped elements. We construct a missing-data variant of each
dataset by randomly zeroing out 30% of the actions. We evaluate baseline offline RL algorithms
and ADG under this setting and report the results averaged over four seeds in Table 9. Despite
the substantial information loss, ADG consistently improves performance across all environments,
recovering a significant portion of the original policy quality.

Table 9: Performance under missing data. Results are averaged over 4 random seeds. "Missing
Data" refers to standard offline RL applied to the corrupted dataset. "Missing Data (w/ ADG)"
denotes applying ADG for recovery.

Environment Missing Data  Missing Data (w/ ADG) Clean

halfcheetah-mr 3.840.2 31.34+0.7 38.94+0.5
hopper-mr 14.0£1.0 45.5+16.4 81.8+6.9
walker2d-mr 7.240.3 32.7+4.1 59.9+2.7

These results indicate that ADG is not limited to additive noise settings and generalizes well to
missing data, further demonstrating its robustness in practical offline RL scenarios where various
forms of corruption may co-occur.

D.12 Extending ADG to Recent Offline RL Methods

To evaluate the broader applicability of ADG beyond standard baselines, we further apply it to
two recent state-of-the-art offline RL algorithms: A2PR [24] and NUNO [17]. Specifically, we
test their robustness under the Random State Attack corruption setting and assess the performance
gains when combined with ADG. This allows us to examine whether ADG can consistently enhance
policy quality across diverse algorithmic backbones.

As shown in Table 10, ADG significantly improves performance for both A2PR and NUNO in all
environments, highlighting its general utility in mitigating data corruption across a range of policy
learning strategies.
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Table 10: Performance of A2PR and NUNO under Random State Attack, with and without ADG.
Results are averaged over four random seeds.

Environment A2PR (noised) NUNO (noised) A2PR (w/ ADG) NUNO (w/ ADG)

halfcheetah-mr 4.4+0.5 27.3£7.8 13.2£1.6 29.2+7.5
hopper-mr 16.1£5.0 12.6£0.8 25.8+6.2 29.9+0.6
walker2d-mr 4.6+2.3 11.0£5.5 9.3+0.8 14.6+4.1

D.13 Recovery under Fully Corrupted Trajectories

In ADG, each trajectory is processed through overlapping temporal slices, where the detector fo-
cuses on verifying whether the central element within each slice is corrupted. This design is not a
limitation but a deliberate choice: it allows ADG to (1) leverage temporal context from both past and
future elements for detection, (2) avoid compounding errors when modeling long trajectories, and
(3) ensure a fair comparison with prior methods such as RDT [34], which adopt the same middle-
step corruption setup.

Importantly, because slices are generated in a sliding-window manner, every element in the dataset
is examined as the center of some slice, meaning that all time steps are eventually verified and
potentially recovered during the process. Nevertheless, to further demonstrate ADG’s flexibility and
robustness, we conduct additional experiments under more challenging corruption patterns.

Specifically, we explore two extended variants beyond the standard setting:

1. All-steps corrupted + middle recovery: all time steps in each trajectory are corrupted, but
only the middle element in each slice is recovered, testing whether local recovery remains
effective when global context is degraded.

2. All-steps corrupted + full recovery: all time steps are corrupted and each is recovered
sequentially using ADG, assessing whether full-step recovery can further enhance temporal
consistency.

As shown in Table 11, ADG remains effective even when all time steps are corrupted—recovering
only the middle element still yields competitive performance, highlighting the strength of local re-
covery guided by contextual information. Furthermore, performing full-step recovery leads to con-
sistent improvements across all environments, confirming that ADG can scale to dense corruption
and flexibly generalize beyond benchmark configurations.

Table 11: Performance under different recovery strategies. Results are averaged over three random
seeds.

Environment Middle-only All-steps Corrupted + All-steps Corrupted +
Recovery Middle Recovery Full Recovery
halfcheetah-mr 31.3£0.7 26.4+0.9 33.5+0.8
hopper-mr 45.54+16.4 40.2 +£3.7 52.8 £4.5
walker2d-mr 32.7+4.1 27.9+3.3 36.1£2.9

D.14 Robustness to Non-Additive (Multiplicative) Gaussian Noise

This experiment evaluates the robustness of ADG when the offline dataset is corrupted with multi-
plicative (non-additive) Gaussian noise. Specifically, each data point z is perturbed as:

T=x-(1+¢), e~N(0,0%), (36)
where € represents Gaussian noise scaled by the original value, unlike standard additive noise.

We conducted experiments on standard offline RL benchmark environments under this corruption.
Table 12 reports the performance of (i) standard offline RL trained directly on the corrupted dataset,
(i) ADG applied for recovery, and (iii) the original clean dataset. Results are averaged over 4
random seeds.
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Table 12: Performance under Multiplicative Gaussian Noise. ‘Multiplicative Noise’ refers to stan-
dard offline RL applied to the corrupted dataset. ‘Multiplicative Noise (w/ ADG)’ denotes applying
ADG for recovery.

Environment Multiplicative Noise =~ Multiplicative Noise (w/ ADG) Clean

halfcheetah-mr 6.1+£0.4 29.8+0.6 38.9+0.5
hopper-mr 12.5+0.9 47.24+3.5 81.8+6.9
walker2d-mr 10.7£0.7 349+2.1 59.9+£2.7

From the results, we observe that while standard offline RL suffers a severe performance drop under
multiplicative noise, ADG substantially mitigates this degradation, achieving performance much
closer to the clean-data scenario. This demonstrates that ADG is not only robust to additive noise
but also effective against non-additive, multiplicative Gaussian corruption, confirming its practical
utility in noisy offline RL datasets.

D.15 Joint Impact of Detection Hyperparameters on Downstream RL Performance

To investigate the joint influence of the detector hyperparameters k, and { on downstream reinforce-
ment learning performance, we conducted additional experiments on the kitchen-complete dataset
under the Random State Attack setting. Specifically, k, and ¢ were varied over the sets {15, 30,50}
and {0.10,0.20,0.50}, respectively. For each configuration, both the detector and denoiser were
retrained, and we evaluated the resulting false negative (FN) and false positive (FP) rates, together
with the downstream performance of IQL and DT. All results are averaged over three random seeds.

Table 13: Ablation on the trade-offs between FP/FN and downstream RL performance under Ran-
dom State Attack. Results are averaged over three random seeds.

k., ¢ FN(%) FP(%) IQL DT

0.10 2.7 526 220 13.1
15 0.20 7.3 120 499 564
0.50 272 2.7 341 426

0.10 1.4 455 25.0 127
30 0.20 3.8 4.9 45.0 124
0.50 254 1.7 36.0 42.1

0.10 8.4 554 165 -03
50 020 195 6.0 37.6 469
0.50  29.8 1.8 18.2 31.0

As shown in Table 13, the detector achieves the lowest FN at moderate values of k, and (, while
both smaller and larger values lead to increased FN, reflecting under- and over-filtering, respectively.
Increasing ( treats a larger portion of data as clean, which substantially reduces FP but can also
increase FN due to missed corruptions.

For downstream performance, we observe a clear negative correlation between FN and final RL
results: higher FN values consistently degrade the performance of both IQL and DT. In particular,
when ¢ = 0.50, both algorithms exhibit significant drops, likely because excessive data filtering
removes crucial sequential dependencies. This effect is more pronounced on the relatively small
kitchen-complete dataset compared to larger benchmarks such as MuJoCo. Interestingly, lower
FP does not necessarily yield better downstream results, corroborating our main findings.

E Discussion and Limitation

While ADG demonstrates promising results in handling corrupted offline RL datasets, our work has
several limitations that warrant discussion. The three-stage diffusion process (detection + denoising)
introduces additional training time compared to standard offline RL methods. The performance of
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ADG depends on the choice of key hyperparameters such as the temporal slice size H and corruption
threshold (. The trajectory-based recovery mechanism (Section 4.4) relies on temporal consistency.
For environments with highly discontinuous dynamics or sparse rewards, the current slice-based
approach may miss long-range dependencies.
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