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ABSTRACT

Extreme weather events such as wildfires and hurricanes increas-
ingly disrupt power infrastructure, leading to widespread outages
and straining supply chains for emergency response. Traditional
predict-then-optimize (PTO) frameworks sequentially forecast dis-
ruptions and then use these predictions to guide logistics and re-
source allocation. However, such two-stage approaches often suffer
from misaligned objectives, resulting in suboptimal or delayed
supply chain interventions. We propose a unified, decision-aware
framework—Global-Decision-Focused (GDF) Neural ODEs—that
integrates outage forecasting with proactive grid resilience plan-
ning. By modeling the spatiotemporal dynamics of power outages
using neural ordinary differential equations, our approach embeds
optimization objectives directly into the learning process, enabling
strategic deployment of mobile generators. This predict-all-then-
optimize-globally (PATOG) paradigm ensures system-wide con-
sistency in both prediction and decision-making. Through experi-
ments on real-world outage data and synthetic hazard scenarios,
GDF demonstrates significant improvements in forecast quality,
decision robustness, and recovery efficiency. Our results underscore
the promise of integrated AI methods for resilient supply chain
operations in power systems.
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1 INTRODUCTION

Extreme weather events—such as wildfires, hurricanes, and winter
storms—are increasingly disrupting electric power systems, caus-
ing prolonged outages and straining supply chains for emergency
response [20, 22]. For instance, the January 2025 wildfires in Los
Angeles County destroyed major power infrastructure and left over
400,000 customers without electricity [39]. Just months earlier, Hur-
ricane Milton in October 2024 knocked out power for more than
3 million homes and businesses across Florida, underscoring the
compounding threat of extreme weather events on grid reliability
and recovery logistics [40].

In such crises, timely and effective generator deployment plays
a critical role in supply chain resilience—powering hospitals, emer-
gency shelters, and communication hubs while long-term repairs
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Figure 1: Number of outaged customers during the 2018
Nor’easter in Massachusetts, alongside key meteorological
factors such as wind speed and turbulent kinetic energy.

are underway. However, planning these deployments poses a sig-
nificant challenge: operators must anticipate outages across a large
region, coordinate scarce mobile resources, and respond under un-
certainty. The ability to align outage predictions with effective de-
ployment decisions is essential for minimizing service disruptions
and accelerating recovery.

A common approach in disaster logistics is the predict-then-
optimize (PTO) framework [13], where forecasts of outages or in-
frastructure damage are used as inputs to a downstream optimiza-
tion problem. Yet, in practice, this separation between prediction
and decision-making introduces a misalignment. Forecasting mod-
els are often trained to minimize prediction error, not to optimize
decision outcomes—meaning even small inaccuracies can translate
into significant inefficiencies in resource allocation [16, 28]. For in-
stance, overestimating outages in one region while underestimating
them in another can cause critical supply misallocations—sending
generators to areas that do not need them, while neglecting regions
in crisis. These mismatches have real-world consequences, par-
ticularly in high-stakes infrastructure planning and humanitarian
logistics [19, 30].

This challenge is exacerbated in system-wide recovery efforts,
where independent regional forecasts must be aggregated to make
globally coordinated supply chain decisions. Ensuring consistency
across forecasts is difficult, and local prediction errors can propagate
and undermine the overall decision quality. In the context of power
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systems, this means reactive strategies may fail to deliver timely
support to vulnerable areas, leading to higher restoration costs and
prolonged service disruptions.

To overcome this limitation, we propose a new paradigm for
disaster logistics, which we call predict-all-then-optimize-globally
(PATOG). Rather than separating forecasting and optimization,
PATOG integrates them into a single learning objective. At the
heart of this approach is our proposed Global-Decision-Focused
(GDF) model, which combines neural ordinary differential equations
(ODEs) with decision-focused learning to simultaneously simu-
late outage dynamics and optimize generator deployment policies.
Drawing inspiration from compartmental models used in epidemiol-
ogy, our method models power outage evolution within each region
as a continuous-time dynamical system, influenced by weather, grid
topology, and socioeconomic vulnerability.

Unlike traditional models that treat regions independently, GDF
ensures that predictions are spatially and temporally aligned with
a global decision objective—resulting in coherent, system-wide
deployment plans. This integration directly addresses a core supply
chain challenge: transforming complex, noisy forecasts into reliable
operational strategies under uncertainty.

To evaluate our approach, we conduct experiments on both
real-world and synthetic datasets. The real dataset captures out-
age events from a 2018 Nor’easter in Massachusetts, combining
county-level outage records [1] with meteorological variables from
NOAA’s HRRR model [32] and socioeconomic indicators from the
U.S. Census Bureau [42]. Figure 1 visualizes the outage counts and
corresponding weather patterns during this event. Additionally, a
synthetic dataset simulates outage progression using a simplified
SIR-based model, enabling controlled experiments across different
hazard intensities and grid configurations.

Our results demonstrate that GDF outperforms baseline methods
in both predictive accuracy and downstream decision quality, lead-
ing to better generator deployment outcomes and improved grid
resilience. By aligning learning with operational goals, our method
offers a principled and scalable framework for managing supply
chain decisions under climate-induced uncertainty.

We summarize our main contributions as follows:

e We introduce the predict-all-then-optimize-globally (PATOG)
paradigm for decision-aware forecasting in grid infrastructure
and recovery logistics;

e We propose a global-decision-focused (GDF) neural ODE model
that aligns the goal of outage prediction with globally optimized
generator deployment strategies;

e We validate our approach on both real and synthetic datasets,
demonstrating superior performance over conventional predict-
then-optimize methods in resilience and efficiency, uncovering
key insights that inform more effective supply chain strategies
for grid resilience strategies.

1.1 Related Work

This section reviews key advancements in outage modeling, decision-
focused learning (DFL), and grid operation optimization, with an
emphasis on their practical applications in power system resilience.
Despite significant progress, existing methods separate forecast-
ing from optimization, causing inefficiencies in decision-making.
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This review underscores the need for a unified framework that
aligns predictive models with resilience objectives to enhance grid
reliability in extreme natural hazards.

Grid Operation Optimization. Grid optimization has been widely
studied to improve power system resilience, covering areas such
as distributed generator (DG) placement [5, 12, 35], infrastructure
reinforcement [36], and dynamic power scheduling [7, 9]. How-
ever, traditional approaches often follow a two-stage predict-and-
mitigate paradigm—first forecasting system conditions and then
optimizing responses [17]. This disconnect between prediction and
optimization results in suboptimal grid operations, particularly un-
der high uncertainty, where even small forecasting errors can cause
significant deviations from the optimal response [19, 30].

To overcome these limitations, we propose integrating decision-
focused learning (DFL) with predictive modeling. By embedding
decision objectives directly into the learning process, our approach
aligns predictions with optimization goals, enabling more adaptive
and proactive resource allocation and grid reinforcement. This
integration enhances grid resilience amid escalating natural hazard
risks.

Power Outage Modeling. Accurate power outage forecasting is cru-
cial for enhancing grid reliability and resilience [14, 27]. Various
machine learning and statistical methods have been employed to
predict outages under different conditions. These approaches incor-
porate neural networks enriched with environmental factors and
semantic analysis of field reports, providing real-time updates and
enhancing predictive performance through text analysis.

Additionally, ordinary differential equations have been widely
used to model dynamic systems, such as outage propagation, cap-
turing evolving disruptions under various conditions [10, 50]. For
instance, adaptations of the Susceptible-Infected-Recovered (SIR)
model from epidemiology have been applied to simulate outage
propagation, drawing parallels between power failures and disease
spread [34].

While these models provide valuable insights, they often lack
the granularity needed for city- or county-level decision-making,
limiting their practical application to localized resilience planning.
By integrating local weather forecasts and socio-economic data into
compartmental neural ODE models, our approach offers forecasting
of local outage dynamics, enabling more targeted and effective
interventions.

Decision-Focused Learning. Decision-focused learning (DFL) inte-
grates predictive machine learning models with optimization, align-
ing training objectives with decision-making rather than purely
maximizing predictive accuracy. Unlike traditional two-stage ap-
proaches, where predictions are first generated and then used as
inputs for optimization, DFL enables end-to-end learning by back-
propagating gradients through the optimization process. This is
achieved via implicit differentiation of optimality conditions such
as KKT constraints [6, 18] or fixed-point methods [24, 48]. For
nondifferentiable optimizations, approximation techniques such as
surrogate loss functions [13], finite differences [44], and noise per-
turbations [8] have been developed. Recent work has also explored
integrating differential equation constraints directly into optimiza-
tion models, enabling end-to-end gradient-based learning while
ensuring compliance with system dynamic constraints [21, 43].
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A well-studied class of DFL problems involves linear programs
(LPs), where the Smart Predict-and-Optimize (SPO) framework [13]
introduced a convex upper bound for gradient estimation, enabling
cost-sensitive learning for optimization. Subsequent work has ex-
tended DFL to combinatorial settings, including mixed-integer pro-
grams (MIPs), using LP relaxations [29, 47]. Recent advances, such
as decision-focused generative learning (Gen-DFL) [45], tackle the
challenge of applying DFL in high-dimensional setting by using
generative models to adaptively model uncertainty.

Differentiable Optimization. A key enabler of DFL is differentiable
optimization (DO), which facilitates gradient propagation through
differentiable optimization problems, aligning predictive models
with decision-making objectives [4]. Recent advances extend DO
to distributionally robust optimization (DRO) for handling uncer-
tainty in worst-case scenarios, improving decision quality under
data scarcity [11, 51]. Beyond predictive modeling, DO has ad-
vanced combinatorial and nonlinear optimization through implicit
differentiation of KKT conditions [6], fixed-point methods [24], and
gradient approximations via noise perturbation [8] and smoothing
[44]. These techniques bridge forecasting with optimization, ensur-
ing decision-aware learning. In this work, DO enables the backprop-
agation of resilience strategy losses, aligning the spatio-temporal
outage prediction model with grid optimization objectives.

2 PREDICT ALL THEN OPTIMIZE GLOBALLY

In this section, we first provide an overview of decision-focused
learning (DFL) and its application to solving predict-then-optimize
(PTO) problems. We then introduce a new class of decision-making
problems termed predict-all-then-optimize-globally (PATOG). Un-
like traditional PTO approaches, which generate instantaneous or
overly aggregated forecasts and optimize decisions independently,
PATOG explicitly accounts for how predictions evolve over time
and space, integrating them into a single, system-wide optimization
framework.

PATOG is particularly useful for grid resilience management,
where decisions must consider complex interactions across all ser-
vice units. A key example is the mobile generator distribution prob-
lem. In a conventional PTO setting, potential damage from an ex-
treme weather event is first forecasted for each unit independently.
Decisions, such as scheduling power generator deployments, are
then made in isolation, without considering the evolving conditions
of other units. This localized approach often leads to resource mis-
allocation and suboptimal resilience outcomes. In contrast, PATOG
embeds these interdependencies into a global optimization problem,
enabling system-wide decision-making that improves predictive
models by incorporating cross-unit interactions. This results in
more robust and effective resilience planning.

2.1 Preliminaries: Decision-Focused Learning

The predict-then-optimize (PTO) has been extensively studied across
a wide range of applications [17, 28]. It follows a two-step process:
First, predicting the unknown parameters c using a model fp based
on the input z, denoted as ¢ := f(z). Second, solving an optimiza-
tion problem:

x"(¢) = arg mxing(x, 0), (1)
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where g is the objective function and x*(¢) represents the optimal
decision given the predicted parameters. This framework has nu-
merous practical applications in power grid operations. For example,
PTO is used in power grid operations to predict system stress using
synchrophasor data, optimize outage management by forecasting
disruptions and proactively dispatching restoration crews, and en-
hance renewable integration by predicting fluctuations in wind
and solar generation to improve scheduling and grid balancing [17].
These predictive insights enable system operators to make informed
strategic decisions, enhancing grid reliability and resilience.

However, the conventional two-stage approach does not always
lead to high-quality decisions. In this approach, the model param-
eter 0 is first trained to minimize a predictive loss, such as mean
squared error. Then the predicted parameters ¢ are used to solve the
downstream optimization. This separation between prediction and
optimization can result in suboptimal decisions, as the prediction
model is not directly optimized for decision quality [25].

To address this limitation, the decision-focused learning (DFL)
integrates prediction with the downstream optimization process
[28]. Instead of optimizing for predictive accuracy, DFL trains the
model parameter 6 by directly minimizing the decision regret [28]:

0" = argminE [g(x" (f3(2)).©) - 9(x"(0).0)]

This approach ensures that the model is learned with the ultimate
goal of improving decision quality, making it particularly effective
for PTO problems. Note that we assume that the constraints on
decision variable x are fully known and do not depend on the
uncertain parameters c in this study. This assumption simplifies
the problem by ensuring that all feasible solutions x remain valid
regardless of the parameter estimates.

2.2 Proposed PATOG Framework

The objective of PATOG in this work is to develop proactive global
recourse actions that enable system operators to better prepare for
natural hazards. These actions may include preemptive dispatch of
mobile generators, strategic load shedding, grid reconfiguration, or
reinforcement of critical infrastructure. The PATOG consists of two
steps: (i) Predicting the temporal evolution of unit functionality
across all the service units in the network throughout the duration
of a hazard event. (ii) Deriving system-wide strategies that minimize
overall loss based on all the predictions, enabling optimized resource
allocation by anticipating critical failures before they occur.

Consider a power network consisting of K geographical units,
where each unit k serves Nj customers. We define the global re-
course actions as x = {xk}Kzl, where xj represents the action
taken for unit k. A key challenge in designing effective actions is
understanding how the system will respond to an impending hazard
event. To this end, we use the number of customer power outages,
which is publicly accessible via utility websites, as a measure of
system functionality [17].

To model the outage dynamics, we represent the outage state of
each unit k using a dynamical system over the time horizon [0, T]
during a hazard event. During the event, the state of each unit k at
time ¢ is represented by three quantities:

® Y;(t) € Z: the number of customers experiencing outages;
o Ui (t) € Z,: the number of unaffected customers;
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® Ry (t) € Z: the number of recovered customers.

The total number of customers, N, in the unit k remains constant
throughout the event, satisfying the following constraint:

Yi (t) + U (t) + R (¢) = Ny, YVt € [0, T].
For compact representation, we define the state vector for unit k
as S (1) = [Ug(£), R (), i (£)]T. To simplify notation, we collec-
tively represent the outage states across all units over the time
horizon as S = {S.(¢) | t € [0, T]}_,.
Formally, we are tasked to search for the optimal action:

() = argmin g(x.9) ®
B fy (40,2, v o
Sk (0) = [N, 0,0] T, Vk, (4)

where g quantifies the decision loss of the action x based on the pre-
dicted future evolution of outage states S. The transition function
fp models the progression of unaffected, recovered, and outaged
customers in each unit over time, influenced by both local weather
conditions and socioeconomic factors, jointly represented as co-
variates z; € RP. We note that most power outages during extreme
weather stem from localized transmission line damage, with cascad-
ing failures being rare [37, 52]. Thus, we assume each unit evolves
independently under its local conditions.

We emphasize that (2) extends the traditional PTO framework by
integrating predictions across multiple units over an extended fu-
ture horizon to derive a single, globally optimized solution. Unlike
PTO, which focuses only on instantaneous or localized dynamics,
PATOG captures both temporal and spatial outage states while mod-
eling how decisions influence outage dynamics across the entire
system. This comprehensive approach enables proactive, system-
wide high-resolution resilience strategies that adapt to evolving
conditions.

3 GLOBAL-DECISION-FOCUSED NEURAL
ODES

This section presents a novel decision-focused neural ordinary
differential equations (ODE) model tailored for solving PATOG
problems in grid resilience management. The proposed neural ODE
model predicts outage progression at the unit level while simulta-
neously optimizing global operational decisions by learning model
parameters in a decision-aware manner. We refer to this approach
as global-decision-focused (GDF) Neural ODEs. Fig. 2 provides an
overview of the proposed framework.

3.1 Neural ODEs for Power Outages

Assume that we have observations of I natural hazards (e.g., hur-
ricanes, and winter storms) in the history. For the i-th event, the
observations in unit k are represented by a data tuple, denoted by
(z,ic, {y,’c(t)}), where z;'C represents the covariates for unit k during
the i-th event and y]ic(t) is the number of customers experiencing
power outages at time ¢. The outage trajectory {yl’;(t) | t € [0, T}
is recorded at 15-minute intervals. A significant challenge in mod-
eling outage dynamics is the lack of detailed observations for the
underlying failure and restoration processes. Specifically, while
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Figure 2: Overview of the proposed GDF framework. Given
covariates z; and initial states S; (0) for all K service units, a
model parameterized by 0 predicts the system states S; for
all units. These predictions inform global decision-making,
where optimal actions x* (S) minimize the global decision loss
g(x,5). The framework optimizes 6 by minimizing a global-
decision-focused loss, regularized by a prediction-focused
loss (e.g., MSE loss) to enhance predictive interpretability.
Red arrows denote the backpropagation through V{gpr(6),
ensuring that the model learns both system-level decision
quality and region-specific prediction accuracy.

y]ic(t) provides the number of customers experiencing outages at
time ¢, we do not directly observe the failure and restoration states,
Uy (t) and Ry (), respectively.

Drawing inspiration from the Susceptible Infectious Recovered
(SIR) models commonly used in epidemic modeling [23], we con-
ceptualize power outages within a unit as the spread of a “virus”.
In this analogy, outages propagate among customers due to local
transmission line failures, while restorations provide lasting resis-
tance to subsequent outages. We formalize this analogy with the
following three assumptions: (i) The number of unaffected cus-
tomers Uy (t) decreases over time as some customers transition
from being unaffected to experiencing outages. This transition is
governed by the failure transmission rate, denoted by ¢(zy; 0y).
Inspired by epidemiological transmission rates, this rate quanti-
fies how local conditions - such as weather patterns and other
regional factors encapsulated by covariates z; — influence the rate
at which outages spread within the grid. (ii) Conversely, the num-
ber of customers with restored power (R (t)) gradually increases as
the system operator repairs transmission lines and restores service.
This process is captured by the restoration rate, denoted ¢ (z; 0g).
Both transmission and restoration rates, ¢(zx; 0y) and ¢ (zx; Or),
are functions of the local covariates z, and are modeled using deep
neural networks. (iii) The total number of customers within each
unit remains constant throughout the studied period. Based on
these assumptions, we model the outage state transition for each
unit k in (3), i.e, dSg(t)/dt, as follows:

dUi (t)/dt = —=¢(z; Ou) Yie (D) Ug (1),
dRy (t)/dt = ¢(2k; OR) Y (1), (5)
Y (1)/dt = —dU (£)/dt — dRy.(¢)/dt.
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These ODEs capture the dynamic evolution of power outage states
within each unit k. For notational simplicity, we use 6 := {0y, Or}
to denote their parameters jointly.

In practice, we work with discrete observations {t; szO and adopt
the Euler method to approximate the solution to the ODE model
[10], ie.,

S (tj1) = Sk (t)) + fo(Sk(t)), zk)Atj, VK,

where Sg (tj+1) and Si(t;) are the history states at times ¢, and
tj, respectively, and At; := tj41 — t; is time interval.

3.2 Global-Decision-Focused Learning

The training loss for GDF Neural ODEs is formulated as the aggre-

gated regret across all unit k, with an additional regularization term

to ensure stability in prediction:

teor (0) = }Z o (39),8) - g(x" (510 8°) | +

. . (6)

Ao S bt - i),
ik,j

where §7 is the predicted outages states across all units for event i.

The objective function (6) consists of two key components: (i)
Global-decision-focused loss (first term): This term evaluates the
quality of the optimal action based on predictions, capturing the
impact of prediction errors on operational decisions. The loss and
its gradient are computed over all geographical units affected by
the event, ensuring that learning is guided by system-wide decision
quality. However, this loss alone does not provide direct insights
into the structure of outage trajectories, which may limit the inter-
pretability of the learned model. (ii) Prediction-focused loss (second
term): To address this limitation, a prediction-based penalty is intro-
duced to minimize discrepancies between observed outage trajecto-
ries ylic(t) and predicted values f/lé(t) This term refines the model’s
ability to capture outage dynamics without explicitly observing the
failure and restoration processes. A user-specified hyperparameter
A governs the trade-off between prediction accuracy and the regret
associated with suboptimal operational decisions.

The most salient feature of the proposed GDF neural ODEs method
is its incorporation of both global and local perspectives. The global-
decision-focused loss aggregates errors across all geographical re-
gions and time steps, directly linking prediction quality to system-
wide resilience measures and operational strategies (e.g., resource
dispatch, outage management, and service restoration). Meanwhile,
the prediction-focused component refines local accuracy by penal-
izing deviations at each service unit. By incorporating predictive
regularization, the model empirically improves generalization to
new events with unknown distributional shifts, mitigating over-
fitting, particularly given the limited availability of extreme event
data.

3.3 Model Estimation

The learning of GDF Neural ODEs is carried out through stochastic
gradient descent, where the gradient is calculated using a novel
algorithm based on differentiable optimization techniques [4, 6, 51].
To enable differentiation through the arg min operator in (2) em-
bedded in the global-decision-focused loss, we relax the decision
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Algorithm 1 Learning of GDF Neural ODEs

Input: Data D = {(zlic, {y]ic(t)})}, initial parameter 6y, initial

states S¥(0), learning rate 1, trade-off parameter A, epochs N.
Output: 0*

1: forepochn=1,...,N do

22 fori=1toIdo

3 Initialize: $'(0) « S!(0).

4: for j=1to T; do

5: SH(tj) = S'(tj-1) + fo(S'(tj-1), 2L)Atj—

6 end for

7 L0 (0) — g(x*(S8), %) — g(x*(S).S7)

8 0 — Q—I]ngéDF(Q).

9: end for

10:  for each mini-batch 8 ¢ D do )

b frea(®) © e Saknes [y 0 - i)

12: 0«— 06— UAV@fpred(e).

13:  end for

14: end for

15: return 0

_

variable x from a potentially discrete space to a continuous space.
For combinatorial optimization problems, the problem is reformu-
lated as a differentiable quadratic program, and a small quadratic
regularization term is added to ensure continuity and strong con-
vexity [47]. Formally, we replace the original objective in (2) with
the following:

ming(x, S) + plixli3, ™)

where p > 0 ensures differentiability. The full training procedure
is summarized in Algorithm 1. More implementation details can be
found in the supplementary material.

4 APPLICATION: MOBILE GENERATOR
DEPLOYMENT

Our method is broadly applicable to various proactive decision-
making problems in grid operations, particularly in response to
potential hazard events. This section highlights the adaptability of
GDF by applying it to a mobile generator deployment task [5, 12, 35],
a representative PATOG problem.

The objective of the mobile generator deployment problem is
to strategically deploy mobile (e.g., diesel) generators across a net-
work of potentially affected sites before a large-scale power outage
to minimize associated costs. Due to the time-sensitive nature of
power restoration, it is crucial to anticipate the spatiotemporal
dynamics of outages while accounting for operational constraints
such as generator capacity, fuel availability, and transportation lo-
gistics. GDF is well-suited for this task as it jointly learns outage
patterns across cities over the planning horizon while optimizing
deployment decisions, enabling proactive decision-making that
adapts to evolving conditions.

Formally, let Q., € Z; denote the initial inventory of genera-
tors at warehouse w. For simplicity, we assume that warehouses
also function as staging areas, where generators are initially stored
and returned after deployment. We assume that each generator
has a fixed maximum capacity, capable of supplying electricity
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Figure 3: A synthetic example of the mobile generator de-
ployment problem for a system with three cities and five
generators (Q,, = 5). The y-axis represents the number of out-
aged households. In this example, the uniform travel time
ér = 10, transportation cost is set to ¢ = 400, the customer in-
terruption cost is 7 = 1, and the operational cost is y = 2. Four
methods are compared on out-of-sample data: the proposed
GDF framework (regret = 183.47), a two-stage approach (regret
= 488.45), an online baseline with observation lag of 5 (regret
= 2846.13), and the optimal solution with the groundtruth.
Details of the synthetic data setup are provided in Section 5.1.

to N, customers, and that a single extreme event is anticipated.
The planning horizon is discretized into uniform time periods
7 = {1,2,...,T}, where T represents the expected duration of
the outage. Let K = {1,2,...,K} be the set of K service units
(e.g., cities or counties) where generators can be deployed, and

W = {1,..., W} be the set of warehouses where all generators are
initially stored. We denote the stock of generators in unit k at time
t as qsg.

The mobile generator deployment problem is therefore defined
on a directed graph denoted by (V, E), where V := KU W is the
vertex set, and & represents the edge set defining feasible transporta-
tion routes. Each edge (k, k”) € & incurs a transportation cost iy,
and an associated travel time g/ € Zy, representing the number of
time periods required for generators to be transported from location
k to location k’. The decision variables, x = {x;xx }, (k, k") € &,
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t € T, specifies the transportation schedule, where x5 € Z4
represents the number of generators transported from location k
to k” at time t. For simplicity, we assume negligible deployment
time, allowing generators to become operational immediately upon
arrival to supply power to N, customers.

The cost function of generator deployment problem is:

9(x.8) =
T T
Z chk’xtkk’ +y Z Z‘Ztk+ h(x,S) , (8)
(k,k")e& t=1 keK t=1

———

Transportation Cost Operation Cost ~ Outage Cost

which consists of three components: (i) Transportation Cost: The
cost of delivering generators from warehouses to service units. (ii)
Operation Cost: The fixed operational cost per unit time (y) for
deployed generators. (iii) Outage Cost: Economic loss due to power
outages, determined by the number of customers experiencing
outages given the generator deployment decision x. For simplicity,
we define the outage cost as:

h(x,8) =1 Z max {Yk(t) = q:k Ny, O},
keK,teT

where 7 denotes unit customer interruption cost, an adapted version
of the Value of Lost Load (VoLL) [38], representing the economic
impact per household outage per day, and Y;(¢) denotes the num-
ber of outages in service unit k at time ¢, extracted from the state S
according to (5). This framework primarily evaluates system func-
tionality based on the number of customers experiencing outages
(Y). It is worth emphasizing that it is flexible to incorporate addi-
tional metrics, including the number of recovered customers (R)
and unaffected customers (U), if needed.

The transportation and inventory constraints of the mobile
genereator deployment are as follows:

Qok =0, VkeXK 9)
qow = Qw, YweW (10)
qtk = Z Z X'kt — Z Xtkk'> Vk € (V, teT (11)
k'eV teT k'eV
t'+8pr <t

X <C VteT,(kk')eé& (12)

Xtlek! = Xtk Jes Vk' e Vv, (13)
keV/{k'},teT keV/{k'},teT
Qi Xk € Zen V(kK') € E Ve T. (14)

Constraints (9) and (10) establish the initial generator stock at
each location. Equation (11) tracks the generator stock at each loca-
tion, accounting for the travel time § taken for incoming shipments.
Inequality constraint (12) limits the flow between service units or
warehouses in & to a maximum capacity C. Finally, equation (13)
ensures flow conservation, requiring that the total inflow of gener-
ators equals the total outflow over the planning horizon for each
node in the network. As a result, all generators return to the staging
areas after the events.

To implement the deployment strategy based on our GDF frame-
work, we first predict outage levels Y}, (¢) for all service units using
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the neural ODE model specified in (5). The model is learned by min-
imizing the GDF loss defined in (6). These global-deision-focused
predictions are then integrated into the objective function (8) of
the mobile generator deployment problem, and the decisions are
derived by solving a mixed-integer linear programming (MILP). Fig-
ure 3 illustrates the optimal transportation schedules derived from
the GDF predictions using an MILP solver, compared to the sched-
ules produced by the Two-stage and reactive online approaches in
a stylized example of the mobile generator deployment problem.

5 EXPERIMENTS

In this section, we evaluate the proposed GDF on two grid resilience
management problems—mobile generator deployment and power
line undergrounding. The numerical results demonstrate its supe-
rior performance compared to conventional Two-stage methods,
enabling better decision-making in the face of natural hazards.

5.1 Dataset and Experimental Setup

We evaluate the proposed GDF framework using both real and syn-
thetic datasets. The real dataset captures county-level customer
outages during the 2018 Nor’easter in Massachusetts [46], aug-
mented with meteorological features from NOAA’s HRRR model
[32] and socioeconomic variables from the U.S. Census Bureau’s
American Community Survey [42]. These include wind speed, tem-
perature, pressure, income, age, unemployment rate, poverty rate,
college enrollment, and household size—factors that affect outage
propagation and recovery. The event includes three storms over a
15-day period, allowing us to treat them as arising from the same
data distribution. We use the first storm for training and the sec-
ond for testing, omitting the third due to its minor impact. Fig. 1
illustrates the spatiotemporal patterns.

To support controlled experimentation under diverse scenarios,
we generate synthetic datasets using a simplified SIR model, treating
each county as an independent population subject to outages and
recovery, governed by the dynamics in (5). Transmission rates are
modulated by simulated weather to mimic varying hazard severity.
This setup enables systematic stress-testing of resilience strategies
across configurations.

Experiments focus on two applications: mobile generator deploy-
ment and power line undergrounding [3, 15, 33, 41]. Predictions are
made for the entire horizon before the hazard surpasses a predefined
threshold (1%), reflecting real-world challenges in data availability
[49]. For the generator problem, we assume a centralized warehouse
as the only source of units, prohibiting inter-county transfers. Gen-
erators must return for refueling, and a uniform travel delay J;
is assumed across all routes. A myopic online baseline with an
observation lag is used to mimic reactive deployment.

Model training consists of two stages: first, a neural ODE is
trained with standard MSE loss to establish a predictive baseline
(Two-stage). Then, it is fine-tuned using the decision-focused objec-
tive in (6) via Algorithm 1. We compare GDF against the Two-stage
and ground truth optimal solutions, evaluating performance using
(i) MSE for prediction accuracy, (ii) deployment cost or SAIDI for
decision loss, and (iii) regret relative to the true optimal. For syn-
thetic settings, results are averaged over three random seeds with
different outage and weather profiles.
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Figure 4: Performance Comparison for Synthetic Mobile Gen-
erator Deployment: A detailed comparison of regret out-
comes for GDF, Two-Stage, and Online methods under varying
customer interruption costs (), transportation cost factors
(c), operational costs (y), and numbers of generators (Q.).

5.2 Results

This section presents the results of GDF on mobile generator de-
ployment and power line undergrounding, evaluated in terms of
predictive accuracy and decision quality. Results on both synthetic
and real datasets demonstrate that GDF improves decision-making
compared to conventional Two-stage methods, enabling a more
effective response to natural hazards.

5.2.1 Mobile Generator Deployment Problem. Table 1 summarizes
the out-of-sample performance for the generator deployment prob-
lem on synthetic data under different travel time settings (5; =
1,5,10). The proposed method consistently delivers the best de-
cision quality, as reflected in the lowest regret. Notably, as &;
increases—representing longer transportation delays—the perfor-
mance improvement of GDF over the two-stage approach becomes
increasingly significant. A similar trend is observed under higher
transportation cost factors, as shown in Fig. 4, until transportation
costs become so high that the best strategy is effectively to remain
idle, at which point the improvement from proactive actions with
GDF diminishes.

These findings highlight the importance of proactive scheduling
and early interventions when facing longer deployment delays or
higher transportation costs. It also demonstrates the advantage of
GDF in optimizing resource allocation under more challenging, time-
sensitive conditions in the face of extreme hazards that threaten
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Table 1: Out-of-Sample Performance for Generator Distribution Problem with Synthetic Data. Results are averaged over 3

repeated experiments with standard error (SE) in brackets.

Model o =1 8 =5 8 =10
MSE Cost Regret MSE Cost Regret MSE Cost Regret
Ground Truth  / 103169 (73.9) 0 / 11031.7 (69.0) 0 / 124737 (63.8) 0

Online (lag = 1) / 63663.2 (3762.5) 53346.3 (3769.9) /

Online (lag =3) / 84769.4 (122.8)  74452.6 (7246.8) /
Two-stage 9336.0 (975.6)  10459.8 (90.6)  142.9 (90.3) 9336.0 (975.6)
GDF 7204.1(1804.8) 10409.9 (79.7)  93.0 (11.8) 7531.5 (1805.8)

18862.8 (965.7)
19816.9 (73.6)
11506.6 (98.1)
11452.1 (80.3)

7831.1 (916.1)  /

8785.2 (1216.9) /

474.9 (95.7) 9336.0 (975.6)
420.3 (24.3)  8907.7 (2645.2)

19681.8 (2069.3)

(

( 7208.1 (2121.0)
38378.6 (3020.2)

(

(

4962.5 (792.7)
272.4 (207.2)
128.2 (49.3)

12746.2 (196.7)
12601.9 (58.1)

Table 2: Out-of-Sample Performance of Power Line Under-
grounding Problem with Real and Synthetic Data

Nor’easter, MA, 2018 Synthetic
Models
MSE (x10%) SAIDI Regret MSE (x10°) SAIDI Regret
True Optimal / 218.2 / / 15.6 /
Two-stage 1174 328.3 112.1 13.5 16.1 0.5
GDF 165.6 3127 945 13.1 15.6 0

grid resilience. As visualized in Fig. 3, the GDF model slightly over-
estimate outages in critical regions first hit by outage, enabling
the reallocation of additional resources to mitigate potential dis-
ruptions. While this adjustment in the forecast is subtle, it leads
to a significant reduction in regret. Remarkably, the GDF models
also achieve MSE comparable to that of the MSE-trained model in
Table 1, albeit with higher variance. This indicates that improved
decision quality was not achieved at the expense of predictive ac-
curacy but rather through targeted and meaningful adjustments in
the forecasts.

Additionally, we conducted extensive experiments on synthetic
data for the mobile generator deployment problem under various
settings, as shown in Fig. 4. We observed that the performance
advantage of GDF over the Two-stage and greedy methods narrows
as customer interruption costs, operational costs, or the number of
available generators increase. This behavior is expected, as reduced
flexibility or higher system resources diminish the need for globally
optimized interventions—resulting in less improvement with GDF.

5.2.2  Power Line Undergrounding. Table 2 presents the out-of-
sample performance on both the Nor’easter, MA, 2018 event and the

synthetic dataset. For the real dataset, the proposed GDF model—despite

a slightly higher MSE—delivers improved decision quality, achiev-
ing a lower SAIDI and reduced regret compared to the Two-stage
baseline. On the synthetic dataset, GDF similarly outperforms the
Two-stage method in decision quality while maintaining a low MSE,
possibly due to the relatively simple prediction tasks. These results
confirm that GDF leads to better overall decision performance in
real and synthetic settings.

Overall, the experimental results on both real and synthetic
data demonstrate that GDF achieves substantial improvements in
decision quality compared to the traditional two-stage approach.
Although both models exhibit comparable prediction accuracy, GDF
consistently yields lower regret values, highlighting the benefits of
proactive scheduling and decision-focused training.

6 CONCLUSION

This paper presented a novel framework for grid resilience manage-
ment that jointly optimized prediction accuracy and global decision
quality. Experimental results on both real and synthetic datasets
demonstrated that, while achieving comparable MSE results to the
conventional two-stage approach, GDF consistently yielded lower
regret and better decisions. These findings suggest that integrat-
ing decision-focused learning enhances proactive scheduling and
resource allocation, enabling system operators to more effectively
mitigate outages. Future work will explore integrating real-time
data streams to improve responsiveness, incorporating renewable
energy forecasting, and adapting the framework to larger network
systems.

Our research provides actionable insights for grid resilience
practitioners

Our findings offer practical implications for supply chain and in-
frastructure resilience, especially in scenarios with costly or delayed
logistics. By embedding decision-aware objectives into forecasting,
the model enables earlier and more strategic allocation of limited
resources across the network. This proactive approach is critical for
mitigating disruptions, minimizing economic losses, and support-
ing robust, data-driven planning in high-stakes operational settings.
Future work includes extending to real-time data integration, re-
newable forecasting, and scaling to larger networks.
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A ABLATION STUDY

To evaluate the impact of the prediction error weight A in (6) on
balancing prediction accuracy and decision quality, we conducted
an ablation study with various A values on synthetic dataset. Results
in Table 3 indicate that a lower A shifts the model’s focus toward
decision quality, reducing decision regret by aligning predictions
with resilience goals, albeit with a slight trade-off in MSE, compared
to Two-stage method. We note that such a design offers better
flexibility and interpretability for the GDF-trained decision-making
models.

Table 3: Effect of 1 on Mobile Generator Deployment Prob-
lem.

Metric A Baselines

0 1 10 Two-stage Online
MSE (x10%) 9.7 95 9.6 9.3 /
Cost 6668.7 6609.5 6611.8 6631.7 8163.7
Regret 153.0 135.7 138.0 155.8 1648.1

B DETAILED DESCRIPTION ON ONLINE
ALGORITHMS FOR MOBILE GENERATOR
DEPLOYMENT PROBLEM

We include pesudocode for the proposed online baseline allocation
methods in Alg. 2.

Algorithm 2 Observe-then-optimize algorithm for mobile genera-
tor deployment problem

Input: Observations or forecasts Y;;, parameters (7, Ny, Y,
warehouse stock s,,, etc.
Output: Shipping decisions {xg’i, x}’jCk} for each time ¢ and city i.

1: fort=1to T do
2. — update warehouse and city stocks from previous shipments —

3. for each city i do

4 Compute demand shortfall d;; < max(0, [Y:;/Nyg] —
61t,i)~

5 x}ol — min(sy(2), dri)  // send enough to cover shortfall

6: x})’?Ck < 0 //no return shipments

7. end for

8: end for
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C POWER LINE UNDERGROUNDING

Power line undergrounding is a grid-hardening measure against
extreme meteorological events (such as hurricanes and heavy snow-
falls) [3, 15, 33, 41]. Although effective, it involves substantial costs
for the authority and causes significant disruptions to local com-
munities [26, 31]. The objective of the power line undergrounding
problem is to select an optimal subset of locations for underground
interventions under budget constraints [3, 33, 41], in anticipation
of an incoming hazard.

To formalize the decision-making problem, let x; be a binary
variable indicating whether city k is selected for undergrounding.
With K cities in total, the decision vector is x = [x1,...,xx] ', and
S denotes the predicted outage states. We then define:

min g9(x,S),
K

s.t. Zxk < C, (15)
k=1

x € {0,1}, k=1,... K,

where g(x,S) is the decision loss that quantifies the impact of out-
ages given the chosen undergrounding plan x.

We adopt the System Average Interruption Duration Index (SAIDI) [2]

to measure how outages affect the population. Let Yi () be the (true)
number of outages at city k and time ¢, and Ny be the total num-
ber of customers in city k. Since undergrounding is assumed fully
effective, a city k with x = 1 incurs no further outages from the
event. Hence, the decision loss is:

K 0
9(xS) = I%;Nik/o (=) ] ar. qe)

The optimal solution x* to (15) is then the subset of cities to be
undergrounded in order to minimize the total outage impact. Its
performance is evaluated via g(x*, S) using true outage data S.

D IMPLEMENTATION DETAILS OF GDF

To get the gradient of (7), let matrix H encode coefficients for all
the linear constraints Hx < a, and & represents a reformulation
of the ground truth cost factors derived from S, such that g(x, S') =
& Tx+b. Using the KKT conditions of the Lagrangian of the problem,
the gradient of the QP in (7) is:

(17)

. N T
Volgp = £ K™'V,8!, K= [2”"1 H ]

H 0

And V ﬁ,yéi can obtained via backpropagation through the neu-
ral ODE model parameters {6y, Ogr} [10]. This gradient aims to im-
prove decision quality across all cities and all events i € {1,...,I}.
Therefore, we refer to it as decision-focused gradient.

To be more specific about derivation of (17), the optimal solution
x* must satisfy the KKT conditions. We define the Lagrangian:

L(x, 1) :g(x,S)+p||x||§+/1T(Hx—a). (18)
The stationarity of x* for optimality gives:

Vig(x,S) +2px + HI A = 0. (19)
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Since the optimal decision x* satisfies the above KKT system,
we can apply implicit differentiation. Taking the total derivative
with respect to the predicted system state S:

2 T [dx2 d(=Vxg(x,5))
lV%L Pf)”ﬁ}:[ ds ] (20)
ds 0
where i v
and the KKT matrix K is defined as:
2p] HT
K= 1/—31 o (22)

since V2, £ = 2p] etc.
This allows us to compute the gradient of the loss function with
respect to model parameters:

Volop = &1 K1V,8". (23)

In practice, we regularize the GDF loss with prediction-focused
gradient, as the prediction error is localized and requires fine-
grained information for each individual sample unit. Specifically,
we construct mini-batches 8 C D from the training dataset D =
(=L 4 ().

The neural ODE model generates forecasts Sg = fpy(zg) for
each sample in the batch. From these forecasts, we extract the
predicted values Yg, which are then used to compute the MSE loss:

- 1 i Si )2
use = ) g 2, W -R0)" (24)
BcD (i,k,t)eB
Finally, for each epoch, the model parameters 6 is updated using
a combination of both loss gradients, balanced by a hyperparameter
A:
VoLtotal = VoLGDF + AV LsE- (25)

E ADDITIONAL RESULTS FOR THE MOBILE
GENERATOR DEPLOYMENT PROBLEM

This section presents additional results and visualizations for the
mobile generator deployment problem.

As demonstrated in the ablation study, when A is large, the MSE
dominates model training, reducing the advantage of GDF over
MSE-trained models in decision quality. For more detailed ablation
results in the mobile generator deployment problem, see Fig. 5,
which shows that as A increases, the GDF results become similar
to those of the Two-stage method, resulting in larger regret and
higher variance.

Further more, Table 4 summarizes the out-of-sample perfor-
mance for the generator deployment problem on synthetic data
across three transportation cost factors (100, 500, and 1000). As the
transportation cost increases, the improvement in decision quality
for GDF compared to the Two-stage methods becomes more appar-
ent. This highlights the importance of scheduling and proactive
actions when transportation costs are high, demonstrating the clear
advantage of GDF.

We also provide additional visualizations of the deployment
schemes under varying conditions. Comparing Fig. 6 and Fig. 8, we
observe that when travel costs are low, the online strategy closely
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Figure 5: Regret performance of the GDF method with vary-
ing A values across different transportation cost factors in
synthetic data for mobile generator deployment problem,
benchmarked against the Two-stage method.

approximates the optimal strategy, resulting in small regret. This
is because low travel costs allow the online method to frequently
move generators based on previous day data at minimal expense,
leading to near-optimal regret, whereas the Two-stage and GDF
methods rely more on predictions, and the associated noise can
diminish the benefits of prediction or proactive allocation under
these conditions.

In contrast, comparing Fig.7 and Fig.8, we find that limited re-
sources degrade the online strategy’s performance. Without proac-
tive planning, fewer generators must be relocated more frequently
with an online method, incurring higher transportation costs and
overall regret compared to GDF and Two-stage approaches.

F ADDITIONAL RESULTS FOR POWER LINE
UNDERGROUNDING

Fig. 9 shows the predicted outage trajectories for all Massachusetts
counties using the GDF model compared with groundtruth and
Two-stage. Notably, the model exaggerates outages for selected
counties—a deliberate strategy to prioritize resource allocation. This
controlled overestimation, while slightly increasing MSE. Overall,
it effectively reduces SAIDI and regret compared to the Two-stage
baseline, demonstrating that decision-focused training can enhance
overall scheduling performance.

G EXTENDED LITERATURE REVIEW FOR DFL
AND DIFFERENTIABLE OPTIMIZATION

Decision-Focused Learning. Decision-focused learning (DFL) has
emerged as a powerful framework for integrating predictive models
with downstream optimization tasks. Unlike traditional two-stage
approaches, which first train standalone prediction models and
then use their predictions as input parameters to optimal decision
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Table 4: Out-of-Sample Performance for Generator Distribution problem with Synthetic Data. Results are averaged over 3

repeated experiments with standard error (SE) in the brackets.

Transportation Cost = 100

Transportation Cost = 500

Transportation Cost = 1000

Model
MSE Cost Regret MSE Regret MSE Cost Regret
Ground Truth / 6515.6 (74.4) 0 / 11271 0 / 16271 0
Online (lag =1) / 8163.7 (293.4)  1648.1(358.6) / 19630.4 (1514.8) 8358.7 (1576.8)  / 33963.7 (3042.2)  17692.1 (3104.4)
Online (lag =3) / 8978.6 (277.6)  2462.9 (313.8) / 22045.2 (1493.3)  10773.6 (1522.9) / 38378.6 (3020.2)  22106.9 (3050.4)
Online (lag =5) / 9618.9 (57.3)  4939.9 (111.1) / 22152.2 (498.5)  16497.9 (557.8) / 37818.9 (1074.7)  32164.5 (1135.0)
Two-stage 9336.0 (975.6) 66715 (4328.7) 155.8(33.3)  9336.0 (975.6) 11465.8 (94.6) 194.2 (107.3) 9336.0 (975.6) 16517.8 (133.9)  246.1 (112.7)
GDF 9709.6 (3055.6)  6668.7 (4365.9) 153.0 (19.8)  8671.2 (1553.7) 11428.1 (87.1) 156.4 (44.2) 6981.1(1874.0)  16395.9 (89.0) 124.2 (36.3)
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MSE: 13557.41 MSE: 6774.22
600 ,
1500 1500
29
8400 1000 1000
200 500 500
0 0 )
Regret: 1601.43 12000 Regret: 187.47 2000
MSE: 8992.92 MSE: 8992.92
m(m 1500 L 400 . 1500
& &
400 i
¢ 000 2 1000
= (=
200 500 500
0 ~xzally )
Regret: 120.87 Regret: 21343.70
600
= 400
o
200
: l
_ 600 _
£ T
S 400 S
E] 2000
= a0 =

100 0 50 100 0 50 100

Time Steps

Predicted Unaffected (/) =21 Predicted Restored (R)
True Outaged (¥)

1”77} Predicted Outaged (V)
1 Powered by Generators (N, - )

Figure 6: A synthetic instance of the mobile generator de-
ployment problem for a system with three cities and five
generators (Q,, = 10). The y-axis shows the number of house-
holds experiencing outages over time. In this example, the
transportation cost is set to ¢ = 10, the customer interruption
cost to 7 = 1, and the operational cost to y = 2. The online
method operates with a one-day observation lag. Travel time
dr = 0 is neglected in this case.

models, DFL aligns the prediction model’s training loss with the
objective function of the downstream optimization. This concept is
enabled in gradient descent training by backpropagating gradients
through the solution to an optimization problem. When the opti-
mization is a differentiable function of its parameters, this can be
implemented via implicit differentiation of optimality conditions
such as KKT conditions [6, 18] or fixed-point conditions [24, 48].

Time Steps

"7 Predicted Restored (R)

1”77} Predicted Outaged (V)
[ Powered by Generators (N, - z*)

Predicted Unaffected (U/)
True Outaged (V)

Figure 7: A synthetic instance of the mobile generator de-
ployment problem for a system with three cities and five
generators (Q,, = 3). The y-axis shows the number of house-
holds experiencing outages over time. In this example, the
transportation cost is set to ¢ = 1000, the customer interrup-
tion cost to 7 = 1, and the operational cost to y = 2. The online
method operates with a one-day observation lag. Travel time
& = 0 is neglected in this case.

When the optimization is nondifferentiable, it can instead be im-
plemented by means of various approximation techniques [25, 28].
Unlike traditional two-stage approaches, which first train stan-
dalone prediction models and then use their predictions as inputs
for decision-making, DFL directly embeds the optimization problem
within the learning process. This allows the learning model to focus
on the variables that matter most for the final decision [28].
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Figure 8: A synthetic instance of the mobile generator de-
ployment problem for a system with three cities and five
generators (Q,, = 10). The y-axis shows the number of house-
holds experiencing outages over time. In this example, the
transportation cost is set to ¢ = 1000, the customer interrup-
tion cost to 7 = 1, and the operational cost to y = 2. The online
method operates with a one-day observation lag. Travel time
dr = 0 is neglected in this case.

Elmachtoub and Grigas [13] first proposed the Smart Predict-
and-Optimize (SPO) framework, which introduced a novel method
for formulating optimization problems in the prediction process.
SPO essentially bridges the gap between predictive modeling and
optimization by constructing a decision-driven loss function that
reflects the downstream task. However, the SPO framework only
addresses linear optimization problems and does not extend well
to more complex combinatorial tasks.

The most-studied class of nondifferentiable optimization prob-
lems in decision-focused learning (DFL) involves linear programs
(LPs). Notably, the Smart Predict-and-Optimize (SPO) framework by
Elmachtoub and Grigas [13] introduced a convex surrogate upper
bound to approximate subgradients for minimizing the subopti-
mality of LP solutions based on predicted cost coefficients. The
most-studied class of nondifferentiable optimizations are linear
programs (LPs). Elmachtoub and Grigas [13] proposed the Smart
Predict-and-Optimize (SPO) framework for minimizing the sub-
optimality of solutions to a linear program as a function of its
predicted cost coefficients. Despite this function being inherently
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Figure 9: GDF is overestimating outage in certain counties to
prioritize resource allocation at the cost of MSE.

non-differentiable, a convex surrogate upper-bound is used to de-
rive informative subgradients. Wilder et al. [47] propose to smooth
linear programs by augmenting their objectives with small qua-
dratic terms [6] and differentiating the resulting KKT conditions.
A method of smoothing LP’s by noise perturbations was proposed
in [8]. Differentiation through combinatorial problems, such as
mixed-integer programs (MIPs), is generally performed by adapting
the approaches proposed for LP’s, either directly or on their LP
relaxations. For example, Mandi et al. [29] demonstrated the effec-
tiveness of the SPO method in predicting cost coefficients to MIPs.
Vlastelica et al. [44] demonstrated their method directly on MIPs,
and Wilder et al. [47] evaluated their approach on LP relaxations
of MIPs.

Building on these works, we extend DFL to spatio-temporal
decision-making for power grid resilience management. Our ap-
proach employs quadratic relaxations to enable gradient backprop-
agation through MIPs [47], thereby integrating a spatio-temporal
ODE model for power outage forecasting directly into the opti-
mization process. Additionally, we introduce a Global Decision-
Focused Framework that combine prediciton error with decision
losses across geophysical units, improving grid resilience against
extreme natural events and bridging the gap between localized
predictions and system-wide decisions.

Differentiable Optimization. Differentiable optimization (DO) tech-
niques have demonstrated significant potential in integrating pre-
dictive models with optimization problems. By enabling the compu-
tation of gradients through optimization processes, DO facilitates
the seamless incorporation of complex system objectives into ma-
chine learning models, thereby enhancing decision-making capabil-
ities [4]. Recent extensions of DO methods have tackled challenges
beyond standard optimization tasks. For example, distributionally
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robust optimization (DRO) problems have been addressed using dif-
ferentiable frameworks to handle prediction tasks under worst-case
scenarios. For instance, [11, 51] employed DO-based techniques to
improve uncertainty quantification and robust learning, effectively
addressing data scarcity and enhancing resilience modeling.
Beyond predictive modeling, DO has advanced solutions in com-
binatorial and nonlinear optimization. Techniques such as implicit
differentiation of KKT conditions [6] and fixed-point conditions

Chen et al.

[24] address differentiable constraints, while approximation meth-
ods, including noise perturbation [8] and smoothing techniques
[44], enable gradient computation for nondifferentiable tasks.

These advancements underscore DO’s pivotal role in bridging
predictive modeling and optimization, especially where decision
quality critically affects system resilience. In this work, DO is em-
ployed to align spatio-temporal outage predictions with grid op-
timization objectives, enabling robust strategies for generator de-
ployment and power line undergrounding.
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