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Abstract

Location information is essential for modeling tasks in climate-related fields rang-
ing from ecology to the Earth system sciences. However, obtaining meaningful lo-
cation representation is challenging and requires a model to distill semantic loca-
tion information from available data, such as remote sensing imagery. To address
this challenge, we introduce SatCLIP, a global, general-purpose geographic loca-
tion encoder that provides vector embeddings summarizing the characteristics of
a given location for convenient usage in diverse downstream tasks. We show that
SatCLIP embeddings, pretrained on multi-spectral Sentinel-2 satellite data, can
be used for various predictive out-of-domain tasks, including temperature predic-
tion and animal recognition in imagery, and outperform existing competing ap-
proaches. SatCLIP embeddings also prove helpful in overcoming geographic do-
main shift. This demonstrates the potential of general-purpose location encoders
and opens the door to learning meaningful representations of our planet from the
vast, varied, and largely untapped modalities of geospatial data.

1 Introduction

Much of the world’s data is geospatial. From images taken with a cellphone to the movement tra-
jectories of taxis, different modalities live in the same geometric space: planet Earth. Geographic
features, the characteristics describing any location on our planet, are commonly used in climate-
related predictive modeling tasks, e.g., by using satellite imagery for crop yield prediction [9, 4].
Much of the existing work in geospatial machine learning does not directly encode spatial infor-
mation as an input in the modeling process, even though this information is often readily available.
Instead, indirect contextual information is used, such as images taken close to the location. New ap-
proaches aim to represent relevant features of locations directly in an implicit neural representation
by embedding contextual information in location encoder model weights [8, 17, 12]. The location
information within georeferenced images lends itself conveniently to contrastive, self-supervised
pretraining objectives: given a dataset that includes satellite images and their corresponding loca-
tions, we can devise a pretraining task that matches images to locations or more precisely, image
embeddings to location embeddings. This is analogous to the text-image pretraining deployed in the
popular CLIP model [10].

Satellite imagery can be freely acquired for all land mass of our Planet at regular intervals, e.g. using
the Sentinel-2 satellite. This enables pretraining a location encoder which, for any given location
on the planet, returns contextual vectors encoding the characteristics of this location captured by
satellite imagery. Location representations obtained from this encoder can be deployed in a range
of different downstream tasks, as we show in this paper. We first outline the intuition for pretrain-
ing general-purpose geographic location encoders and deploying them in real-world tasks (see also
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Figure 1: Pretraining (left) to downstream task deployment (right) pipeline of general-purpose,
global-coverage geographic location encoders. Trained using large, unlabeled geographic data
(e.g., satellite imagery), the learned location encoder can then be queried for contextual embed-
dings at downstream locations and–in combination with other relevant features–used for geospatial
predictive modeling tasks.

Figure 1). We then introduce a new model from this family: SatCLIP, a pretrained geographic loca-
tion encoder leveraging recent advances in geospatial coordinate encoding with spherical harmonics
functions [12]. We train SatCLIP using a new dataset, S2-100K, compiled from uniformly dis-
tributed Sentinel-2 satellite imagery. Lastly, we compare SatCLIP to existing location encoders on
different real-world tasks, highlighting how SatCLIP embeddings are highly effective for predictive
modeling across geospatial tasks.

2 Approach

2.1 Pretrained geographic location encoders

The inputs to a geographic location encoder are longitude/latitude coordinate pairs ci = [λi, ϕi] at
locations i and on the spherical surface S. For each location i, we have corresponding contextual
data, e.g. an image Ii ∈ Rm×n×c with c channels. The this context describes the characteristics
of that location, in the case of SatCLIP we use satellite images. We now define two encoders, a
location encoder Encloc(ci, θloc) : S2 → Rd that takes in 2-dimensional coordinates and returns a
d-dimensional latent embedding and a context encoder Enccont(xi, θcont) : Rm → Rd that takes in
images Ii and returns a d-dimensional latent embedding.

We can then define a loss that matches context vector embeddings and their correpsonding geoloca-
tion embeddings and contrasts them to others in a training batch. This contrastive self-supervised
learning transfers location clues from the context encoder to the location encoder weights during
pretraining. The goal is for the location encoder and context encoder to both capture the relevant
representations of how the context data varies across space – though each model has distinctly differ-
ent inputs. After pretraining, the location encoders can process any location coordinate. The amount
to which pre-trained embeddings will represent the salient aspects of arbitrary locations will likely
depend on the geographic distribution of the training data; learned representations in areas with low
or no coverage in the training data rely on interpolating between the nearest available observations
and may thus be less expressive.

2.2 SatCLIP

Data. The key to fulfilling the promise of global-coverage and general-purpose location encoders
lies in the geographic context, we provide during training. This comes down to a fundamental ques-
tion: what data best and most completely describes a location? Remotely sensed data is generally
considered highly informative, as it can capture both natural and built features. We construct a new
pretraining dataset, S2-100K, that (1) more generally represents location features and (2) is uni-
formly distributed across space, tackling the problem of underrepresentation of certain – especially
non-Western – geographic areas. We sample 100, 000 tiles of multi-spectral Sentinel-2 satellite
imagery and their associated centroid locations, uniformly distributed across global landmass.

2



(a) Latent space visualization. (b) Ecoregion prediction.

Figure 2: Figure 2a shows a visualization of the top-3 principal components, plotted as RGB chan-
nels, of the different embeddings on regularly distributed locations around the planet. Figure 2b
shows predictions for MLPs trained using SatCLIP or comparison embeddings in a few-shot geo-
graphic adaptation setting: Locations in Africa are held-out during training (except a few examples)
and constitute the test set.

Image and Location Encoder. Designing effective location encoders can be challenging: A com-
mon difficulty is to balance the low-dimensional location inputs (a 2-d vector) with the often high-
dimensional context inputs (e.g., an image). This leads to substantially different sizes in the param-
eter space of θloc and θcont which, can lead to overfitting issues during training. To overcome this,
we use Sentinel-2 pretrained ResNet18, ResNet50 and ViT16 image encoders, published by [15],
freezing the network except for the last linear projection layer. Another challenge is the definition of
an appropriate location encoder. Latitude and longitude values represent coordinates on a sphere and
benefit from a positional encoding before being processed by neural networks [5, 7, 3]. We deploy a
location encoder recently proposed by [12], which includes a positional encoding based on orthog-
onal spherical harmonics functions in combination with sinusoidal representation networks [Siren,
13]. This new location encoder is designed specifically to encode global locations. The hyperpa-
rameter L (corresponding to the number of Legendre polynomials used for harmonics calculation)
controls the spatial resolution of the location encoder.

Training setting. To train our model, we use the CLIP [10] objective, using normalized dot product
similarities between image and location embeddings to compute the loss. We pretrain SatCLIP
with S2-100K using 90% of the data, selected uniformly at random, reserving 10% as validation set
to monitor overfitting. We find that SatCLIP models pretrain best with batch sizes of 8k. We train
models for 500 epochs on a single A100 GPU.

3 Experiments

Comparison Models. We compare SatCLIP embeddings to embeddings obtained by several re-
cently proposed algorithms. CSP [8] is a location encoder trained similarly to SatCLIP, but using
additional auxiliary losses. It deploys a sinusoidal location encoder [6] and pretrained image en-
coders. Two models, one pretrained on iNaturalist 2018 (iNat)–a dataset of species imagery–and
one pretrained on Functional Map of the World (FMoW)–a satellite image dataset focusing on built
infrastructure, are published. GPS2Vec [17] uses a two-layer soft encoding and trains two models on
YFCC-100M, a social media imagery dataset and their corresponding semantic tags. MOSAIKS [11]
returns random convolutional features extracted directly from the nearest gridded satellite image at
a given location. Notably, competing approaches either don’t provide global coverage or are trained
as domain-experts. SatCLIP is the first general-purpose, global-coverage location encoder.

Downstream Tasks. We run experiments on five different environmental modeling tasks: (1) Air
Temperature prediction (regression), Elevation prediction (regression), species classification from
iNat imagery (classification), Biome prediction (classification) and Ecoregion prediction (Classifi-
cation). For all tasks, we tune and train simple multi-layer perceptrond (MLP) that take location
embeddings (or in the case of iNat additionally image embeddings) as input.
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Table 1: Downstream task performance using SatCLIP (L = 40) vs. baseline location em-
beddings. We report average MSE and accuracy ±1 standard deviation across 10 independently
initialized MLP training runs from an unseen, randomly sampled test set.

SatCLIP-RN50 SatCLIP-ViT16 CSP CSP GPS2Vec GPS2Vec MOSAIKS
Task ↓ Data → (S2-100K) (S2-100K) (FMoW) (iNat) (tag) (visual) (Planet)

Regression MSE ↓
Air temperature 0.27± 0.03 0.25± 0.02 2.81± 1.11 4.71± 1.78 2.37± 0.00 2.92± 0.01 4.61± 6.05
Elevation 0.15± 0.00 0.15± 0.01 0.80± 0.05 1.11± 0.06 1.11± 0.01 1.17± 0.00 0.98± 0.01

Classification % Accuracy ↑
iNaturalist 66.03± 0.54 65.98± 0.61 56.73± 0.83 60.47± 0.56 58.78± 0.48 53.27± 0.78 56.73± 0.80
Biome 94.41± 0.14 94.27± 0.15 75.81± 1.53 73.18± 5.58 69.69± 0.06 68.29± 0.11 79.61± 0.42
Ecoregions 91.67± 0.15 91.61± 0.22 76.87± 1.27 78.43± 1.71 68.46± 0.06 67.26± 0.02 70.48± 0.21

3.1 Downstream Task Performance

Figure 2a plots principal component latent representations of different embeddings, highlighting that
SatCLIP has global coverage over land masses, as opposed to GPS2Vec and MOSAIKS. The full
predictive results from our experiments can be found in Table 1. SatCLIP is consistently the best
performing pretrained location encoder. Interstingly, SatCLIP embeddings are more informative for
iNat classification than a location encoder pretrained on iNat (CSP-iNat). We believe that this is
due to SatCLIP embeddings being able to provide auxiliary information not contained within the
iNat imagery. A second experiment test the ability of SatCLIP embeddings to overcome geographic
distribution shift for Ecoregion prediction: Here, we hold out the whole continent of Africa as test
set, adding only a tiny portion (1%) of points to the training set to effectively create a few-shot
geographic adaptation problem. Figure 2b shows how SatCLIP is the only location encoder up to
this task. This is primarily because existing location encoders are not trained on globally distributed
data or don’t possess the expressiveness of Sentinel-2 imagery. Overall, the results confirm that
SatCLIP models trained on SK-100K data provide meaningful features to help with prediction in
climate-relevant predictive modeling.

4 Discussion and Conclusion

We present SatCLIP, a location encoder model trained via a geographically-aware self-supervised
contrastive learning loss. SatCLIP is pretrained using global, publicly available Sentinel-2 satel-
lite images, achieves high predictive performance on climate-related geospatial tasks and can help
overcome geographic distribution shift. The SatCLIP model we build and evaluate here is an in-
stantiation of a broader paradigm of contrastively pretrained location encoders, which offers many
possible modifications and adaptations–in terms of both the data and models used. This paradigm
extends naturally to using varied data sources and modalities as input to a context encoder. For ex-
ample, adding administrative data as layers appended to multi-spectral satellite image bands might
more comprehensively represent different geospatial phenomena. On the modeling side, advance-
ments might focus on designing model architectures to achieve joint compatibility of location and
context encoders for more efficient learning.

This work towards general-purpose pre-trained location encoders has the potential to coalesce global
data into a succinct representation of any location. To this end, global, general-purpose location
encoders can be useful for practitioners that want to leverage the spatial variability trends of remotely
sensed data in their modeling problem, but cannot easily access this data, e.g. due to resource
constraints (in a similar way to [11]). SatCLIP can help in exactly this case: embeddings capturing
a locations characteristics can be queried at any given location on the planet for use in downstream
applications. We make our S2-100K dataset and pretrained location encoders available at github.
com/microsoft/satclip.

Acknowledgements

Esther Rolf is supported by the Harvard Data Science Initiative and and the Center for Research on Computation
and Society.

4

github.com/microsoft/satclip
github.com/microsoft/satclip


References
[1] Christie, G., Fendley, N., Wilson, J., and Mukherjee, R. Functional map of the world. pp. 6172–6180,

2018. URL https://www.digitalglobe.com/resources/.

[2] Horn, G. V., Aodha, O. M., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., Belongie, S.,
Google, C. ., and Tech, C. The iNaturalist species classification and detection dataset. pp. 8769–8778,
2018. ISBN 5,986561,767. URL www.inaturalist.org.

[3] Klemmer, K., Safir, N. S., and Neill, D. B. Positional encoder graph neural networks for geographic data.
pp. 1379–1389. PMLR, 4 2023. URL https://proceedings.mlr.press/v206/klemmer23a.html.

[4] Lobell, D. B., Thau, D., Seifert, C., Engle, E., and Little, B. A scalable satellite-based crop yield mapper.
Remote Sensing of Environment, 164:324–333, 2015.

[5] Mac Aodha, O., Cole, E., and Perona, P. Presence-only geographical priors for fine-grained image classi-
fication. In ICCV, October 2019.

[6] Mai, G., Janowicz, K., Cai, L., Zhu, R., Regalia, B., Yan, B., Shi, M., and Lao, N. Se-
kge: A location-aware knowledge graph embedding model for geographic question answering
and spatial semantic lifting. Transactions in GIS, 24:623–655, 6 2020. ISSN 1467-9671.
doi: 10.1111/TGIS.12629. URL https://onlinelibrary.wiley.com/doi/full/10.1111/
tgis.12629https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12629https:
//onlinelibrary.wiley.com/doi/10.1111/tgis.12629.

[7] Mai, G., Janowicz, K., Yan, B., Zhu, R., Cai, L., and Lao, N. Multi-scale representation learning for
spatial feature distributions using grid cells. 2 2020. URL http://arxiv.org/abs/2003.00824.

[8] Mai, G., Lao, N., He, Y., Song, J., and Ermon, S. Csp: Self-supervised contrastive spatial pre-training for
geospatial-visual representations. 5 2023. URL https://arxiv.org/abs/2305.01118v2.

[9] Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., and Athanasiadis, I. N.
Machine learning for large-scale crop yield forecasting. Agricultural Systems, 187:103016, 2021.

[10] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin,
P., Clark, J., Krueger, G., and Sutskever, I. Learning transferable visual models from natural lan-
guage supervision. pp. 8748–8763. PMLR, 7 2021. URL https://proceedings.mlr.press/v139/
radford21a.html.

[11] Rolf, E., Proctor, J., Carleton, T., Bolliger, I., Shankar, V., Ishihara, M., Recht, B., and Hsiang, S. A
generalizable and accessible approach to machine learning with global satellite imagery. Nature Com-
munications 2021 12:1, 12:1–11, 7 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-24638-z. URL
https://www.nature.com/articles/s41467-021-24638-z.

[12] Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., and Tuia, D. Geographic location encoding with
spherical harmonics and sinusoidal representation networks. Under submission., 2023.

[13] Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., and Wetzstein, G. Implicit neural repre-
sentations with periodic activation functions. Advances in Neural Information Processing Systems, 33:
7462–7473, 2020.

[14] Thomee, B., Elizalde, B., Shamma, D. A., Ni, K., Friedland, G., Poland, D., Borth, D., , and Li, L. J.
YFCC100M. Communications of the ACM, 59:64–73, 1 2016. ISSN 15577317. doi: 10.1145/2812802.
URL https://dl.acm.org/doi/10.1145/2812802.

[15] Wang, Y., Ait, N., Braham, A., Xiong, Z., Liu, C., Albrecht, C. M., and Zhu, X. X. SSL4EO-S12:
A large-scale multi-modal, multi-temporal dataset for self-supervised learning in Earth observation. 11
2022. URL https://arxiv.org/abs/2211.07044v2.

[16] Wang, Y., Albrecht, C. M., Braham, N. A. A., Mou, L., and Zhu, X. X. Self-supervised learning in
remote sensing: A review. IEEE Geoscience and Remote Sensing Magazine, 10:213–247, 6 2022. ISSN
21686831. doi: 10.1109/MGRS.2022.3198244. URL https://arxiv.org/abs/2206.13188v2.

[17] Yin, Y., Liu, Z., Zhang, Y., Wang, S., Shah, R. R., and Zimmermann, R. GPS2Vec: Towards gen-
erating worldwide GPS embeddings. pp. 416–419. Association for Computing Machinery, 11 2019.
ISBN 9781450369091. doi: 10.1145/3347146.3359067. URL https://dl.acm.org/doi/10.1145/
3347146.3359067.

5

https://www.digitalglobe.com/resources/
www.inaturalist.org
https://proceedings.mlr.press/v206/klemmer23a.html
https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12629 https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12629 https://onlinelibrary.wiley.com/doi/10.1111/tgis.12629
https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12629 https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12629 https://onlinelibrary.wiley.com/doi/10.1111/tgis.12629
https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12629 https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12629 https://onlinelibrary.wiley.com/doi/10.1111/tgis.12629
http://arxiv.org/abs/2003.00824
https://arxiv.org/abs/2305.01118v2
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://www.nature.com/articles/s41467-021-24638-z
https://dl.acm.org/doi/10.1145/2812802
https://arxiv.org/abs/2211.07044v2
https://arxiv.org/abs/2206.13188v2
https://dl.acm.org/doi/10.1145/3347146.3359067
https://dl.acm.org/doi/10.1145/3347146.3359067

	Introduction
	Approach
	Pretrained geographic location encoders
	SatCLIP

	Experiments
	Downstream Task Performance

	Discussion and Conclusion

