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ABSTRACT

Large language models (LLMs) have demonstrated significant potential in clin-
ical decision support. Yet LLMs still suffer from hallucinations and lack fine-
grained contextual medical knowledge, limiting their high-stake healthcare ap-
plications such as clinical diagnosis. Traditional retrieval-augmented generation
(RAG) methods attempt to address these limitations but frequently retrieve sparse
or irrelevant information, undermining prediction accuracy. We introduce KARE,
a novel framework that integrates knowledge graph (KG) community-level re-
trieval with LLM reasoning to enhance healthcare predictions. KARE constructs
a comprehensive multi-source KG by integrating biomedical databases, clinical
literature, and LLM-generated insights, and organizes it using hierarchical graph
community detection and summarization for precise and contextually relevant in-
formation retrieval. Our key innovations include: (1) a dense medical knowl-
edge structuring approach enabling accurate retrieval of relevant information; (2)
a dynamic knowledge retrieval mechanism that enriches patient contexts with fo-
cused, multi-faceted medical insights; and (3) a reasoning-enhanced prediction
framework that leverages these enriched contexts to produce both accurate and
interpretable clinical predictions. Extensive experiments demonstrate that KARE
outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7%
on MIMIC-IV for mortality and readmission predictions. In addition to its im-
pressive prediction accuracy, our framework leverages the reasoning capabilities
of LLMs, enhancing the trustworthiness of clinical predictions.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023a;b; OpenAI et al., 2024; Team et al., 2024) has
revolutionized natural language processing, offering unprecedented capabilities in understanding
and generating human-like text. In the healthcare domain, LLMs hold the potential to transform
clinical decision-making by providing insights derived from vast amounts of medical data (Wornow
et al., 2023; Yang et al., 2022). There has been many recent explorations on applying ML-based
methods in healthcare domain (Choi et al., 2016; 2017; Shickel et al., 2018; Choi et al., 2018;
Ma et al., 2020a; Gao et al., 2020; Zhang et al., 2021; Wu et al., 2023; Jiang et al., 2024a; Zhu
et al., 2024a; Xu et al., 2024). However, deploying LLMs in clinical settings presents significant
challenges, mainly because LLMs may produce hallucinations or incorrect information due to a lack
of specialized medical knowledge. Traditional retrieval-augmented generation (RAG) techniques
(Lewis et al., 2021), which aim to mitigate hallucinations by retrieving external knowledge, often fall
short in healthcare applications. They tend to retrieve information that, while semantically similar
in latent space, fails to provide meaningful clinical insights, leading to suboptimal outcomes for
precise healthcare predictions (Shi et al., 2024; Magesh et al., 2024; Li et al., 2024). For instance,
when dealing with the diagnosis of heart failure, a traditional RAG model might retrieve data on
several conditions that are semantically similar, such as “acute coronary syndrome” or “ischemic
heart disease” due to their close proximity in latent space. However, these conditions, while related,
do not capture the specific nuances of heart failure, such as the impact of left ventricular ejection
fraction or specific biomarkers like NT-proBNP levels.

Knowledge graphs (KGs) offer a promising solution by providing structured representations of med-
ical knowledge, capturing complex relationships between clinical entities (Liu et al., 2019; Yasunaga
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et al., 2022; Zhang et al., 2022). Integrating KGs with LLMs can enhance the models’ reasoning
capabilities and provide domain-specific knowledge essential for accurate healthcare predictions
(Soman et al., 2024). However, previous studies have often lacked interpretability and failed to fully
leverage the reasoning strengths of LLMs (Jiang et al., 2024a; Xu et al., 2024; Zhu et al., 2024a).

Graph community retrieval has been a proven technique in various domains, such as social network
analysis (Fortunato, 2010; Jin et al., 2021) and recommendation systems (Salha et al., 2019) for
efficiently extracting relevant and contextual information from large-scale graphs. Recent work
like GraphRAG (Edge et al., 2024) has demonstrated the superior performance of graph community
retrieval compared to naı̈ve RAG in the query-focused summarization task. However, the application
of graph retrieval for LLM-based healthcare prediction remains largely unexplored.

In this paper, we introduce KARE (Knowledge Aware Reasoning-Enhanced HealthCare Predic-
tion), a new framework that combines KG community-level retrieval (e.g., retrieving relevant sub-
graphs) with LLM reasoning to improve healthcare prediction.

Our technical contributions can be summarized as follows:

1. Multi-Source Medical Knowledge Structuring and Indexing: We develop a novel method to
construct and index multi-source medical concept KGs by integrating concept-specific knowl-
edge derived from relationships among different concepts in patients’ electronic health records
(EHRs). We employ hierarchical graph community detection and summarization techniques to
organize the KG into semantically meaningful communities, facilitating precise, fine-grained,
and contextually relevant information retrieval.

2. Context Augmentation with Dynamic Knowledge Retrieval from KG: We propose a context
augmentation technique that can dynamically enrich patient data with knowledge from relevant
KG communities tailored to the patient context. By retrieving pre-summarized communities,
we enrich the input to the LLMs with focused, multi-faceted medical insights, addressing the
limitations of traditional RAG methods.

3. Reasoning-Enhanced Clinical Prediction Framework: We leverage the augmented patient
context to enable LLMs to generate step-by-step reasoning chains, enhancing both interpretability
and prediction accuracy in clinical tasks.

To evaluate the KARE framework, we conducted experiments on in-hospital mortality and hospi-
tal readmission prediction tasks using the MIMIC-III and MIMIC-IV datasets(Johnson et al., 2016;
2020). KARE significantly outperforms the best baseline models. Specifically, KARE achieves
improvements over best baselines up to 10.8%, 15.0%, 12.6%, and 12.7% on the MIMIC-III mor-
tality, MIMIC-III readmission, MIMIC-IV mortality, and MIMIC-IV readmission prediction tasks,
respectively. By attaining higher prediction accuracy and leveraging reasoning capabilities, KARE
enhances the trustworthiness of clinical decision support systems. The reasoning process incorpo-
rates valuable evidence from relevant medical knowledge, facilitating more informed and explain-
able predictions that are needed in clinical decision making.

2 RELATED WORKS

Clinical Predictive Models. Electronic health record (EHR) data have become invaluable in the
medical field, supporting predictive tasks aimed at improving patient care and clinical outcomes
(Cai et al., 2016; Ashfaq et al., 2019; Bhoi et al., 2021). The development of deep learning mod-
els (Hochreiter & Schmidhuber, 1997; Chung et al., 2014; Vaswani et al., 2017) has enabled re-
searchers to capture complex patterns within structured EHR data. Models such as RETAIN (Choi
et al., 2016), GRAM (Choi et al., 2017), and others (Nguyen et al., 2016; Choi et al., 2018; Ma
et al., 2020a;b; Gao et al., 2020; Zhang et al., 2021; Yang et al., 2023b) have shown promise in
various predictive tasks. However, traditional predictive models are often inflexible, requiring spe-
cific labeled training data and struggling to generalize beyond their original scope. This limitation
is particularly problematic in the dynamic healthcare environment. To address this, there is growing
interest in using LLMs for clinical predictive tasks. LLMs offer greater adaptability and potential to
interpret diverse medical information, including unstructured text and knowledge graphs enabling
more robust and versatile clinical decision support systems.
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Figure 1: A conceptual illustration of our KARE framework. Step 1 constructs a comprehensive medical
concept knowledge graph by integrating information from multiple sources, organizing it into a hierarchical
community structure. This structure allows for the generation of community summaries that facilitate precise
knowledge retrieval. Step 2 dynamically augments the patient’s EHR context with relevant summaries from
the knowledge graph, offering the LLM focused and relevant medical insights. Step 3 generates training
samples by employing an expert LLM to create reasoning chains based on the augmented patient context and
ground truth labels. It then fine-tunes a local LLM using a multitask learning approach to produce interpretable
reasoning chains and accurate predictions. By combining knowledge retrieval with LLM-driven reasoning,
KARE significantly enhances the accuracy and reliability of clinical predictions.

LLMs for Healthcare Predictions. LLMs have revolutionized healthcare applications due to their
advanced language understanding and generation capabilities (Xu et al., 2023; Kim et al., 2024;
Bedi et al., 2024; Denecke et al., 2024). Recent works like MedRetriever (Ye et al., 2021), Graph-
Care (Jiang et al., 2024a), RAM-EHR (Xu et al., 2024), EHR-KnowGen (Niu et al., 2024b), and
EMERGE (Zhu et al., 2024a) have attempted to inject knowledge from retrieved literature or LLMs
into patient representations, but they still lack interpretability and do not fully exploit the reasoning
capabilities of LLMs. On the other hand, when directly applied to domain-specific tasks like EHR
prediction, LLMs can produce significant errors and hallucinations due to the lack of integration of
specialized domain knowledge (Zhu et al., 2024b; Xu et al., 2024; Cui et al., 2024; Shi et al., 2024;
Chen et al., 2024). Recent works like KG-RAG (Soman et al., 2023) demonstrate the broader value
of KG integration with LLMs in biomedical applications. Therefore, our work integrates KG com-
munity indexing and dynamic graph retrieval, compared to traditional RAG (Lewis et al., 2021; Niu
et al., 2024a) and KGs, to construct and query fine-grained, precise knowledge, enhancing patient
context. Furthermore, existing LLM-based methods often fail to fully harness the inherent reasoning
capabilities of LLMs. Recent efforts (Cui et al., 2024; Shi et al., 2024) explored agentic frameworks
for EHR prediction but rely on prompting that does not deeply engage with underlying EHR data
patterns, resulting in suboptimal performance. Our approach distinguishes itself by fine-tuning a
specialized, smaller LLM that incorporates reasoning abilities distilled from larger models.

3 KARE: KNOWLEDGE AWARE REASONING-ENHANCED FRAMEWORK

Our KARE framework (Figure 1) aims to improve healthcare predictions by combining relevant
medical knowledge along with reasoning capabilities with LLMs. The following steps achieve this:
(1) medical concept knowledge graph construction and indexing, (2) patient context construction
and augmentation, and (3) reasoning-enhanced precise healthcare prediction.

3.1 STEP 1: MEDICAL CONCEPT KNOWLEDGE GRAPH CONSTRUCTION AND INDEXING

Objective of Step 1 is to create a medical knowledge base that is specifically tailored to electronic
health record (EHR) data. Unlike most existing medical knowledge graphs, which are static and not
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connected to the EHR data, KARE dynamically generates a high-quality knowledge base that can
be used for retrieving and predicting information in later stages.

3.1.1 MEDICAL CONCEPT-SPECIFIC KNOWLEDGE GRAPH EXTRACTION

For each medical concept ci in the EHR coding system, we extract a concept-specific knowledge
graph Gci = (Vci , Eci) globally tailored to the EHR datasets from three sources:

(a) Biomedical KG (e.g., UMLS (Bodenreider, 2004)): For each medical concept ci in EHR data,
we extract a subgraph GKG

ci by first iterating through the patient EHR dataset to collect the top X
co-existing concepts appeared in each patient’s data, forming the set of related concepts Rci . We
then find the shortest path pij in the KG for each pair (ci, cj) in Rci , with a specified maximum path
length. GKG

ci = (V KG
ci , EKG

ci ) is constructed by combining all these shortest paths, where V KG
ci and

EKG
ci are the union of nodes and edges in all pij , respectively. See more details in Appendix B.1.

(b) Biomedical Corpus (e.g., PubMed (Canese & Weis, 2013)): We iterate through the EHR dataset
and, for each visit of the patients, and collect all the involved medical concepts. We then retrieve the
top n documents from the corpus based on these medical concepts. For each retrieved document,
we perform entity extraction and relation extraction to extract KG triples. The extracted triples are
then added to the KG of the medical concepts mentioned in the document. By doing so, GBC

ci is built
for each concept ci. We showcase more details in Appendix B.2.

(c) LLMs: We iterate through the EHR dataset and prompt the LLM to identify the relationships
among the concepts that are helpful to the clinical predictions, where we allow the LLM to add
intermediate relationships within two concepts. The process is detailed in Appendix B.3.

The final concept-specific KG Gci is the union of the subgraphs from each source:

Gci = GKG
ci ∪GBC

ci ∪GLLM
ci (1)

Finally, we integrate all concept-specific KGs for the medical concepts in our EHR coding system.
The resulting knowledge graph G′ = (V ′, R′, E′) is defined as G′ =

⋃
ci∈C Gci where C is the set

of all medical concepts in the specified EHR coding system.

Note: Different from the KG construction method introduced by GraphCare (Jiang et al., 2024a),
which retrieves sparse and random relationships from LLMs and biomedical KGs, our approach
utilizes the EHR dataset to anchor the relevant relationships and interactions among the medical
concepts present in patient data. This targeted focus allows us to construct a more relevant and
context-tailored KG for clinical predictions.

3.1.2 SEMANTIC CLUSTERING

Semantic clustering in our KG addresses the challenge of differently named entities and relations
from various sources that may refer to the same concept. We employ agglomerative clustering
(Müllner, 2011) with an automatically determined optimal threshold. First, we generate text em-
beddings ei = TextEmbed(vi) for each entity vi ∈ V ′ and ej = TextEmbed(rj) for each re-
lation rj ∈ R′ using an LLM. To determine the optimal clustering thresholds θe and θr for en-
tities and relations, we refer to the silhouette score (Shahapure & Nicholas, 2020; Jiang et al.,
2024b), which considers both intra-cluster similarity and inter-cluster dissimilarity. We sample a
subset of entities and relations, perform agglomerative clustering with varying distance thresholds,
and select those yield the highest scores. We then cluster all entities and relations using their
respective optimal thresholds. Each cluster is represented by the element closest to the cluster cen-
ter, determined by the average embedding of all elements within the cluster. We create mappings
ϕe : V ′ → V and ϕr : R′ → R between the original entities/relations and their cluster representa-
tives. Each triple (h′, r′, t′) in the original KG is mapped to its corresponding cluster representatives
(h, r, t) = (ϕe(h

′), ϕr(r
′), ϕe(t

′)), resulting in a refined knowledge graph G = (V,R,E).

3.1.3 HIERARCHICAL KG COMMUNITY DETECTION AND INDEXING

We organize the refined knowledge graph (KG) into a hierarchical structure of communities using
the Leiden algorithm (Traag et al., 2019). This is done at multiple levels of granularity, from coarse
to fine. We run the algorithm multiple times with different randomness parameters to explore diverse
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community structures, and generate multi-theme summaries for each community, providing a more
comprehensive understanding of the knowledge contained withtin the KG.

To keep computation manageable, we limit the maximum number of triples per community (Zc) and
the maximum number of triples per initial summary (Zs).

For each community, we generate two types of summaries using an LLM (prompts used: Figure 12):

• General summary: A concise summarization of the medical concepts and relationships in the
community without focusing on any specific theme.

• Theme-specific summary: A summary that highlights how the knowledge in the community relates
to a specific theme (e.g., mortality prediction), if relevant. Figure 14 shows an example.

The summarization process depends on the community size:

• For small communities (size ≤ Zs), we directly summarize all triples.

• For large communities (Zs < size ≤ Zc), we shuffle and split the triples into subsets, summarize
each subset, and then iteratively aggregate the summaries until we get a single comprehensive
summary (prompt shown in Figure 13).

• For extremely large communities (size > Zc), we do not generate summaries due to the limit of
the LLM context window.

As we move up the hierarchy from fine to coarse levels, triples from small communities get merged
into larger ones, which are then summarized using the same process.

The result is a hierarchical structure of communities at different granularities, each with theme-
specific summaries. Running the Leiden algorithm multiple times with different randomness pa-
rameter gives us diverse communities, allowing entities to contribute to multiple summaries. This
rich, multi-level representation of the KG is the foundation for later steps.

3.2 STEP 2: PATIENT CONTEXT CONSTRUCTION AND AUGMENTATION

Objective of Step 2: This step constructs patient’s EHR context with the highly relevant and fine-
grained medical knowledge attached.

Base Context Construction. For a patient p, we construct a base context Bp with their EHR data
with a standardized template. This context focuses on (1) task description, (2) the patient’s con-
ditions, procedures, and medications across different visits, and (3) similar patients to the target
patient. For (3), two most similar patients are retrieved from the reference set (i.e., training data)
based on the EHR similarity where one has the same label as patient p and the other has a different
label (Cui et al., 2024). Figure 11 shows an example of the base context and the template used.

Context Augmentation. To enrich the patient’s base context with relevant information from the
knowledge graph, we first construct a patient-specific knowledge graph Gp by aggregating the
concept-specific graphs Gci (defined in Eq. 1) for all medical concepts ci in the patient’s EHR,
using the mappings ϕe and ϕr from §3.1.2:

Gp = ∪ci∈EHRp
{ϕe(h), ϕr(r), ϕe(t) | (h, r, t) ∈ Gci} (2)

From Gp, we derive two sets of nodes: V direct
p , representing medical concepts that directly appear in

the patient’s EHR, and V indirect
p , containing the remaining nodes in Gp.

We then introduce a combined relevance score for each community Ck to select the most relevant
summaries for context augmentation:

Relevance(Ck) =
(
H(Ck, V

direct
p ) + α · H(Ck, V

indirect
p )

)
× Decay(Ck, V

direct
p )

× Coherence(SCk
,Bp)× Recency(Ck, V

direct
p )× ThemeRelτ (Ck) (3)

In Eq. 3, H(Ck, V
direct
p ) and H(Ck, V

indirect
p ) calculate the normalized counts of direct and indirect

node hits by comparing the nodes in community Ck with the corresponding sets of direct and indirect
nodes. The parameter α ∈ [0, 1) weights the importance of indirect hits relative to direct hits. The
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decay function Decay(Ck, V
direct
p ) reduces the contribution of previously hit nodes in community

Ck by a factor βH(v), where β ∈ (0, 1] is a decay constant and H(v) is the hit count of node v in
previous selections, considering only the direct nodes V direct

p . Additional factors are defined as:

Coherence(SCk
,Bp) = 1 + λ1 · cos (e(SCk

), e(Bp)) (4)

Recency(Ck, V
direct
p ) = 1 + λ2 ·

∑
v∈VCk

∩V direct
p

visit(v)

|VCk
∩ V direct

p |
(5)

ThemeRelτ (Ck) = 1 +
λ3

|VCk
|

∑
v∈VCk

max
z∈Tτ

cos (e(v), e(z)) (6)

Here, e(·) denotes a text embedding function, cos(·, ·) is the cosine similarity between embeddings,
visit(v) returns the visit index of node v, and λ1, λ2, λ3 ∈ [0, 1] control the weights of the metrics.
The set Tτ contains representative terms for the theme τ (e.g., {end-stage, life-threatening, ...} for
mortality prediction), same as those used for attention initialization in (Jiang et al., 2024a).

The proposed metrics in Eq. 3 serve different purposes: node hits H ensure specificity to the pa-
tient’s conditions, decay factor promotes diversity, coherence aligns the selected summaries with the
patient’s overall context, recency prioritizes more recent information, and theme relevance main-
tains task-oriented selection. In addition, we propose a Dynamic Graph Retrieval and Augmentation
(DGRA) method to iteratively select the most relevant summaries to augment the patient’s context.
At each iteration, it performs as:

Algorithm 1 Dynamic Graph Retrieval and Augmentation
Input: Set of communities C, patient graph Gp, base con-

text Bp, desired number of summaries N
Output: Augmented patient context Ap

Initialize Sp ← ∅
Initialize hit counts H(v)← 0 for each node v ∈ V direct

p

while |Sp| < N do
Compute Relevance(Ck) for all Ck ∈ C using Eq. 3

Select Cbest ← argmaxCk∈C Relevance(Ck)
Add SCbest to Sp: Sp ← Sp ∪ SCbest

For each v ∈ VCbest ∩ V direct
p , H(v)← H(v) + 1

Remove Cbest from C: C ← C \ Cbest
end
Augment patient context: Ap = Bp ⊕ Sp

return Ap

(1) Compute the relevance scores for
all candidate communities Ck ∈ C
using Eq. 3.

(2) Identify the community Cbest with
the highest relevance score and add
its summary SCbest to the set of se-
lected summaries Sp.

(3) Increment the hit count H(v) for
each node v in VCbest , which will im-
pact the decay in future relevance cal-
culations.

(4) Remove Cbest from the candidate
communities C, ensuring it is not re-
considered in subsequent iterations.

The process continues until N summaries have been selected. The final augmented patient context
Ap is obtained by concatenating the base context Bp with the selected summaries.

By dynamically updating the node hits and recalculating relevance scores at each iteration, we pri-
oritize communities that contribute new and valuable information. This ensures that the augmented
context includes the most relevant and diverse information from the KG, tailored to the patient’s
specific conditions and the prediction task.

3.3 STEP 3: REASONING-ENHANCED PRECISE HEALTHCARE PREDICTION

Objective of Step 3: This step trains an LLM capable of predicting healthcare outcome while gen-
erating a reasoning process, using the augmented patient context constructed in the previous step.

3.3.1 TRAINING SAMPLE GENERATION

Inspired by recent rationale distillation approaches (Kang et al., 2024; Kwon et al., 2024; Jiang et al.,
2024b), we employ an LLM to generate reasoning chains in a unified format for each patient p and
task τ . This process involves entering (1) the task descriptionDτ (e.g., Figure 15), (2) the augmented
patient context Ap, and (3) the corresponding ground truth label y∗p,τ into the LLM. The specific
prompt utilized for the reasoning chain (training sample) generation is showcased in Figure 16 in
Appendix. The LLM generates K reasoning chains ρp,τ,k along with confidence levels. We select
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Table 1: Statistics of pre-processed EHR datasets. “#”: “the number of”, “/ patient”: “per patient”.
MIMIC-III-Mort. MIMIC-III-Read. MIMIC-IV-Mort. MIMIC-IV-Read.

Train Valid Test Train Valid Test Train Valid Test Train Valid Test

# Patients (Samples) 7730 991 996 7730 991 996 8018 996 986 8029 958 1013
# Visits / Patient 1.56 1.60 1.61 1.56 1.60 1.61 1.26 1.30 1.21 1.26 1.28 1.25
# Conditions / Patient 23.27 23.92 25.89 23.27 23.92 25.89 14.34 15.30 13.59 13.62 14.21 13.21
# Procedures / Patient 6.22 6.56 7.17 6.22 6.56 7.17 2.96 3.08 2.84 2.89 2.96 2.81
# Medications / Patient 54.79 55.77 63.73 54.79 55.77 63.73 30.66 32.86 28.40 28.74 30.61 27.59

the reasoning chain with the highest confidence, ensuring that only the most reliable explanations are
used. The final set of training data for each patient-task pair is then {(Dτ ,Ap, ρ

best
p,τ , y

∗
p,τ )}, where

ρbest
p,τ is the reasoning chain with the highest confidence level.

3.3.2 MULTITASK-BASED FINE-TUNING AND PREDICTION

We fine-tune a relatively small local LLM (e.g., a 7B-parameter model) to perform both reasoning
chain generation and label prediction for each patient p and healthcare prediction task τ (such as
mortality or readmission prediction). The model is trained using inputs that consist of the task
description Dτ and the augmented patient context Ap, with an prepended instruction indicating
whether to generate a reasoning chain or predict the label. These inputs and outputs are formatted
according to the templates shown in Figure 17 in the Appendix.

During fine-tuning, when instructed to generate a reasoning chain (with the prefix [Reasoning]),
the model aligns its output with the reasoning chain ρbest

p,τ obtained from the previous step. When
instructed to predict the label (with the prefix [Label Prediction]), it aligns its output with
the ground truth label y∗p,τ . We minimize the cross entropy loss across both tasks, encouraging the
development of shared representations that enhance performance in both reasoning and prediction.

In the prediction phase, given a new patient pnew and task τ , we provideApnew , τ , and the appropriate
instruction to the fine-tuned model. Based on the instruction, the model can either generate the
reasoning chain ρpnew,τ or predict the label ypnew,τ . This flexible approach allows us to obtain detailed
reasoning when necessary or perform efficient label prediction, leveraging the multitask training to
effectively handle both tasks during inference.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Tasks. In this work, we focus on the following EHR-based prediction tasks:

• Mortality Prediction. This task estimates mortality outcome for next visit, defined as f :

(x1, x2, . . . , xt−1)→ y[xt], where y[xt] ∈ {0, 1} is patient’s survival status during visit xt.

• Readmission Prediction. This task predicts if patient will be readmitted within σ days, defined as
f : (x1, x2, . . . , xt−1) → y[φ(xt) − φ(xt−1)], where y ∈ {0, 1}, φ(xt) is timestamp of visit xt,
and y[φ(xt)− φ(xt−1)] = 1 if φ(xt)− φ(xt−1) ≤ σ, else 0. σ is set to 15 in this study.

Datasets. We utilize the publicly available MIMIC-III (Johnson et al., 2016) (v1.4) and MIMIC-IV
(Johnson et al., 2020) (v2.0) EHR datasets, and use PyHealth (Yang et al., 2023a) for preprocessing.
MIMIC-III is processed (full set) using the same approach as GraphCare (Jiang et al., 2024a). For
MIMIC-IV mortality prediction, we retain 2,152 patients with a label of 1 (mortality), excluding 54
patients with more than 10 visits. We then randomly (seed=42) sample unique patients with a label
of 0, each having no more than 10 visits, until reaching a sample size of 10,000. For MIMIC-IV
readmission prediction, we randomly (seed=42) select 5,000 unique patients with a label of 1 (will
be readmitted) and 5,000 with a label of 0. Both datasets are split into training, validation, and test
sets in a 0.8/0.1/0.1 ratio by patient, ensuring that all samples from the same patient are confined
to a single subset, preventing data leakage. We use Clinical Classifications Software (CCS) for
condition/procedure mappings and the Anatomical Therapeutic Chemical classification system at
the third level (ATC3) for medication mapping, with the resulting statistics presented in Table 1.

Evaluation Metrics. We employ four standard binary classification metrics: (1) Accuracy, mea-
suring overall correct predictions; (2) Macro-F1, providing a balanced measure for imbalanced
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Table 2: Comparative analysis of mortality and readmission predictions using MIMIC-III and MIMIC-IV
datasets. “pos” indicates the proportion of positive samples (label = 1) in the test set. Metrics like Macro F1
and Sensitivity are emphasized by an asterisk (∗) due to their importance for handling imbalanced datasets.
Results are averaged by multiple runs: 30 for ML-based, 10 for LM+ML-based, and 3 for LLM-based methods
with different random seeds. We highlight the highest value for each metric.

MIMIC-III
Mortality Prediction (pos = 5.42%) Readmission Prediction (pos = 54.82%)

Type Models Accuracy Macro F1∗ Sensitivity∗ Specificity Accuracy Macro F1 Sensitivity Specificity

ML

GRU (Chung et al., 2014) 92.7 50.7 3.7 97.8 62.2 61.5 68.9 54.0
Transformer (Vaswani et al., 2017) 92.7 51.9 5.6 97.6 58.8 58.2 65.0 51.3
RETAIN (Choi et al., 2016) 92.4 50.6 3.7 97.6 59.1 56.9 74.9 40.0
GRAM (Choi et al., 2017) 92.4 50.2 5.2 95.2 61.8 60.4 74.9 46.4
Deepr (Nguyen et al., 2016) 91.9 51.0 3.7 98.2 62.6 62.1 66.7 57.6
TCN (Bai et al., 2018) 91.6 53.2 9.3 96.4 63.4 62.7 70.7 54.7
ConCare (Ma et al., 2020b) 94.6 48.6 0.0 100.0 59.2 59.0 61.5 56.4
AdaCare (Ma et al., 2020a) 90.6 54.1 9.1 97.6 61.6 60.5 70.8 50.3
GRASP (Zhang et al., 2021) 93.7 49.9 1.9 98.9 61.3 59.5 74.9 44.8
StageNet (Gao et al., 2020) 90.5 50.5 5.6 95.4 60.5 60.0 65.1 54.9
KerPrint (Yang et al., 2023b) 92.4 52.2 9.8 94.7 63.5 62.1 68.0 56.1

LM+ML
GraphCare (Jiang et al., 2024a) 94.9 58.3 17.2 97.1 65.4 64.1 70.3 57.8
RAM-EHR (Xu et al., 2024) 94.4 59.6 14.8 98.9 64.8 63.5 74.7 52.4
EMERGE (Zhu et al., 2024a) 94.1 57.7 13.2 98.4 63.7 62.0 68.0 55.9

LLM

Zero-shot (LLM: Claude 3.5 Sonnet)
w/ EHR context only 89.5 50.4 6.4 94.4 54.3 35.4 98.9 0.2
w/ Classic RAG[a] 89.9 51.2 10.2 92.8 53.2 34.6 91.2 1.4
w/ KARE-augmented context[b] 92.3 54.6 14.2 94.6 56.3 43.8 93.9 10.6

Few-Shot (LLM: Claude 3.5 Sonnet)
w/ exemplar only (N=2)[c] 88.7 49.5 5.6 93.4 52.7 42.2 87.0 11.1
w/ exemplar only (N=4) 88.0 49.2 5.6 92.7 53.6 44.7 84.0 15.7
w/ EHR-CoAgent[d] (Cui et al., 2024) 87.4 51.7 13.0 91.8 55.2 46.1 78.2 20.1
w/ KARE-augmented context 91.5 53.5 13.7 94.0 57.1 49.3 75.5 27.2

Fine-tuned (LLM: Mistral-7B-Instruct-v0.3)
Backbone 90.4 53.0 11.4 94.3 57.6 57.6 50.5 66.3
w/ Classic RAG 90.1 51.4 12.5 91.6 60.2 59.9 56.1 64.5
KARE (ours) 95.3 64.6 24.7 98.3 73.9 73.7 76.7 70.7

MIMIC-IV
Mortality Prediction (pos = 19.16%) Readmission Prediction (pos = 46.50%)

Type Models Accuracy Macro F1∗ Sensitivity∗ Specificity Accuracy Macro F1 Sensitivity Specificity

ML

GRU (Chung et al., 2014) 88.7 76.4 42.9 99.6 62.4 62.2 68.3 56.2
Transformer (Vaswani et al., 2017) 83.7 71.3 47.1 92.3 61.3 61.3 63.0 59.5
RETAIN (Choi et al., 2016) 84.8 73.8 52.4 92.4 62.8 62.6 68.7 56.6
GRAM (Choi et al., 2017) 86.4 74.4 50.6 93.9 62.5 62.5 67.4 57.8
Deepr (Nguyen et al., 2016) 89.2 78.9 50.8 98.2 59.2 59.2 57.0 61.5
TCN (Bai et al., 2018) 89.9 79.2 47.6 99.9 63.6 63.5 72.2 56.1
ConCare (Ma et al., 2020b) 89.8 78.9 47.1 99.9 59.8 59.8 63.5 56.6
AdaCare (Ma et al., 2020a) 88.7 78.2 50.3 97.8 62.9 62.9 58.4 67.7
GRASP (Zhang et al., 2021) 89.9 79.1 47.6 99.8 59.7 59.6 53.1 66.7
StageNet (Gao et al., 2020) 88.1 77.8 51.9 96.7 62.8 62.7 62.6 62.9
KerPrint (Yang et al., 2023b) 88.7 79.8 53.1 98.0 63.5 63.3 67.0 60.1

LM+ML
GraphCare (Jiang et al., 2024a) 91.5 80.3 57.8 96.6 65.7 65.5 66.2 65.0
RAM-EHR (Xu et al., 2024) 90.5 78.4 52.6 97.0 65.5 65.5 64.0 67.0
EMERGE (Zhu et al., 2024a) 90.7 78.3 53.4 96.6 63.3 63.2 61.5 64.9

LLM

Zero-shot (LLM: Claude 3.5 Sonnet)
w/ EHR context only 80.5 47.0 2.7 98.7 49.4 45.7 81.8 21.5
w/ Classic RAG[a] 81.0 49.9 8.1 94.6 49.0 44.2 83.2 18.8
w/ KARE-augmented context[b] 83.2 54.3 12.7 96.3 52.3 49.7 80.6 27.7

Few-Shot (LLM: Claude 3.5 Sonnet)
w/ exemplar only (N=2)[c] 80.8 46.7 2.1 99.5 49.3 44.7 84.0 19.1
w/ exemplar only (N=4) 81.6 49.9 5.3 99.8 49.0 44.1 84.3 18.2
w/ EHR-CoAgent[d] (Cui et al., 2024) 81.0 55.5 13.8 97.0 51.2 46.3 78.4 24.0
w/ KARE-augmented context 84.5 57.4 15.8 97.6 54.1 51.9 75.2 34.1

Fine-tuned (LLM: Mistral-7B-Instruct-v0.3)
Backbone 92.2 83.1 65.0 96.2 56.1 46.7 23.1 76.2
w/ Classic RAG 92.5 83.8 63.2 97.6 58.8 52.1 46.7 57.5
KARE (ours) 94.1 90.4 73.2 99.8 73.9 73.8 85.6 63.7

[a] We retrieve up to ten documents from 30 M PubMed abstracts that are most similar to the base context. Dense retrieval is applied with Nomic (Nussbaum et al., 2024) (dim=768).
[b] Context is augmented as described in Section 3.2 using our constructed KG communities. Up to ten community summaries are appended as supplementary information.
[c] N=2 means that we retrieve two most similar patients (one from positive and the other from negative samples), similar to the strategy introduced in (Cui et al., 2024).
[d] Since the code for EHR-CoAgent was not open-sourced at the time of our paper submission, we implemented it ourselves, as detailed in Appendix C.

datasets; (3) Sensitivity, quantifying the model’s ability to identify high-risk patients; and (4) Speci-
ficity, assessing accuracy in identifying low-risk patients. Detailed discussion of metric selection
and computation is provided in Appendix E.

Baselines. We compare to three categories of baselines: (1) ML-based methods: GRU (Chung et al.,
2014), Transformer (Vaswani et al., 2017), RETAIN (Choi et al., 2016), GRAM (Choi et al., 2017),
Deepr (Nguyen et al., 2016), TCN (Bai et al., 2018), StageNet (Gao et al., 2020), ConCare (Ma
et al., 2020b), AdaCare (Ma et al., 2020a), GRASP (Zhang et al., 2021), and KerPrint (Yang et al.,
2023b); (2) LM + ML-based methods: GraphCare (Jiang et al., 2024a), RAM-EHR (Xu et al., 2024),
and EMERGE (Zhu et al., 2024a); and (3) LLM-based methods: zero-shot and few-shot prompting
with the advanced LLM Claude 3.5 Sonnet (Anthropic, 2024), and a few-shot-based method EHR-
CoAgent (Cui et al., 2024). We showcase the details of baseline implementation in Appendix C.

Implementation Details. We utilize Scikit-learn (Pedregosa et al., 2018) for agglomerative cluster-
ing and Graspy (Chung et al., 2019) for the hierarchical Leiden algorithm. Semantic similarity cal-
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Table 3: Ablation study of fine-tuning components. Results are averaged by 3 runs with different seeds.
Similar Retrieved Reasoning MIMIC-III-Mortality MIMIC-III-Readmission
Patients Knowledge Accuracy Macro F1 Sensitivity Specificity Accuracy Macro F1 Sensitivity Specificity

90.4 53.0 11.4 94.3 57.6 57.6 50.5 66.3
93.1 58.4 15.8 97.5 65.5 64.7 62.3 67.7
95.3 64.6 24.7 98.3 72.8 72.6 74.7 70.6
93.6 61.3 18.4 98.6 73.9 73.7 76.7 70.7

Similar Retrieved Reasoning MIMIC-IV-Mortality MIMIC-IV-Readmission
Patients Knowledge Accuracy Macro F1 Sensitivity Specificity Accuracy Macro F1 Sensitivity Specificity

92.2 83.1 65.0 96.2 56.1 46.7 23.1 76.2
93.3 85.4 67.3 97.5 64.7 62.1 69.3 55.9
93.8 89.6 74.5 98.8 72.2 71.9 81.1 64.0
94.1 90.4 73.2 99.9 73.9 73.8 85.6 63.7

culations are performed using the Nomic embedding (Nussbaum et al., 2024) for PubMed abstracts
and the text-embedding-3-large model from Azure OpenAI for all other purposes. The optimal
thresholds for semantic clustering are determined to be θe = θr = 0.14. We generate community
summaries using Zs = 20 and Zc = 150, and employ hyperparameters α = 0.1, β = 0.7, λ1 = 0.2,
λ2 = 0.2, and λ3 = 0.3 for patient context augmentation. Claude 3.5 Sonnet, accessed via the Ama-
zon Bedrock platform1, is used as our expert LLM for generating reasoning chain training samples.
Our fine-tuning framework is implemented using the TRL (von Werra et al., 2020), Transformers
(Wolf et al., 2020), and FlashAttention-2 (Dao, 2024), with Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023) as our local LLM. We provide step-by-step implementation details in Appendix D. 2

4.2 EXPERIMENTAL RESULTS

Main Results. Table 2 presents the main results and highlights several key observations: (1) KARE
consistently outperforms all other methods across every dataset and task; (2) the naı̈ve RAG model
sometimes fails to enhance zero-shot performance, while our method effectively augments context,
leading to improved zero-shot predictions; (3) our context augmentation method is comparable to the
state-of-the-art EHR-CoAgent in few-shot scenarios; and (4) our approach identifies more unique
patterns, particularly excelling in correctly predicting true positives for mortality prediction, which
other supervised models struggle to capture. We place some case studies in Appendix F.

Note: In mortality prediction using MIMIC-III/IV, sensitivity is crucial because positive cases are
significantly fewer than negative ones, increasing the risk of overfitting. Accurately predicting posi-
tive cases is essential. Our model’s specificity is not always the highest, as efforts to enhance model’s
overall capability can sometimes lead to misclassification of negative cases as positive. This is a
well-known trade-off between sensitivity and specificity (Zweig & Campbell, 1993; Powers, 2020).
Conversely, for readmission prediction, where datasets are balanced, the model is expected to per-
form equally well on both positive and negative samples.
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Figure 2: Validation loss of the label prediction dur-
ing the fine-tuning with different settings. Loss is com-
puted every 1/4 epoch. Task: mortality prediction on
MIMIC-IV. “Base” and “Aug.” denote base context and
augmented context, respectively.

Ablation Study of Fine-tuning Components.
We perform an ablation study to assess the in-
dividual contributions of each component in
boosting the performance of our fine-tuned
model, as illustrated in Table 3 and Figure 2.
The results in Table 3 show that all components
(similar patients, retrieved knowledge, and rea-
soning) contribute positively to performance in
most cases. However, in highly imbalanced
datasets like MIMIC-III Mortality, including
similar patients can degrade performance. This
is likely because the retrieved patients for pos-
itive cases (label = 1) tend to be less similar
when positive samples are scarce. Addition-
ally, the absence of these components makes
the fine-tuned model more prone to label bias,
as seen in MIMIC-III Mortality and MIMIC-
IV Readmission. Figure 2 further illustrates

1The use of Amazon Bedrock is authorized by MIMIC: https://physionet.org/news/post/gpt-responsible-use
2Our code is available at: https://github.com/pat-jj/KARE
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Figure 3: Ablation study of (left) the metrics we proposed for patient context augmentation, and (right) the
KG used as the knowledge source. N.H., Coh., Rec., and T.R. denote node hits, coherence, recency, and theme
relevance, respectively. Tested task: MIMIC-IV-Readmission.

that fine-tuning with base context leads to early overfitting compared to fine-tuning with augmented
context. Moreover, adding reasoning as a multitask objective accelerates convergence for models
using base context, whereas it slows convergence when applied to models with augmented context.
This suggests that learning reasoning over more information-rich contexts is more challenging, but
ultimately results in a lower final loss once mastered.

Effect of Context Augmentation Components. The LHS of Figure 3 compares the contribution of
each metric proposed for community summary selection in patient context augmentation. The study
shows that node hits is the most critical factor, followed by the DGRA algorithm, theme relevance,
coherence, and recency, with each playing a distinct role in enhancing the final performance.

Effect of the Knowledge Source. The RHS of Figure 3 shows how removing individual knowledge
sources affects the model’s performance on the MIMIC-IV readmission task. While all KGs im-
prove predictions, removing GKG causes the smallest performance drop, whereas removing GLLM

leads to the largest decline. This highlights the importance of the LLM-extracted KG, likely due to
its contextually relevant, clinically specific relationships. The UMLS-derived KG contributes less,
likely because code mapping introduces sparsity by generalizing fine-grained concepts into more
abstract categories (e.g., mapping “acute myocardial infarction” to “cardiovascular diseases”). This
generalization limits the exploration of detailed relationships within the large KG. Future work will
explore methods for retrieving knowledge with more fine-grained concepts from biomedical KGs.

Table 4: Comparison of two strategies for fine-
tuning LLM with reasoning chain and label.

MIMIC-IV-Mortality MIMIC-IV-Readmission
Strategy Macro F1 Sensitivity Accuracy Macro F1

Multitask 90.4 73.2 73.9 73.8
“Two-In-One” 86.5 68.0 67.2 65.4

Benefit of Multitask Learning. We compare our
multitask learning approach, which treats reasoning
chain generation and outcome prediction as separate
tasks, with a “Two-In-One” method that only outputs
the concatenated reasoning chain and ground-truth
label. As shown in Table 4, multitask learning sig-
nificantly outperforms the “Two-In-One” approach
for both mortality and readmission prediction on MIMIC-IV. This demonstrates that decoupling
tasks allows better capture of each component’s nuances, yielding more robust patient representa-
tions. This framework enables the LLM to specialize in generating quality reasoning chains while
making accurate predictions, resulting in a more effective and interpretable model.

5 CONCLUSION

We propose KARE, a novel framework that combines community-based knowledge graph retrieval
with large language model reasoning to enhance healthcare predictions. KARE constructs a compre-
hensive knowledge graph, employs hierarchical community detection, and dynamically augments
patient context with fine-grained, contextually relevant information. By fine-tuning a specialized
smaller LLM, KARE generates interpretable reasoning chains for accurate predictions. Experi-
ments on MIMIC-III and MIMIC-IV datasets demonstrate KARE’s superiority over state-of-the-art
methods for mortality and readmission prediction tasks. Future work will focus on scaling KARE to
more challenging healthcare tasks and exploring its applicability to other scientific domains, where
integrating knowledge graphs and powerful language models can potentially drive groundbreaking
scientific progress. We discuss ethics, broader impacts, and limitations in Appendix A. Human
evaluation of KARE-generated reasoning chains is presented in Appendix H.
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Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Jiarui Li, Ye Yuan, and Zehua Zhang. Enhancing llm factual accuracy with rag to counter hal-
lucinations: A case study on domain-specific queries in private knowledge-bases, 2024. URL
https://arxiv.org/abs/2403.10446.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. K-bert:
Enabling language representation with knowledge graph, 2019. URL https://arxiv.org/
abs/1909.07606.

Liantao Ma, Junyi Gao, Yasha Wang, Chaohe Zhang, Jiangtao Wang, Wenjie Ruan, Wen Tang, Xin
Gao, and Xinyu Ma. Adacare: Explainable clinical health status representation learning via scale-
adaptive feature extraction and recalibration. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 825–832, 2020a.

Liantao Ma, Chaohe Zhang, Yasha Wang, Wenjie Ruan, Jiangtao Wang, Wen Tang, Xinyu Ma,
Xin Gao, and Junyi Gao. Concare: Personalized clinical feature embedding via capturing the
healthcare context. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 833–840, 2020b.

Varun Magesh, Faiz Surani, Matthew Dahl, Mirac Suzgun, Christopher D. Manning, and Daniel E.
Ho. Hallucination-free? assessing the reliability of leading ai legal research tools, 2024. URL
https://arxiv.org/abs/2405.20362.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

M. Wornow, Y. Xu, R. Thapa, et al. The shaky foundations of large language models and foun-
dation models for electronic health records. NPJ Digital Medicine, 6:135, 2023. doi: 10.1038/
s41746-023-00879-8. URL https://doi.org/10.1038/s41746-023-00879-8.

Zhenbang Wu, Cao Xiao, and Jimeng Sun. Medlink: De-identified patient health record linkage. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2672–2682, 2023.

Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Bowen Jin, May D Wang, Joyce C Ho, and Carl
Yang. Ram-ehr: Retrieval augmentation meets clinical predictions on electronic health records.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics,
2024.

Yongxin Xu, Xu Chu, Kai Yang, Zhiyuan Wang, Peinie Zou, Hongxin Ding, Junfeng Zhao,
Yasha Wang, and Bing Xie. Seqcare: Sequential training with external medical knowledge
graph for diagnosis prediction in healthcare data. In Proceedings of the ACM Web Confer-
ence 2023, WWW ’23, pp. 2819–2830, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9781450394161. doi: 10.1145/3543507.3583543. URL https:
//doi.org/10.1145/3543507.3583543.

Chaoqi Yang, Zhenbang Wu, Patrick Jiang, Zhen Lin, Junyi Gao, Benjamin Danek, and Jimeng
Sun. PyHealth: A deep learning toolkit for healthcare predictive modeling. In Proceedings of the
27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
2023, 2023a. URL https://github.com/sunlabuiuc/PyHealth.

Kai Yang, Yongxin Xu, Peinie Zou, Hongxin Ding, Junfeng Zhao, Yasha Wang, and Bing Xie. Ker-
print: local-global knowledge graph enhanced diagnosis prediction for retrospective and prospec-
tive interpretations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 5357–5365, 2023b.

X. Yang, A. Chen, N. PourNejatian, H. C. Shin, K. E. Smith, C. Parisien, C. Compas, C. Martin,
A. B. Costa, M. G. Flores, Y. Zhang, T. Magoc, C. A. Harle, G. Lipori, D. A. Mitchell, W. R.
Hogan, E. A. Shenkman, J. Bian, and Y. Wu. A large language model for electronic health
records. NPJ Digital Medicine, 5(1):194, December 2022. doi: 10.1038/s41746-022-00742-2.

16

https://arxiv.org/abs/2307.09288
https://github.com/huggingface/trl
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1038/s41746-023-00879-8
https://doi.org/10.1145/3543507.3583543
https://doi.org/10.1145/3543507.3583543
https://github.com/sunlabuiuc/PyHealth


Published as a conference paper at ICLR 2025

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering, 2022. URL
https://arxiv.org/abs/2104.06378.

Muchao Ye, Suhan Cui, Yaqing Wang, Junyu Luo, Cao Xiao, and Fenglong Ma. Medretriever:
Target-driven interpretable health risk prediction via retrieving unstructured medical text. In Pro-
ceedings of the 30th ACM International Conference on Information & Knowledge Management,
pp. 2414–2423, 2021.

Chaohe Zhang, Xin Gao, Liantao Ma, Yasha Wang, Jiangtao Wang, and Wen Tang. Grasp: generic
framework for health status representation learning based on incorporating knowledge from sim-
ilar patients. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
715–723, 2021.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D.
Manning, and Jure Leskovec. Greaselm: Graph reasoning enhanced language models for question
answering, 2022. URL https://arxiv.org/abs/2201.08860.

Yinghao Zhu, Changyu Ren, Zixiang Wang, Xiaochen Zheng, Shiyun Xie, Junlan Feng, Xi Zhu,
Zhoujun Li, Liantao Ma, and Chengwei Pan. Emerge: Integrating rag for improved multimodal
ehr predictive modeling. arXiv preprint arXiv:2406.00036, 2024a.

Yinghao Zhu, Zixiang Wang, Junyi Gao, Yuning Tong, Jingkun An, Weibin Liao, Ewen M Harrison,
Liantao Ma, and Chengwei Pan. Prompting large language models for zero-shot clinical predic-
tion with structured longitudinal electronic health record data. arXiv preprint arXiv:2402.01713,
2024b.

Mark H Zweig and Gregory Campbell. Receiver-operating characteristic (roc) plots: a fundamental
evaluation tool in clinical medicine. Clinical chemistry, 39(4):561–577, 1993.

17

https://arxiv.org/abs/2104.06378
https://arxiv.org/abs/2201.08860


Published as a conference paper at ICLR 2025

Contents of Appendix

A Ethics, Broader Impacts, and Limitations 19

B Details of Knowledge Graph Construction 19

B.1 KG Extraction from Large Biomedical KG . . . . . . . . . . . . . . . . . . . . . . 19

B.2 KG Extraction from Large Biomedical Corpus . . . . . . . . . . . . . . . . . . . . 20

B.3 KG Extraction from Large Language Models . . . . . . . . . . . . . . . . . . . . 22

B.4 Case Studies of KG Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

C Baseline Implementations 26

D Implementation Details of KARE 29

D.1 Step 1: Medical Concept Knowledge Graph Construction . . . . . . . . . . . . . . 29

D.2 Step 2: Patient Context Construction and Augmentation . . . . . . . . . . . . . . . 29

D.3 Step 3: Reasoning-Enhanced Precise Healthcare Prediction . . . . . . . . . . . . . 29

E Evaluation Metrics 31

E.1 Primary Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

E.2 Choice of Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

F Case Study 32

F.1 Reasoning-Enhanced Prediction by Our Fine-Tuned Model . . . . . . . . . . . . . 32

F.2 Zero-Shot & Few-Shot Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 33

G Templates, Prompts, and Examples 38

H Human Evaluation of Reasoning Chains 43

I Parameters & Training Time of Models 45

J Notations 46

18



Published as a conference paper at ICLR 2025

A ETHICS, BROADER IMPACTS, AND LIMITATIONS

Ethics: Our work involves analysis of electronic health record (EHR) data, which contains sensitive
personal medical information. To ensure the ethical handling of this data, we conducted all interac-
tions between the language models and the EHR data through Amazon Bedrock34, which provides
rigorous compliance standards and privacy protection measures. This allowed us to fully leverage
the capabilities of the LLMs while maintaining strict confidentiality of the patient data.

Broader Impacts: Our framework, KARE, demonstrates the potential for integrating knowledge
graphs and language model reasoning to enhance clinical decision support systems. By providing
more accurate and interpretable predictions for critical outcomes like mortality and readmission,
KARE could assist healthcare providers in identifying high-risk patients who may require additional
interventions or closer monitoring. This could ultimately lead to improved patient outcomes and
more efficient allocation of healthcare resources. However, it is important to recognize that our
models are intended to augment, rather than replace, the judgment of healthcare professionals. The
predictions should be considered as additional data points to inform clinical decision making, not as
definitive diagnoses or treatment recommendations.

Limitations: While KARE achieves promising results, there are several limitations to consider.
First, our evaluation is based on the MIMIC-III and MIMIC-IV datasets, which represent a specific
patient population from a single hospital system in the United States. The generalizability of our
findings to other patient populations or healthcare settings may be limited. Second, our knowledge
graphs are constructed from a subset of biomedical databases, literature, and language model out-
puts, and may not capture the full breadth of medical knowledge. Expanding the knowledge sources
and improving the knowledge extraction and integration processes could further enhance the perfor-
mance of our models. Third, our framework relies on the outputs of large language models, which
are known to have biases and can generate hallucinations. While we have taken steps to mitigate
these issues, such as collaborating with medical experts to validate the extracted knowledge, there
remains a risk of the models producing incorrect or biased predictions in some cases. Fourth, our
work is based on English biomedical literature and EHR data, and we did not evaluate the perfor-
mance of KARE on data in other languages. The applicability and effectiveness of our approach
for non-English clinical settings requires further investigation. Ongoing research is needed to de-
velop more robust and reliable language models for clinical applications across diverse languages
and populations.

In conclusion, KARE represents an important step towards leveraging knowledge graphs and lan-
guage model reasoning for improved clinical predictions. However, further research is needed to
address the limitations and ensure the safe and responsible deployment of such models in real-world
healthcare settings. We encourage future work to focus on enhancing the generalizability, inter-
pretability, and robustness of these approaches, as well as engaging with healthcare stakeholders to
develop guidelines for the ethical and effective use of AI in clinical decision support.

B DETAILS OF KNOWLEDGE GRAPH CONSTRUCTION

B.1 KG EXTRACTION FROM LARGE BIOMEDICAL KG

To construct concept-specific knowledge graphs from the Unified Medical Language System
(UMLS), we follow a multi-step process:

1. Extracting Co-existing Concepts from EHR Data: We iterate through the patient EHR dataset
and collect the top X (X = 20 in our implementation) most frequently co-existing concepts for
each unique medical concept based on their co-occurrence in patient records.

2. Mapping Concepts to UMLS CUIs: We map the medical concepts from the EHR data to their
corresponding Concept Unique Identifiers (CUIs) in UMLS. This involves mapping condition
and procedure concepts to CCS codes, then to ICD-9 codes, and finally to UMLS CUIs. Drug
concepts are directly mapped to ATC codes and then to UMLS CUIs.
3https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.

html
4https://physionet.org/news/post/gpt-responsible-use
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Figure 4: Our pipeline to construct concept-specific KG GKG with bio KG (UMLS) and EHR.

3. Extracting Subgraphs from UMLS: For each medical concept ci and its top X co-existing
concepts Rci , we extract a concept-specific subgraph GKG

ci from UMLS using a bidirectional
shortest path finding algorithm. The algorithm parameters are set as follows:

• max length=7: The maximum length of the shortest paths considered between concepts.
• max paths=40: The maximum number of shortest paths to retrieve for each pair of con-

cepts.
• max nodes=12000: The maximum number of nodes to explore during the bidirectional

search.
The bidirectional shortest path finding algorithm is implemented as follows:

Algorithm 2 Bidirectional Shortest Path Finding
Input: Graph G, start node s, end node t, max length l, max paths p, max nodes n
Output: Set of shortest paths P
Initialize forward queue Qf ← {[s]} and backward queue Qb ← {[t]}
Initialize forward visited dict Vf ← {s : [s]} and backward visited dict Vb ← {t : [t]}
Initialize paths P ← ∅ and nodes explored N ← 0
while Qf and Qb and |P | < p and N < n do

Expand forward path πf ← Qf .popleft() and last node u← πf [−1]
if u ∈ Vb then

P ← P ∪ {πf + Vb[u][:: −1][1 :]}
end
Expand backward path πb ← Qb.popleft() and last node u← πb[−1]
if u ∈ Vf then

P ← P ∪ {Vf [u] + πb[:: −1][1 :]}
end
if len(πf ) < 2l or len(πb) < 2l then

Expand neighbors and update Qf , Qb, Vf , Vb

end
end
return P

The extracted shortest paths for each pair (ci, cj) are combined to form the concept-specific
subgraph GKG

ci . The nodes V KG
ci and edges EKG

ci of the subgraph are the union of all nodes and
edges in the extracted paths.

By following this process, we construct a set of concept-specific knowledge graphs {GKG
ci } that

capture the relevant relationships and contextual information for each medical concept ci based on
the UMLS knowledge graph and real-world co-occurrence patterns in patient EHR data.

The number of the resulting KG triples from UMLS is 29,434.

B.2 KG EXTRACTION FROM LARGE BIOMEDICAL CORPUS

To construct concept-specific knowledge graphs, we process the EHR dataset and the PubMed Ab-
stracts corpus using the following pipeline (Figure 5):
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Figure 5: Our pipeline to construct concept-specific KG GBC from biomedical corpus with EHR.

1. Concept Set Extraction from EHR Data: We iterate through the EHR dataset and, for each
patient visit, we collect all the involved medical concepts (conditions, procedures, and drugs)
into a concept set. This results in a list of concept sets, where each set represents the concepts
associated with a specific patient visit.

2. Filtering Similar Concept Sets: To reduce redundancy and computational overhead, we filter
out highly similar concept sets based on their concept multi-hot vector representation. We use the
CountVectorizer from scikit-learn (Pedregosa et al., 2018) to create a vocabulary of unique
concepts and transform each concept set into a multi-hot vector. We then compare the symmetric
difference between pairs of concept sets and filter out sets that differ by fewer than a specified
similarity threshold (5 in our case). This step helps to eliminate nearly duplicate concept sets
while retaining a diverse range of concepts for knowledge graph construction.
This process results in 26,134 concept sets in our experiment.

3. Dense Retrieval of Relevant PubMed Abstracts: For each filtered concept set, we retrieve the
top n ( n = 3 in our case) most relevant documents from PubMed Abstracts using dense retrieval.
Considering the expensive time consumption to retrieve abstracts from the full corpus (with 30
million abstracts), we randomly (seed=42) select 1/10 abstracts as the subset corpus to proceed.
We employ the nomic-ai/nomic-embed-text-v1.5 model to embed both the concepts
and the PubMed abstracts into a dense vector space (dim=768). We then compute the cosine
similarity between the concept set embedding and the abstract embeddings to identify the most
relevant documents. The dense retrieval process is optimized for efficiency by processing the
embeddings in chunks and utilizing GPU acceleration when available.

4. Triple Extraction from PubMed Abstracts: For each retrieved PubMed abstract, we perform
entity extraction and relation extraction to extract knowledge graph triples. We use a large lan-
guage model (Claude 3.5 Sonnet in our case), to identify relationships between the concepts
mentioned in the abstract. The LLM is provided with a prompt that includes the abstract text,
the list of relevant concepts, and an example of the desired triple format. The prompt instructs
the LLM to extract at most 10 informative and logically sound triples for each abstract, focusing
on relationships closely related to the provided concepts. The extracted triples follow the format
[ENTITY1, RELATIONSHIP, ENTITY2], where the entities are replaced with the exact
concept terms when applicable. The prompt we used for the triple extraction is:

Given a medical text and a list of important concepts, extract relevant relationships between
the concepts from the text (if present). For each triple, if an entity matches one of the given
concepts, replace the entity with the exact concept term.
Focus on generating high-quality triples closely related to the provided concepts. Aim to
extract at most 10 triples for each text. Each triple should follow this format: [ENTITY1,
RELATIONSHIP, ENTITY2]. Ensure the triples are informative and logically sound.

Example:
Text:
Asthma is a chronic respiratory condition characterized by inflammation and narrowing
of the airways, leading to breathing difficulties. Common symptoms include wheezing,
coughing, shortness of breath, and chest tightness. Triggers can vary but often include
allergens, air pollution, exercise, and respiratory infections. Management typically involves
a combination of long-term control medications, such as inhaled corticosteroids, and
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quick-relief medications like short-acting beta-agonists. Recent research has focused on
personalized treatment approaches, including biologics for severe asthma and the role of the
microbiome in asthma development and progression. Proper inhaler technique and adherence
to medication regimens are crucial for effective management. Asthma action plans, developed
in partnership with healthcare providers, help patients manage symptoms and exacerbations.

Concepts:
[asthma, inflammation, airways, wheezing, coughing, inhaled corticosteroids, short-acting
beta-agonists, allergens, respiratory infections]

Extracted triples:
[[asthma, is a, chronic respiratory condition], [asthma, characterized by, inflammation of
airways], [inflammation, causes, narrowing of airways], [narrowing of airways, leads to,
breathing difficulties], [wheezing, is a symptom of, asthma], [coughing, is a symptom
of, asthma], [allergens, can trigger, asthma], [respiratory infections, can trigger, asthma],
[inhaled corticosteroids, used for, long-term control of asthma], [short-acting beta-agonists,
provide, quick relief in asthma]]

Text:
{text}

Concepts:
{concepts}

Extracted triples:

5. Knowledge Graph Construction: The extracted triples from each abstract are added to the
knowledge graph of the medical concepts mentioned in the document. This process builds a
concept-specific knowledge graph GBC

ci for each concept ci, incorporating relevant information
from the PubMed corpus. The resulting knowledge graphs capture the relationships and contex-
tual information associated with each medical concept.

By following this pipeline, we construct a comprehensive set of concept-specific knowledge graphs
that integrate information from both EHR data and the PubMed corpus. These knowledge graphs
serve as a valuable resource for EHR-based downstream tasks, such as patient representation learn-
ing and predictive modeling.

The number of resulting KG triples from the PubMed Abstracts is 259,938.

B.3 KG EXTRACTION FROM LARGE LANGUAGE MODELS
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Output format:
[[ENTITY1, RELATIONSHIP_1, ENTITY2], 
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Instruction
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Figure 6: Our pipeline to construct concept-specific KG with LLM and EHR.

To extract concept-specific knowledge graphs from large language models (LLMs), we follow a
process similar to the initial steps of the “KG extraction from corpus” pipeline (Appendix B.2):

22



Published as a conference paper at ICLR 2025

1. Concept Set Extraction from EHR Data: We iterate through the EHR dataset and, for each
patient visit, we collect all the involved medical concepts (conditions, procedures, and drugs)
into a concept set. This results in a list of concept sets, where each set represents the concepts
associated with a specific patient visit.

2. Filtering Similar Concept Sets: To reduce redundancy and computational overhead, we filter
out highly similar concept sets based on their concept multi-hot vector representation, as de-
scribed in the previous subsection. This step helps to eliminate nearly duplicate concept sets
while retaining a diverse range of concepts for knowledge graph construction.

3. Prompting LLMs for Relationship Extraction: For each filtered concept set, we prompt a
large language model (Claude 3.5 Sonnet in our case) to identify relationships among the medi-
cal concepts that can be potentially helpful for clinical predictions, such as mortality prediction
and readmission prediction. The LLM is encouraged to introduce intermediate relationships with
other entities based on its knowledge, and there is no requirement to keep all the relationships
connected. The prompt instructs the LLM to use the original names of the provided concepts in
the output, which should follow the format [[ENTITY1, RELATIONSHIP 1, ENTITY2],
[ENTITY2, RELATIONSHIP 2, ENTITY3], ...]. The prompt we used for the rela-
tionship extraction is:

Please identify the relationships among these medical concepts that can be potentially helpful
to clinical predictions (e.g., mortality prediction, readmission prediction) as many as possible.

You can introduce intermediate relationships with other entities based on your knowledge.

Consider how these concepts would interact with others to be useful for clinical predictions.
There’s no need to keep all the relationships connected.

For the concepts provided in the list, you MUST use the their original name without any
changes. Please output only the list of triples without any other information.

Output format:
[[ENTITY1, RELATIONSHIP 1, ENTITY2],
[ENTITY2, RELATIONSHIP 2, ENTITY3], ...]

Medical Concepts:
concepts

Output:

4. Knowledge Graph Construction: The extracted triples for each concept set are used to con-
struct a concept-specific knowledge graph GLLM

ci for each concept ci. For each concept ci in
the concept set, we store the connected 3-hop subgraph sourced from ci to its corresponding
concept-specific knowledge graph GLLM

ci . This step ensures that only the triples directly or in-
directly connected to the concept ci are included in its concept-specific knowledge graph. This
process is iteratively performed for all the concepts in the concept set. The resulting knowledge
graphs capture the relationships and contextual information associated with each medical concept
based on the knowledge embedded in the large language model.

By leveraging the knowledge embedded in large language models, this process allows us to construct
concept-specific knowledge graphs that incorporate a broad range of information beyond what is
explicitly stated in the EHR data or biomedical literature. These knowledge graphs can provide
valuable insights and support various downstream tasks in the clinical domain.

The number of resulting KG triples from the LLM is 315,492.
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B.4 CASE STUDIES OF KG CONSTRUCTION

"spinal fusion": [
"opioid analgesics",
"other beta-lactam antibacterials 
in atc",
"antithrombotic agents",
"potassium supplements",
"drugs for constipation",
"other analgesics and 
antipyretics in atc",
"i.v. solution additives",
"drugs for peptic ulcer and 
gastro-oesophageal reflux disease 
(gord)",
"iv solutions used in parenteral 
administration of fluids, 
electrolytes and nutrients",
"spondylosis; intervertebral disc 
disorders; other back problems",
"antiemetics and antinauseants",
"anxiolytics",
"other mineral supplements in 
atc",
"antiinfectives and antiseptics, 
excl. combinations with 
corticosteroids",
"antiepileptics",
"other nutrients in atc",
"antivaricose therapy drugs",
"beta blocking agents",
"lipid modifying agents, plain",
"decompression peripheral nerve"

]

(Top-20 Co-existing Concepts 
for Each Concept) 

⋮

⋮

==================================================
Target Concept: opioid analgesics
---------------------------------

Relationship Triples:
• [aspects of adverse effects, Allowed qualifier, opioid analgesics]
• [spinal fusion, Allowed qualifier, aspects of adverse effects]

Connection Paths:
• spinal fusion → (Allowed qualifier) → aspects of adverse effects → (Allowed 

qualifier) → opioid analgesics

==================================================
Target Concept: other beta-lactam antibacterials in atc
-------------------------------------------------------

Relationship Triples:
• [aspects of adverse effects, Allowed qualifier, Carbapenem-containing product]
• [Carbapenem-containing product, isa, other beta-lactam antibacterials in atc]
• [spinal fusion, Allowed qualifier, aspects of adverse effects]

Connection Paths:
• spinal fusion → (Allowed qualifier) → aspects of adverse effects → (Allowed 

qualifier) → Carbapenem-containing product → (isa) → other beta-lactam 
antibacterials in atc

==================================================
Target Concept: antithrombotic agents
-------------------------------------

Relationship Triples:
• [aspects of adverse effects, Allowed qualifier, Fibrinolytic Agents]
• [Fibrinolytic Agents, has relationship, antithrombotic agents]
• [spinal fusion, Allowed qualifier, aspects of adverse effects]

Connection Paths:
• spinal fusion → (Allowed qualifier) → aspects of adverse effects → (Allowed 

qualifier) → Fibrinolytic Agents → (has relationship) → antithrombotic agents

==================================================
Target Concept: potassium supplements
-------------------------------------

Relationship Triples:
• [POTASSIUM CITRATE, member_of, potassium supplements]
• [POTASSIUM CHLORIDE, member_of, potassium supplements]
• [aspects of adverse effects, can be qualified by., POTASSIUM CITRATE]
• [aspects of adverse effects, Allowed qualifier, POTASSIUM CHLORIDE]
• [spinal fusion, Allowed qualifier, aspects of adverse effects]

Connection Paths:
• spinal fusion → (Allowed qualifier) → aspects of adverse effects → (Allowed 

qualifier) → POTASSIUM CHLORIDE → (member_of) → potassium supplements
• spinal fusion → (Allowed qualifier) → aspects of adverse effects → (can be 

qualified by) → POTASSIUM CITRATE → (member_of) → potassium supplements

==================================================

⋮

(Alg. 2)

Figure 7: An example of concept KG extraction from biomedical KG (UMLS).
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[
"pleurisy; pneumothorax; pulmonary 
collapse",
"coronary atherosclerosis and other 
heart disease",
"potassium supplements",
"other fractures",
"anxiolytics",
"opioid analgesics",
"other gastrointestinal disorders",
"epilepsy; convulsions",
"i.v. solution additives",
"antibiotics for topical use",
"e codes: fall",
"adrenergics, inhalants",
"antiepileptics",
"other diagnostic agents in atc",
"diabetes mellitus without 
complication",
"drugs for peptic ulcer and gastro-
oesophageal reflux disease (gord)",
"other mineral supplements in atc",
"spinal fusion",
"beta blocking agents",
"other analgesics and antipyretics 
in atc",
"laminectomy; excision 
intervertebral disc",
"intracranial injury",
"other beta-lactam antibacterials 
in atc"
]

(Concept set in a 
patient visit)

Doc. 
Retrieval

-----
Rank 1, Similarity: 0.7296074032783508
PMID: 310377
Title: Management of acute pain in trauma.
Authors: C N Shealy
Abstract: In acute pain, TENS, ice packs, and a 
calm, reassuring attitude and voice are useful 
in reducing pain. Narcotic requirements can 
be reduced, and chronic pain may be 
prevented. Complications such as paralytic 
ileus and atelactasis can also be reduced. 
These techniques can be used in the 
emergency ward, the recovery room, and the 
doctor's office.
Publication Year: 1979
-----
Rank 2, Similarity: 0.7247765064239502
PMID: 235156
Title: Interaction between local anesthetics 
and analeptic drugs.
Authors: R G Thompson, J A Aldrete
Abstract: Although clinicall undesirable, the 
fortuitous pharmacologic interactions 
between local anesthetic agents and analeptic 
drugs may be protective when large doses of 
both agents are used. Mice pretreated with 
procaine, lidocaine, and tetracaine had a 
lower incidence of seizures when convulsive 
doses of either nikethamide or doxapram 
hydrochloride were given intraperitoneally. 
Mortality was also decreased in the groups 
given nikethamide and was zero in the animals 
treated with doxapram. All animals treated 
with pentylenetetrazol convulsed and only 
lidocaine (also used as an anticonvulsant) was 
able to reduce mortality in this group. Of the 
local anesthetic agents, tetracaine afforded 
the least protection from death, whereas 
lidocaine seemed to be most effective.
Publication Year: 1975
-----

⋮

Triple 
Extraction

[opioid analgesics, can be 
reduced by, TENS]

[opioid analgesics, can be 
reduced by, ice packs]Triple 

Extraction

[epilepsy; convulsions, can be 
caused by, large doses of 
analeptic drugs] 

[local anesthetic agents, may 
reduce, epilepsy; convulsions]

[lidocaine, used as, 
antiepileptics]

[lidocaine, most effective in 
reducing, mortality]

[pentylenetetrazol, causes, 
epilepsy; convulsions]

[lidocaine, reduces mortality 
from, epilepsy; convulsions]

(Retrieved Top-10 
PubMed Abstracts) (Triples)

Figure 8: An example of concept KG extraction from Corpus (PubMed Abstract).

[pleurisy; pneumothorax; pulmonary collapse, can be treated with, 
adrenergics, inhalants],
[diabetes mellitus without complication, may require monitoring of, 
potassium supplements],
[epilepsy; convulsions, treated with, antiepileptics],
[epilepsy; convulsions, may be treated with, anxiolytics],
[other gastrointestinal disorders, treated with, drugs for peptic ulcer and 
gastro-oesophageal reflux disease (gord)],
[e codes: fall, commonly causes, other fractures],
[e codes: fall, can result in, intracranial injury],
[other fractures, often treated with, opioid analgesics],
[intracranial injury, may be managed with, opioid analgesics],
[spinal fusion, surgical alternative to, laminectomy; excision 
intervertebral disc],
[coronary atherosclerosis and other heart disease, commonly treated 
with, beta blocking agents],
[other beta-lactam antibacterials in atc, belongs to same class as, 
antibiotics for topical use]

[
"pleurisy; pneumothorax; pulmonary 
collapse",
"coronary atherosclerosis and other 
heart disease",
"potassium supplements",
"other fractures",
"anxiolytics",
"opioid analgesics",
"other gastrointestinal disorders",
"epilepsy; convulsions",
"i.v. solution additives",
"antibiotics for topical use",
"e codes: fall",
"adrenergics, inhalants",
"antiepileptics",
"other diagnostic agents in atc",
"diabetes mellitus without 
complication",
"drugs for peptic ulcer and gastro-
oesophageal reflux disease (gord)",
"other mineral supplements in atc",
"spinal fusion",
"beta blocking agents",
"other analgesics and antipyretics 
in atc",
"laminectomy; excision 
intervertebral disc",
"intracranial injury",
"other beta-lactam antibacterials 
in atc"
]

Triple 
Extraction

(Concept set in a 
patient visit) (Triples)

Figure 9: An example of oncept KG extraction from LLM (Claude-3.5).
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C BASELINE IMPLEMENTATIONS

ML-based Models. To ensure a fair performance comparison, we implemented all machine learn-
ing (ML)-based Electronic Health Record (EHR) models using PyHealth (Yang et al., 2023a). Since
GRAM (Choi et al., 2017) and KerPrint (Yang et al., 2023b) were not yet integrated into PyHealth,
we separately implemented these models within the pyhealth.models module. Our implemen-
tations were based on the original codebases for GRAM5 and KerPrint6. For consistency across all
ML-based models, we set the embedding size to 256. We trained the models using a learning rate of
1e-4 and employed an early stopping mechanism based on validation loss to prevent overfitting.

LM+ML Models. We implement GraphCare (Jiang et al., 2024a) using their official codebase7 with
their default setting for each component. We use text-embedding-3-large (an improved
version of text-embedding-ada-002 used in the original implementation) as the embedding
model for the embedding initialization, and use their proposed BAT as the base GNN model. We
implement RAM-EHR (Xu et al., 2024) using their codebase8 with the settings mentioned in the
implementation details in their paper. We implement EMERGE (Zhu et al., 2024a) fully following
the implementation details provided in their paper (with the LLMs Clinical-LongFormer, BGE-M3,
Qwen 1.5-7B Chat, and DeepSeek-V2 Chat used for different purposes in the pipeline).

LLM-based Methods. For zero-shot and few-shot prompting-based EHR prediction with the LLM,
we utilize the template presented in Table 7 which includes task description, task-specific instruc-
tion, patient base context, supplementary information (based on retrieval), and Patient References
(similar patients). Unlike the structured format used for reasoning-chain generation, the reasoning
here is presented in a free-style manner, which, as our study indicates, results in better performance.

We implement the EHR-CoAgent (Cui et al., 2024) approach as described in their paper9, which
combines the strengths of predictive agent reasoning and critical agent instruction to create a accu-
rate few-shot prediction system for our tasks. The implementation consists of two main components:
a predictor agent and a critic agent.

The predictor agent is responsible for generating predictions and providing explanatory reasoning
based on the input EHR data. Given a patient’s medical history, the predictor agent analyzes the
relevant information and generates the most likely prediction along with a step-by-step explanation
of its reasoning process. The prompt used for the predictor agent is as follows:

Given the following task description, patient EHR context, task instructions, and similar patients,
please make a prediction with reasoning.

# Task #
[Task Definition] + [Regulator]

# Patient EHR Context #
[Patient’s Context (Base)]

# Task Instructions (Guidelines) #
[Refined Guidelines if iteration > 1 else Initial Guidelines]

# Similar Patients #
[Top-K similar patients’ contexts]

Give the prediction and reasoning in the following format:
# Reasoning #

5https://github.com/mp2893/gram
6https://github.com/xyxpku/KerPrint
7https://github.com/pat-jj/GraphCare
8https://github.com/ritaranx/RAM-EHR
9Note: While EHR-CoAgent was not originally designed for mortality or readmission prediction tasks, we

have made minor custom modifications to adapt it to our specific use cases.
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[Your reasoning here]

# Prediction #
[Your prediction here (1/0)]

Output:

where Task Definition is a brief definition of the task (e.g., Mortality Prediction Task: Objective:
Predict the mortality outcome for a patient’s subsequent hospital visit based solely on conditions,
procedures, and medications. Labels: 1 = mortality, 0 = survival). We introduce a Regulator to
import prior knowledge of the dataset to avoid the LLM to over-focus on improving true positive
or true negative. For example, we set “**Must to Notice:** Only the patients with extremely very
high risk of mortality should be predicted as 1. ” as the regulator for the mortality prediction task.
The existence of the regulator significantly affect the final result for imbalanced datasets, as shown
in Table 5. This is because that the instruction-updating approach used by EHR-CoAgent tends
to excessively penalize false positives to produce instructions that boost true positives, especially in
cases of imbalanced data like mortality prediction in the two datasets. However, this can compromise
true negatives and accuracy in such scenarios.

Table 5: Significant performance difference between EHR-CoAgent w/ regulator and w/o regulator.
MIMIC-III Mortality MIMIC-IV Mortality

Accuracy Macro F1 Sensitivity Specificity Accuracy Macro F1 Sensitivity Specificity
EHR-CoAgent w/ Regulator 87.4 51.7 13.0 91.7 81.0 55.5 13.8 97.0
EHR CoAgent w/o Regulator 53.6 39.7 51.9 53.6 72.4 61.8 51.3 77.4

Refined Guidelines are the instructions refined by the critic agent, while Initial Guidelines are the
seed instructions, which is as same as the task descriptions we used for other methods.

The critic agent, on the other hand, plays a different role in the EHR-CoAgent framework. It ob-
serves the predictor agent’s outputs alongside the ground truth labels and identifies error patterns
and discrepancies in the predictor’s reasoning process. Based on this analysis, the critic agent refine
the instructions to improve the reasoning process of the predictor. The prompt used for the critic
agent is as follows:

You are an assistant who is good at self-reflection, gaining experience, and summarizing criteria.
By reflecting on failure predictions that are given below, your task is to reflect on these incorrect
predictions, compare them against the ground truth, and formulate criteria and guidelines to
enhance the accuracy of future predictions.
The original instructions are provided under “# Task Instructions (Guidelines) #”. Your task is
to refine the instructions based on the discrepancies between the predictions and the ground truth.

# Input Data #
[input data batch with prompts, predictions, and ground-truth labels]

# Instructions #
1. Please always remember that the predictions above are all incorrect. You should always use
the ground truth as the final basis to discover many unreasonable aspects in the predictions and
then summarize them into experience and criteria.
2. Identify why the wrong predictions deviated from the ground truth by examining discrepancies
in the medical history analysis.
3. Determine key and potential influencing factors, reasoning methods, and relevant feature
combinations that could better align predictions with the ground truth.
4. The instructions should be listed in distinct rows, each representing a criteria or guideline.
5. The instructions should be generalizable to multiple samples, rather than specific to individual
samples.
6. Conduct detailed analysis and write criteria based on the input samples, rather than writing
some criteria without foundation.
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7. Please note that the criteria you wrote should not include the word “ground truth”.

Your output should be the new set of guidelines under “# Task Instructions (Guidelines) #” that
can be used to improve the predictor’s reasoning process.

Output:

which is mostly the same as the one in their paper (Cui et al., 2024).

Our implementation of EHR-CoAgent follows an iterative refinement process, where the predictor
agent generates predictions, the critic agent analyzes incorrect predictions and refines the instruction,
which is consolidated and integrated into the predictor’s prompts for the next round. The incorrect
predictions are divided into batches, and the critic agent refines the instructions for each batch. The
instructions from all batches is then consolidated using the LLM to identify the most important
and recurring insights across the entire refined instruction list. This consolidated new guidelines are
integrated into the predictor’s prompts for the next round, allowing the system to effectively improve
its prediction performance. We iterate the process 5 times.

The consolidated instructions are generated using the following prompt:

Given the following set of guidelines, please consolidate the insights into a concise and coherent
set of guidelines for refining the predictor’s reasoning process.

# Set of Guidelines #
[A Batch of Guidelines]

# Instructions #
1. Analyze the provided guidelines and identify common themes, patterns, and key insights.
2. Synthesize the insights into a consolidated set of guidelines that capture the most important
and recurring aspects.
3. Ensure that the consolidated guidelines are clear, concise, and actionable to refine the predic-
tor’s reasoning process.
4. Create a numbered list of the consolidated guidelines in the same format as the original
guidelines.

Output:

The consolidated instructions are then recursively consolidated until the final list size is smaller than
10. This is done to ensure that the consolidated instructions can be effectively integrated into the
predictor’s prompts for the next round, considering the limited context window size of the LLM.

By incorporating the consolidated instructions into the predictor’s prompts, the EHR-CoAgent ap-
proach enables an iterative refinement process to improve the accuracy predictions.
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D IMPLEMENTATION DETAILS OF KARE

D.1 STEP 1: MEDICAL CONCEPT KNOWLEDGE GRAPH CONSTRUCTION

Step 1.1: Medical Concept-Specific Knowledge Graph Extraction

We use UMLS, PubMed Abstracts, and Claude 3.5 Sonnet as the sources for knowledge graph
extraction from Biomedical KG, Biomedical Corpus, and Large Language Model, respectively. The
extraction details are showcased in Appendix B.1, B.2, and B.3, respectively.

For UMLS, we utilize the “Full Release” version under “2024AA Full UMLS Release Files”10. For
dense retrieval from PubMed abstracts, we utilize the local embedding model Nomic (dimension =
768) (Nussbaum et al., 2024). We use Amazon Bedrock11 to access the Claude model.

The resulting KG triples from UMLS, PubMed Abstracts, and Sonnet are 29,434, 259,938, and
315,492, respectively.

Step 1.2: Semantic Clustering

For semantic clustering of entities and relations in the KG we build above: we (1) first use the text-
embedding-3-large model (dimension = 1024) from Azure OpenAI to retrieve the text embeddings
of entities and relations; and (2) use Scikit-learn (Pedregosa et al., 2018) to perform agglomerative
clustering based on those embeddings. The optimal cosine distance thresholds θe and θr are both
found to be 0.14, resulting in 513,867 triples in total after clustering.

Step 1.3: Hierarchical KG Community Detection and Indexing

We employ Graspy (Chung et al., 2019) to implement the hierarchical Leiden algorithm, setting the
maximum size for each top-level community (max cluster size) to 5.

To enhance community diversity, the algorithm is run 25 times with different randomness at each
iteration, resulting in unique 59,832 communities (with different combinations of triples) where
there are 40,934 communities with the size smaller than 20 (Zs), and 57,247 communities with the
size smller than 150 (Zc).

Using Claude 3.5 Sonnet as the LLM, we generate 147,264 community summaries (including both
general and theme-specific summaries) with the prompts shown in Figure 12 and 13.

D.2 STEP 2: PATIENT CONTEXT CONSTRUCTION AND AUGMENTATION

We use the template as shown in Figure 11 to construct patient’s base context based on their EHR.

To retrieve the relevant medical knowledge for context augmentation, we set α = 0.1, β = 0.7,
λ1 = 0.2, λ2 = 0.2, and λ3 = 0.3 as the hyperparameters, each tuned in the range of [0, 1].

D.3 STEP 3: REASONING-ENHANCED PRECISE HEALTHCARE PREDICTION

Step 3.1: Training Sample Generation

To generate reasoning chain training samples, we leverage Claude 3.5 Sonnet as our expert LLM.
Ensuring EHR data protection and ethical use is paramount; therefore, all LLM interactions are
conducted via the Amazon Bedrock platform12, a cloud infrastructure that allows us to fully harness
LLM capabilities while maintaining strict privacy measures. The maximum output length for Sonnet
is set as 4,096 tokens. We use the prompt in Figure 16 for the reasoning chain generation here.

Step 3.2 Multitask-Based Fine-Tuning and Prediction

Our fine-tuning framework is implemented using the TRL (von Werra et al., 2020), Transformers
(Wolf et al., 2020), and FlashAttention-2 (Dao, 2024) Python libraries. We use Mistral-7B-Instruct-

10https://www.nlm.nih.gov/research/umls/licensedcontent/
umlsknowledgesources.html

11https://docs.aws.amazon.com/bedrock/
12The use of Amazon Bedrock is authorized by MIMIC: https://physionet.org/news/post/gpt-responsible-use
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v0.3 (Jiang et al., 2023) as our local LLM, full-parameter fine-tuned using DeepSpeed (Rasley et al.,
2020) with the following configurations:

Parameter Value
model name or path mistralai/Mistral-7B-Instruct-v0.3
torch dtype bfloat16
use flash attention 2 true
preprocessing num workers 12
bf16 true
gradient accumulation steps 4
gradient checkpointing true
learning rate 5.0e-06
max seq length 6000
num train epochs 3
per device train batch size 1
lr scheduler type cosine
warmup ratio 0.1

Table 6: LLM Fine-tuning Configuration Parameters

Hardware Information: The experiments were conducted on a system with an AMD EPYC 7513
32-Core Processor and 1.0 TB of RAM. The setup includes eight NVIDIA A100 80GB PCIe GPUs,
each with 81920 MiB of memory, providing a total of 640 GB GPU memory. The system’s root
partition has 32 GB of storage.

Training of each model runs on eight NVIDIA A100 GPUs and typically completes within five
hours. After the training process, we select the best performing model checkpoint based on valida-
tion loss to perform the prediction.

30



Published as a conference paper at ICLR 2025

E EVALUATION METRICS

In this work, we employ four key evaluation metrics to assess model performance:

E.1 PRIMARY METRICS

1. Accuracy: Measures the overall proportion of correct predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

2. Macro-F1: Provides a balanced measure that is particularly important for imbalanced datasets:

Macro-F1 =
2× Precision× Recall

Precision + Recall
(8)

where Precision = TP/(TP + FP) and Recall = TP/(TP + FN)

3. Sensitivity (True Positive Rate): Quantifies the model’s ability to correctly identify high-risk
patients:

Sensitivity =
TP

TP + FN
(9)

4. Specificity (True Negative Rate): Assesses the model’s accuracy in identifying low-risk patients:

Specificity =
TN

TN + FP
(10)

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.

E.2 CHOICE OF METRICS

While metrics like AUROC (Area Under the Receiver Operating Characteristic) and AUPRC (Area
Under the Precision-Recall Curve) are commonly used for imbalanced classification tasks, they are
not suitable for our LLM-based approach for several reasons:

1. LLM Probability Limitations: LLMs compute next-token probabilities over their entire vocab-
ulary rather than binary class probabilities. These probabilities:

• Are distributed across the full vocabulary rather than just binary classes
• Depend on how different LLMs encode the same label (“0”/“1”) using different tokens
• Are not directly comparable to class probabilities output by traditional ML models

2. Clinical Relevance: Our chosen metrics provide direct clinical interpretability:

• Sensitivity is crucial for identifying high-risk patients who require immediate attention
• Specificity helps avoid unnecessary interventions for low-risk patients
• Together, they effectively evaluate performance on imbalanced datasets using only final predic-

tions

Our metric selection aligns with recent LLM-based EHR prediction works, such as EHR-CoAgent
(Cui et al., 2024).

The effectiveness of our metric choice is demonstrated in the MIMIC-III/IV mortality prediction
tasks, where despite high class imbalance (positive rates of 5.42%/19.16%), KARE achieves signif-
icantly higher sensitivity (24.7%/73.2%) compared to baselines while maintaining high specificity
(98.3%/99.8%).
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F CASE STUDY

F.1 REASONING-ENHANCED PREDICTION BY OUR FINE-TUNED MODEL

# Reasoning#
1. **Patient Overview**:
The patient has a history of polyhydramnios, other complications of pregnancy, thyroid disorders, and ob-related trauma to the perineum and vulva. The patient underwent 
repair of current obstetric laceration and other procedures to assist delivery. Postpartum medications include throat preparations, antiinflammatory and antirheumatic products, 
analgesics, antipyretics, agents for hemorrhoids and anal fissures, antipruritics, drugs for constipation, bacterial and viral vaccines, antacids, calcium supplements, and thyroid 
preparations.

2. **Relevant Retrieved Medical Knowledge**:
- Polyhydramnios can increase the risk of preterm labor and premature rupture of membranes, potentially leading to complications after delivery that require close monitoring 
and readmission.
- Thyroid disorders during pregnancy, if not properly managed, may result in adverse outcomes and increase the likelihood of postpartum complications necessitating 
readmission.
- Extensive lacerations or complications from assisted delivery may require additional care and monitoring, potentially leading to readmission.
- Proper thyroid hormone regulation is crucial postpartum, and imbalances may lead to complications requiring readmission if not closely monitored and adjusted.

3. **Comparison with Similar Patients**:
The patient shares several similarities with the two similar patients, including polyhydramnios, ob-related trauma to perineum and vulva, other complications of pregnancy, 
thyroid disorders, repair of current obstetric laceration, other procedures to assist delivery, and similar postpartum medications. However, the patient has an additional condition 
of "other complications of pregnancy" compared to the second similar patient. The first similar patient, who was readmitted within 15 days, also had this condition, along with 
"other complications of birth; puerperium affecting management of mother," which the current patient does not have.

4. **Reasoning Towards Prediction**:
The patient's history of polyhydramnios, thyroid disorders, and other complications of pregnancy, combined with the need for repair of obstetric laceration and assisted delivery 
procedures, suggests a higher risk of postpartum complications that may require readmission. The patient's similarity to the first patient, who was readmitted within 15 days and 
had the additional condition of "other complications of pregnancy," further supports this increased risk. While the patient is receiving appropriate postpartum medications and 
preventive measures, the presence of multiple risk factors and the need for close monitoring of thyroid function and potential complications from assisted delivery indicate a 
substantial likelihood of readmission within 15 days.

5. **Conclusion**:
Based on the patient's history of polyhydramnios, thyroid disorders, other complications of pregnancy, and the need for repair of obstetric laceration and assisted delivery 
procedures, along with the similarity to a patient who was readmitted within 15 days, there is a high likelihood that this patient will be readmitted to the hospital within 15 days of 
discharge.

# Prediction #
1

[Reasoning] Given the following task description, 
patient EHR context, similar patients, and retrieved 
medical knowledge, Please provide a step-by-step 
reasoning process that leads to the prediction 
outcome based on the patient's context and 
relevant medical knowledge.
After the reasoning process, provide the prediction 
label (0/1).

========================================
# Task #

Readmission Prediction Task:
Objective: Predict if the patient will be readmitted 
to the hospital within 15 days of discharge.
Labels: 1 = readmission within 15 days, 0 = no 
readmission within 15 days

Note: Analyze the information comprehensively to 
determine the likelihood of readmission. The goal is 
to accurately distinguish between patients who are 
likely to be readmitted and those who are not.

========================================
# Patient EHR Context #

Patient ID: xxxxxxx

Visit 0:
Conditions:
1. polyhydramnios and other problems of amniotic 
cavity
2. other complications of pregnancy
3. thyroid disorders
4. ob-related trauma to perineum and vulva
5. other pregnancy and delivery including normal

Procedures:
1. repair of current obstetric laceration
2. other procedures to assist delivery

Medications:
1. throat preparations
2. antiinflammatory and antirheumatic products, 
non-steroids
3. other analgesics and antipyretics in atc
4. agents for treatment of hemorrhoids and anal 
fissures for topical use
5. antipruritics, incl. antihistamines, anesthetics, etc.
6. drugs for constipation
7. bacterial and viral vaccines, combined
8. antacids
9. calcium supplements
10. thyroid preparations

========================================
# Similar Patients #

Patient ID: yyyyyyy

Visit 0:
Conditions:
1. polyhydramnios and other problems of amniotic 
cavity
2. ob-related trauma to perineum and vulva
3. other complications of pregnancy
4. thyroid disorders
5. other pregnancy and delivery including normal

Procedures:
1. repair of current obstetric laceration
2. other procedures to assist delivery
3. artificial rupture of membranes to assist delivery

Medications:
1. thyroid preparations
2. agents for treatment of hemorrhoids and anal 
fissures for topical use
3. antipruritics, incl. antihistamines, anesthetics, etc.
4. antacids
5. calcium supplements
6. other analgesics and antipyretics in atc
7. drugs for constipation
8. throat preparations
9. antiinflammatory and antirheumatic products, 
non-steroids
10. cough suppressants, excl. combinations with 
expectorants
11. opioid analgesics
12. expectorants, excl. combinations with cough 
suppressants

Label:
0

Patient ID: zzzzzzz

Visit 0:
Conditions:
1. polyhydramnios and other problems of amniotic 
cavity
2. ob-related trauma to perineum and vulva
3. other complications of pregnancy
4. thyroid disorders
5. other complications of birth; puerperium affecting 
management of mother
6. other pregnancy and delivery including normal

Procedures:
1. repair of current obstetric laceration
2. other procedures to assist delivery

Medications:
1. thyroid preparations
2. cough suppressants, excl. combinations with 
expectorants
3. drugs for constipation
4. bacterial and viral vaccines, combined
5. opioid analgesics
6. other analgesics and antipyretics in atc
7. agents for treatment of hemorrhoids and anal 
fissures for topical use
8. antipruritics, incl. antihistamines, anesthetics, etc.
9. antacids
10. calcium supplements
11. throat preparations
12. antiinflammatory and antirheumatic products, 
non-steroids
13. urologicals

Label:
1

========================================
# Retrieved Medical Knowledge #

[
1. “Polyhydramnios, a condition of excess amniotic 
fluid, can increase the risk of preterm labor and 
premature rupture of membranes. This may lead to 
complications after delivery that require close 
monitoring and potential readmission.”
2. “Thyroid disorders during pregnancy can impact 
both maternal and fetal health. If not properly 
managed, thyroid conditions may result in adverse 
outcomes and increase the likelihood of 
postpartum complications necessitating 
readmission.”
3. ”The combination of obstetric perineal trauma 
repair and the use of topical hemorrhoid treatments 
suggests uncomplicated healing, reducing the 
likelihood of readmission.”
4. "The use of antiinflammatory and analgesic 
medications postpartum is typical for managing 
pain and discomfort. However, careful monitoring is 
necessary to ensure proper pain control and avoid 
adverse effects that could prolong recovery or 
require readmission."
5. "Calcium supplements are often prescribed 
during pregnancy and postpartum to support 
maternal bone health. Adequate calcium intake 
and monitoring can help prevent complications 
and reduce the risk of readmission related to 
calcium deficiency or imbalance."
6. " The use of bacterial and viral vaccines 
combined with thyroid preparations indicates 
proactive management of the patient's thyroid 
condition and immunization status, supporting a 
lower risk of readmission.
7. "Hemorrhoids and anal fissures are common 
during pregnancy and after vaginal delivery. The 
use of topical agents for treatment suggests active 
management of these conditions, which may help 
prevent potential complications and reduce the risk 
of readmission."
8. "Individuals taking thyroid preparations are likely 
managing a pre-existing or pregnancy-related 
thyroid condition. Proper thyroid hormone 
regulation is crucial in the postpartum period. 
Imbalances in thyroid hormones may lead to 
complications requiring hospital readmission if not 
closely monitored and adjusted”
9. "Constipation is a frequent issue postpartum, and 
the use of drugs for constipation indicates active 
management. Adequate bowel function and 
prevention of severe constipation can help avoid 
complications and reduce the likelihood of 
readmission."
10. “Extensive lacerations or complications from 
assisted delivery may require additional care and 
monitoring, potentially leading to readmission.”
]

INPUT (Reasoning Task)

OUTPUT

Figure 10: Case Study of the Fine-tuned KARE Model.
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F.2 ZERO-SHOT & FEW-SHOT COMPARISON

Table 7: Case Study of zero-shot and few-shot EHR prediction with LLM (Sonnet-3.5). Ground Truth:
The patient will die in the next visit (Prediction = 1). For the ethic concern, the patients involved are all
from synthetic MIMIC-III by HALO (Theodorou et al., 2023).

Case Description

Input Prompt with EHR Given the following task description and patient context, please make a prediction with reasoning based on the
patient’s context.
Task: Mortality Prediction Task
Objective: Predict the mortality outcome for a patient’s subsequent hospital visit based solely on conditions,
procedures, and medications.
Labels: 1 = mortality, 0 = survival
Key Considerations:
Conditions:

• Severity of diagnosed conditions (e.g., advanced cancer, severe heart failure, sepsis)

• Presence of multiple comorbidities

• Acute vs. chronic nature of conditions

Procedures:

• Invasiveness and complexity of recent procedures

• Emergency vs. elective procedures

• Frequency of life-sustaining procedures (e.g., dialysis, mechanical ventilation)

Medications:

• Use of high-risk medications (e.g., chemotherapy drugs, immunosuppressants)

• Multiple medication use indicating complex health issues

• Presence of medications typically used in end-of-life care

Note: Focus on combinations of conditions, procedures, and medications that indicate critical illness or a high
risk of mortality. Consider how these factors interact and potentially exacerbate each other. Only the patients with
extremely very high risk of mortality should be predicted as 1.

Patient Context:
Patient ID: 29488

Visit 0:
Conditions:
- Deficiency and other anemia
- Essential hypertension
- Complication of device; implant or graft
- Congestive heart failure; nonhypertensive - Cancer of prostate
- Anxiety disorders
- Thyroid disorders
- Disorders of lipid metabolism
- Conduction disorders
- Mycoses
- Other diseases of kidney and ureters
- Cancer of esophagus
Procedures:
- Diagnostic cardiac catheterization; coronary arteriography
- Other or procedures on vessels other than head and neck
- Colorectal resection
Drugs:
- Other drugs for obstructive airway diseases, inhalants in ATC
- Lipid modifying agents, plain
- Antithrombotic agents
- Angiotensin II receptor blockers (ARBs), plain

Visit 1:
Conditions:
- Congestive heart failure; nonhypertensive
- Cardiac dysrhythmias
- Shock
- Alcohol-related disorders
- Diabetes mellitus with complications
- E codes: adverse effects of medical care
- Disorders of teeth and jaw
Procedures:
- Other vascular catheterization; not heart
- Blood transfusion Drugs:
- Other drugs for obstructive airway diseases, inhalants in ATC
- Other analgesics and antipyretics in ATC
- Drugs for peptic ulcer and gastro-oesophageal reflux disease (GORD)
- Beta blocking agents
- Potassium supplements

Continued on next page
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Table 7 – continued from previous page

Case Description

Supplementary Information: [PLACEHOLDER]
Patient References: [PLACEHOLDER]
Format:
# Reasoning #
[Your reasoning here]
# Prediction #
[Your prediction here (1/0)]

Case (1): Zero-Shot
Prompting with EHR Base
Context Only

As provided, Sonnet 3.5 gave the following incorrect prediction:
Model Output:
# Reasoning #
While this patient’s condition is serious and deteriorating, there are several factors to consider:
Severity of conditions:

• The patient has multiple severe conditions, including congestive heart failure, cancer (prostate and
esophagus), and cardiac issues.

• New complications have arisen in visit 1, such as shock and cardiac dysrhythmias, which are
concerning.

• However, some of the most immediately life-threatening conditions (e.g., sepsis, advanced stage
cancer, multi-organ failure) are not explicitly mentioned.

Procedures:

• The procedures in visit 1 (blood transfusion and vascular catheterization) suggest a decline in health,
but they are also interventions aimed at stabilizing the patient.

• There’s no mention of extreme life-sustaining procedures like mechanical ventilation or dialysis.

Medications:

• The medications listed are primarily for managing chronic conditions rather than end-of-life care.

• There’s no mention of high-risk medications like chemotherapy drugs or strong opioids for palliative
care.

Disease progression:

• While there’s a clear decline between visits 0 and 1, the conditions in visit 1, while serious, are
potentially manageable with appropriate medical intervention.

Absence of certain high-mortality indicators:

• There’s no mention of conditions like sepsis, acute respiratory failure, or advanced stage metastatic
cancer, which would significantly increase mortality risk.

Given the task description’s note to only predict mortality (1) for patients with ”extremely very high risk of
mortality”, this patient’s condition, while serious, does not meet that extremely high threshold. The presence of
active interventions (blood transfusion, medications for managing conditions) suggests ongoing treatment rather
than purely palliative care.

# Prediction #
0 (incorrect)

Case (2): Zero-Shot
Prompting with Classic
RAG-Augmented Context
(Knowledge Source:
PubMed Abstract)

Supplementary Information:

• Rank 1, Similarity: 0.7204270362854004 PMID: 314160 Title: Resection of posterior ventricular
aneurysm, replacement of mitral valve, and coronary bypass. Authors: C M Chavez, G Rodriquez, J
H Conn Abstract: A 58-year-old man had sudden and progressive heart failure after a severe
myocardial infarction. Aggressive medical treatment consisting of diuretics, vasopressors, and
digitalis failed to improve his condition significantly. Cardiac catheterization disclosed a critical
stenosis in the left anterior descending branch of the left coronary artery, a large posterior left
ventricul aneurysm, and severe mitral insufficiency. Intermittent third degree heart block developed
after admission. Surgical correction resulted in a dramatic recovery, and three years after operation
he is fully recovered and asymptomatic. Publication Year: 1979

• Rank 2, Similarity: 0.7123403549194336 PMID: 804881 Title: [Acute coronary thrombosis in a 28
year-old woman]. Authors: G Motté, M Vogel, G Coatantiec, P Mariette Abstract: A 28-year-old
woman, with no previous cardiovascular history, was hospitalized for myocardial infarction
complicated by bifascicular block followed by complete atrio-ventricular block with a regressive
course. A coronary arteriography performed on the 10th day demonstrated a thrombosis of the
anterior interventricular artery, the rest of the coronary network being normal. The influence of a
dyslipidaemia and the taking of oral contraceptives was discussed as an aetiology. Publication Year:
1975

Continued on next page
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Table 7 – continued from previous page

Case Description

• Rank 3, Similarity: 0.7102002501487732 PMID: 42254 Title: [Non arrhythmogenic sudden death as
complication of coronary heart disease]. Authors: H Zilcher, D Glogar Abstract: In a cohort of 417
patients admitted consecutively to the Coronary Care Unit for acute myocardial ischemia (unstable
angina pectoris in 121, acute myocardial infarction in 296 patients) 21 cases of non arrhythmogenic
sudden death occurred within 24 hours after admission. 16 of these patients suffered from acute
myocardial infarction and 5 from unstable angina pectoris. Cause of death was cardiac rupture in 12
and pump failure in 4 patients with acute myocardial infarction, whereas all patients with unstable
angina pectoris died from pump failure. Patients with cardiac rupture within 24 hours after
admission, had significantly higher systolic and diastolic blood pressure in comparison with the
other groups and with patients dying from cardiac rupture on the third day, or later. All patients
dying from pump failure with unstable angina pectoris and one of the patients dying from pump
failure with acute myocardial infarction had beta blocker therapy. ... Publication Year: 1979

• (...)

• Rank 9, Similarity: 0.6921100616455078 PMID: 443259 Title: Chest pain, shock, arrhythmias and
death in a young woman. Authors: Abstract: 9 figures form the core of this article describing and
discussing a case of sudden death, 2 hours after a 30-year old woman presented at a hospital
emergency with chest pains. She had taken no medications other than oral contraceptives (OCs) for
10 years. The patient was admitted to the coronary care unit where findings included a palpable
blood pressure of 94 mm of Hg, a heart rate of 128/min, and a respiratory rate of 28/minute.
Cyanosis was noted, jugular veins were distended, and there were rales over the lung bases
bilaterally; cardiac sounds were soft and a third heart sound was audible. Arterial oxygen tension
was 15 mm of Hg, and carbon dioxide tension was 42 mm of Hg; pH was 7.2. Ventricular
tachycardia developed and ventricular fibrillation ensued. The patient was intubated and well
oxygenated, external cardiac compression was performed, sodium bicarbonate, epinephrine, and
calcium were administered, and electrical defibrillation was performed. After several attempts, the
latter resulted in a slow idioventricular rhythm on the electrocardiogram, but neither the blood
pressure nor pulse was detectable. ... Publication Year: 1979

• Rank 10, Similarity: 0.6920691132545471 PMID: 938220 Title: Left ventricular function during
aortic surgery. Authors: R M Carroll, R B Laravuso, J F Schauble Abstract: Fourteen patients
undergoing surgery for aneurysm or occlusive disease of the abdominal aorta were studied. Thirteen
patients had a history of hypertension or myocardial infarction; two patients had chronic obstructive
pulmonary disease. Tachycardia, hypertension, and elevated pulmonary artery occluded. (PAo)
pressure occurred in response to laryngoscopy and intubation in two patients; elevation of PAo
pressure in response to aortic cross-clamping occurred in two patients. In three of these four
patients, electrocardiographic evidence of myocardial ischemia appeared. These events are
important in a consideration of the occurence of myocardial infarction in patients undergoing
abdominal aortic surgery. Satisfactory treatment of myocardial ischemia has been accomplished
with the use of propranolol hydrochloride and sodium nitroprusside. Publication Year: 1976

Model Output:
# Reasoning #
Based on the patient’s context and the given task description, I will analyze the key factors to predict mortality
risk for the subsequent hospital visit:
Conditions:

• The patient has multiple serious conditions, including congestive heart failure (nonhypertensive),
cardiac dysrhythmias, and shock. These are severe cardiovascular issues that significantly increase
mortality risk.

• The presence of diabetes mellitus with complications adds to the overall complexity of the patient’s
health status.

• Alcohol-related disorders may complicate treatment and recovery.

Procedures:

• The patient underwent blood transfusion, which might indicate severe blood loss or anemia,
potentially linked to the shock condition.

• Other vascular catheterization (not heart) was performed, possibly related to managing circulatory
issues.

• The supplementary materials discuss these procedures but focus on their use in orthopedic surgeries.

Medications:

• The patient is on multiple medications, including beta-blocking agents and drugs for obstructive
airway diseases, indicating complex health issues.

• Potassium supplements might be linked to managing electrolyte imbalances, possibly due to heart
failure or other medications.

Progression from previous visit:

• The patient’s condition appears to have worsened since the previous visit, with new serious
conditions like shock and cardiac dysrhythmias appearing.

Comorbidities:

• The combination of cardiovascular issues, diabetes complications, and alcohol-related disorders
creates a complex clinical picture with multiple interacting risk factors.

Continued on next page
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Table 7 – continued from previous page

Case Description

However, there are some factors that suggest the patient may not be at the highest risk of mortality:
- The patient is receiving active treatment, including medications for their conditions.
- There’s no mention of advanced cancer or other terminal illnesses.
- The procedures mentioned are not highly invasive or indicative of end-stage disease.
- There’s no indication of mechanical ventilation or other life-sustaining procedures.

# Prediction #
0 (incorrect)

Case (3): Zero-Shot
Prompting with
KARE-Augmented Context
(Knowledge Source: KG
Communities)

Supplementary Information:

• Patients with congestive heart failure combined with cardiac dysrhythmias and shock have a
significantly increased risk of mortality due to impaired cardiac output and hemodynamic instability.

• The presence of esophageal cancer, especially when co-occurring with prostate cancer, indicates a
higher burden of malignancy, which can exacerbate overall health decline.

• Complications of devices, implants, or grafts can lead to severe infections or organ dysfunction,
which is life-threatening, especially in patients with weakened cardiac function.

• The combination of anemia and thyroid disorders can exacerbate cardiovascular conditions, leading
to poorer outcomes in heart failure patients.

• Alcohol-related disorders can negatively impact medication adherence and exacerbate conditions
like hypertension and diabetes, increasing the risk of death.

• The use of blood transfusions and vascular catheterization procedures indicates severe clinical
interventions often linked to critical conditions and a higher risk of death.

• Polypharmacy, including beta-blockers, potassium supplements, and medications for obstructive
airway diseases, reflects complex medical management, which can be associated with increased risk
of adverse events.

• Patients with diabetes mellitus with complications face a greater risk of serious outcomes due to
potential organ damage and delayed healing processes.

Model Output:
# Reasoning #
Based on the patient’s context and the supplementary information:
Severity of Conditions:

• The patient has congestive heart failure, cardiac dysrhythmias, and shock, which together
significantly impair cardiac function and increase mortality risk.

• The presence of two cancers (esophageal and prostate) indicates a high burden of malignancy,
worsening the patient’s overall prognosis.

• Complications of devices, implants, or grafts may lead to severe infections or organ dysfunction.

Interactions Between Conditions:

• Anemia and thyroid disorders can worsen heart failure outcomes.

• Alcohol-related disorders may impair medication adherence and liver function, complicating
management of other conditions.

• Diabetes mellitus with complications further increases mortality risk due to potential organ damage.

Procedures:

• The need for blood transfusions and vascular catheterization suggests critical interventions due to
severe anemia or hemodynamic instability.

• These procedures are associated with higher mortality rates in critically ill patients.

Medications:

• Polypharmacy with beta-blockers, potassium supplements, and other medications indicates complex
management and high risk of adverse events.

• Medications for obstructive airway diseases suggest respiratory complications.

The provided information highlights that this combination of severe conditions, multiple comorbidities, and
invasive procedures is associated with a very high risk of mortality.
Given the critical combination of severe cardiac conditions, multiple cancers, complex comorbidities, and the
necessity for invasive procedures, the patient is at an extremely high risk of mortality and is likely to die in the
next visit.

# Prediction #
1 (correct)

Continued on next page

36



Published as a conference paper at ICLR 2025

Table 7 – continued from previous page

Case Description

Case (4): Few-Shot
Prompting with Positive and
Negative Patient References
and KARE-Augmented
Context

Supplementary Information: (Same as in Case 3)
Patient References:

• Example 1 (Mortality = 1):

– Patient ID: 10269
– Visit Information:

* Conditions:
· Congestive heart failure; nonhypertensive
· Sepsis
· Acute respiratory failure
· Shock

* Procedures:
· Mechanical ventilation
· Blood transfusion
· Vascular catheterization

* Medications:
· High-dose vasopressors
· Broad-spectrum antibiotics

• Example 2 (Mortality = 0):

– Patient ID: 11445
– Visit Information:

* Conditions:
· Essential hypertension
· Type 2 diabetes mellitus without complications
· Hyperlipidemia

* Procedures:
· Routine blood tests
· Electrocardiogram

* Medications:
· Metformin
· ACE inhibitors

Model Output:
# Reasoning #
Comparing the new patient to the provided references:
Similarity to Example 1:

• Both patients have congestive heart failure and shock.

• Both require invasive procedures like blood transfusions and vascular catheterization.

• The patient 10269 has acute respiratory failure and sepsis, while the new patient has multiple
cancers and cardiac dysrhythmias.

• Both have complex comorbidities and are undergoing critical interventions, indicating a high risk of
mortality.

Difference from Example 2:

• The negative reference has manageable chronic conditions without severe complications.

• No invasive procedures or critical conditions are present.

• The new patient has significantly more severe conditions and interventions.

Patient’s Conditions:

• The combination of congestive heart failure, cardiac dysrhythmias, shock, and multiple cancers
places the patient at a very high risk of mortality.

• Disorders linked to alcohol use may reduce compliance with prescribed medications and worsen
chronic illnesses such as high blood pressure and diabetes, elevating mortality risk.

• Diabetes mellitus with complications and alcohol-related disorders further exacerbate health risks.

Procedures and Medications:

• Invasive procedures and polypharmacy indicate critical illness and complex management.

• Similar to the positive reference, these factors contribute to a higher mortality risk.

The provided knowledge and patient references highlight that patients with this combination of severe conditions
and interventions are likely to die. Given the strong similarities to the positive reference and the critical nature of
the patient’s health status, it is highly likely that the patient will die in the next visit.

# Prediction #
1 (correct)

Analysis - Case (2) demonstrates that when using traditional RAG methods with sparse retrieval from PubMed abstracts,
the supplementary information contains several keywords matching the patient’s conditions but fails to provide
relevant information regarding the patient’s high mortality risk.

Continued on next page
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Table 7 – continued from previous page

Case Description

- Case (3) shows that KARE’s dense and relevant knowledge retrieval provides comprehensive insights into the
patient’s condition, interactions between comorbidities, and the implications of procedures and medications,
leading to a correct prediction.
- Case (4) illustrates that including patient references with KARE-augmented context further aids the model by
providing concrete examples to compare against, enhancing reasoning and ensuring a correct prediction.

Conclusion This case study emphasizes the importance of KARE’s approach in providing dense, relevant knowledge that
significantly improves the model’s ability to make accurate predictions. By integrating comprehensive knowledge
graphs and considering complex interactions between medical concepts, KARE enhances reasoning capabilities
beyond what is achievable with base context or traditional RAG methods.

G TEMPLATES, PROMPTS, AND EXAMPLES

========================================
# Task #

Readmission Prediction Task:
Objective: Predict if the patient will be 
readmitted to the hospital within 15 days of 
discharge.
Labels: 1 = readmission within 15 days, 0 = no 
readmission within 15 days

Note: Analyze the information comprehensively to 
determine the likelihood of readmission. The goal 
is to accurately distinguish between patients who 
are likely to be readmitted and those who are not

========================================
# Patient EHR Context #

Patient ID: xxxxxxxx

Visit 0:
Conditions:
1. pleurisy; pneumothorax; pulmonary collapse
2. pneumonia
3. congestive heart failure; nonhypertensive
4. nutritional deficiencies
5. other circulatory disease
6. cardiac dysrhythmias
7. screening and history of mental health and 
substance abuse codes
8. heart valve disorders

⋮
Procedures:
1. incision of pleura; thoracentesis; chest 
drainage

Medications:
1. high-ceiling diuretics
2. adrenergics, inhalants
3. potassium supplements
4. other drugs for obstructive airway diseases, 
inhalants in atc
5. beta blocking agents
6. viral vaccines
7. other analgesics and antipyretics in atc
8. drugs for constipation
9. antithrombotic agents
10. opioid analgesics
11. antiemetics and antinauseants
12. other mineral supplements in atc
13. i.v. solution additives
14. other diagnostic agents in atc
15. antiarrhythmics, class i and iii

⋮

========================================
# Similar Patients #

Patient ID: yyyyyyyy

Visit 0:
Conditions:
1. pleurisy; pneumothorax; pulmonary collapse
2. cardiac dysrhythmias
3. congestive heart failure; nonhypertensive
4. other liver diseases

⋮
Procedures:
1. incision of pleura; thoracentesis; chest 
drainage
2. other or heart procedures
3. other diagnostic cardiovascular procedures

Medications:
1. antithrombotic agents
2. other analgesics and antipyretics in atc
3. high-ceiling diuretics
4. antacids
5. drugs for constipation

⋮
Label:
1

-----------------------------------------
Patient ID: zzzzzzzz

Visit 0:
Conditions:
1. pleurisy; pneumothorax; pulmonary collapse
2. congestive heart failure; nonhypertensive
3. complications of surgical procedures or 
medical care
4. screening and history of mental health and 
substance abuse codes
5. cardiac dysrhythmias

⋮
Procedures:
1. other diagnostic procedures of respiratory 
tract and mediastinum
2. other non-or therapeutic procedures on 
respiratory system
3. incision of pleura; thoracentesis; chest 
drainage

Medications:
1. other agents acting on the renin-
angiotensin system in atc
2. antiadrenergic agents, peripherally acting

⋮
Label:
0(continue)

Figure 11: An example of the patient base context.
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You are a knowledgeable medical assistant tasked with 
generating a theme-specific summary of the medical 
concepts and relationships provided below.

Given a list of medical triples in the format (entity1, 
relationship, entity2) and a specific theme, please create a 
summary that focuses on how the knowledge represented 
by these triples is relevant to the given theme. The summary 
should highlight the key concepts, relationships, and 
implications that are most pertinent to the theme.

The summary should be written in the third person and 
include all the relevant entity names for context. Please 
provide only the summary without any starting words or 
phrases, and without mentioning the individual triples.

Examples:

Mortality Prediction:
Triples:
- (Diabetes, is a risk factor for, Cardiovascular Disease)
- (Hypertension, is associated with, Diabetes)
- (Obesity, contributes to, Diabetes)

Theme: Mortality prediction
{Theme Description}

Summary:
Diabetes, hypertension, and obesity are significant risk 
factors that can increase the likelihood of mortality. 
Diabetes is directly associated with an increased risk of 
cardiovascular disease, which is a leading cause of death. 
Hypertension and obesity, which often co-occur with 
diabetes, further compound these risks. Patients with these 
conditions require close monitoring and aggressive 
management to mitigate the risk of mortality.

Triples:
{Formatted Triples}

Theme: {Theme}

Summary:

Theme-Specific Summarization General Summarization 

You are a knowledgeable medical assistant tasked with 
generating a comprehensive summary of the medical 
concepts and relationships provided below.

Given a list of medical triples in the format (entity1, 
relationship, entity2), please create a single, coherent 
summary that captures the key medical knowledge 
represented by these concepts and their relationships. The 
summary should be written in the third person and include 
all the entity names for full context.

Focus on how these medical concepts are interconnected 
and their relevance to medical understanding or patient 
care. If there are any contradictions in the triples, please 
resolve them in the summary.

Please provide only the summary without any starting words 
or phrases, and without mentioning the individual triples.

The summary should be an integrated representation of the 
medical knowledge contained in the triples.

Example:
Triples:
- (Diabetes, is a risk factor for, Cardiovascular Disease)
- (Hypertension, is associated with, Diabetes)
- (Obesity, contributes to, Diabetes)

Summary:
Diabetes, hypertension, and obesity are closely 
interconnected medical conditions. Diabetes is a significant 
risk factor for developing cardiovascular disease. 
Hypertension, or high blood pressure, is often associated 
with diabetes. Obesity contributes to the development of 
diabetes, as excess body weight can lead to insulin 
resistance. Managing these conditions together is crucial for 
reducing the risk of serious complications and improving 
overall patient care.

Triples:
{Formatted Triples}

Summary:

Figure 12: The prompts for (left) general and (right) theme-specific KG community summarization.

You are a knowledgeable medical assistant tasked with generating a comprehensive summary of the medical concepts 
and relationships based on the individual summaries provided below.

Given the following summaries of a community, please create a single, coherent summary that captures the key medical 
knowledge represented by this community. The combined summary should include all the important entities and 
relationships mentioned in the individual summaries.

Focus on the main concepts, their relationships, and their relevance to medical understanding or patient care. The summary 
should be concise yet informative, providing a comprehensive overview of the community's medical knowledge.

Please ensure that the combined summary is written in the third person and includes all the relevant entity names for full 
context.

Please provide only the summary without any starting words or phrases.

Summaries:
{summaries}

Combined Summary:

Summary Combination for Large Community

Figure 13: The prompt for summary combination for large communities.
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KG Community 

Chronic Kidney 
Disease

Diabetes

Anemia

Hypertension

Iron 
Supplementation

leads to

causecause

treat

“Chronic Kidney Disease (CKD), commonly caused by 
Diabetes and Hypertension, can lead to Anemia, 
characterized by a decreased number of red blood cells. 
Anemia may cause symptoms such as fatigue and 
shortness of breath, increasing the risk of hospital 
readmissions. To prevent readmissions in CKD patients, 
it is essential to manage the underlying causes, monitor 
hemoglobin levels, treat Anemia with Iron 
Supplementation, and ensure treatment adherence.”

Theme-Specific Summarization

“Diabetes and Hypertension are major risk 
factors for Chronic Kidney Disease (CKD). As 
CKD progresses, it can lead to complications 
such as Anemia, which can further increase 
morbidity and mortality. Early detection and 
management of Diabetes and Hypertension are 
crucial in preventing the development and 
progression of CKD, ultimately reducing the risk 
of premature death in these patient populations.”

Theme: Mortality Theme: Readmission

Figure 14: An example of theme-specific summarization of knowledge graph community.

Mortality Prediction Task:
Objective: Predict the mortality outcome for a patient's subsequent hospital visit based solely on 
conditions, procedures, and medications. 
Labels: 1 = mortality, 0 = survival

Key Considerations:
1. Conditions:
- Severity of diagnosed conditions (e.g., advanced cancer, severe heart failure, sepsis)
- Presence of multiple comorbidities
- Acute vs. chronic nature of conditions

2. Procedures:
- Invasiveness and complexity of recent procedures 
- Emergency vs. elective procedures
- Frequency of life-sustaining procedures (e.g., dialysis, mechanical ventilation)

3. Medications:
- Use of high-risk medications (e.g., chemotherapy drugs, immunosuppressants)
- Multiple medication use indicating complex health issues
- Presence of medications typically used in end-of-life care

Note: Focus on combinations of conditions, procedures, and medications that indicate critical illness or a 
high risk of mortality. Consider how these factors interact and potentially exacerbate each other. Only the 
patients with extremely very high risk of mortality should be predicted as 1.

Readmission Prediction Task:
Objective: Predict if the patient will be readmitted to the hospital within 15 days of discharge based solely 
on conditions, procedures, and medications.
Labels: 1 = readmission within 15 days, 0 = no readmission within 15 days

Key Considerations: 
1. Conditions:
- Chronic diseases with high risk of exacerbation
- Conditions requiring close monitoring or frequent adjustments
- Recent acute conditions with potential for complications

2. Procedures:
- Recent major surgeries or interventions with high complication rates
- Procedures that require extensive follow-up care
- Incomplete or partially successful procedures

3. Medications: 
- New medication regimens that may require adjustment
- Medications with narrow therapeutic windows or high risk of side effects
- Complex medication schedules that may lead to adherence issues

Note: Analyze the information comprehensively to determine the likelihood of readmission. The goal is to 
accurately distinguish between patients who are likely to be readmitted and those who are not.

Task Description – Mortality Prediction

Task Description – Readmission Prediction

“Key Considerations” section is 
only for zero/few-shot prompting &
training sample generation

“Key Considerations” section is 
only for zero/few-shot prompting &
training sample generation

Figure 15: Task descriptions of the mortality prediction and the readmission prediction tasks used
in the paper. Note: For the fine-tuning process, we do not include the ”Key Considerations” section
in the input template.
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Given the following task description, patient EHR context, similar patients, retrieved medical knowledge, 
and ground truth label, provide a step-by-step reasoning process that leads to the correct prediction:

========================================
# Task #
{task_description}
========================================
# Patient EHR Context #
{context}
========================================
# Similar Patients #
{similar_patients}
========================================
# Retrieved Medical Knowledge #
{medical_knowledge}
========================================
# Ground Truth #
{ground_truth}
========================================

Please provide a step-by-step reasoning process that leads to the correct prediction based on the 
patient's context, similar patients, and the retrieved relevant medical knowledge.

The reasoning chain should follow this structured format:

1. Patient Overview: Check the key information in the patient's context, with the Key Considerations from 
the task description in mind.
2. Relevant Retrieved Medical Knowledge: Highlight the retrieved medical knowledge pertinent to the 
patient's condition.
3. Comparison with Similar Patients: Analyze the similarities and differences between the patient and similar 
patients, explaining how these factors influence the prediction.
4. Reasoning Towards Prediction: Integrate the above information to logically reason towards the 
predicted outcome.
5. Conclusion: Summarize the reasoning and state the prediction without mentioning the ground truth.

The reasoning should be comprehensive, medically sound, and clearly explain how the patient's 
information leads to the predicted outcome.

Important Notes:
- Do not mention the ground truth label in the reasoning process.
- Use the relevant knowledge as needed.
- Analyze the similarities and differences between the patient and similar patients to justify the prediction.

After generating the reasoning chain, please review it and indicate your confidence in the reasoning 
chain at the end.

Options of confidence: [Very Confident, Confident, Neutral, Not Confident, Very Not Confident.]

Output Format:

# Reasoning Chain #

1. Patient Overview:
[YOUR OUTPUT]

2. Relevant Retrieved Medical Knowledge:
[YOUR OUTPUT]

3. Comparison with Similar Patients:
[YOUR OUTPUT]

4. Reasoning Towards Prediction:
[YOUR OUTPUT]

5. Conclusion:
[YOUR OUTPUT]

# Confidence #
[CONFIDENCE ("Very Confident", "Confident", "Neutral", "Not Confident", "Very Not Confident")]

Figure 16: Prompt used for reasoning chain generation for training sample.
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[Reasoning] Given the following task description, patient EHR 
context, similar patients, and retrieved medical knowledge, 
please provide a step-by-step reasoning process that leads to 
the prediction outcome based on the patient's context and 
relevant medical knowledge. After the reasoning process, 
provide the prediction label (0/1).

========================================
# Task #
{task_description}
========================================
# Patient EHR Context #
{context}
========================================
# Similar Patients #
{similar_patients}
========================================
# Retrieved Medical Knowledge #
{medical_knowledge}
========================================

# Reasoning #
{reasoning}

# Prediction #
{Label (0/1)}

Fine-Tuning Input (Reasoning)

Fine-Tuning Output (Reasoning)

[Label Prediction] Given the following task description, patient 
EHR context, similar patients, and retrieved medical knowledge, 
please directly predict the label (0/1)

========================================
# Task #
{task_description}
========================================
# Patient EHR Context #
{context}
========================================
# Similar Patients #
{similar_patients}
========================================
# Retrieved Medical Knowledge #
{medical_knowledge}
========================================

Fine-Tuning Input (Label Prediction)

{Label (0/1)}

Fine-Tuning Output (Label Prediction)

Figure 17: Template used for the input and output of fine-tuning. (To improve the reproducibility of
KARE, we will publicize the processed data for fine-tuning the local LLM through PhysioNet)
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H HUMAN EVALUATION OF REASONING CHAINS

We hired three MD students and an MD to conduct expert evaluation of the reasoning chain gen-
erated by KARE. We instructed them to use the same metrics introduced by Kwon et al. (2024)
to evaluate 100 reasoning chains. All the evaluated samples are from test sets. Half of the chains
were for mortality prediction, and the other half were for readmission prediction. For each task, 35
chains were positive (correctly predicted), and 15 chains were negative (incorrectly predicted). The
definitions of the metrics and rating scales are described as follows:

• CONSISTENCY
Definition: Consistency measures how well the generated rationale aligns with the presented data
and the model’s prediction. It evaluates whether the reasoning contains contradictions.

– 5 (Excellent): The rationale is entirely consistent with the provided data and prediction. No
contradictions are present.

– 4 (Good): Minor inconsistencies are present but do not significantly detract from the overall
coherence.

– 3 (Fair): Some inconsistencies exist that partially undermine the rationale’s reliability.
– 2 (Poor): Significant inconsistencies exist, making the rationale difficult to trust.
– 1 (Very Poor): The rationale is fundamentally contradictory to the data or prediction.

• CORRECTNESS
Definition: Correctness assesses the medical validity of the knowledge and reasoning presented
in the rationale.

– 5 (Excellent): The rationale is entirely medically accurate and reflects evidence-based clini-
cal knowledge.

– 4 (Good): Minor inaccuracies are present but do not affect the overall clinical validity.
– 3 (Fair): The rationale contains some medically incorrect statements that could mislead

clinicians.
– 2 (Poor): Multiple inaccuracies significantly reduce the credibility of the rationale.
– 1 (Very Poor): The rationale is largely or entirely medically incorrect, making it unusable.

• SPECIFICITY
Definition: Specificity evaluates how detailed and precise the reasoning is in addressing the clin-
ical scenario.

– 5 (Excellent): The rationale provides highly detailed and tailored insights specific to the
patient case.

– 4 (Good): The rationale is detailed but occasionally includes generalities.
– 3 (Fair): The rationale is moderately specific, with noticeable generalizations.
– 2 (Poor): The rationale is vague and lacks sufficient detail to guide clinical decision-making.
– 1 (Very Poor): The rationale is overly generic and lacks any meaningful detail.

• HELPFULNESS
Definition: Helpfulness measures the extent to which the rationale aids the prediction toward the
correct diagnosis.

– 5 (Excellent): The rationale strongly supports the correct prediction and adds valuable clini-
cal insights.

– 4 (Good): The rationale is helpful overall but lacks some critical insights.
– 3 (Fair): The rationale provides some useful guidance but is incomplete or not compelling.
– 2 (Poor): The rationale adds minimal value to the prediction and lacks actionable insights.
– 1 (Very Poor): The rationale is unhelpful and does not contribute meaningfully to the diag-

nosis.
• HUMAN-LIKENESS

Definition: Human-likeness measures how well the clinical rationale demonstrates insight and
understanding of the patient description or diagnosis in a way that resembles human clinical rea-
soning.

– 5 (Excellent): The rationale reflects deep clinical insight, contextual understanding, and
reasoning that fully mimics human behavior.
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– 4 (Good): The rationale generally matches human reasoning but lacks minor elements of
nuanced understanding.

– 3 (Fair): The rationale demonstrates basic human-like reasoning but misses several critical
elements of insight.

– 2 (Poor): The rationale shows limited resemblance to human reasoning and lacks essential
clinical insight.

– 1 (Very Poor): The rationale fails to resemble human clinical reasoning and demonstrates no
meaningful understanding of the patient description or diagnosis.

The evaluation results are shown in Fig. 18.

Consistency Correctness Specificity Helpfulness Human-Likeness
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Figure 18: Evaluation of reasoning chains generated by KARE.

Discussions:

1. Reasoning chains leading to incorrect clinical predictions (negative cases) consistently
score lower across all metrics. This highlights the critical role of high-quality reasoning
chains in ensuring prediction accuracy. Enhancing the consistency and correctness of these
chains could potentially improve the overall prediction performance.

2. Human-Likeness scores are notably lower for the readmission prediction task. According
to the experts we consulted, this is primarily because determining whether a patient will
be readmitted within 15 days is inherently challenging, even for experienced clinicians,
given the limited information provided in the patient context. Factors like the absence of
basic demographic details (e.g., gender and age) further complicate this task. Despite these
limitations, KARE demonstrates a remarkable ability to outperform clinicians in predicting
readmissions, showcasing its potential in information-scarce scenarios.

3. For the mortality prediction task, inconsistencies between the reasoning chains and the final
predictions were observed in certain cases. For instance, some reasoning chains concluded
that the patient would survive the next visit, yet the final predicted label was “1” (indicating
mortality). These discrepancies negatively impacted the consistency scores. Incorporating
an additional verification step to align the reasoning chain with the final prediction may
help address this issue and enhance overall reliability.

44



Published as a conference paper at ICLR 2025

I PARAMETERS & TRAINING TIME OF MODELS
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Figure 19: Performance vs. Training Time. Training time refers to the duration required for the
model to achieve its optimal performance on the validation set.
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J NOTATIONS

Table 8: Notations used in our paper.
Notation Description
G′, V ′, R′, E′ Knowledge graph before semantic clustering and its components
G,V,R,E Refined knowledge graph after semantic clustering and its components
Gci , Vci , Eci Concept-specific knowledge graph for concept ci and its components
GKG

ci Subgraph of Gci from a biomedical knowledge graph
GBC

ci Subgraph of Gci extracted from a biomedical corpus
GLLM

ci Subgraph of Gci extracted using a large language model
Gp, VGp Patient-specific knowledge graph for patient p and its entities
Cml , Cl

k,m Set of communities and the k-th community at level l in run m
C, Ck, Cbest Set of all communities, a community, and the best community
VCk

, SCk
Entities and summary of community Ck

Bp,Ap Base and augmented context for patient p
Sp Selected community summaries for patient p
ei, ej , e(·) Text embedding of entityi / relation j and embedding function
H(v) Hit count of node v in previous selections
τ, Tτ Healthcare prediction task (theme) and its representative terms
y∗p,τ , yp,τ Ground truth and predicted labels for patient p and task τ
ρp,τ,k, ρ

best
p,τ The k-th and best reasoning chains for patient p and task τ

ci,C A medical concept and the set of all concepts
Rci Top X co-existing concepts for concept ci
ϕe, ϕr Mappings from original entities and relations to cluster representatives
pij Shortest path between concepts ci and cj
L,M Number of levels and runs in community detection
Zc, Zs Maximum triples per community, triples per summary
θe, θr Clustering thresholds for entities and relations
α, β, λ1, λ2, λ3 Hyperparameters for context augmentation
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