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Abstract

In real-world information-seeking scenarios,
users have dynamic and diverse needs, requir-
ing RAG systems to demonstrate adaptable re-
silience. To comprehensively evaluate the re-
silience of current RAG methods, we introduce
HawkBench, a human-labeled, multi-domain
benchmark designed to rigorously assess RAG
performance across categorized task types. By
stratifying tasks based on information-seeking
behaviors, HawkBench provides a systematic
evaluation of how well RAG systems adapt to
diverse user needs.

Unlike existing benchmarks, which focus pri-
marily on specific task types (mostly factoid
queries) and rely on varying knowledge bases,
HawkBench offers: (1) systematic task strati-
fication to cover a broad range of query types,
including both factoid and rationale queries,
(2) integration of multi-domain corpora across
all task types to mitigate corpus bias, and (3)
rigorous annotation for high-quality evaluation.

HawkBench includes 1,600 high-quality test
samples, evenly distributed across domains and
task types. Using this benchmark, we eval-
uate representative RAG methods, analyzing
their performance in terms of answer quality
and response latency. Our findings highlight
the need for dynamic task strategies that in-
tegrate decision-making, query interpretation,
and global knowledge understanding to im-
prove RAG generalizability. We believe Hawk-
Bench serves as a pivotal benchmark for ad-
vancing the resilience of RAG methods and
their ability to achieve general-purpose infor-
mation seeking. We release our codes and data
in this anonymous repository.

1 Introduction

Large Language Models (LLMs) excel in general
reasoning and knowledge-based tasks but often
struggle with timeliness and knowledge coverage
gaps, particularly in specialized domains and user-
specific data (OpenAl, 2023; DeepSeek-Al et al.,

2024). To address these limitations, incorporat-
ing external knowledge has become a common
approach, with Retrieval-Augmented Generation
(RAG) emerging as an effective solution to enhance
factual accuracy and adaptability (Zhu et al., 2024).

During the information-seeking process using
RAG, users may have a wide range of information
needs, from simple factoid retrieval to more com-
plex rationale-based queries (Qian et al., 2024b;
Zhao et al., 2024b). This versatility requires RAG
systems to possess diverse capabilities, including
accurate referencing and advanced reasoning skills.

Recent advancements in RAG methods have en-
hanced vanilla RAG systems by targeting specific
advanced capabilities. For instance, some methods
focus on improving multi-hop reasoning to han-
dle tasks with implicit information intents (Zhao
et al., 2024a; Xu et al., 2024), while others address
information aggregation tasks by constructing inter-
mediate structures, such as graphs or memory mod-
ules, to better integrate relevant information (Qian
et al., 2024b; Edge et al., 2024).

While these advancements enable RAG systems
to effectively leverage external knowledge for spe-
cific tasks, their ability to generalize across diverse
scenarios remains uncertain. A recent survey cat-
egorizes external knowledge-based tasks into dis-
tinct levels, emphasizing that no single method
can effectively address all query types (Zhao et al.,
2024b). This suggests that current RAG methods
lack the resilience required for general-purpose
information-seeking tasks, highlighting the need
for a systematic evaluation of RAG methods across
a broad range of information-seeking tasks, exam-
ining the resilience of these methods when faced
with information-seeking tasks in any form.

Existing public benchmarks for RAG eval-
vation focus narrowly on isolated dimensions
of information-seeking tasks.  For instance,
LegalBench-RAG evaluates information-seeking
tasks in the legal domain (Pipitone and Alami,
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2024), MutiHop-RAG tests multi-hop reason-
ing (Tang and Yang, 2024), and CRAG empha-
sizes comprehensive evaluation on factual QA
tasks (Yang et al., 2024). While these benchmarks
excel in their targeted domains, they collectively
fail to assess the resilience of RAG methods across
stratified task types due to three critical limitations:

First, fragmented evaluation protocols. Cur-
rent benchmarks are siloed by design, each pri-
oritizing distinct query types. This specialization
creates inconsistent evaluation criteria, hindering
fair comparisons of RAG performance across di-
verse task categories. Second, domain bias and
knowledge leakage. Many benchmarks rely on
heterogeneous knowledge bases (e.g., Wikipedia
and web snippets), leading to corpus-dependent
performance gaps that obscure true method capa-
bilities. Worse, LLMs are often pretrained on these
same sources (e.g., Wikipedia), inflating bench-
mark scores through memorization rather than gen-
uine retrieval-augmented reasoning. Third, lim-
ited query diversity. Most benchmarks dispropor-
tionately emphasize factoid questions (e.g., "When
was Einstein born?"), neglecting rationale-based
queries (e.g., "Explain how relativity revolution-
ized physics") that require synthesis and contex-
tual analysis. This narrow focus misaligns with
real-world user needs, where information-seeking
behaviors span both factual lookup and complex
exploratory reasoning.

In this paper, we introduce HawkBench, a
human-labeled, multi-domain benchmark designed
to systematically evaluate the resilience of RAG
methods across stratified information-seeking tasks.
Unlike existing benchmarks, HawkBench provides
a structured evaluation framework that facilitates
fair and comprehensive comparisons of diverse
RAG approaches. HawkBench is characterized
by the following key features:

Domain Thoroughness — We curate raw texts
from a diverse range of sources—including pro-
fessional textbooks, academic papers, financial
reports, legal contracts, and novels—to ensure
that the benchmark reflects real-world information
needs. This broad selection captures both general
and specialized knowledge, offering a robust foun-
dation for evaluation.

Systematic Task Stratification — We systemat-
ically define four query types: (1) explicit factoid
queries, (2) implicit factoid queries, (3) explicit
rationale queries, and (4) implicit rationale queries.
This stratification, inspired by Zhao et al. (2024b)

with refined modifications, ensures comprehensive
task coverage. Importantly, all query types share
the same underlying knowledge distribution, allow-
ing for direct and fair performance comparisons
across different tasks.

Rigorous Annotation Quality — HawkBench
employs a hybrid annotation process that lever-
ages both advanced LLMs—specifically GPT-4
and DeepSeek-V3—and human oversight. Initially,
LLMs generate query-answer pairs from the cu-
rated texts. Expert annotators then evaluate these
pairs against predefined stratification levels, refine
the answers by correcting inaccuracies, and en-
hance clarity. This process results in a high-quality
dataset of 1,600 annotated test samples, evenly dis-
tributed across all task types.

We further validate HawkBench by applying rep-
resentative RAG methods and performing a com-
prehensive analysis of their performance in terms
of both answer quality and response latency. Our
empirical results reveal that while current RAG
methods excel in specific tasks, they generally lack
overall resilience. Enhancing their adaptability
will require dynamic task strategies that integrate
decision-making, query interpretation, and a holis-
tic understanding of global knowledge.

Our contributions are as follows: (1) We intro-
duce HawkBench, a high-quality benchmark with
stratified tasks designed to assess the resilience
of RAG methods for general-purpose information-
seeking. (2) We conduct a comprehensive empir-
ical evaluation of recent RAG methods on Hawk-
Bench, enabling a side-by-side comparison of their
capabilities. (3) We propose insights and strategies
to improve the generalizability and adaptability of
current RAG methods.

2 HawkBench

2.1 Preliminary

Recent advancements in large language models
(LLMs) have popularized the Retrieval-Augmented
Generation (RAG) approach, which leverages exter-
nal knowledge to perform specific tasks. In RAG,
a generation model 6(+) and a retrieval model (-)
collaborate to produce a final response ). Formally,
the process is expressed as:

where ¢ denotes the input query, X represents the
external knowledge base, Z is the retrieved relevant
information, and ) is the generated answer.
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Figure 1: Query Stratification of HAWKBENCH. To account for referencing difficulty, we categorize tasks into
queries with explicit intent and implicit intent. Regarding reasoning, tasks are categorized into factoid queries and
rationale queries. By combining these two categorizations, we stratify information-seeking tasks into four levels.

This RAG framework can be viewed as an
information-refinement process following the
Markov chain: X — Z — ). As informa-
tion passes through each stage, it is progressively
distilled, leading to the inequality I(X,Z2) >
I(Y, Z), where I(-) denotes mutual information.
Ideally, the retrieval step should extract a Z that
is both sufficient—containing all the information
necessary to generate Y—and minimal—excluding
irrelevant details from X'. In fact, the condition
I(X,Z) = 1(Y, Z) would hold if and only if an
optimal retrieval output Z* exists that perfectly bal-
ances these two criteria. Achieving such an optimal
Z* is challenging due to estimation biases in both
the retrieval and generation processes. To better un-
derstand these challenges, it is essential to consider
two interrelated dimensions:

Referencing The retrieval process must deter-
mine not only which pieces of information in X" are
relevant to the query ¢ but also how much informa-
tion is required. The referencing is straightforward
when g explicitly states its intent, as the semantic
connections between ¢ and the relevant content in
X are easier to measure. However, for implicit
queries—where the intent is not clearly stated—
identifying the necessary evidence becomes more
complex. Thus, the referencing dimension mea-
sures how to access the relevant knowledge, cap-
turing both the volume of information needed and
its accessibility within the knowledge base.

Reasoning Once the retrieval model produces Z,
the generation model must process and integrate
this information to formulate the final answer ).
For factoid queries, the retrieved information typi-

cally aligns closely with the required answer, mean-
ing that the reasoning effort is relatively minimal.
In contrast, when the query demands a rationale—
requiring the synthesis and integration of multi-
ple pieces of information—the generation process
must engage in more complex in-context reasoning.
Therefore, the reasoning dimension measures how
to utilize the relevant knowledge, reflecting the cog-
nitive effort needed to bridge the gap between the
retrieved data and the final, coherent response.

To systematically analyze the difficulty of
information-seeking tasks within the RAG frame-
work, we decompose queries along these two di-
mensions. As shown in Figure 1 (left), we cate-
gorize tasks based on: Referencing: Whether the
query explicitly or implicitly conveys its intent,
thereby affecting the ease with which relevant in-
formation can be identified. Reasoning: Whether
the task involves straightforward fact extraction or
requires integrating information to form a reasoned
response. By combining these dimensions, we de-
fine four levels of information-seeking tasks, each
posing unique challenges to the RAG pipeline, as
outlined in the next section.

2.2 Query Stratification

In Figure 1 (middle), we illustrate our query strati-
fication, presenting the four query types below.

Level 1: Explicit Factoid Query Level 1 queries
exhibit an explicitly stated information-seeking in-
tent and typically require minimal reasoning. The
answer is directly available in the retrieved text.
For instance, the query

“What is OpenAl’s most recent Al model?”



clearly specifies its intent, allowing the retrieval
system to easily locate the pertinent information.
The generator can then extract the final answer with
little or no additional reasoning.

Level 2: Implicit Factoid Query Level 2 queries
present an implicit information-seeking intent,
which necessitates an extra step to resolve the refer-
ence before the answer can be extracted. Consider
the query

“Has the company that proposed MLA made any
recent advancements?”

The query does not directly name the company.
The system must first infer that “the company that
proposed MLA” refers to, for example, DeepSeek.
Once this implicit reference is established, the rel-
evant knowledge can be retrieved, and the answer
can be extracted with minimal reasoning. Thus,
Level 2 queries require additional referencing ef-
fort compared to Level 1, while the reasoning for
answer extraction remains straightforward.

Level 3: Explicit Rationale Query In Level 3
queries, the intent is explicitly stated, but there
exists a semantic gap between the query and the
relevant information. Although the query clearly
indicates what is being asked, the final answer is
not directly extractable from a single text fragment
and requires synthesizing information from multi-
ple sources. For example, the query

“How do recent techniques enhance the long-
context processing capabilities of LLMs?”

explicitly requests an explanation. However, the
necessary rationale is dispersed across several texts.
This scenario demands a more complex retrieval
process, possibly aided by structured representa-
tions (e.g., graphs), and a generator capable of syn-
thesizing the information into a coherent answer.

Level 4: Implicit Rationale Query Level 4
queries pose the highest challenge as they involve
both an implicit intent and the need to generate a
global explanation. For example, the query

“How have recent LLM techniques impacted the
NLP community?”

requires the system to first infer the underlying
intent and then integrate diverse pieces of infor-
mation across the entire knowledge base to form
a comprehensive explanation. This task demands
extensive referencing to identify loosely connected
yet relevant content and significant reasoning to
synthesize a unified, high-level response.

2.3 Comparison of the Four Query Levels

In Figure 1 (right), we compare the four query lev-
els across two aspects: Reference and Reasoning.
First, in terms of Reference, the amount of rel-
evant knowledge required increases from Level 1
to Level 4 queries, reflected in the mutual infor-
mation between the knowledge base and retrieved
knowledge, I(X, Z). Level 1 queries require mini-
mal knowledge, as answers are directly extractable
from a few text chunks. In contrast, higher-level
queries, such as Level 3 and Level 4, require syn-
thesizing information from a broader range of texts.
Second, in terms of Reasoning, complexity in-
creases across levels due to the growing semantic
gap between retrieved knowledge and the final an-
swer. For Level 1 queries, reasoning is minimal,
but for Level 3 and Level 4 queries, more reasoning
is needed to connect multiple, loosely connected
pieces of information. This is reflected in the de-
creasing mutual information I(Z,)) as redundant
information is filtered out during refinement.
These varying requirements for referencing and
reasoning present significant challenges for current
RAG systems, which struggle to adapt to the di-
versity of information-seeking tasks. There is no
one-size-fits-all solution, as each task demands dis-
tinct capabilities. This underscores the necessity
of benchmarking current RAG methods across a
broad range of tasks to better assess their resilience.

2.4 Construction

Corpus Collection While most current LLMs
are proficient in general world knowledge due to
their training on large-scale corpora, they often
lack coverage in specialized, domain-specific ar-
eas. To address this gap, HawkBench incorporates
229 domain-specific texts into its knowledge base.
These texts cover a wide range of domains, in-
cluding professional textbooks (manually labeled
into categories such as technology, humanities, art,
and science), as well as financial reports, legal
contracts, novels, and academic papers. This di-
verse and comprehensive collection ensures that
HawkBench can thoroughly evaluate the domain
resilience of RAG methods by covering a broad
range of user information needs.

Annotation Process The annotation process for
constructing HawkBench follows a systematic ap-
proach, as illustrated in Figure 4. The process
consists of three key steps:

(1) Configuration: The annotator selects the



target query level and domain, with assistance from
a strong LLM (GPT-40 and DeepSeek-v3).

(2) Question-Answer Pair Generation: The
system prompts the LLM agent using built-in QA
generation prompts to produce initial question-
answer pairs. During this step, the system first
samples from the knowledge base, selecting a ran-
dom text span of varying lengths based on the task
type. For Level-1 tasks, approximately 1K tokens
are used as the context. For Level-2 tasks, we use a
retrieval system retrieves the top-10 passages based
on the generated L1 query, selecting five passages
to prompt the agent to transform explicit factoid
queries into implicit intent queries. For Level-3
and Level-4 tasks, up to 120K tokens are sampled
as the knowledge context to guide the agent in gen-
erating information aggregation queries, with dif-
ferent prompts controlling the process. The codes
for annotation system and all built-in prompts are
released in this anonymous repository.

(3) Quality Control: The annotator reviews the
generated question to ensure it aligns with the tar-
get task type’s definition. If the question is unsuit-
able, it is discarded. If the question is valid, the
annotator evaluates the generated answer for clarity,
conciseness, and semantic richness. The answer is
then manually edited to ensure high quality.

We employed three PhD students proficient in
English as annotators. As shown in Table 1, the
difficulty of annotating different task types varies
significantly. For Level-1 tasks, most generated
QA pairs are valid with only minor edits needed,
making this task relatively quick. In contrast, for
Levels 24, the generated QA pairs are often in-
valid and discarded, and the quality of the answers
generally requires more extensive manual editing.
This process results in longer annotation times for
higher-level tasks. The total annotation time in-
cludes both system latency (primarily due to QA
pair generation) and manual annotation work. The
three annotators dedicated approximately one week
of full-time work to constructing HawkBench, each
receiving a salary of around $1,000. Additionally,
constructing HawkBench incurred around $597 in
GPT-40 usage and $278 in DeepSeek-v3 usage.

Dataset Distribution Table 4 presents the statis-
tical details of HawkBench. The dataset contains
1,600 test samples, derived from 229 context knowl-
edge bases. The compressed file size of Hawk-
Bench is only 26MB, making it highly portable for
distribution. We have thoroughly reviewed the li-

Level | Discard % Edit% Ave. Time Total Time
1 6.7% 3.5% 26s 4.5h
2 28.1% 41.4% 71s 23.1h
3 25.2% 47.9% 183s 41.5h
4 29.1% 40.6% 201s 45.2h

Table 1: Statistical Details of HawkBench Construction.

censes of all source texts to ensure that they permit
redistribution. HawkBench is distributed under the
Apache License 2.0.

3 Experiment

3.1 Baselines and Metrics

To investigate the resilience of RAG methods on
HawkBench, we select the following representa-
tive baseline methods: Vanilla RAG: This method
retrieves the top passages as context. Enhanced
RAG Methods: HyDE (Gao et al., 2023) generates
a hypothetical document to enhance query retrieval.
RORAG (Chan et al., 2024) rewrites the input query
into sub-queries to refine retrieval. Global RAG:
These methods index the knowledge base into an
intermediate form to enhance global awareness.
This includes memory-based methods such as Mem-
oRAG (Qian et al., 2024b) and graph-based meth-
ods like GraphRAG (Edge et al., 2024).

Additionally, we explore the application of long
LLMs in HawkBench, including vanilla LLMs, the
prompt compression method Lingua-2 (Pan et al.,
2024), and long-context acceleration methods such
as Mlnference (Jiang et al., 2024). All baselines in
the main experiments use Qwen2.5-7B-instruct as
the generator (Qwen et al., 2025), with BGE-M3 as
the retriever (Chen et al., 2023) and the top-k set
to 5 for all RAG methods.

For Level-1 and Level-2 tasks, which focus on
factoid queries, we use Rouge-L and lexical F1-
score as evaluation metrics. For Level-3 and Level-
4 tasks, which involve rationale queries, we intro-
duce a new evaluation metric, S-F1, defined as:

o 1 g
S-F1(4,A%) = o > Limes,ar)=Tre} ()
=1

1 n
+ m Z Liimess, )=True},  (3)
=1

where A* represents the ground-truth answer, and
A denotes the predicted answer. This metric evalu-
ates: 1) The proportion of sentences in the ground-
truth answer s} € A* that can be supported by the
predicted answer. 2) The proportion of sentences in
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Method Type LEVEL-1 LEVEL-2 LEVEL-3 LEVEL-4
Rouge-L.  Fl Rouge-L  Fl Rouge-L.  S-F1  Rouge-L  S-Fl
LLM Long LLM 13.0 129 129 11.5 26.2 24.0 16.9 33.2
Lingua-2 Compression 11.4 11.4 12.2 11.4 23.7 23.9 15.4 25.2
Minference Accelerating 11.5 11.1 12.6 11.2 25.6 24.2 17.1 333
RAG Standard RAG 50.9 57.5 34.0 38.6 17.9 27.3 15.3 18.3
HyDE Enhanced RAG 64.4 735 40.0 44.5 19.4 28.0 15.6 18.4
RQRAG Enhanced RAG 64.2 73.6 41.1 46.8 19.7 28.6 15.4 17.4
MemoRAG Global RAG 44.8 50.2 33.7 37.3 27.3 34.1 19.0 35.0
GraphRAG Global RAG 49.3 574 34.0 37.0 25.3 32.5 20.6 28.7

Table 2: Evaluation performance across four levels, averaged over all domains. The best scores are highlighted in

bold, and the second-best scores are underlined.
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Figure 2: Evaluation performance across four levels and eight domains for selected methods.

the predicted answer s; € A that correctly reflect
the meaning of the ground-truth answer.

The indicator function 1 .opgition returns 1 if the
condition holds, and 0 otherwise.

Compared to lexical Fl-score, S-F1 evaluates
sentence-level semantic equivalence between the
ground-truth and predicted answers, making it a
more robust metric for rationale-based tasks as lex-
ical overlapping cannot infer the rationale equality.
In addition to S-F1, we also employ Rouge-L to
evaluate Level-3 and Level-4 tasks.

3.2 Main Results

We conduct comprehensive experiments across all
baselines, with the full results presented in Table 5.
To provide a more detailed analysis, we examine
the results from multiple perspectives, offering a
deeper understanding of performance across differ-
ent dimensions.

Resilience across Levels Table 2 presents the
performance of all baselines across the four task
levels, averaged by domain. From these results, we
draw several key insights:

(1) Standard RAG and Enhanced RAG meth-
ods perform well on factoid queries (Level-1 and
Level-2), suggesting that these queries often rely
on specific text spans that can be easily located
with minimal reasoning or simple enhancements.

(2) Global RAG methods underperform on
Level-1 and Level-2 tasks but excel on Level-3
and Level-4 tasks. This indicates that global rea-
soning is not beneficial for factoid queries and may
even hinder performance. However, for rationale
queries, which require synthesizing information
from a broad range of text, global awareness helps
gather more comprehensive evidence, leading to
improved performance.

(3) Directly applying long LLMs to process the
entire knowledge base is feasible but underper-
forms on factoid queries due to over-referencing
and redundant noise. However, for rationale
queries, long LLMs outperform vanilla RAG meth-
ods due to their strong reasoning ability over long
contexts. Efficient long-context methods, such
as accelerated pre-filling or prompt compression,
yield performance comparable to vanilla LLMs.

Resilience over Domains Figure 2 presents the
experimental results across different levels and
domains for selected methods. The results high-
light how different methods perform across domain-
specific knowledge:

(1) For structured knowledge sources, such as
financial reports and legal documents, most meth-
ods perform well on factoid queries. The inherent
clarity and precision of these texts reduce semantic
ambiguity, improving retrieval accuracy.
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Figure 3: Evaluation performance across four levels for
vanilla RAG with varying Top-k selections.

(2) For explanatory texts, such as academic pa-
pers that focus on providing rationales, global RAG
methods excel. Their global awareness enables
them to effectively organize and integrate explicit
reasoning from the knowledge base.

(3) For unstructured knowledge in domains like
literature, art, and humanities—where texts contain
higher semantic ambiguity—global RAG methods
perform better on Level-4 tasks. This suggests
that aggregating high-level implicit information is
more effective for narrative-based content than for
structured knowledge domains.

Impact of Top-k Figure 3 analyzes the impact
of Top-k selection. The results show that while in-
creasing Top-k introduces more knowledge into the
generation process, it also increases redundancy.
The trade-off between knowledge recall and preci-
sion varies across query levels. Factoid queries rely
on precise evidence, and excessive redundancy sig-
nificantly degrades performance. In contrast, ratio-
nale queries benefit from higher recall, as effective
information aggregation requires a more compre-
hensive set of evidence from the knowledge base.

Level | RAG HyDE LLM MemoRAG GraphRAG

1 06 10 291 209 1.7 (+00)
2 07 20 327 215 2.0 (+00)
3 1.6 2.1 483 334 3.0(+00)
4 17 22 521 35.9 3.5(400)

Table 3: Task latency (queries per second) comparison
across methods and levels. Experiments were conducted
on an Nvidia A800-80G GPU using the ART dataset.
GraphRAG employs GPT-40 for graph construction,
which can take up to half an hour, denoted by +occ.

Efficiency Analysis Table 3 presents a compari-
son of task latency across methods and task levels.
The following insights can be drawn from the re-
sults: (1) Standard RAG methods are highly effi-
cient, as the retrieval process is not sensitive to the
size of the knowledge base. In contrast, long LLMs
and global RAG methods experience a significant

increase in latency across all tasks, while only im-
proving performance on rationale tasks. (2) Long
LLMs incur the highest latency for all task types
but fail to deliver a clear performance advantage.
This suggests that directly using the full knowledge
base may not be a proper approach. (3) The graph
construction process for GraphRAG relies heav-
ily on robust model APIs, leading to substantial
construction latency. However, once the graph is
constructed, performance becomes efficient. This
indicates that optimizing the process of perceiving
the global knowledge base—such as accelerating
the graph construction in GraphRAG or memory
formation in MemoRAG—could be beneficial for
improving performance on rationale queries.

3.3 Key Insights

Current RAG methods Lack Resilience Cur-
rent RAG methods tend to be optimized for spe-
cific types of information-seeking tasks (e.g., fact
retrieval or rationale generation). However, this
specialization leads to a lack of overall resilience
across a broader range of tasks. While empirical
analyses provide heuristics to guide method selec-
tion for particular tasks, we still lack a systematic,
adaptable solution that can handle diverse tasks
with varying requirements. This gap emphasizes
the need for developing RAG systems that can dy-
namically adjust to different information-seeking
challenges, moving beyond task-specific optimiza-
tions toward a more generalized framework.

Global Awareness: Construction and Utiliza-
tion Challenges Global awareness is essential
for tasks that require the integration of information
from multiple sources. However, current global
RAG methods struggle with efficiently building
and fully leveraging this awareness. While methods
such as GraphRAG (which uses graph construction)
and memory-based approaches show promise, their
reliance on inefficient global intermediate construc-
tion processes (e.g., building graphs or memory
stores) remains a major bottleneck. For example,
graph construction can take tens of minutes, mak-
ing it impractical for real-time use. Optimizing
these construction processes could make these sys-
tems more viable. Additionally, there is a need for
research into how to best utilize global interme-
diates (e.g., graphs, memory caches) to improve
retrieval and reasoning. Exploring efficient ways
to construct and use these intermediates is an im-
portant direction for future work.



Dynamic Task Understanding and Adaptive
Query Interpretation As information-seeking
tasks become more complex, the need for dynamic
task understanding and adaptive query interpreta-
tion becomes increasingly important. A one-size-
fits-all solution is not feasible; instead, RAG sys-
tems must integrate decision-making mechanisms
that allow them to dynamically adjust how they
access (referencing) and utilize (reasoning) knowl-
edge. By understanding the task context and adapt-
ing the retrieval strategy accordingly, RAG sys-
tems can more effectively address a wider range of
queries. This adaptability would significantly en-
hance the robustness and efficiency of RAG meth-
ods, enabling them to handle varying complexities
and task types more effectively.

The Potential of Agentic Information-Seeking
Systems Looking ahead, agentic information-
seeking systems—capable of autonomously navi-
gating knowledge acquisition—represent a promis-
ing frontier. These systems could perform complex
tasks, such as writing papers or conducting liter-
ature surveys, by integrating retrieval, reasoning,
and synthesis. Recent advancements, such as Ope-
nAI’s Deep Research, highlight the potential for
these agentic systems to become next-generation
solutions for a wide range of tasks. With the abil-
ity to autonomously manage complex information-
seeking tasks, these systems could transform how
we approach knowledge-intensive tasks, making
them an exciting area for future exploration.

4 Related Work

RAG Methods RAG was introduced by Lewis
et al. (2020) to enhance language models’ ability to
handle knowledge-intensive tasks by providing rel-
evant context through retrieval. Research in RAG
has focused on two main areas: (1) improving re-
trieval quality to set an upper bound for generation
accuracy (Qian et al., 2024a; Gao et al., 2024), and
(2) optimizing the use of retrieved passages for rel-
evance and accessibility during generation (Jiang
et al., 2023; Zhao et al., 2024a).

The integration of RAG with LLMs has gained
momentum, especially in knowledge-intensive ap-
plications (Shuster et al., 2021). As a result, there
is increasing demand for more generalized RAG
systems capable of handling a wider range of tasks,
including those beyond factoid queries (Zhao et al.,
2024b). However, traditional RAG pipelines face
challenges in addressing complex tasks with im-

plicit information needs, often failing to provide
sufficient context for accurate generation (Gao
et al., 2024; Zhao et al., 2024b). Recent advances
have aimed to expand RAG’s applicability. For
example, GraphRAG (Edge et al., 2024) and Hip-
poRAG (Gutiérrez et al., 2024) introduce knowl-
edge graphs to facilitate retrieval and enhance
global awareness. Agent-based approaches, such
as ActiveRAG (Xu et al., 2024; Yoon et al., 2024),
plan information access and utilization via agents.

RAG Benchmarking As RAG systems are in-
creasingly adopted, the need for comprehensive
evaluation benchmarks has become evident. Early
benchmarks, such as KILT (Petroni et al., 2021),
primarily focused on task-specific aspects like
single-hop and multi-hop reasoning, as well as fac-
toid queries. Recently, new benchmarks have been
developed to address specialized tasks and domains.
For example, MultiHop-RAG evaluates multi-hop
tasks (Tang and Yang, 2024), LegalBench-RAG
focuses on the legal domain (Pipitone and Alami,
2024), CRAG offers a comprehensive evaluation
framework for factoid question answering tasks,
and RAGBench is designed to assess the explain-
ability of RAG systems (Friel et al., 2024). While
these benchmarks provide valuable insights into
various facets of RAG performance, they lack
a comprehensive framework to evaluate the re-
silience of RAG systems when faced with diverse
information-seeking needs, particularly for strati-
fied queries (Zhao et al., 2024b).

5 Conclusion

In this paper, we introduce HawkBench, a
comprehensive framework designed to evaluate
the resilience of RAG systems across diverse
information-seeking tasks. HawkBench is distin-
guished by its systematic task stratification, multi-
domain corpora, and high-quality annotations, mak-
ing it an robust tool for assessing the resilience of
RAG methods. Our evaluation of representative
RAG methods reveals that while current RAG sys-
tems are often optimized for specific tasks, they
lack resilience across general tasks. This highlights
the need for dynamic task strategies that integrate
decision-making, query interpretation, and global
knowledge utilization to enhance the generalizabil-
ity of RAG systems. HawkBench thus serves as
a critical resource for advancing the development
of resilient, versatile RAG systems capable of ad-
dressing a wide range of real-world user needs.


https://openai.com/index/introducing-deep-research/

Limitations

This paper focuses on constructing a benchmark,
HawkBench, to evaluate the resilience of RAG
methods across stratified tasks. While the bench-
mark provides a comprehensive framework, there
are several limitations to consider. First, dataset
bias may arise during the curation process, as the
raw data are collected from multiple domains. This
diversity, while beneficial, may inadvertently intro-
duce biases that could affect the generalizability
of the results. Additionally, during the annotation
process, both the assisting LLMs and human an-
notators may introduce errors, which could impact
the overall evaluation quality. Although we strive
for thoroughness in evaluating task and domain di-
versity, HawkBench’s size, while reasonable, may
not cover all professional knowledge-intensive do-
mains or task types.

Furthermore, while we conduct comprehensive
experiments using HawkBench, it is not feasible to
test all available RAG methods, alternative retriev-
ers, or LLMs on this benchmark. We selected rep-
resentative methods and models that are expected
to provide generalizable findings, but this selec-
tion does not encompass the full range of possi-
ble approaches. Additionally, we did not evaluate
commercial RAG solutions in this study, as these
systems are typically closed-sourced and subject
to changes over time, making them challenging to
incorporate into a static benchmark evaluation.
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A Implementation Details

In our evaluation of baseline methods on
HawkRAG, we use BGE-M3 (Chen et al., 2023)
as the retriever for vanilla RAG, RQ-RAG, HyDE,
and MemoRAG, setting the hit number to 5. For
methods that segment long contexts into chunks,
we utilize the semantic-text-splitter tool, limiting
chunks to a maximum of 512 tokens. MemoRAG
employs the officially released memorag-qwen2-
7b-inst as its memory model. For GraphRAG, we
leverage GPT-40 for graph construction and use
the retrieved context for generation. All baseline
methods adopt Qwen-2.5-7B-instruct-128K as the
generator.

HawkRAG’s raw texts are sourced from books-
3-textbooks, legal contracts, arXiv papers, and fi-
nancial reports. During annotation, the annotator
would select either GPT-40 or DeepSeek-v3 as the
assisting agent. Our annotation system, illustrated
in Figure 4, is implemented using Streamlit. The
statistic details of HawkBench are presented in Ta-
ble 4. In Table 5, we present the full results of the
main experiments.

All experiments were conducted on a server
equipped with 8 NVIDIA A800-80G GPUs.
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Dataset Num  ([C[) | Num (|Q]) (|A]) | Num (|Q]) {JA]} [ Num (]Q[) (JA]) | Num {|Q]) (J.A])
LEVEL-1 LEVEL-2 LEVEL-3 LEVEL-4
TECHNOLOGY 200 144803.0| 50 15.8 5.1 50 57.7 141 50 253 96.4 50 263 42.0
NOVEL 200 166960.2 | 50 142 6.8 50 51.6 19.0 50 282 121.5| 50 31.1 63.5
ART 200 1155918 | 50 17.0 69 50 53.6 1438 50 27.0 1252 50 344 877
HUMANITIES 200 1526003 | 50 16.8 6.9 50 56.1 26.6 50 29.1 134.1| 50 336 723
PAPER 200 41702.0 50 182 95 50 757 171 50 34.0 101.0| 50 28.6 40.3
SCIENCE 200 143517.0| 50 163 7.6 50 543 153 50 268 109.2| 50 29.0 479
FINANCE 200 37364.6 50 172 105 50 62.6 125 50 27.0 105.6| 50 28.0 65.0
LEGAL 200 49331.1 50 193 119 50 53.0 21.0 50 272 113.0| 50 27.0 46.7
Total 1600 106483.7 | 400 16.8 82 | 400 58.1 17.5 | 400 28.1 113.3| 400 29.7 58.2

Select Agent:

gpt-40

4

Select Annotation Query Level:

Annotation Stats

Total Annotations: 1492

Counts by Level:
o level_1:361
o level_4:342
o level_2:385
o level_3:404

Counts by Domain:

e tech:179

e science: 182

e humanities: 176

e arts:209

¢ novel: 196

¢ finance: 193

o law: 184

all

paper

tech

science

humanities

arts

novel

arts

Sample New Context

Deploy

Step 1: Select the agent to use and
choose annotation query level.

Data Annotation Tool

Current Context
Context ID: 462acflee3f3b202d49bb79886a11c80
Domain: arts

Meta Information:

o title: Dylan Goes Electric!
¢ authors: Elijah Wald

Context Length: 185179

Show Context v

Generate New Question

"t json

{
"question": "How did the convergence of folk and rock music in the mid-19€
"answer": "The convergence of folk and rock music during the mid-1960s rep

Generated Question:

How did the convergence of folk and rock music in the mid-1960s reflect broader societal and

cultural shifts, and what were its lasting impacts on American music and youth culture?
Answer:

The convergence of folk and rock music during the mid-1960s represented significant societal shifts,
highlighting a growing youth culture that sought new modes of expression and rebellion against
traditional norms. This fusion was emblematic of a broader countercultural movement that
questioned authority and sought social change, as seen through the incorporation of Dylan's
introspective lyrics into mainstream rock. The impact was profound, leading to the birth of new
genres such as folk-rock and paving the way for artists who blended storytelling with rock rhythms,

ultimately changing the landscape of American music and youth culture.

Modify answer if needed:

The convergence of folk and rock music during the mid-1960s represented significant societal shift

Save

Step 2: Choose a domain and
click the button to sample a

corpus from the selected domain.

Step 4: Review the generated QA pairs. If the question is
inappropriate, click the “Generate” button again. If the
answer is inadequate, manually modify it. Once the QA pairs
meet the annotation standards, click “Save” to proceed.

Figure 4: Annotation Interface of HawkBench.
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Table 4: Statistical Information of HawkBench. The symbols (|C|), (|Q|), and {|.A|) represent the average lengths
of the context, query, and answer, respectively.

Step 3: Click the “Generate New Question” button, and
the system will use the selected agent to generate
question-answer pairs based on the built-in modules.



Dataset \ TECH Nov ART Hum PAPER Scr FIN LEG AVE
\ R-L F1 R-L F1 R-L FI R-L F1 R-L F1 R-L F1 R-L FlI R-L Fl \ R-L Fl1
Top-1 47.8 52.6 399 42.4 39.5 46.2 25.2 27.9 30.8 32.7 29.3 44.1 87.2 88.5 38.5 39.1 | 42.3 46.7
Top-5 59.0 66.2 47.0 55.1 44.2 54.0 23.5 28.8 58.2 64.0 44.6 57.1 80.3 83.9 50.4 50.9 | 50.9 57.5
Top-10 69.0 74.4 58.3 70.7 56.8 72.2 58.6 69.4 57.5 62.1 45.6 65.4 77.6 80.9 74.1 75.0 | 62.2 71.3
Top-50 12.8 12.7 33.8 35.9 25.3 29.3 14.1 16.4 27.6 28.0 20.4 23.3 43.5 44.2 35.3 37.1 | 26.6 28.4
LLM 75 6.8 63 6.1 7.1 69 6.8 58 20.1 204 82 9.1 24.6 24.8 23.5 23.3| 13.0 12.9
Lingua-2 50 35 38 30 89 9.1 30 21 82 74 59 6.2 27.0282298 314 | 114114
Minference| 8.0 7.1 53 51 72 7.1 53 5.1 157 139 7.2 7.7 233232 19.7 19.7| 11.5 11.1
HyDE 71.2 78.2 57.2 69.4 56.5 71.4 62.5 72.9 63.6 66.7 47.3 67.5 79.5 82.1 77.8 79.5 | 64.4 73.5
RQRAG 72.0 78.2 55.4 68.3 59.0 74.2 57.5 70.7 65.7 67.6 45.1 66.4 80.9 83.9 78.2 79.2 | 64.2 73.6
MemoRAG | 46.9 51.4 29.6 34.9 35.1 46.0 48.5 55.0 32.9 35.1 35.1 44.6 65.4 68.2 65.1 66.5 | 44.8 50.2
GraphRAG | 58.7 66.8 52.5 58.0 44.3 55.9 48.1 57.0 28.8 34.9 39.6 58.5 67.7 72.7 54.3 553 | 493 574
Dataset TECH Nov ART Hum PAPER Scr FIN LEG AVE
R-L F1 R-L F1 R-L FI R-L F1 R-L F1 R-L F1 R-L FlI R-L Fl \ R-L Fl1
Top-1 35.6 40.3 20.1 22.5 27.4 33.4 26.7 32.2 32.8 38.0 22.3 25.5 40.5 42.5 33.1 37.1 | 29.8 34.0
Top-5 37.1 41.7 28.9 35.8 29.8 34.8 30.8 36.6 40.9 45.6 23.0 25.1 44.0 47.1 37.1 41.7 | 34.0 38.6
Top-10 39.1 45.0 40.9 49.3 31.9 40.4 35.0 39.6 409 43.9 289 31.7 51.9 54.2 454 51.5| 39.3 444
Top-50 20.1 21.6 25.2 26.8 18.9 21.3 22.7 25.4 21.0 19.2 16.8 18.4 23.0 22.0 25.3 27.5| 21.6 22.8
LLM 10.1 86 11.4 106 11.5 11.7 14.8 12.8 17.1 142 9.8 8.8 10.4 8.5 184 16.6 | 129 11.5
Lingua-2 102 89 10.1 93 89 9.8 13.2 12.6 146 122 9.8 89 132 12.1 175175 122 114
Minference| 9.7 8.1 11.8 11.6 11.0 10.7 13.9 12.3 159 13.6 9.9 8.7 10.7 8.8 17.6 15.7| 12.6 11.2
HyDE 45.3 48.6 39.7 46.7 33.5 39.3 33.2 40.2 39.0 43.4 30.2 32.3 54.3 55.6 45.1 49.9 | 40.0 44.5
RQRAG 44.4 48.0 38.5 46.2 36.5 45.4 33.3 409 41.5 47.5 33.8 37.2 54.7 58.6 459 50.2 | 41.1 46.8
MemoRAG | 33.0 37.9 26.2 30.4 30.2 36.0 31.1 35.3 38.8 42.0 24.7 26.1 46.6 48.1 39.2 42.6 | 33.7 37.3
GraphRAG | 34.8 38.9 35.9 40.7 28.9 30.9 33.5 38.7 31.7 31.0 25.0 27.4 45.9 48.6 36.5 39.4 | 34.0 37.0
Dataset TECH Nov ART Hum PAPER Sci FIN LEG AVE
LEVEL-3 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 \ R-L S-F1
Top-1 15.5 26.9 124 14.6 12.3 26.0 10.1 19.9 20.3 23.5 17.8 26.0 12.6 13.7 19.2 23.2 | 15.0 21.7
Top-5 15.5 27.5 15.7 22.2 14.4 30.0 16.4 22.1 229 27.7 19.0 349 17.2 22.5 22.3 314 | 17.9 27.3
Top-10 22.3 33.3 20.4 22.8 18.4 35.6 19.2 28.1 30.3 449 24.2 43.6 22.4 26.3 279 33.1 | 23.1 33.5
Top-50 18.9 25.5 19.8 23.3 19.3 30.5 24.5 29.7 26.5 30.7 23.9 37.2 27.1 31.2 26.7 354 | 23.3 304
LLM 23.8 20.1 23.3 17.4 23.2 19.2 23.7 23.8 30.3 34.8 24.6 26.1 30.2 30.9 30.3 26.5| 26.2 24.9
Lingua-2 19.8 16.3 21.9 17.4 19.9 18.4 20.6 18.5 26.7 31.8 22.0 19.5 30.8 359 28.4 339 | 23.7 23.9
Minference | 23.3 19.8 23.2 16.8 22.1 20.2 23.5 23.8 29.9 34.8 24.6 25.8 29.4 25.0 28.8 27.3 | 25.6 24.2
HyDE 17.7 34.6 16.0 14.1 16.7 33.5 16.4 21.6 26.1 35.7 21.6 36.7 16.6 24.3 24.1 23.5| 19.4 28.0
RQRAG 17.6 31.7 15.7 23.1 17.8 32.4 16.3 20.9 25.3 32.9 20.8 37.8 17.5 23.5 26.4 26.9 | 19.7 28.6
MemoRAG | 23.2 33.4 24.5 25.7 25.1 29.8 26.0 29.8 32.6 44.5 27.3 42.0 26.9 33.4 32.7 34.3 | 27.3 34.1
GraphRAG | 22.1 31.6 23.8 29.0 22.2 33.2 24.6 23.9 31.4 44.0 27.2 42.7 24.3 29.2 26.7 26.1 | 25.3 32.5
Dataset TECH Nov ART Hum PAPER Sci FIN LEG AVE
LEVEL-4 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 \ R-L S-F1
Top-1 16.3 24.5 13.1 20.4 149 9.0 159 13.8 17.7 17.4 14.7 15.6 13.0 13.0 11.8 16.5| 14.7 16.3
Top-5 16.8 23.4 144 26.2 17.7 16.1 153 16.6 169 15.6 17.7 21.5 11.8 9.9 11.7 16.9 | 15.3 18.3
Top-10 21.1 40.2 17.4 22.7 20.3 17.1 18.4 22.9 20.5 16.1 18.0 19.3 16.0 19.9 13.8 8.3 | 18.2 20.8
Top-50 17.8 41.4 16.7 339 17.3 32.7 17.5 34.1 17.5 28.0 159 41.7 15.9 31.6 16.7 34.1 | 16.9 34.7
LLM 16.2 35.0 17.4 37.3 16.8 344 17.2 29.6 17.1 31.4 15.2 32.2 19.6 35.2 15.6 30.1 | 16.9 33.2
Lingua-2 13.9 32.2 14.1 23.3 15.0 249 13.8 10.5 17.5 27.0 12.9 22.3 20.4 35.8 15.8 25.1 | 154 25.2
Minference | 16.2 37.3 18.6 34.5 16.9 37.0 17.7 28.0 17.1 32.4 15.7 28.1 18.8 35.6 15.5 33.6 | 17.1 33.3
HyDE 16.8 25.6 14.8 20.0 16.7 14.2 155 16.9 15.2 16.7 19.4 20.5 13.7 18.6 12.6 15.2 | 15.6 184
RQRAG 16.0 22.1 14.8 17.8 17.6 15.8 16.0 17.0 153 17.9 17.7 24.0 13.2 13.1 128 11.1 | 154 174
MemoRAG | 17.7 43.8 20.0 44.1 19.8 37.2 19.7 37.8 20.4 26.1 16.9 36.3 19.8 30.1 17.9 24.2 | 19.0 35.0
GraphRAG | 20.7 37.3 21.1 37.5 22.7 34.4 22.4 31.4 23.7 21.5 20.4 27.4 19.2 20.2 15.1 19.5| 20.6 28.7

Table 5: Full details of main experimental results.
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