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Abstract
In real-world information-seeking scenarios,001
users have dynamic and diverse needs, requir-002
ing RAG systems to demonstrate adaptable re-003
silience. To comprehensively evaluate the re-004
silience of current RAG methods, we introduce005
HawkBench, a human-labeled, multi-domain006
benchmark designed to rigorously assess RAG007
performance across categorized task types. By008
stratifying tasks based on information-seeking009
behaviors, HawkBench provides a systematic010
evaluation of how well RAG systems adapt to011
diverse user needs.012

Unlike existing benchmarks, which focus pri-013
marily on specific task types (mostly factoid014
queries) and rely on varying knowledge bases,015
HawkBench offers: (1) systematic task strati-016
fication to cover a broad range of query types,017
including both factoid and rationale queries,018
(2) integration of multi-domain corpora across019
all task types to mitigate corpus bias, and (3)020
rigorous annotation for high-quality evaluation.021

HawkBench includes 1,600 high-quality test022
samples, evenly distributed across domains and023
task types. Using this benchmark, we eval-024
uate representative RAG methods, analyzing025
their performance in terms of answer quality026
and response latency. Our findings highlight027
the need for dynamic task strategies that in-028
tegrate decision-making, query interpretation,029
and global knowledge understanding to im-030
prove RAG generalizability. We believe Hawk-031
Bench serves as a pivotal benchmark for ad-032
vancing the resilience of RAG methods and033
their ability to achieve general-purpose infor-034
mation seeking. We release our codes and data035
in this anonymous repository.036

1 Introduction037

Large Language Models (LLMs) excel in general038

reasoning and knowledge-based tasks but often039

struggle with timeliness and knowledge coverage040

gaps, particularly in specialized domains and user-041

specific data (OpenAI, 2023; DeepSeek-AI et al.,042

2024). To address these limitations, incorporat- 043

ing external knowledge has become a common 044

approach, with Retrieval-Augmented Generation 045

(RAG) emerging as an effective solution to enhance 046

factual accuracy and adaptability (Zhu et al., 2024). 047

During the information-seeking process using 048

RAG, users may have a wide range of information 049

needs, from simple factoid retrieval to more com- 050

plex rationale-based queries (Qian et al., 2024b; 051

Zhao et al., 2024b). This versatility requires RAG 052

systems to possess diverse capabilities, including 053

accurate referencing and advanced reasoning skills. 054

Recent advancements in RAG methods have en- 055

hanced vanilla RAG systems by targeting specific 056

advanced capabilities. For instance, some methods 057

focus on improving multi-hop reasoning to han- 058

dle tasks with implicit information intents (Zhao 059

et al., 2024a; Xu et al., 2024), while others address 060

information aggregation tasks by constructing inter- 061

mediate structures, such as graphs or memory mod- 062

ules, to better integrate relevant information (Qian 063

et al., 2024b; Edge et al., 2024). 064

While these advancements enable RAG systems 065

to effectively leverage external knowledge for spe- 066

cific tasks, their ability to generalize across diverse 067

scenarios remains uncertain. A recent survey cat- 068

egorizes external knowledge-based tasks into dis- 069

tinct levels, emphasizing that no single method 070

can effectively address all query types (Zhao et al., 071

2024b). This suggests that current RAG methods 072

lack the resilience required for general-purpose 073

information-seeking tasks, highlighting the need 074

for a systematic evaluation of RAG methods across 075

a broad range of information-seeking tasks, exam- 076

ining the resilience of these methods when faced 077

with information-seeking tasks in any form. 078

Existing public benchmarks for RAG eval- 079

uation focus narrowly on isolated dimensions 080

of information-seeking tasks. For instance, 081

LegalBench-RAG evaluates information-seeking 082

tasks in the legal domain (Pipitone and Alami, 083
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2024), MutiHop-RAG tests multi-hop reason-084

ing (Tang and Yang, 2024), and CRAG empha-085

sizes comprehensive evaluation on factual QA086

tasks (Yang et al., 2024). While these benchmarks087

excel in their targeted domains, they collectively088

fail to assess the resilience of RAG methods across089

stratified task types due to three critical limitations:090

First, fragmented evaluation protocols. Cur-091

rent benchmarks are siloed by design, each pri-092

oritizing distinct query types. This specialization093

creates inconsistent evaluation criteria, hindering094

fair comparisons of RAG performance across di-095

verse task categories. Second, domain bias and096

knowledge leakage. Many benchmarks rely on097

heterogeneous knowledge bases (e.g., Wikipedia098

and web snippets), leading to corpus-dependent099

performance gaps that obscure true method capa-100

bilities. Worse, LLMs are often pretrained on these101

same sources (e.g., Wikipedia), inflating bench-102

mark scores through memorization rather than gen-103

uine retrieval-augmented reasoning. Third, lim-104

ited query diversity. Most benchmarks dispropor-105

tionately emphasize factoid questions (e.g., "When106

was Einstein born?"), neglecting rationale-based107

queries (e.g., "Explain how relativity revolution-108

ized physics") that require synthesis and contex-109

tual analysis. This narrow focus misaligns with110

real-world user needs, where information-seeking111

behaviors span both factual lookup and complex112

exploratory reasoning.113

In this paper, we introduce HawkBench, a114

human-labeled, multi-domain benchmark designed115

to systematically evaluate the resilience of RAG116

methods across stratified information-seeking tasks.117

Unlike existing benchmarks, HawkBench provides118

a structured evaluation framework that facilitates119

fair and comprehensive comparisons of diverse120

RAG approaches. HawkBench is characterized121

by the following key features:122

Domain Thoroughness – We curate raw texts123

from a diverse range of sources—including pro-124

fessional textbooks, academic papers, financial125

reports, legal contracts, and novels—to ensure126

that the benchmark reflects real-world information127

needs. This broad selection captures both general128

and specialized knowledge, offering a robust foun-129

dation for evaluation.130

Systematic Task Stratification – We systemat-131

ically define four query types: (1) explicit factoid132

queries, (2) implicit factoid queries, (3) explicit133

rationale queries, and (4) implicit rationale queries.134

This stratification, inspired by Zhao et al. (2024b)135

with refined modifications, ensures comprehensive 136

task coverage. Importantly, all query types share 137

the same underlying knowledge distribution, allow- 138

ing for direct and fair performance comparisons 139

across different tasks. 140

Rigorous Annotation Quality – HawkBench 141

employs a hybrid annotation process that lever- 142

ages both advanced LLMs—specifically GPT-4 143

and DeepSeek-V3—and human oversight. Initially, 144

LLMs generate query-answer pairs from the cu- 145

rated texts. Expert annotators then evaluate these 146

pairs against predefined stratification levels, refine 147

the answers by correcting inaccuracies, and en- 148

hance clarity. This process results in a high-quality 149

dataset of 1,600 annotated test samples, evenly dis- 150

tributed across all task types. 151

We further validate HawkBench by applying rep- 152

resentative RAG methods and performing a com- 153

prehensive analysis of their performance in terms 154

of both answer quality and response latency. Our 155

empirical results reveal that while current RAG 156

methods excel in specific tasks, they generally lack 157

overall resilience. Enhancing their adaptability 158

will require dynamic task strategies that integrate 159

decision-making, query interpretation, and a holis- 160

tic understanding of global knowledge. 161

Our contributions are as follows: (1) We intro- 162

duce HawkBench, a high-quality benchmark with 163

stratified tasks designed to assess the resilience 164

of RAG methods for general-purpose information- 165

seeking. (2) We conduct a comprehensive empir- 166

ical evaluation of recent RAG methods on Hawk- 167

Bench, enabling a side-by-side comparison of their 168

capabilities. (3) We propose insights and strategies 169

to improve the generalizability and adaptability of 170

current RAG methods. 171

2 HawkBench 172

2.1 Preliminary 173

Recent advancements in large language models 174

(LLMs) have popularized the Retrieval-Augmented 175

Generation (RAG) approach, which leverages exter- 176

nal knowledge to perform specific tasks. In RAG, 177

a generation model θ(·) and a retrieval model γ(·) 178

collaborate to produce a final response Y . Formally, 179

the process is expressed as: 180

Y = θ(q,Z), Z = γ(q,X ), (1) 181

where q denotes the input query, X represents the 182

external knowledge base, Z is the retrieved relevant 183

information, and Y is the generated answer. 184
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Figure 1: Query Stratification of HAWKBENCH. To account for referencing difficulty, we categorize tasks into
queries with explicit intent and implicit intent. Regarding reasoning, tasks are categorized into factoid queries and
rationale queries. By combining these two categorizations, we stratify information-seeking tasks into four levels.

This RAG framework can be viewed as an185

information-refinement process following the186

Markov chain: X → Z → Y. As informa-187

tion passes through each stage, it is progressively188

distilled, leading to the inequality I(X ,Z) ≥189

I(Y,Z), where I(·) denotes mutual information.190

Ideally, the retrieval step should extract a Z that191

is both sufficient—containing all the information192

necessary to generate Y—and minimal—excluding193

irrelevant details from X . In fact, the condition194

I(X ,Z) = I(Y,Z) would hold if and only if an195

optimal retrieval output Z∗ exists that perfectly bal-196

ances these two criteria. Achieving such an optimal197

Z∗ is challenging due to estimation biases in both198

the retrieval and generation processes. To better un-199

derstand these challenges, it is essential to consider200

two interrelated dimensions:201

Referencing The retrieval process must deter-202

mine not only which pieces of information in X are203

relevant to the query q but also how much informa-204

tion is required. The referencing is straightforward205

when q explicitly states its intent, as the semantic206

connections between q and the relevant content in207

X are easier to measure. However, for implicit208

queries—where the intent is not clearly stated—209

identifying the necessary evidence becomes more210

complex. Thus, the referencing dimension mea-211

sures how to access the relevant knowledge, cap-212

turing both the volume of information needed and213

its accessibility within the knowledge base.214

Reasoning Once the retrieval model produces Z ,215

the generation model must process and integrate216

this information to formulate the final answer Y .217

For factoid queries, the retrieved information typi-218

cally aligns closely with the required answer, mean- 219

ing that the reasoning effort is relatively minimal. 220

In contrast, when the query demands a rationale— 221

requiring the synthesis and integration of multi- 222

ple pieces of information—the generation process 223

must engage in more complex in-context reasoning. 224

Therefore, the reasoning dimension measures how 225

to utilize the relevant knowledge, reflecting the cog- 226

nitive effort needed to bridge the gap between the 227

retrieved data and the final, coherent response. 228

To systematically analyze the difficulty of 229

information-seeking tasks within the RAG frame- 230

work, we decompose queries along these two di- 231

mensions. As shown in Figure 1 (left), we cate- 232

gorize tasks based on: Referencing: Whether the 233

query explicitly or implicitly conveys its intent, 234

thereby affecting the ease with which relevant in- 235

formation can be identified. Reasoning: Whether 236

the task involves straightforward fact extraction or 237

requires integrating information to form a reasoned 238

response. By combining these dimensions, we de- 239

fine four levels of information-seeking tasks, each 240

posing unique challenges to the RAG pipeline, as 241

outlined in the next section. 242

2.2 Query Stratification 243

In Figure 1 (middle), we illustrate our query strati- 244

fication, presenting the four query types below. 245

Level 1: Explicit Factoid Query Level 1 queries 246

exhibit an explicitly stated information-seeking in- 247

tent and typically require minimal reasoning. The 248

answer is directly available in the retrieved text. 249

For instance, the query 250

“What is OpenAI’s most recent AI model?” 251
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clearly specifies its intent, allowing the retrieval252

system to easily locate the pertinent information.253

The generator can then extract the final answer with254

little or no additional reasoning.255

Level 2: Implicit Factoid Query Level 2 queries256

present an implicit information-seeking intent,257

which necessitates an extra step to resolve the refer-258

ence before the answer can be extracted. Consider259

the query260

“Has the company that proposed MLA made any261
recent advancements?”262

The query does not directly name the company.263

The system must first infer that “the company that264

proposed MLA” refers to, for example, DeepSeek.265

Once this implicit reference is established, the rel-266

evant knowledge can be retrieved, and the answer267

can be extracted with minimal reasoning. Thus,268

Level 2 queries require additional referencing ef-269

fort compared to Level 1, while the reasoning for270

answer extraction remains straightforward.271

Level 3: Explicit Rationale Query In Level 3272

queries, the intent is explicitly stated, but there273

exists a semantic gap between the query and the274

relevant information. Although the query clearly275

indicates what is being asked, the final answer is276

not directly extractable from a single text fragment277

and requires synthesizing information from multi-278

ple sources. For example, the query279

“How do recent techniques enhance the long-280
context processing capabilities of LLMs?”281

explicitly requests an explanation. However, the282

necessary rationale is dispersed across several texts.283

This scenario demands a more complex retrieval284

process, possibly aided by structured representa-285

tions (e.g., graphs), and a generator capable of syn-286

thesizing the information into a coherent answer.287

Level 4: Implicit Rationale Query Level 4288

queries pose the highest challenge as they involve289

both an implicit intent and the need to generate a290

global explanation. For example, the query291

“How have recent LLM techniques impacted the292
NLP community?”293

requires the system to first infer the underlying294

intent and then integrate diverse pieces of infor-295

mation across the entire knowledge base to form296

a comprehensive explanation. This task demands297

extensive referencing to identify loosely connected298

yet relevant content and significant reasoning to299

synthesize a unified, high-level response.300

2.3 Comparison of the Four Query Levels 301

In Figure 1 (right), we compare the four query lev- 302

els across two aspects: Reference and Reasoning. 303

First, in terms of Reference, the amount of rel- 304

evant knowledge required increases from Level 1 305

to Level 4 queries, reflected in the mutual infor- 306

mation between the knowledge base and retrieved 307

knowledge, I(X ,Z). Level 1 queries require mini- 308

mal knowledge, as answers are directly extractable 309

from a few text chunks. In contrast, higher-level 310

queries, such as Level 3 and Level 4, require syn- 311

thesizing information from a broader range of texts. 312

Second, in terms of Reasoning, complexity in- 313

creases across levels due to the growing semantic 314

gap between retrieved knowledge and the final an- 315

swer. For Level 1 queries, reasoning is minimal, 316

but for Level 3 and Level 4 queries, more reasoning 317

is needed to connect multiple, loosely connected 318

pieces of information. This is reflected in the de- 319

creasing mutual information I(Z,Y) as redundant 320

information is filtered out during refinement. 321

These varying requirements for referencing and 322

reasoning present significant challenges for current 323

RAG systems, which struggle to adapt to the di- 324

versity of information-seeking tasks. There is no 325

one-size-fits-all solution, as each task demands dis- 326

tinct capabilities. This underscores the necessity 327

of benchmarking current RAG methods across a 328

broad range of tasks to better assess their resilience. 329

2.4 Construction 330

Corpus Collection While most current LLMs 331

are proficient in general world knowledge due to 332

their training on large-scale corpora, they often 333

lack coverage in specialized, domain-specific ar- 334

eas. To address this gap, HawkBench incorporates 335

229 domain-specific texts into its knowledge base. 336

These texts cover a wide range of domains, in- 337

cluding professional textbooks (manually labeled 338

into categories such as technology, humanities, art, 339

and science), as well as financial reports, legal 340

contracts, novels, and academic papers. This di- 341

verse and comprehensive collection ensures that 342

HawkBench can thoroughly evaluate the domain 343

resilience of RAG methods by covering a broad 344

range of user information needs. 345

Annotation Process The annotation process for 346

constructing HawkBench follows a systematic ap- 347

proach, as illustrated in Figure 4. The process 348

consists of three key steps: 349

(1) Configuration: The annotator selects the 350
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target query level and domain, with assistance from351

a strong LLM (GPT-4o and DeepSeek-v3).352

(2) Question-Answer Pair Generation: The353

system prompts the LLM agent using built-in QA354

generation prompts to produce initial question-355

answer pairs. During this step, the system first356

samples from the knowledge base, selecting a ran-357

dom text span of varying lengths based on the task358

type. For Level-1 tasks, approximately 1K tokens359

are used as the context. For Level-2 tasks, we use a360

retrieval system retrieves the top-10 passages based361

on the generated L1 query, selecting five passages362

to prompt the agent to transform explicit factoid363

queries into implicit intent queries. For Level-3364

and Level-4 tasks, up to 120K tokens are sampled365

as the knowledge context to guide the agent in gen-366

erating information aggregation queries, with dif-367

ferent prompts controlling the process. The codes368

for annotation system and all built-in prompts are369

released in this anonymous repository.370

(3) Quality Control: The annotator reviews the371

generated question to ensure it aligns with the tar-372

get task type’s definition. If the question is unsuit-373

able, it is discarded. If the question is valid, the374

annotator evaluates the generated answer for clarity,375

conciseness, and semantic richness. The answer is376

then manually edited to ensure high quality.377

We employed three PhD students proficient in378

English as annotators. As shown in Table 1, the379

difficulty of annotating different task types varies380

significantly. For Level-1 tasks, most generated381

QA pairs are valid with only minor edits needed,382

making this task relatively quick. In contrast, for383

Levels 2–4, the generated QA pairs are often in-384

valid and discarded, and the quality of the answers385

generally requires more extensive manual editing.386

This process results in longer annotation times for387

higher-level tasks. The total annotation time in-388

cludes both system latency (primarily due to QA389

pair generation) and manual annotation work. The390

three annotators dedicated approximately one week391

of full-time work to constructing HawkBench, each392

receiving a salary of around $1,000. Additionally,393

constructing HawkBench incurred around $597 in394

GPT-4o usage and $278 in DeepSeek-v3 usage.395

Dataset Distribution Table 4 presents the statis-396

tical details of HawkBench. The dataset contains397

1,600 test samples, derived from 229 context knowl-398

edge bases. The compressed file size of Hawk-399

Bench is only 26MB, making it highly portable for400

distribution. We have thoroughly reviewed the li-401

Level Discard % Edit % Ave. Time Total Time

1 6.7% 3.5% 26s 4.5h
2 28.1% 41.4% 71s 23.1h
3 25.2% 47.9% 183s 41.5h
4 29.1% 40.6% 201s 45.2h

Table 1: Statistical Details of HawkBench Construction.

censes of all source texts to ensure that they permit 402

redistribution. HawkBench is distributed under the 403

Apache License 2.0. 404

3 Experiment 405

3.1 Baselines and Metrics 406

To investigate the resilience of RAG methods on 407

HawkBench, we select the following representa- 408

tive baseline methods: Vanilla RAG: This method 409

retrieves the top passages as context. Enhanced 410

RAG Methods: HyDE (Gao et al., 2023) generates 411

a hypothetical document to enhance query retrieval. 412

RQRAG (Chan et al., 2024) rewrites the input query 413

into sub-queries to refine retrieval. Global RAG: 414

These methods index the knowledge base into an 415

intermediate form to enhance global awareness. 416

This includes memory-based methods such as Mem- 417

oRAG (Qian et al., 2024b) and graph-based meth- 418

ods like GraphRAG (Edge et al., 2024). 419

Additionally, we explore the application of long 420

LLMs in HawkBench, including vanilla LLMs, the 421

prompt compression method Lingua-2 (Pan et al., 422

2024), and long-context acceleration methods such 423

as MInference (Jiang et al., 2024). All baselines in 424

the main experiments use Qwen2.5-7B-instruct as 425

the generator (Qwen et al., 2025), with BGE-M3 as 426

the retriever (Chen et al., 2023) and the top-k set 427

to 5 for all RAG methods. 428

For Level-1 and Level-2 tasks, which focus on 429

factoid queries, we use Rouge-L and lexical F1- 430

score as evaluation metrics. For Level-3 and Level- 431

4 tasks, which involve rationale queries, we intro- 432

duce a new evaluation metric, S-F1, defined as: 433

S-F1(A,A∗) =
1

2n

n∑
i=1

1{LLM(si,A∗)=True} (2) 434

+
1

2n

n∑
i=1

1{LLM(s∗i ,A)=True}, (3) 435

where A∗ represents the ground-truth answer, and 436

A denotes the predicted answer. This metric evalu- 437

ates: 1) The proportion of sentences in the ground- 438

truth answer s∗i ∈ A∗ that can be supported by the 439

predicted answer. 2) The proportion of sentences in 440
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Method Type LEVEL-1 LEVEL-2 LEVEL-3 LEVEL-4
Rouge-L F1 Rouge-L F1 Rouge-L S-F1 Rouge-L S-F1

LLM Long LLM 13.0 12.9 12.9 11.5 26.2 24.0 16.9 33.2
Lingua-2 Compression 11.4 11.4 12.2 11.4 23.7 23.9 15.4 25.2
MInference Accelerating 11.5 11.1 12.6 11.2 25.6 24.2 17.1 33.3

RAG Standard RAG 50.9 57.5 34.0 38.6 17.9 27.3 15.3 18.3
HyDE Enhanced RAG 64.4 73.5 40.0 44.5 19.4 28.0 15.6 18.4
RQRAG Enhanced RAG 64.2 73.6 41.1 46.8 19.7 28.6 15.4 17.4
MemoRAG Global RAG 44.8 50.2 33.7 37.3 27.3 34.1 19.0 35.0
GraphRAG Global RAG 49.3 57.4 34.0 37.0 25.3 32.5 20.6 28.7

Table 2: Evaluation performance across four levels, averaged over all domains. The best scores are highlighted in
bold, and the second-best scores are underlined.

Level 1
Technology Novel Art Humanities Paper Science Finance Legal

Top-5 66.2 55.1 54 28.8 64 57.1 83.9 50.9

Top-10 74.4 70.7 72.2 69.4 62.1 65.4 80.9 75

Top-50 12.7 35.9 29.3 16.4 28 23.3 44.2 37.1

LLM 6.8 6.1 6.9 5.8 20.4 9.1 24.8 23.3

Lingua-2 3.5 3 9.1 2.1 7.4 6.2 28.2 31.4

MInference 7.1 5.1 7.1 5.1 13.9 7.7 23.2 19.7

HyDE 78.2 69.4 71.4 72.9 66.7 67.5 82.1 79.5

RQRAG 78.2 68.3 74.2 70.7 67.6 66.4 83.9 79.2

MemoRAG 51.4 34.9 46 55 35.1 44.6 68.2 66.5

GraphRAG 66.8 58 55.9 57 34.9 58.5 72.7 55.3
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22
44
66
88

Level 2
Technology Novel Art Humanities Paper Science Finance Legal

Top-5 41.7 35.8 34.8 36.6 45.6 25.1 47.1 41.7

Top-10 45 49.3 40.4 39.6 43.9 31.7 54.2 51.5

Top-50 21.6 26.8 21.3 25.4 19.2 18.4 22 27.5

LLM 8.6 10.6 11.7 12.8 14.2 8.8 8.5 16.6

Lingua-2 8.9 9.3 9.8 12.6 12.2 8.9 12.1 17.5

MInference 8.1 11.6 10.7 12.3 13.6 8.7 8.8 15.7

HyDE 48.6 46.7 39.3 40.2 43.4 32.3 55.6 49.9

RQRAG 48 46.2 45.4 40.9 47.5 37.2 58.6 50.2

MemoRAG 37.9 30.4 36 35.3 42 26.1 48.1 42.6

GraphRAG 38.9 40.7 30.9 38.7 31 27.4 48.6 39.4
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Top-5 Top-50 LLM HyDE MemoRAG GraphRAG

Level 3
Technology Novel Art Humanities Paper Science Finance Legal

Top-5 27.5 22.2 30 22.1 27.7 34.9 22.5 31.4

Top-10 33.3 22.8 35.6 28.1 44.9 43.6 26.3 33.1

Top-50 25.5 23.3 30.5 29.7 30.7 37.2 31.2 35.4

LLM 20.1 17.4 19.2 23.8 34.8 26.1 30.9 26.5

Lingua-2 16.3 17.4 18.4 18.5 31.8 19.5 35.9 33.9

MInference 19.8 16.8 20.2 23.8 34.8 25.8 25 27.3

HyDE 34.6 14.1 33.5 21.6 35.7 36.7 24.3 23.5

RQRAG 31.7 23.1 32.4 20.9 32.9 37.8 23.5 26.9

MemoRAG 33.4 25.7 29.8 29.8 44.5 42 33.4 34.3
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Figure 2: Evaluation performance across four levels and eight domains for selected methods.

the predicted answer si ∈ A that correctly reflect441

the meaning of the ground-truth answer.442

The indicator function 1condition returns 1 if the443

condition holds, and 0 otherwise.444

Compared to lexical F1-score, S-F1 evaluates445

sentence-level semantic equivalence between the446

ground-truth and predicted answers, making it a447

more robust metric for rationale-based tasks as lex-448

ical overlapping cannot infer the rationale equality.449

In addition to S-F1, we also employ Rouge-L to450

evaluate Level-3 and Level-4 tasks.451

3.2 Main Results452

We conduct comprehensive experiments across all453

baselines, with the full results presented in Table 5.454

To provide a more detailed analysis, we examine455

the results from multiple perspectives, offering a456

deeper understanding of performance across differ-457

ent dimensions.458

Resilience across Levels Table 2 presents the459

performance of all baselines across the four task460

levels, averaged by domain. From these results, we461

draw several key insights:462

(1) Standard RAG and Enhanced RAG meth-463

ods perform well on factoid queries (Level-1 and464

Level-2), suggesting that these queries often rely465

on specific text spans that can be easily located466

with minimal reasoning or simple enhancements.467

(2) Global RAG methods underperform on 468

Level-1 and Level-2 tasks but excel on Level-3 469

and Level-4 tasks. This indicates that global rea- 470

soning is not beneficial for factoid queries and may 471

even hinder performance. However, for rationale 472

queries, which require synthesizing information 473

from a broad range of text, global awareness helps 474

gather more comprehensive evidence, leading to 475

improved performance. 476

(3) Directly applying long LLMs to process the 477

entire knowledge base is feasible but underper- 478

forms on factoid queries due to over-referencing 479

and redundant noise. However, for rationale 480

queries, long LLMs outperform vanilla RAG meth- 481

ods due to their strong reasoning ability over long 482

contexts. Efficient long-context methods, such 483

as accelerated pre-filling or prompt compression, 484

yield performance comparable to vanilla LLMs. 485

Resilience over Domains Figure 2 presents the 486

experimental results across different levels and 487

domains for selected methods. The results high- 488

light how different methods perform across domain- 489

specific knowledge: 490

(1) For structured knowledge sources, such as 491

financial reports and legal documents, most meth- 492

ods perform well on factoid queries. The inherent 493

clarity and precision of these texts reduce semantic 494

ambiguity, improving retrieval accuracy. 495
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Figure 3: Evaluation performance across four levels for
vanilla RAG with varying Top-k selections.

(2) For explanatory texts, such as academic pa-496

pers that focus on providing rationales, global RAG497

methods excel. Their global awareness enables498

them to effectively organize and integrate explicit499

reasoning from the knowledge base.500

(3) For unstructured knowledge in domains like501

literature, art, and humanities—where texts contain502

higher semantic ambiguity—global RAG methods503

perform better on Level-4 tasks. This suggests504

that aggregating high-level implicit information is505

more effective for narrative-based content than for506

structured knowledge domains.507

Impact of Top-k Figure 3 analyzes the impact508

of Top-k selection. The results show that while in-509

creasing Top-k introduces more knowledge into the510

generation process, it also increases redundancy.511

The trade-off between knowledge recall and preci-512

sion varies across query levels. Factoid queries rely513

on precise evidence, and excessive redundancy sig-514

nificantly degrades performance. In contrast, ratio-515

nale queries benefit from higher recall, as effective516

information aggregation requires a more compre-517

hensive set of evidence from the knowledge base.518

Level RAG HyDE LLM MemoRAG GraphRAG

1 0.6 1.0 29.1 20.9 1.7 (+∞)
2 0.7 2.0 32.7 21.5 2.0 (+∞)
3 1.6 2.1 48.3 33.4 3.0(+∞)
4 1.7 2.2 52.1 35.9 3.5(+∞)

Table 3: Task latency (queries per second) comparison
across methods and levels. Experiments were conducted
on an Nvidia A800-80G GPU using the ART dataset.
GraphRAG employs GPT-4o for graph construction,
which can take up to half an hour, denoted by +∞.

Efficiency Analysis Table 3 presents a compari-519

son of task latency across methods and task levels.520

The following insights can be drawn from the re-521

sults: (1) Standard RAG methods are highly effi-522

cient, as the retrieval process is not sensitive to the523

size of the knowledge base. In contrast, long LLMs524

and global RAG methods experience a significant525

increase in latency across all tasks, while only im- 526

proving performance on rationale tasks. (2) Long 527

LLMs incur the highest latency for all task types 528

but fail to deliver a clear performance advantage. 529

This suggests that directly using the full knowledge 530

base may not be a proper approach. (3) The graph 531

construction process for GraphRAG relies heav- 532

ily on robust model APIs, leading to substantial 533

construction latency. However, once the graph is 534

constructed, performance becomes efficient. This 535

indicates that optimizing the process of perceiving 536

the global knowledge base—such as accelerating 537

the graph construction in GraphRAG or memory 538

formation in MemoRAG—could be beneficial for 539

improving performance on rationale queries. 540

3.3 Key Insights 541

Current RAG methods Lack Resilience Cur- 542

rent RAG methods tend to be optimized for spe- 543

cific types of information-seeking tasks (e.g., fact 544

retrieval or rationale generation). However, this 545

specialization leads to a lack of overall resilience 546

across a broader range of tasks. While empirical 547

analyses provide heuristics to guide method selec- 548

tion for particular tasks, we still lack a systematic, 549

adaptable solution that can handle diverse tasks 550

with varying requirements. This gap emphasizes 551

the need for developing RAG systems that can dy- 552

namically adjust to different information-seeking 553

challenges, moving beyond task-specific optimiza- 554

tions toward a more generalized framework. 555

Global Awareness: Construction and Utiliza- 556

tion Challenges Global awareness is essential 557

for tasks that require the integration of information 558

from multiple sources. However, current global 559

RAG methods struggle with efficiently building 560

and fully leveraging this awareness. While methods 561

such as GraphRAG (which uses graph construction) 562

and memory-based approaches show promise, their 563

reliance on inefficient global intermediate construc- 564

tion processes (e.g., building graphs or memory 565

stores) remains a major bottleneck. For example, 566

graph construction can take tens of minutes, mak- 567

ing it impractical for real-time use. Optimizing 568

these construction processes could make these sys- 569

tems more viable. Additionally, there is a need for 570

research into how to best utilize global interme- 571

diates (e.g., graphs, memory caches) to improve 572

retrieval and reasoning. Exploring efficient ways 573

to construct and use these intermediates is an im- 574

portant direction for future work. 575
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Dynamic Task Understanding and Adaptive576

Query Interpretation As information-seeking577

tasks become more complex, the need for dynamic578

task understanding and adaptive query interpreta-579

tion becomes increasingly important. A one-size-580

fits-all solution is not feasible; instead, RAG sys-581

tems must integrate decision-making mechanisms582

that allow them to dynamically adjust how they583

access (referencing) and utilize (reasoning) knowl-584

edge. By understanding the task context and adapt-585

ing the retrieval strategy accordingly, RAG sys-586

tems can more effectively address a wider range of587

queries. This adaptability would significantly en-588

hance the robustness and efficiency of RAG meth-589

ods, enabling them to handle varying complexities590

and task types more effectively.591

The Potential of Agentic Information-Seeking592

Systems Looking ahead, agentic information-593

seeking systems—capable of autonomously navi-594

gating knowledge acquisition—represent a promis-595

ing frontier. These systems could perform complex596

tasks, such as writing papers or conducting liter-597

ature surveys, by integrating retrieval, reasoning,598

and synthesis. Recent advancements, such as Ope-599

nAI’s Deep Research, highlight the potential for600

these agentic systems to become next-generation601

solutions for a wide range of tasks. With the abil-602

ity to autonomously manage complex information-603

seeking tasks, these systems could transform how604

we approach knowledge-intensive tasks, making605

them an exciting area for future exploration.606

4 Related Work607

RAG Methods RAG was introduced by Lewis608

et al. (2020) to enhance language models’ ability to609

handle knowledge-intensive tasks by providing rel-610

evant context through retrieval. Research in RAG611

has focused on two main areas: (1) improving re-612

trieval quality to set an upper bound for generation613

accuracy (Qian et al., 2024a; Gao et al., 2024), and614

(2) optimizing the use of retrieved passages for rel-615

evance and accessibility during generation (Jiang616

et al., 2023; Zhao et al., 2024a).617

The integration of RAG with LLMs has gained618

momentum, especially in knowledge-intensive ap-619

plications (Shuster et al., 2021). As a result, there620

is increasing demand for more generalized RAG621

systems capable of handling a wider range of tasks,622

including those beyond factoid queries (Zhao et al.,623

2024b). However, traditional RAG pipelines face624

challenges in addressing complex tasks with im-625

plicit information needs, often failing to provide 626

sufficient context for accurate generation (Gao 627

et al., 2024; Zhao et al., 2024b). Recent advances 628

have aimed to expand RAG’s applicability. For 629

example, GraphRAG (Edge et al., 2024) and Hip- 630

poRAG (Gutiérrez et al., 2024) introduce knowl- 631

edge graphs to facilitate retrieval and enhance 632

global awareness. Agent-based approaches, such 633

as ActiveRAG (Xu et al., 2024; Yoon et al., 2024), 634

plan information access and utilization via agents. 635

RAG Benchmarking As RAG systems are in- 636

creasingly adopted, the need for comprehensive 637

evaluation benchmarks has become evident. Early 638

benchmarks, such as KILT (Petroni et al., 2021), 639

primarily focused on task-specific aspects like 640

single-hop and multi-hop reasoning, as well as fac- 641

toid queries. Recently, new benchmarks have been 642

developed to address specialized tasks and domains. 643

For example, MultiHop-RAG evaluates multi-hop 644

tasks (Tang and Yang, 2024), LegalBench-RAG 645

focuses on the legal domain (Pipitone and Alami, 646

2024), CRAG offers a comprehensive evaluation 647

framework for factoid question answering tasks, 648

and RAGBench is designed to assess the explain- 649

ability of RAG systems (Friel et al., 2024). While 650

these benchmarks provide valuable insights into 651

various facets of RAG performance, they lack 652

a comprehensive framework to evaluate the re- 653

silience of RAG systems when faced with diverse 654

information-seeking needs, particularly for strati- 655

fied queries (Zhao et al., 2024b). 656

5 Conclusion 657

In this paper, we introduce HawkBench, a 658

comprehensive framework designed to evaluate 659

the resilience of RAG systems across diverse 660

information-seeking tasks. HawkBench is distin- 661

guished by its systematic task stratification, multi- 662

domain corpora, and high-quality annotations, mak- 663

ing it an robust tool for assessing the resilience of 664

RAG methods. Our evaluation of representative 665

RAG methods reveals that while current RAG sys- 666

tems are often optimized for specific tasks, they 667

lack resilience across general tasks. This highlights 668

the need for dynamic task strategies that integrate 669

decision-making, query interpretation, and global 670

knowledge utilization to enhance the generalizabil- 671

ity of RAG systems. HawkBench thus serves as 672

a critical resource for advancing the development 673

of resilient, versatile RAG systems capable of ad- 674

dressing a wide range of real-world user needs. 675
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Limitations676

This paper focuses on constructing a benchmark,677

HawkBench, to evaluate the resilience of RAG678

methods across stratified tasks. While the bench-679

mark provides a comprehensive framework, there680

are several limitations to consider. First, dataset681

bias may arise during the curation process, as the682

raw data are collected from multiple domains. This683

diversity, while beneficial, may inadvertently intro-684

duce biases that could affect the generalizability685

of the results. Additionally, during the annotation686

process, both the assisting LLMs and human an-687

notators may introduce errors, which could impact688

the overall evaluation quality. Although we strive689

for thoroughness in evaluating task and domain di-690

versity, HawkBench’s size, while reasonable, may691

not cover all professional knowledge-intensive do-692

mains or task types.693

Furthermore, while we conduct comprehensive694

experiments using HawkBench, it is not feasible to695

test all available RAG methods, alternative retriev-696

ers, or LLMs on this benchmark. We selected rep-697

resentative methods and models that are expected698

to provide generalizable findings, but this selec-699

tion does not encompass the full range of possi-700

ble approaches. Additionally, we did not evaluate701

commercial RAG solutions in this study, as these702

systems are typically closed-sourced and subject703

to changes over time, making them challenging to704

incorporate into a static benchmark evaluation.705
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A Implementation Details912

In our evaluation of baseline methods on913

HawkRAG, we use BGE-M3 (Chen et al., 2023)914

as the retriever for vanilla RAG, RQ-RAG, HyDE,915

and MemoRAG, setting the hit number to 5. For916

methods that segment long contexts into chunks,917

we utilize the semantic-text-splitter tool, limiting918

chunks to a maximum of 512 tokens. MemoRAG919

employs the officially released memorag-qwen2-920

7b-inst as its memory model. For GraphRAG, we921

leverage GPT-4o for graph construction and use922

the retrieved context for generation. All baseline923

methods adopt Qwen-2.5-7B-instruct-128K as the924

generator.925

HawkRAG’s raw texts are sourced from books-926

3-textbooks, legal contracts, arXiv papers, and fi-927

nancial reports. During annotation, the annotator928

would select either GPT-4o or DeepSeek-v3 as the929

assisting agent. Our annotation system, illustrated930

in Figure 4, is implemented using Streamlit. The931

statistic details of HawkBench are presented in Ta-932

ble 4. In Table 5, we present the full results of the933

main experiments.934

All experiments were conducted on a server935

equipped with 8 NVIDIA A800-80G GPUs.936
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Dataset Num ⟨|C|⟩ Num ⟨|Q|⟩ ⟨|A|⟩ Num ⟨|Q|⟩ ⟨|A|⟩ Num ⟨|Q|⟩ ⟨|A|⟩ Num ⟨|Q|⟩ ⟨|A|⟩
LEVEL-1 LEVEL-2 LEVEL-3 LEVEL-4

TECHNOLOGY 200 144803.0 50 15.8 5.1 50 57.7 14.1 50 25.3 96.4 50 26.3 42.0
NOVEL 200 166960.2 50 14.2 6.8 50 51.6 19.0 50 28.2 121.5 50 31.1 63.5
ART 200 115591.8 50 17.0 6.9 50 53.6 14.8 50 27.0 125.2 50 34.4 87.7
HUMANITIES 200 152600.3 50 16.8 6.9 50 56.1 26.6 50 29.1 134.1 50 33.6 72.3
PAPER 200 41702.0 50 18.2 9.5 50 75.7 17.1 50 34.0 101.0 50 28.6 40.3
SCIENCE 200 143517.0 50 16.3 7.6 50 54.3 15.3 50 26.8 109.2 50 29.0 47.9
FINANCE 200 37364.6 50 17.2 10.5 50 62.6 12.5 50 27.0 105.6 50 28.0 65.0
LEGAL 200 49331.1 50 19.3 11.9 50 53.0 21.0 50 27.2 113.0 50 27.0 46.7

Total 1600 106483.7 400 16.8 8.2 400 58.1 17.5 400 28.1 113.3 400 29.7 58.2

Table 4: Statistical Information of HawkBench. The symbols ⟨|C|⟩, ⟨|Q|⟩, and ⟨|A|⟩ represent the average lengths
of the context, query, and answer, respectively.

Step 1: Select the agent to use and 
choose annotation query level.

Step 2: Choose a domain and 
click the button to sample a 

corpus from the selected domain.

Step 3: Click the “Generate New Question” button, and 
the system will use the selected agent to generate 

question-answer pairs based on the built-in modules.

Step 4: Review the generated QA pairs. If the question is 
inappropriate, click the “Generate” button again. If the 

answer is inadequate, manually modify it. Once the QA pairs 
meet the annotation standards, click “Save” to proceed.

Figure 4: Annotation Interface of HawkBench.
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Dataset TECH NOV ART HUM PAPER SCI FIN LEG AVE

LEVEL-1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1

Top-1 47.8 52.6 39.9 42.4 39.5 46.2 25.2 27.9 30.8 32.7 29.3 44.1 87.2 88.5 38.5 39.1 42.3 46.7
Top-5 59.0 66.2 47.0 55.1 44.2 54.0 23.5 28.8 58.2 64.0 44.6 57.1 80.3 83.9 50.4 50.9 50.9 57.5
Top-10 69.0 74.4 58.3 70.7 56.8 72.2 58.6 69.4 57.5 62.1 45.6 65.4 77.6 80.9 74.1 75.0 62.2 71.3
Top-50 12.8 12.7 33.8 35.9 25.3 29.3 14.1 16.4 27.6 28.0 20.4 23.3 43.5 44.2 35.3 37.1 26.6 28.4

LLM 7.5 6.8 6.3 6.1 7.1 6.9 6.8 5.8 20.1 20.4 8.2 9.1 24.6 24.8 23.5 23.3 13.0 12.9
Lingua-2 5.0 3.5 3.8 3.0 8.9 9.1 3.0 2.1 8.2 7.4 5.9 6.2 27.0 28.2 29.8 31.4 11.4 11.4
MInference 8.0 7.1 5.3 5.1 7.2 7.1 5.3 5.1 15.7 13.9 7.2 7.7 23.3 23.2 19.7 19.7 11.5 11.1

HyDE 71.2 78.2 57.2 69.4 56.5 71.4 62.5 72.9 63.6 66.7 47.3 67.5 79.5 82.1 77.8 79.5 64.4 73.5
RQRAG 72.0 78.2 55.4 68.3 59.0 74.2 57.5 70.7 65.7 67.6 45.1 66.4 80.9 83.9 78.2 79.2 64.2 73.6
MemoRAG 46.9 51.4 29.6 34.9 35.1 46.0 48.5 55.0 32.9 35.1 35.1 44.6 65.4 68.2 65.1 66.5 44.8 50.2
GraphRAG 58.7 66.8 52.5 58.0 44.3 55.9 48.1 57.0 28.8 34.9 39.6 58.5 67.7 72.7 54.3 55.3 49.3 57.4

Dataset TECH NOV ART HUM PAPER SCI FIN LEG AVE
LEVEL-2 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1

Top-1 35.6 40.3 20.1 22.5 27.4 33.4 26.7 32.2 32.8 38.0 22.3 25.5 40.5 42.5 33.1 37.1 29.8 34.0
Top-5 37.1 41.7 28.9 35.8 29.8 34.8 30.8 36.6 40.9 45.6 23.0 25.1 44.0 47.1 37.1 41.7 34.0 38.6
Top-10 39.1 45.0 40.9 49.3 31.9 40.4 35.0 39.6 40.9 43.9 28.9 31.7 51.9 54.2 45.4 51.5 39.3 44.4
Top-50 20.1 21.6 25.2 26.8 18.9 21.3 22.7 25.4 21.0 19.2 16.8 18.4 23.0 22.0 25.3 27.5 21.6 22.8

LLM 10.1 8.6 11.4 10.6 11.5 11.7 14.8 12.8 17.1 14.2 9.8 8.8 10.4 8.5 18.4 16.6 12.9 11.5
Lingua-2 10.2 8.9 10.1 9.3 8.9 9.8 13.2 12.6 14.6 12.2 9.8 8.9 13.2 12.1 17.5 17.5 12.2 11.4
MInference 9.7 8.1 11.8 11.6 11.0 10.7 13.9 12.3 15.9 13.6 9.9 8.7 10.7 8.8 17.6 15.7 12.6 11.2

HyDE 45.3 48.6 39.7 46.7 33.5 39.3 33.2 40.2 39.0 43.4 30.2 32.3 54.3 55.6 45.1 49.9 40.0 44.5
RQRAG 44.4 48.0 38.5 46.2 36.5 45.4 33.3 40.9 41.5 47.5 33.8 37.2 54.7 58.6 45.9 50.2 41.1 46.8
MemoRAG 33.0 37.9 26.2 30.4 30.2 36.0 31.1 35.3 38.8 42.0 24.7 26.1 46.6 48.1 39.2 42.6 33.7 37.3
GraphRAG 34.8 38.9 35.9 40.7 28.9 30.9 33.5 38.7 31.7 31.0 25.0 27.4 45.9 48.6 36.5 39.4 34.0 37.0

Dataset TECH NOV ART HUM PAPER SCI FIN LEG AVE
LEVEL-3 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1

Top-1 15.5 26.9 12.4 14.6 12.3 26.0 10.1 19.9 20.3 23.5 17.8 26.0 12.6 13.7 19.2 23.2 15.0 21.7
Top-5 15.5 27.5 15.7 22.2 14.4 30.0 16.4 22.1 22.9 27.7 19.0 34.9 17.2 22.5 22.3 31.4 17.9 27.3
Top-10 22.3 33.3 20.4 22.8 18.4 35.6 19.2 28.1 30.3 44.9 24.2 43.6 22.4 26.3 27.9 33.1 23.1 33.5
Top-50 18.9 25.5 19.8 23.3 19.3 30.5 24.5 29.7 26.5 30.7 23.9 37.2 27.1 31.2 26.7 35.4 23.3 30.4

LLM 23.8 20.1 23.3 17.4 23.2 19.2 23.7 23.8 30.3 34.8 24.6 26.1 30.2 30.9 30.3 26.5 26.2 24.9
Lingua-2 19.8 16.3 21.9 17.4 19.9 18.4 20.6 18.5 26.7 31.8 22.0 19.5 30.8 35.9 28.4 33.9 23.7 23.9
MInference 23.3 19.8 23.2 16.8 22.1 20.2 23.5 23.8 29.9 34.8 24.6 25.8 29.4 25.0 28.8 27.3 25.6 24.2

HyDE 17.7 34.6 16.0 14.1 16.7 33.5 16.4 21.6 26.1 35.7 21.6 36.7 16.6 24.3 24.1 23.5 19.4 28.0
RQRAG 17.6 31.7 15.7 23.1 17.8 32.4 16.3 20.9 25.3 32.9 20.8 37.8 17.5 23.5 26.4 26.9 19.7 28.6
MemoRAG 23.2 33.4 24.5 25.7 25.1 29.8 26.0 29.8 32.6 44.5 27.3 42.0 26.9 33.4 32.7 34.3 27.3 34.1
GraphRAG 22.1 31.6 23.8 29.0 22.2 33.2 24.6 23.9 31.4 44.0 27.2 42.7 24.3 29.2 26.7 26.1 25.3 32.5

Dataset TECH NOV ART HUM PAPER SCI FIN LEG AVE
LEVEL-4 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1

Top-1 16.3 24.5 13.1 20.4 14.9 9.0 15.9 13.8 17.7 17.4 14.7 15.6 13.0 13.0 11.8 16.5 14.7 16.3
Top-5 16.8 23.4 14.4 26.2 17.7 16.1 15.3 16.6 16.9 15.6 17.7 21.5 11.8 9.9 11.7 16.9 15.3 18.3
Top-10 21.1 40.2 17.4 22.7 20.3 17.1 18.4 22.9 20.5 16.1 18.0 19.3 16.0 19.9 13.8 8.3 18.2 20.8
Top-50 17.8 41.4 16.7 33.9 17.3 32.7 17.5 34.1 17.5 28.0 15.9 41.7 15.9 31.6 16.7 34.1 16.9 34.7

LLM 16.2 35.0 17.4 37.3 16.8 34.4 17.2 29.6 17.1 31.4 15.2 32.2 19.6 35.2 15.6 30.1 16.9 33.2
Lingua-2 13.9 32.2 14.1 23.3 15.0 24.9 13.8 10.5 17.5 27.0 12.9 22.3 20.4 35.8 15.8 25.1 15.4 25.2
MInference 16.2 37.3 18.6 34.5 16.9 37.0 17.7 28.0 17.1 32.4 15.7 28.1 18.8 35.6 15.5 33.6 17.1 33.3

HyDE 16.8 25.6 14.8 20.0 16.7 14.2 15.5 16.9 15.2 16.7 19.4 20.5 13.7 18.6 12.6 15.2 15.6 18.4
RQRAG 16.0 22.1 14.8 17.8 17.6 15.8 16.0 17.0 15.3 17.9 17.7 24.0 13.2 13.1 12.8 11.1 15.4 17.4
MemoRAG 17.7 43.8 20.0 44.1 19.8 37.2 19.7 37.8 20.4 26.1 16.9 36.3 19.8 30.1 17.9 24.2 19.0 35.0
GraphRAG 20.7 37.3 21.1 37.5 22.7 34.4 22.4 31.4 23.7 21.5 20.4 27.4 19.2 20.2 15.1 19.5 20.6 28.7

Table 5: Full details of main experimental results.
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