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ABSTRACT

In-context learning (ICL) can be used for two different purposes: task retrieval
and task learning. Task retrieval focuses on recalling a pre-trained task using
examples from the task that closely approximates the target pre-trained task, while
task learning involves learning a task using in-context examples. To rigorously
analyze these two modes, we propose generative models for both pretraining data
and in-context samples. Assuming we use our proposed models and consider the
mean squared error as a risk measure, we demonstrate that in-context prediction
using a Bayes-optimal next-token predictor equates to the posterior mean of the
label, conditioned on in-context samples. From this equivalence, we derive risk
upper bounds for in-context learning. We reveal a unique phenomenon in task
retrieval: as the number of in-context samples increases, the risk upper bound
decreases initially and then increases subsequently. This implies that more in-
context examples could potentially worsen task retrieval. We validate our analysis
with numerical computations in various scenarios and validate that our findings are
replicable in the actual Transformer model implementation.

1 INTRODUCTION

Large language models (LLMs) exhibit a significant improvement in predictive performance when
provided with in-context samples (Brown et al., 2020; Zhao et al., 2021; Liu et al., 2022a; Lyu et al.,
2023). To explain such phenomenon, namely in-context learning (ICL), researchers have introduced
both theoretical and empirical analyses drawing on concepts like Bayesian inference and gradient
descent (Olsson et al., 2022; Min et al., 2022; Yoo et al., 2022; Han et al., 2023b). Recently, two
distinct modes of ICL have been proposed by Pan et al. (2023). Slightly different from Pan et al.
(2023), we define two modes of ICL as follows. The first mode aims to learns a new task, specifically
a mapping function from x to y, which is termed as in-context task learning (Xie et al., 2022; von
Oswald et al., 2022; Zhang et al., 2023b). The second mode aims to retrieves the most relevant task
learned during pretraining, referred to as in-context task retrieval (Kojima et al., 2022; Kim et al.,
2022; Liu et al., 2022a; Rubin et al., 2022; Liu et al., 2022b; Lyu et al., 2023).

Current analyses often neglect the two modes, lacking a comprehensive explanation. Garg et al.
(2022); Akyürek et al. (2023); von Oswald et al. (2022); Dai et al. (2023) suggest Transformers
inherently use gradient descent with in-context samples, implying task learning with in-context
samples rather than task retrieval. Xie et al. (2022); Raventos et al. (2023); Wang et al. (2023) link
ICL with Bayesian inference, suggesting it learns arbitrary concepts with continuous concept space
and retrieves the closest concept with discrete concept space, failing to explain both retrieval and
learning within the same prior distribution. Meanwhile, the majority of these theoretical explanations
overlook the impact of pre-training distributions. Conversely, several empirical studies explore the
influence of pre-training distribution on ICL. Chan et al. (2022) offer an empirical analysis of how
the properties of pre-training distributions affect ICL. Raventos et al. (2023) empirically examine the
effect of pre-training distribution diversity on ICL.

In our study, we propose data generative models for pretraining data, leveraging the properties of the
pre-training distribution to explain task retrieval and learning. Extending Raventos et al. (2023), we
assume that the pretraining data is drawn from a mixture of noisy task distributions, each centered
around a clean task. We further give definitions to task learning and retrieval: (i) task learning aims
to learn a task using in-context examples, and (ii) task retrieval aims to recall a pre-trained clean
task with in-context examples from the task that approximates the target task. We assume the model
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is pretrained with mean squared error and show inferencing a Bayes-optimal next-token predictor
is equivalent to the posterior mean of the label. We further prove that the upper bound for task
learning shows a quadratically decaying rate as k increases, while the bound for task retrieval follows
a U-shaped curve. This suggests that task retrieval performance may be optimal with a specific
number of in-context examples, rather than with an infinite number of samples. Beyond theoretical
bounds, we perform numerical computations to validate our analyses and conduct experiments to
show our findings are replicable in actual Transformer model implementations.

We outline our contributions as follows:

• We introduce the generative models for both pretraining data and in-context samples to explain the
two modes of ICL: task retrieval and task learning.

• We show that using a pre-trained Bayes-optimal next-token predictor is equivalent to the posterior
mean of the label, conditioned on in-context samples. We then derive upper bounds for task retrieval
and learning risks. We show that the risk bound of task learning follows a quadratic decreasing
pattern and uncover a U-shaped pattern for the risk bound of task retrieval. These findings are
further illustrated through numerical computations alongside mathematical derivation.

• We finally conduct experiments to demonstrate that our findings are not just supported by numerical
calculations, but can also be reproduced in a real-world Transformer setup.

We put the comprehensive notation table to Appendix B.

2 RELATED WORK

Two Modes of ICL A significant body of research (Akyürek et al., 2023; von Oswald et al., 2022;
Garg et al., 2022; Li et al., 2023a; Zhang et al., 2023b) delves into the mechanisms behind the
success of ICL in learning the task from in-context samples. Yet, they often overlook the two distinct
scenarios of ICL: task retrieval and task learning, recently introduced by Pan et al. (2023). In contrast
to existing literature, our research delves into both these task categories.

Explaining ICL via Bayesian Inference Xie et al. (2022) first analyze ICL via the perspec-
tive of Bayesian inference, assuming that the next token is generated via Hidden Markov Model
(HMM) (Ghahramani & Jordan, 1995; Rabiner, 1989). Wang et al. (2023) further stand on the
Bayesian lens and proposes an in-context sample selection algorithm to improve the few-shot per-
formance. These works explain that the pretrained LLM can learn the exact task of the in-context
samples when the number of in-context samples is large enough. However, Xie et al. (2022) and Wang
et al. (2023) ignore the effect of the pretraining concept/task distribution on the ICL phenomenon and
failed to explain the two modes of ICL in the same setting. Differently, we explain two modes of ICL
in the same setting with the help of further assumptions on the pretraining data distribution.

Explaining ICL via Gradient Descent Beyond Bayesian Inference, Garg et al. (2022); Akyürek et al.
(2023); von Oswald et al. (2022); Dai et al. (2023) understand ICL from the perspective of “gradient
descent”. Garg et al. (2022) hinted at the possibility that under ICL, the Transformer might be
implicitly executing gradient descent. This notion was subsequently expanded by several works (Garg
et al., 2022; Akyürek et al., 2023; von Oswald et al., 2022; Dai et al., 2023), which provided a more
detailed examination of the topic. Lastly, Mahankali et al. (2023); Ahn et al. (2023); Zhang et al.
(2023a) indicate that the global minimizer of the pretraining loss implements gradient descent.

Explaining ICL (Others) In addition to Bayesian inference and gradient descent, Han et al. (2023a)
explain ICL as kernel regression with the attention mechanism. Some recent works study ICL via
the lens of the algorithm. Giannou et al. (2023) show Transformer can be constructed to emulate
in-context learning algorithms, such as SGD. Li et al. (2023b) study the aspects of generalization
and stability. Bai et al. (2023) show transformers can perform in-context algorithm selection,
i.e., adaptively selecting different ICL algorithms such as gradient descent, least square, or ridge
regression.

Analyzing ICL via Pretraining Dataset Distribution Researchers also study the property of the
pretraining dataset of language models (Chan et al., 2022; Raventos et al., 2023). Chan et al. (2022)
identifies three properties of natural language datasets: (i) burstiness, (ii) label multiplicity, and (iii) a
long-tailed class distribution. Raventos et al. (2023) show as the diversity of the pretraining dataset
increases, the Transformer model transitions from doing task retrieval to learning the underlying task
structure and becoming capable of doing task learning.
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Figure 1: The probabilistic graphical model (PGM) for pretraining data generation process, assuming
a particular Gaussian mixture model. (See Sec. 3.3 for more details.) The task (µ,w) is drawn N
times from the task prior, then for each time, K labeled samples are drawn from the chosen task.

3 PRETRAINING: DATA GENERATIVE MODELS AND OPTIMAL MODEL

Consider a next-token prediction model F , pretrained on a dataset to produce F̂ . The next-token
prediction model can take 2k + 1 elements (odd-numbered elements with dimension d and even-
numbered elements with dimension 1) for k ≥ 0, where the first 2k elements are k labeled samples
and the last element is an unlabeled test sample. The goal of the next-token prediction model is to
predict the (2k + 2)th token, which corresponds to the label of the last element. This prediction is
possible if the model can discern hidden patterns within the “in-context” k samples.

3.1 GENERATIVE MODELS FOR PRETRAINING DATA

In the pretraining phase, we assume the next-token prediction model is pretrained on diverse tasks,
each representing a joint (continuous) distribution of (x, y). Each task is defined by vectors µ (for the
x distribution) and w (for the conditional distribution y | x), together forming the joint distribution of
(x, y). Unlike our model, Raventos et al. (2023) assumed identical x distributions across tasks (same
µ, different w). The pretraining data consists of a large number of sequences, and each sequence
consists of K labeled samples drawn from a certain task. Our generative model can be formally
described in Assumption 1 and Fig. 1.

Assumption 1 (Pretraining Data Generative Model). For a given integer K > 0, a task prior
Dprior = Dµ,w, and a joint conditioned sampler Dx,y(µ,w), we generate a sequence SK as follows:
(a) Sample a task: (µ,w) ∼ Dprior;
(b) Sample K labeled examples: ∀i ∈ {1, 2, . . . ,K}, (xi, yi) ∼ Dx,y(µ,w).
(c) Define a sequence: SK = [x1, y1, . . . ,xK , yK ].

The sequence of the first 2k elements of SK will be denoted by Sk, and the sequence of the first
2k + 1 elements will be indicated by Sk⊕xk+1, e.g., S0 = [ ], and S1⊕x2 = [x1, y1,x2].

3.2 PRETRAINING OBJECTIVE AND BAYES-OPTIMAL NEXT-TOKEN PREDICTOR

We consider the following pretraining objective: L(F) = ESK

[
1
K

∑K−1
k=0 (F(Sk⊕xk+1)− yk+1)

2
]
.

In other words, for each sequence, we pretrain F to predict each intermediate label based on
preceding samples, measuring risk with the squared loss. Due to the linearity of expectation, we
have: L(F) = 1

K

∑K−1
k=0 E

SK

[
(F(Sk⊕xk+1)− yk+1)

2
]
. A highly expressive F can be viewed as

K separate models F0, . . . ,FK−1, where Fk takes exactly 2k + 1 tokens as input. Thus, pretraining
can be decomposed into K separate optimization problems:

F∗
k = argmin

Fk

E
SK

[(Fk(Sk⊕xk+1)− yk+1)
2], ∀k ∈ {0, . . . ,K − 1}.

The solution denoted F∗
k is an MMSE estimator (Van Trees, 2004, page 63) to each k, and thus the

prediction F∗(Sk⊕xk+1) = F∗
k (Sk⊕xk+1) satisfies:

F∗(Sk⊕xk+1) = E
SK

[yk+1 | Sk⊕xk+1] = E
µ,w

[
E

yk+1

[yk+1 | w,xk+1]

∣∣∣∣Sk⊕xk+1

]
. (1)

F∗(Sk⊕xk+1) is the expectation of E
yk+1

[yk+1 | w,xk+1] on task posterior observing Sk⊕xk+1.
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3.3 GAUSSIAN/LINEAR ASSUMPTIONS ON DATA GENERATIVE MODEL

Let us now elaborate on assumptions extending the generation process 1 for a tractable posterior
and insights into ICL behaviors. Assumption 2 defines the task prior distribution of (µ,w) using a
Gaussian mixture and the noisy linear prediction task. Assumption 3 provides further clarifications
for ICL phenomena. Assumption 4 specifies the distribution of test-time in-context samples.
Assumption 2 (Gaussian/Linear Model for Pretraining Data).
(a) (µ,w) ∼ Dprior : P (µ,w) =

∑M
β=1 πβTβ =

∑M
β=1 πβN (µ | µβ , σ

2
µI)N (w | wβ , σ

2
wI),

where πβ is the mixture weight of the βth mixture component Tβ , 0 < πβ < 1,
∑M

β=1 πβ = 1,
(µβ ,wβ) is the center of the βth mixture component, and all components share the same covariance
matrix controlled by σ2

µ and σ2
w;

(b) x ∼ Dx(µ) : P (x | µ) = N (x | µ, σ2
xI);

(c) y | x ∼ Dy|x(w) : P (y | x,w) = N (y | w⊤x, σ2
y);

(d) x,µ,µβ ,w,wβ ∈ Rd, I ∈ Rd×d.

We outline the rationale behind our modeling for pretraining task distribution. Assumption 2(a)
implies training the next-token prediction model on M components, reflecting real-world LLMs
trained across diverse tasks. The center of the mixture component signifies a primary clean task,
with variance indicating interpretative deviations, i.e., different data sources such as different labelers
interpret a clean task differently, resulting in generating data based on “noisy” versions of the clean
task, namely noisy tasks. This noise is modeled by a Gaussian distribution, creating a Gaussian
mixture task prior. Assumptions 2(b) and 2(c) dictate that interpreters generate (x, y) pairs from
these noisy tasks. Specifically, Assumption 2(b) posits x distribution of each task as a multivariate
Gaussian, sharing common covariance across tasks. Assumption 2(c) treats tasks as noisy linear
regressions with shared Gaussian noise in labels.
Assumption 3. Further assumptions on the pretraining distribution:
(a) ∀β, ∥µβ∥ = ∥wβ∥ = 1; (b) ∃r > 1 that ∀α ̸= β, 1

r ≤ πα

πβ
≤ r; (c) σµ ≪ σx, σw ≪ σy .

Assumption 3(a) simplifies subsequent analysis. Assumption 3(b) posits comparable probabilities
π across different mixture components. Assumption 3(c) states the variances of µ and w, the task
noises, are notably less than sample noises of x and y, implying high-quality training data.
Assumption 4 (Gaussian/Linear Model for Demonstration Data at Test Time). At test time:
(a) xi ∼ N (µ∗, τ2xI), yi = ⟨xi,w

∗⟩, ∀i; (b) ∥µ∗∥ = ∥w∗∥ = 1.

The Assumption 4(a) says that in-context sample (x, y) follows task (µ∗,w∗), and there is no noise
in the labels. The Assumption 4(b) is used to simplify the subsequent analysis.

4 ANALYSIS OF THE POSTERIOR DISTRIBUTION

Figure 2: The illustration of
the prior distribution. We set
µβ = wβ ∀β ∈ {1, 2, 3, 4}.

We have shown performing ICL with the optimally pretrained model
is equivalent to computing the posterior mean in Sec.3.2. With as-
sumptions in Sec. 3.3, we are able to derive a closed-form expression
for the posterior Dpost given Sk⊕xk+1 in Sec. 4.1. The posterior
will be utilized to simplify the prediction of F∗(Sk⊕xk+1) to a
closed-form expression in Sec. 4.2. Then we analyze the two factors
that determine the posterior: (i) Component Re-weighting (CR) in
Sec. 4.3 and (ii) Component Shifting (CS) in Sec. 4.4. We further
compare these two factors under different pretraining task noises in
Sec. 4.5 to show how the task noises of the pretraining distribution af-
fect these two factors. Along with mathematical derivations, we also
perform numerical computations using the Tetrahedron setting with
4 mixture components as shown in Fig. 9 with detailed descriptions
in Appendix C.1.
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4.1 POSTERIOR

In this section, we give the closed-form expressions of the posterior derived from the prior after
observing ICL input Sk⊕xk+1. Consequently, we have the following Lemma 1 for the posterior:

Lemma 1. Under Assumption 2, the posterior probability of task (µ,w) given Sk⊕xk+1 is:

P (µ,w | Sk⊕xk+1) =

M∑
β=1

π̃βP (µ,w | T̃β),

where the mixture component Tβ in the prior is mapped to the mixture component T̃β in the posterior
and the probability of the mixture component is changed from πβ to π̃β . Specifically, we have:

π̃β =πβC1c
µ
β c

w
β , (2)

cµβ =exp(−(∥µβ∥2 − ∥µβ + (k + 1)δµµ̄∥2(I+(k+1)δµΣ̄µ)−1)/(2σ
2
µ)),

cwβ =exp(−(∥wβ∥2 − ∥wβ + kδww̄∥2(I+kδwΣ̄w)−1)/(2σ
2
w)),

P (µ,w | T̃β) =N (µ | µ̃β , σ
2
µ(I + (k + 1)δµΣ̄µ)

−1)N (w | w̃β , σ
2
w(I + kδwΣ̄w)−1), (3)

µ̃β =(I + (k + 1)δµΣ̄µ)
−1(µβ + (k + 1)δµµ̄),

w̃β =(I + kδwΣ̄w)−1(wβ + kδww̄),

where C1 normalizes the mixture weights such that
∑

β π̃β = 1. See Appendix D for proof details.

For notations, we have δµ =
σ2
µ

σ2
x

, δw =
σ2
w

σ2
y

, and Σ̄µ = I , µ̄ =
∑k+1

i=1 xi

k+1 , Σ̄w =
∑k

i=1 xix
⊤
i

k ,

w̄ =
∑k

i=1 xiyi

k . (Notice (I + (k + 1)δµΣ̄µ) and (I + kδwΣ̄w) are positive definite and invertible.)

Lemma 1 states that the posterior remains a Gaussian mixture, with its components from the prior
being shifted and re-weighted. Therefore, to understand the effect of demonstrations on ICL, it is
essential to understand how demonstrations affect the following two factors:

• Component Re-weighting (CR). Eq. 2: the βth component is re-weighted by a re-weighting coef-

ficient exp
(
−

∥µβ∥2−∥µβ+(k+1)δµµ̄∥2
(I+(k+1)δµΣ̄µ)−1

2σ2
µ

)
exp

(
−∥wβ∥2−∥wβ+kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

)
.

• Component Shifting (CS). Eq. 3: the βth component center is shifted from (µβ ,wβ) to (µ̃β , w̃β),
where µ̃β = (I + (k + 1)δµΣ̄µ)

−1(µβ + (k + 1)δµµ̄), w̃β = (I + kδwΣ̄w)−1(wβ + kδww̄).

4.2 PREDICTION WITH IN-CONTEXT DEMONSTRATIONS

With Assumption 2 and Lemma 1, we have the following Corollary for the prediction F∗(Sk⊕xk+1):

Corollary 2. Let w̃ =
∑M

β=1 π̃βw̃β . Under sample generation process 1 and Assumption 2, if the
pretrained model F∗ minimizes the pretraining loss, then the prediction on any sequence Sk⊕xk+1

by F∗ is as follows: F∗(Sk⊕xk+1) =
〈∑M

β=1 π̃βw̃β ,xk+1

〉
= ⟨w̃,xk+1⟩.

Proof. By applying Assumption 1 to Eq. 1, F∗(Sk⊕xk+1) = E(µ,w)∼Dprior [⟨w,xk+1⟩ | Sk⊕xk+1].
Using Lemma 1, this reduces to

∑M
β=1 π̃β E

(µ,w)∼T̃β

[⟨w,xk+1⟩]. Due to the linearity of expectation

and that of the inner product, it can be simplified as ⟨∑M
β=1 π̃βw̃β ,xk+1⟩ = ⟨w̃,xk+1⟩.

Thus the prediction is a convex combination of predictions by the centers of those re-weighted and
shifted mixture components in the posterior. We are interested in, how πβ and wβ change to π̃β and
w̃β with increasing k, and how the pretraining distribution properties affect these changes.

4.3 ANALYSIS OF COMPONENT RE-WEIGHTING

In this section, we analyze the CR effect on π̃β as k increases. We focus on whether π̃α of T̃α

surpasses π̃β of any other T̃β with β ̸= α, where α is the index of the closest clean task to the task
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Figure 3: Numerical computation of Ψµ, Ψw, and π for CR with varying task noise parameters.

which in-context samples follow as Assumption 4. We assess this via the ratio r(α, β) of π̃α to π̃β :

r(α, β) =
π̃α

π̃β
=

παC1c
µ
αc

w
α

πβC1c
µ
β c

w
β

=
πα

πβ
exp(Ψµ(α, β) + Ψw(α, β)), (4)

where we define two functions Ψµ(α, β) = log(cµα/c
µ
β ) and Ψw(α, β) = log(cwα /cwβ ), and aim to

analyze whether/how r(α, β) changes with increasing k.

Analysis of Ψµ(α, β) We further simplify the function Ψµ(α, β) as follows:

Ψµ(α, β) = (

k+1∑
i=1

∥µβ − xi∥2 −
k+1∑
i=1

∥µα − xi∥2)/(2σ2
x(1 + (k + 1)δ2µ)). (5)

(See Appendix E.1 for derivation.) Since xi ∼ N (µ∗, τ2xI) and µ∗ is closer to µα, Ψµ(α, β) tends
to be positive, contributing to r(α, β) > 1. Yet, as k grows large, Ψµ(α, β) stabilizes rather than
increasing infinitely: limk→∞ Ψµ(α, β) = (∥µβ −µ∗∥2 −∥µα −µ∗∥2)/2σ2

µ. The left side column
of Fig. 3 shows the numerical computation of Ψµ(α, β) with varied task noises under Tetrahedron

setting (Appendix C.1). The smaller δµ =
σ2
µ

σ2
x

, the easier for Ψµ(α, β) to grow large as k increases.

Analysis of Ψw(α, β) We further simplify the function Ψw(α, β) as follows:
Ψw(α, β) = (∥wβ −w∗∥2I−(I+kδwΣ̄w)−1 − ∥wα −w∗∥2I−(I+kδwΣ̄w)−1)/2σ

2
w. (6)

(See Appendix E.2 for derivation.) Since kδwΣ̄w = δw
∑k

i=1 xix
⊤
i , (see definition of Σ̄w in

Lemma 1.) which is at least semi-positive definite, thus choosing w∗ closer to wα tends to make
the whole term positive. However, one should be caution that ∥wβ − w∗∥2 ≥ ∥wα − w∗∥2
does not necessarily imply ∥wβ − w∗∥2

I−(I+kδwΣ̄w)−1 ≥ ∥wα − w∗∥2
I−(I+kδwΣ̄w)−1 . As k

approaches infinity, limk→∞ kδwΣ̄w = limk→∞ kδw
∑k

i=1 xix
⊤
i

k = kδw(µ∗µ∗⊤ + τ2xI). Thus
limk→∞ I − (I + kδwΣ̄w)−1 → I and Ψw(α, β) stabilizes rather than increasing infinitely:
limk→∞ Ψw(α, β) = (∥wβ −w∗∥2 − ∥wα −w∗∥2)/2σ2

w The top side row of Fig. 3 shows the nu-
merical computation of Ψw(α, β) with varied task noises under Tetrahedron setting (Appendix C.1).
The smaller δw =

σ2
w

σ2
y

, the easier for Ψw(α, β) to grow large with increasing k.
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Figure 4: Numerical computations of ∥µ̃β − µ∗∥, ∥w̃β −w∗∥ for Component Shifting (CS).

Numerical Computations of Component Re-weighting We have seen how noises σµ and σw of
the task prior affect the influence of number k of in-context samples on Ψµ and Ψw. We further show
the numerical computation of π̃β in the center of Fig. 3. The figure shows the smaller δµ and δw are,
the larger Ψµ(α, β) and Ψw(α, β) will be, and therefore the easier for the mixture component T̃α

dominates the other components with an increasing number of in-context samples.

4.4 ANALYSIS OF COMPONENT SHIFTING

The Component Shifting in Eq. 3 of Lemma 1 consists of shifting parts for µ̃β and w̃β separately:

µ̃β = (I + (k + 1)δµΣ̄µ)
−1(µβ + (k + 1)δµµ̄), (7)

w̃β = (I + kδwΣ̄w)−1(wβ + kδww̄). (8)

In the following analysis, we examine these two shiftings with increasing k.

µ̃β Analysis Eq. 7 indicates the shifting of any µ̃β . We further derive (see Appendix F.1) µ̃β as:

µ̃β = (µβ + kδµµ̄)/(1 + (k + 1)δµ). (9)

Thus when k increases, µ̃β moves close to the value of
∑k

i=1 xi

k and limk→∞ µ̃β = µ∗. We also
show the numerical computation of the distance between shifted µ̃β and µ∗ in the first row of Fig. 4.

w̃β Analysis Eq. 8 indicates the shifting of any w̃β . We further derive (see Appendix F.2) w̃β as:

w̃β = (I + kδwΣ̄w)−1(wβ −w∗) +w∗. (10)

Notice when k → ∞, kδwΣ̄w = kδw
∑k

i=1 xix
⊤
i

k → kδw(τ2xI +w∗w∗⊤), thus λd(kδwΣ̄w) → ∞,
and limk→∞ w̃β = w∗, where λd(A) indicates the minimum eigenvalue of A. We also show the
numerical computation of the distance between shifted w̃β and w∗ in the second row of Fig. 4.

4.5 THE RELATIONSHIP BETWEEN CR/CS AND TASK NOISES

Fig. 3, shows the factor of Component Shifting (CS), we observe that the smaller the value of σµ

and σw, the faster the value of πα becomes close to 1 thus dominates the other πβ . Fig. 4 shows, the
smaller the value of σµ (σw) is, the slower the center µ̃β (w̃β) shifts towards to µ∗ (w∗).

5 RISK BOUNDS FOR TWO MODES OF ICL

We give definitions to task retrieval and learning (Sec. 5.1) and derive risk bounds (Sec. 5.2).

5.1 FORMAL DEFINITIONS OF TASK RETRIEVAL AND LEARNING

Shown in Table 1 are the formal definitions of task retrieval and learning. Further, we present further
assumptions for our analysis.
Assumption 5. The target task of task retrieval and learning in addition to Assumption 4:
(a) task retrieval assumes ∀β ̸= α, ∥µβ−µ∗∥2−∥µα−µ∗∥2 ≥ d2µ, ∥wβ−w∗∥2−∥wα−w∗∥2 ≥
d2w, and τ2x∥wβ−w∗∥2−(1+τ2x)∥wα−w∗∥2 ≥ τ2xu

2
w, and aims at F∗(Sk⊕xk+1) = ⟨xk+1,wα⟩;

(b) task learning aims to have prediction F∗(Sk⊕xk+1) = ⟨xk+1,w
∗⟩ and ∀β,w∗ ̸= wβ .

7
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Table 1: The learning goal and performance of two modes in ICL.
Mode Task Retrieval Task Learning

In-context
sample

distribution

(x, y) pairs approximately follow
the target clean task, i.e.,
µ∗ ≈ µα, w∗ ≈ wα, and ∀i
xi ∼ N (µ∗, τ2xI), yi = ⟨xi,w⟩.

(x, y) pairs exactly follow the target
new (noisy) task, i.e., the target task
is exactly (µ∗,w∗) and ∀i,
x ∼ N (µ∗, τ2xI), yi = ⟨xi,w⟩.

Goal of
the mode

retrieve wα of a clean task, i.e.,
aiming at F(S) = ⟨wα,xk+1⟩.

learn w∗ of a new (noisy) task, i.e.,
aiming at F(S) = ⟨w∗,xk+1⟩

Performance
metric

The risk of input Sk⊕xk+1 is
(F∗(Sk⊕xk+1)− ⟨wα,xk+1⟩)2

The risk of input Sk⊕xk+1 is
(F∗(Sk⊕xk+1)− ⟨w∗,xk+1⟩)2
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Number of Demonstrations kFigure 5: Numerical computations of the squared losses of task learning/retrieval under varied task
noise conditions with increasing k. For the fifth row, w̃ =

∑4
β=1 π̃βw̃β . In the sixth row, F∗ is the

abbreviation of F∗(Sk⊕xk+1), yL
k+1 = ⟨xk+1,w

∗⟩ indicates the desired prediction of Sk⊕xk+1 on
task learning, and yR

k+1 = ⟨xk+1,wα⟩ indicates the desired prediction of Sk⊕xk+1 on task retrieval.

Assumption 5(a) states that task retrieval aims to retrieve a clean task, with demonstrations’ parameters
(µ∗,w∗) closer to (µα,wα). Assumption 5(b) suggests task learning focuses on learning a new task.

Numerical Computations of the Prediction With these new definitions, we numerically compute the
squared losses of task learning and retrieval. Fig 5 shows the computed risks under varied task noise
conditions with increasing k. The first row in Fig 5 shows the effect of CR. The second to the fourth
rows in Fig 5 show the effect of CS. The fifth and sixth rows in Fig 5 show the simulated squared error
of the predicted w̃ and prediction measured on task learning and retrieval. A unique phenomenon is
that when δµ and δw are small, the squared error of task retrieval decreases and then increases with
increasing k. This is because when variances are small and k is small, the CR effect dominates first,
and then when k is large, the CS effect dominates.

5.2 RISK BOUNDS

We show upper bounds on the risks of task learning and retrieval with the following theorems:

Theorem 3. Consider a next-token prediction model attaining the optimal pretraining risk. Then, the
task learning risk is upper bounded by:

ESk
[LL

k] <
4(1 + dτ2x)

τ4xδw
2k2

+O(kδ−
5
2 )
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where δ is an arbitrarily small positive constant. The bound decreases as the square of the inverse of
k when k is large.

The notations δµ, δw and k are colored for easier observation. (See Appendix G.2 for proof details)
Theorem 4. Consider a next-token prediction model attaining the optimal pretraining risk. Then, the
task retrieval risk is upper bounded by:

ESk
[LR

k] < 16rMCk=0 exp(−(
d2µ
2σ2

µ

+
d2w
2σ2

w

))(1 +
2τx

√
dk

δ
2−

3
4

σ2
µ

) + 4(1 + dτ2x) +O(k−1),

(See Appendix G.3 for proof details) where δ is an arbitrarily small positive number and Ck=0 is a
constant depends on the setting as Eq. 17. We also show that when δµ and δw are sufficiently small
(training data has high quality), there is a special region for k such that when k in that region:

ESk
[LR

k] < 16rMCk=0 exp(−k(
d2µ
8σ2

x

+
u2
wτ2x
8σ2

y

)) + 16(1 + dτ2x)((1 + τ2x)
2δw

2k2 + 3 exp(−k
1
2

8
)).

(See Appendix G.3 for proof details.) We observe that in this region when k is small, the first and
third terms dominate and exponential decay, and then when k is large, the second term dominates,
therefore we observe a U-shaped pattern in Fig. 5 and Fig. 6.

Lemma 5, a simple variation of the above theorem, can be used to explain zero-shot ICL, an ICL
algorithm that oeprates with random or no labels (Lyu et al., 2023).
Lemma 5. Assuming a next-token prediction model attains the optimal pretraining risk, and As-
sumptions 2 with only two mixture component with centers (µα,wα) and (µβ ,wβ) = (−µα,−µα),
when performing ICL with in-context samples following xi ∼ N (µ∗ | τ2xI) and yi = 0, thus y does
not provide information to the task. When ∥µ∗ − µβ∥2 − ∥µ∗ − µα∥2 = d2µ, the task learning risk
is upper bounded by:

ESk
[LR

k] < 16rCk=0 exp(−
d2µ
2σ2

µ

)(1 +
2τx

√
dk

δ
2−

3
4

σ2
µ

) + 4(1 + dτ2x) +O(k−1)

(See Appendix H for proof details) where δ is an arbitrarily small positive number and Ck=0 is a
constant depends on the setting as Eq. 17. We also show that when δµ and δw are sufficiently small
(training data has high quality), there is a special region for k such that when k in that region:

ESk
[LR

k] < 16rCk=0 exp(−
d2µk

8σ2
x

) + 4(1 + dτ2x)max{1, 4k2δw2(1 + τ2x)
2}+ 48(1 + dτ2x) exp(−

k
1
2

8
).

(See Appendix H for proof details.) We observe that in this region when k is small, the first and third
terms dominate and exponential decay, and then when k is large, the second term dominates.

6 TRANSFORMER SIMULATION

We further examine if a Transformer trained on samples from generative model 6 following Assump-
tion 2, matches the performance of Bayesian inference. We consider three factors of the prior in our
experiment: task noise, number of components, and feature dimension. For scalar y, we transform it to
a d-dimensional vector [y, 0, . . . , 0]. Thus, input Sk⊕xk+1 forms a (2k + 1)× d matrix, comprising
k pairs of (xi, yi) and xk+1. The prediction of the Transformer is denoted as F̂ and the prediction of
Bayesian inference is denoted as F∗. From Fig 6, Fig 7 and Fig 8, we are able to observe that the
pretrained Transformer model are able to approximate Baeys-optimal predictor under varied settings.
(Due to the page limitation, we put Fig 6, Fig 7, Fig 8 and the training setting into Appendix A.)

7 CONCLUSION

We analyze in-context learning’s two modes: task retrieval and task learning. Our findings show
that with a Bayes-optimal pretrained next-token prediction model, in-context inference predicts the
posterior distribution’s mean given in-context samples. Task learning risk decreases quadratically
with more in-context samples, while task retrieval risk follows a U-shaped pattern. These findings are
validated through numerical computations and Transformer experiments.

We conclude our paper with the limitations of our current model: (i) the gap between linear regression
tasks and complex, non-linear real-world NLP tasks; (ii) the unverified existence of a U-shaped
phenomenon in real LLMs; and (iii) demonstration labels are assumed to be noiseless.
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8 REPRODUCIBILITY STATEMENT

The code for all experiments reported in this paper is publicly accessible. For the purpose of
reproducibility, the code can be found at the following anonymized GitHub repository: https:
//anonymous.4open.science/r/ICLMODES-1B28.
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Figure 6: The figure shows the simulation of the Transformer under varied noise levels. F∗ indicates
the prediction of Bayesian inference while F̂ indicates the prediction of the trained Transformer. One
can observe that the lower the values of δµ and δw, i.e., the noise levels, the stronger the dip-and-rise
phenomenon and the harder for the Transformer to approach the Bayesian inference.
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A ADDITIONAL RESULTS OF TRANSFORMER SIMULATION

The Fig 6, Fig. 7 and Fig. 8 of experimental results of the Transformer model discussed in Sec. 6 are
shown here due to the page limitation.

In Fig 6, we consider the Tetrahedron setting (see Apendix C.1) under varied task noises (δµ =
δw ∈ {1/256, 1/64, 1/16, 1/4, 1}). The results show that the lower the variance, the stronger the
dip-and-rise phenomenon in both Bayesian and Transformer inference, and it is also harder for the
Transformer to capture the Bayesian prediction. It also takes more training epochs for the Transformer
to catch the Bayesian prediction when task noises are small. In Fig 7, we consider settings of regular
shapes (see Appendix C.1) with different numbers of vertices/components (M ∈ {4, 6, 8, 12, 20}).
In Fig 8, we consider settings with varied dimensions (see Appendix C.2, d ∈ {2, 4, 8, 16, 32}).

We conduct experiments using a 10-layer, 8-head Transformer decoder with 1024-dimensional
feedforward layers, and the input dimension is set to d, equivalent to the dimension of x. In each
training epoch, we train the model with 10000 batches and each batch contains 256 samples. We use
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Figure 7: The figure shows the simulation of the Transformer under varied component densities.
F∗ indicates the prediction of Bayesian inference while F̂ indicates the prediction of the trained
Transformer. M indicates the number of mixture components on the sphere with radius 1, and
δµ = δw = 1

16 . It is observed that the higher the component density, the harder for the Transformer
to approach the Bayesian inference.
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Figure 8: The figure shows the simulation of the Transformer under varied dimensions. F∗ indicates
the prediction of Bayesian inference while F̂ indicates the prediction of the trained Transformer.
d indicates the dimension as well as the number of mixture components on the sphere with radius
1, and δµ = δw = 1

16 . It is observed that the higher the number of dimensions, the harder for the
Transformer to approach the Bayesian inference.

AdamW Loshchilov & Hutter (2017) as the optimizer with weight decay as 0.00001, and the learning
rate is set to 0.00001.
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B NOTATIONS

This section collects all notations used in the main paper.

Notations initially introduced in Sec. 3

• F : a next-token prediction model.

• F̂ : a pretrained next-token prediction model.

• F∗: a next-token prediction model that attains Bayes risk minimization.

• Fk: a next-token prediction model for k in-context samples.

• F∗
k : a next-token prediction model that attains Bayes risk minimization for k in-context samples.

• x and y: input and label for a task, e.g., x and y of a linear regression task y = x⊤w.

• k: the number of in-context samples.

• K: the max number of in-context samples in a sequence.

• Sk: a sequence of k in-context samples, [x1, y1, . . . ,xk, yk].

• SK : a sequence of K in-context samples, [x1, y1, . . . ,xK , yK ].

• Sk⊕xk+1: a sequence of k in-context samples and xk+1 pending to be predicted,
[x1, y1, . . . ,xk, yk,xk+1].

• µ and w: the parameters control a task. µ controls the distribution of x and w controls how x
maps to y.

• Dprior and Dµ,w: Dprior = Dµ,w, and they represent the task prior distribution where each task is
controlled by parameters µ and w.

• Dx(µ): the conditional distribution of x conditioned on µ of the task (µ,w).

• Dx,y(µ,w): the joint distribution of (x, y) in the task (µ,w).

• Dy|x(w): the joint conditional distribution of y conditioned on the input x and w of the task
(µ,w).

• P (µ,w): the task probability of (µ,w) in the task prior Dprior.

• P (x | µ): the probability of x in Dx(µ).

• P (y | x,w): the probability of y in Dy|x(w).

• L(F): the risk of F on samples generated from generation process 1.

• M : the number of mixture components in a Gaussian mixture prior.

• α, β: the index of a mixture component in a Gaussian mixture prior.

• Tβ : the βthe mixture component in a Gaussian mixture prior.

• πβ : the mixture weight of the βth mixture component in a Gaussian mixture prior.

• µβ and wβ : (µβ ,wβ) is the mean of the βth mixture component.

• σµ and σw: the task noises, i.e., the noise scales of µ and w.

• σx and σy: the sample noises, i.e., the noise scales of x and y.

• d: the dimension of the x.

• r: the max ratio of two mixture weights of two tasks.

Notations initially introduced in Sec. 4

• ∥x∥2: for any vector x, ∥x∥2 = x⊤x.

• ∥x∥2A: for any vector x and matrix A, ∥x∥2A = x⊤Ax.

• P (µ,w | S+
k ): the probability of task (µ,w) in the posterior after observing S+

k .

• T̃β : the βth mixture component in the Gaussian mixture posterior.

14
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• π̃β : the mixture weight of the βth mixture component in the Gaussian mixture posterior.

• µ̃β and w̃β : the center of the βth mixture component in the Gaussian mixture posterior.

• P (µ,w | T̃β): the probability of task (µ,w) in the βth mixture component.
• δµ and δw: the ratio of squared task noise over squared sample noise. σµ =

σµ

σx
, and

σw = σw

σy
.

• Σ̄µ: Σ̄µ = I .

• Σ̄w: Σ̄w =
∑k

i=1 xix
⊤
i

k .

• µ̄: µ̄ =
∑k+1

i=1 xi

k+1 .

• w̄: w̄ =
∑k

i=1 xiyi

k .
• w̃: the mean of w in the task posterior.
• cµβ and cwβ : parts of the re-weighting coefficient of Component Re-weighting.

• Ψµ(α, β) and Ψw(α, β): functions defined to help analyze the phenomenon of Component
Re-weighting.

• r(α, β): the ratio of the mixture weight π̃α of T̃α over the mixture weight π̃β of T̃β .

• λd(A): the dth largest eigenvalue of matrix A. In this paper A ∈ Rd×d, thus λd(A)
represents the smallest eigenvalue value of matrix A.

• λ1(A): the 1st largest eigenvalue of matrix A.

Notations initially introduced in Sec. 5

• d2µ: ∀β ̸= α, ∥µβ −µ∗∥2−∥µα−µ∗∥2 ≥ d2µ, the squared µ-margin of any other µβ over
µα.

• d2w: ∀β ̸= α, ∥wβ −w∗∥2 − ∥wα −w∗∥2 ≥ d2w, the squared w-margin of any other wβ

over wα.
• u2

w: ∀β ̸= α, τ2x∥wβ − w∗∥2 − (1 + τ2x)∥wα − w∗∥2 ≥ τ2xu
2
w, the weighted squared

w-margin of any other wβ over wα.

• yL
k+1: the label or the target prediction of task learning. yL

k+1 = ⟨xk+1,w
∗⟩

• yR
k+1: the label or the target prediction of task retrieval. yR

k+1 = ⟨xk+1,wα⟩

C PRIOR EXAMPLE

In this section, we introduce some examples of prior we use in simulation experiments. We split
the examples based on the shape of the centers of the topics in the priors. Those shapes include
3-dimensional regular polyhedrons in Sec. C.1, and d-dimensional examples in Sec. C.2.

C.1 REGULAR POLYHEDRONS

For the abstract of the task prior, we consider 3-dimensional regular polyhedrons including Tetrahe-
dron (4 vertices/centers), Octahedron (6 vertices/centers), Hexahedron (8 vertices/centers), Icosahe-
dron (12 vertices/centers), and Dodecahedron (20 vertices/centers), listed with increasing density.

A regular polyhedron of a task prior with M components is set as follows including all the parameters
used Assumption 2:

• Dimension d = 3, number of mixture component M = M , and β ∈ {1, . . . ,M};
• The probabilities of all topics are the same, πβ = 1/M , for all β ∈ {1, . . . ,M};
• For noises of the input x and the label y, we have σx = σy = 1, and τx = 1;
• For noises of µ and w, they are set equal to 0.25 if not specified;
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Figure 9: The illustration figure of the prior distribution. µβ and wβ for β ∈ {1, 2, 3, 4} are mixture
component centers in the prior. µα and wα for α = 1 (numbers are noted in the center of circles)
are the centers of the target task for task learning. Both µ∗ and w∗ govern the distribution of
demonstrations. The dotted purple lines highlight the distance of 1 from the origin (0, 0, 0) to any
point represented by µ or w.

• The centers of mixture components shape a regular polyhedron with M vertices, and for all
β, µβ = wβ ;

• For demonstrations, we have µ∗ = 2µ1+µ2

∥2µ1+µ2∥ and w∗ = 2w1+w2

∥2w1+w2∥ , where µ2 ∈
argminµβ

∥µβ − µ1∥.

We will mainly use the Tetrahedron setting in the experiment, therefore, we further visualize the
setting and give the description. We introduce the setting of the prior Tetrahedron including all the
parameters used Assumption 2. The 3D visualization of the clean tasks in the prior and the task of
demonstrations are shown in Fig. ??. The exact parameters are shown as follows:

• Dimension d = 3, number of topics M = 4, and β ∈ {1, 2, 3, 4};

• The probabilities of all topics are the same, πβ = 1/4, i.e., for all β ∈ {1, 2, 3, 4};

• For noise of the input x and the label y, we have σx = σy = 1, and τx = 1;

• For noises of µ and w, they are set equal to 0.25 if not specified;

• The centers of topics shape a tetrahedron as shown in Fig. ?? µ1 = w1 = [0, 0,−1]⊤, µ2 =

w2 = [
√

8
9 , 0,

1
3 ]

⊤, µ3 = w3 = [−
√

2
9 ,+

√
2
3 ,

1
3 ]

⊤, and µ4 = w4 = [−
√

2
9 ,−

√
2
3 ,

1
3 ]

⊤;

• For demonstrations, we have µ∗ = 2µ1+µ2+0.2µ3

∥2µ1+µ2+0.2µ3∥ and w∗ = 2w1+w2+0.2w3

∥2w1+w2+0.2w3∥ . (We
slightly shift the center towards (µ3,w3) for visualization purpose, so that β = 3 and β = 4
could produce slightly different results.)

C.2 d-DIMENSIONAL EXAMPLES

We consider d-dimensional examples with exact d centers where d ∈ {2, 4, 8, 16, 32}. A d-
dimensional example with d vertices is set as follows:

• Dimension d = d, number of mixture component M = d, and β ∈ {1, . . . , d};

• The probabilities of all topics are the same, πβ = 1/d, for all β ∈ {1, . . . , d};

• For noise of the input x and the label y, we have σx = σy = 1, and τx = 1;
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• For noises of µ and w, they are set equal to 0.25 if not specified;

• For all β, µβ,i = wβ,i =

{
1 if i = β

0 if i ̸= β
, i.e., µβ is a vector with all elements 0 except the

βth element is 1, and wβ is equal to µβ .

• For demonstrations, we have µ∗ = 2µ1+µ2

∥2µ1+µ2∥ and w∗ = 2w1+w2

∥2w1+w2∥ .

D THE DERIVATION OF POSTERIOR

This section provides detailed derivations for Lemma 1. We begin by showing the posterior is
potentially still a Gaussian mixture in Sec. D.1. Then in Sec. D.2 we show how Eq. 11 is proportion
to Eq. 12, which is exactly still a Gaussian mixture.

D.1 PRIOR TO POSTERIOR

We start by showing the posterior is potentially still a Gaussian mixture:

P (µ,w | Sk⊕xk+1)

∝P (µ,w | Sk⊕xk+1)P (Sk⊕xk+1)

=P (µ,w,Sk⊕xk+1)

=P (µ,w)P (Sk⊕xk+1 | µ,w)

=(

M∑
β=1

πβP (µ,w | Tβ))P (Sk⊕xk+1 | µ,w)

=

M∑
β=1

πβP (µ,w | Tβ)P (Sk⊕xk+1 | µ,w) (11)

∝
M∑
β=1

π̃βP (µ,w | T̃β), (12)

D.2 CLOSED-FORM SOLUTION FROM EQ. 11 TO EQ. 12

We analyze each component (indicated by a specific β) in Eq. 11. For all β ∈ {1, . . . ,M} and all
(µ,w), we have:

P (µ,w | T̃β)P (Sk⊕xk+1 | µ,w)

∝ exp(−∥µβ − µ∥2
2σ2

µ

) exp(−
∑k+1

i=1 ∥µ− xi∥2
2σ2

x

) exp(−∥wβ −w∥2
2σ2

w

) exp(−
∑k

i=1 ∥x⊤
i w − yi∥2
2σ2

y

)

(let δµ =
σ2
µ

σ2
x

, δw =
σ2
w

σ2
y

)

= exp(−
(∥µβ∥2 − 2µ⊤

β µ+ ∥µ∥2) + δµ((k + 1)∥µ∥2 − 2µ⊤ ∑k+1
i=1 xi +

∑k+1
i=1 ∥xi∥2)

2σ2
µ

)

exp(−
(∥wβ∥2 − 2w⊤

β w + ∥w∥2) + δw(
∑k

i=1 w
⊤xix

⊤
i w − 2w⊤ ∑k

i=1 xiyi +
∑k+1

i=1 y2i )

2σ2
µ

)

∝ exp(−∥µβ∥2 + (1 + (k + 1)δµ)∥µ∥2 − 2µ(µβ + δµ
∑k+1

i=1 xi)

2σ2
µ

)

exp(−∥wβ∥2 +w⊤(I + δw
∑k

i=1 xix
⊤
i )w − 2w(wβ + δw

∑k
i=1 xiyi)

2σ2
w

)

(let Σ̄µ = I, Σ̄w =

∑k
i=1 xix

⊤
i

k
)
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=exp(−
∥µβ∥2 + ∥µ∥2

I+(k+1)δµΣ̄µ
− 2µ⊤(µβ + δµ

∑k+1
i=1 xi)

2σ2
µ

)

exp(−
∥wβ∥2 + ∥w∥2

I+kδwΣ̄w
− 2w⊤(wβ + δw

∑k
i=1 xiyi)

2σ2
w

)

(let µ̄ =

k+1∑
i=1

xi, w̄ =

∑k
i=1 xiyi
k

)

= exp(−
∥µβ∥2 + ∥µ∥2

I+(k+1)δµΣ̄µ
− 2µ⊤(µβ + (k + 1)δµµ̄)

2σ2
µ

)

exp(−
∥wβ∥2 + ∥w∥2

I+kδwΣ̄w
− 2w⊤(wβ + kδww̄)

2σ2
w

)

(Let ∆µ̄ = (k + 1)δµµ̄,∆w̄ = kδww̄,∆Σ̄µ = (k + 1)δµΣ̄µ,∆Σ̄w = kδwΣ̄w)

= exp(−
∥µβ∥2 + (∥µ∥2I+∆µ̄ − 2µ⊤(µβ +∆µ̄) + ∥µβ +∆µ̄∥2

(I+∆Σ̄µ)−1)− ∥µβ +∆µ̄∥2
(I+∆Σ̄µ)−1

2σ2
w

)

exp(−
∥wβ∥2 + (∥w∥2

I+∆Σ̄w
− 2w⊤(wβ +∆Σ̄w) + ∥wβ +∆w̄∥2

(I+∆Σ̄w)−1)− ∥wβ +∆w̄∥2
(I+∆Σ̄w)−1

2σ2
w

)

= exp(−
∥µβ∥2 − ∥µβ +∆µ̄∥2

(I+∆Σ̄µ)−1

2σ2
µ

) · exp(−
∥µ− (I +∆Σ̄µ)

−1(µβ +∆µ̄)∥2
I+∆Σ̄µ

2σ2
µ

)·

exp(−
∥wβ∥2 − ∥wβ +∆w̄∥2

(I+∆Σ̄w)−1

2σ2
w

) · exp(−
∥w − (I +∆Σ̄w)−1(wβ +∆w̄)∥2

I+∆Σ̄w

2σ2
w

)

∝ exp(−
∥µβ∥2 − ∥µβ + (k + 1)δµµ̄∥2(I+(k+1)δµΣ̄µ)−1

2σ2
µ

) exp(−
∥wβ∥2 − ∥wβ + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

)·

N (µ | (I + (k + 1)δµΣ̄µ)
−1(µβ + (k + 1)δµµ̄), σ

2
µ(I + (k + 1)δµΣ̄µ)

−1)·
N (w | (I + kδwΣ̄w)−1(wβ + kδww̄), σ2

w(I + kδwΣ̄w)−1)

E DERIVATION COLLECTION OF Ψµ(α, β) AND Ψw(α, β)

This section collects derivations for Ψµ(α, β) and Ψw(α, β). The derivation of Ψµ(α, β) is collected
in Sec E.1 and the derivation of Ψw(α, β) is collected in Sec E.2.

E.1 DERIVATION OF Ψµ(α, β)

This section collects the derivation of Ψµ(α, β) in Eq. 5 of Sec. 4.3:

Ψµ(α, β)

= log(exp(−
∥µβ∥2 − ∥µβ + (k + 1)δµµ̄∥2(I+(k+1)δµΣ̄µ)−1

2σ2
µ

)/ exp(−
∥µα∥2 − ∥µα + (k + 1)δµµ̄∥2(I+(k+1)δµΣ̄µ)−1

2σ2
µ

))

=
(1 + (k + 1)δµ)∥µβ∥2 − ∥µβ + δµ

∑k+1
i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

− (1 + (k + 1)δµ)∥µα∥2 − ∥µα + δµ
∑k+1

i=1 xi∥2
2σ2

µ(1 + (k + 1)δµ)

=
−∥µβ + δµ

∑k+1
i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

− −∥µα + δµ
∑k+1

i=1 xi∥2
2σ2

µ(1 + (k + 1)δµ)

=
−∥µβ∥2 − 2µ⊤

β (δµ
∑k+1

i=1 xi)− ∥δµ
∑k+1

i=1 xi∥2
2σ2

µ(1 + (k + 1)δµ)
− −∥µα∥2 − 2µ⊤

α (δµ
∑k+1

i=1 xi)− ∥δµ
∑k+1

i=1 xi∥2
2σ2

µ(1 + (k + 1)δµ)

=
(k + 1)δµ∥µβ∥2 − 2µ⊤

β (δµ
∑k+1

i=1 xi) + δµ
∑k+1

i=1 ∥xi∥2
2σ2

µ(1 + (k + 1)δµ)
− (k + 1)δµ∥µα∥2 − 2µ⊤

α (δµ
∑k+1

i=1 xi) + δµ
∑k+1

i=1 ∥xi∥2
2σ2

µ(1 + (k + 1)δµ)
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=

∑k+1
i=1 δµ∥µβ − xi∥2

2σ2
µ(1 + (k + 1)δµ)

−
∑k+1

i=1 δµ∥µα − xi∥2
2σ2

µ(1 + (k + 1)δµ)

=

∑k+1
i=1 ∥µβ − xi∥2 −

∑k+1
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δ2µ)

.

E.2 DERIVATION OF Ψw(α, β)

This section collects the derivation of Ψµ(α, β) in Eq. 6 of Sec. 4.3:
Ψw(α, β)

= log(exp(−
∥wα∥2 − ∥wα + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

)/ exp(−
∥wβ∥2 − ∥wβ + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

))

=
∥wβ∥2 − ∥wβ + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥2 − ∥wα + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

(Note kδww̄ = δw

k∑
i=1

xiyi = δw

k∑
i=1

xix
⊤
i w

∗ = kδwΣ̄ww∗)

=
∥wβ∥2 − ∥wβ + kδwΣ̄ww∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥ − ∥wα + kδwΣ̄ww∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ∥2 − ∥(wβ −w∗) + (I + kδwΣ̄w)w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥2 − ∥(wα −w∗) + (I + kδwΣ̄w)w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ∥2 − ∥wβ −w∗∥2

(I+kδwΣ̄w)−1 − 2(wβ −w∗)⊤w∗

2σ2
w

−
∥wα∥2 − ∥wα −w∗∥2

(I+kδwΣ̄w)−1 − 2(wα −w∗)⊤w∗

2σ2
w

=
∥wβ −w∗∥2 − ∥wβ −w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα −w∗∥2 − ∥wα −w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 − ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

F DERIVATION COLLECTION OF µ̃β AND w̃β

This section collects derivations for µ̃β and w̃β . The derivation of µ̃β is collected in Sec F.1 and the
derivation of Ψw is collected in Sec F.2.

F.1 DERIVATION OF µ̃β

This section collects the derivation of µβ in Eq. 9 of Sec. 4.3:

µ̃β = (I + (k + 1)δµΣ̄µ)
−1(µβ + (k + 1)δµµ̄)

= (I + (k + 1)δµI)
−1(µβ + δµ

k+1∑
i=1

xi)

=
µβ + δµ

∑k+1
i=1 xi

1 + (k + 1)δµ

F.2 DERIVATION OF w̃β

This section collects the derivation of wβ in Eq. 10 of Sec. 4.3:

w̃β = (I + kδwΣ̄w)−1(wβ + kδww̄)

(recall kδww̄ = δw

k∑
i=1

xiyi = δw

k∑
i=1

xix
⊤
i w

∗ = kδwΣ̄ww∗)
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= (I + kδwΣ̄w)−1(wβ + kδwΣ̄ww∗)

= (I + kδwΣ̄w)−1(wβ −w∗ + (I + kδwΣ̄w)w∗)

= (I + kδwΣ̄w)−1(wβ −w∗) +w∗ (13)

G PROOF OF THEORIES FOR TWO MODES

G.1 PROOF TOOLS

We use the following inequalities in our proofs:

G.1.1 GAUSSIAN TAIL BOUND

If Zi ∼ N (0, 1), then for t > 0 we have:

P (

∑k
i=1 Zi

k
> t) ≤ exp(−kt2

2
)

P (

∑k
i=1 Zi

k
< −t) ≤ exp(−kt2

2
)

G.1.2 CHI-SQUARED TAIL BOUND

If X ∼ χ(k), i.e., X =
∑k

i=1 Z
2
i where Zi ∼ N (0, 1) then:

P (
X

k
− 1 > 2

√
t1 + 2t1) ≤ exp(−kt21)

P (
X

k
− 1 < −2

√
t1) ≤ exp(−kt21)

As a looser but symmetric bound, for t > 0 we have:

P (
X

k
− 1 > t) ≤ exp(−kt2

8
)

P (
X

k
− 1 < −t) ≤ exp(−kt2

8
)

(See Chi-square Tail Bound.)

G.1.3 NORM TAIL BOUND

If ϵi ∼ N (0, τ2xI), ϵi ∈ Rd, I ∈ Rd×d, then for t > 0 we have:

P (∥
∑k

i=1 ϵi
k

∥ >

√
τ2xd

k
(1 + t)) ≤ exp(−kt2

8
)

Proof.

∥
∑k

i=1 ϵi
k

∥2

=

d∑
j=1

(

∑k
i=1 ϵi,j
k

)2

=
τ2x
k

d∑
j=1

(

∑k
i=1 ϵi,j

τx
√
k

)2

(Notice ϵi,j ∼ N (0, τ2x) and let Zj =

∑k
i=1 ϵi,j

τx
√
k

∼ N (0, 1))

=
τ2xd

k

∑d
i=1 Z

2
i

d
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therefore by section G.1.2 we have:

P (
τ2xd

k

∑d
i=1 Z

2
i

d
>

τ2xd

k
(1 + t)) ≤ exp(−kt2

8
)

G.1.4 EIGENVALUE CONCENTRATION BOUND

Lemma 6. If xi ∼ N (µ, τ2x), A =
∑k

i=1 xix
⊤
i

k , and
∑k

i=1 ϵi
k =

∑k
i=1(xi−µ)

k , we have ∀t > 0::

P (L ≤ λd(A) ≤ λ1(A) ≤ U and ∥
∑k

i=1 ϵi
k

∥ < τx
√

γ(1 + t)) > 1− 3 exp(−kt2

8
)

where L = τ2x(1 − t
2 − γ)2 − 2τxγ

√
1 + t,U = 1 + τ2x(1 +

t
2 + γ)2 + 2τxγ

√
1 + t and λi(A) is

the ith biggest eigenvalue of the matrix A and γ =
√

d
k .

We begin with decomposing A to three components A =
∑k

i=1 xix
⊤
i

k = µµ⊤ +
∑k

i=1(µϵ⊤i +ϵiµ
⊤)

k +∑k
i=1 ϵiϵ

⊤
i

k , where xi = µ+ ϵi, then consider the eigenvalues of them.

Firstly, we have:

0 ≤ λd(µµ
⊤) < λ1(µµ

⊤) ≤ 1

Then by Gaussian Case Covariance Estimation we have for s > 0:

P ((1− s−
√

d

k
)2 ≤ 1

τ2x
λd(

∑k
i=1 ϵiϵ

⊤
i

k
) <

1

τ2x
λ1(

∑k
i=1 ϵiϵ

⊤
i

k
) ≤ (1 + s+

√
d

k
)2) > 1− 2 exp(−ks2

2
)

Finally we examine
∑k

i=1(µϵ⊤i +ϵiµ
⊤)

k . For all ∥a∥ = 1 and 0 ≤ t ≤ 1 we have:

|a⊤
∑k

i=1(µϵ
⊤
i + ϵiµ

⊤)

k
a| ≤2∥

∑k
i=1 ϵi
k

∥ =⇒

(Notice by Norm Tail Bound G.1.3, we have P (∥
∑k

i=1 ϵi
k

∥ >

√
τ2xd

k
(1 + t)) ≤ exp(−kt2

8
))

P (−2

√
τ2xd

k
(1 + t) ≤ λd(2µ

∑k
i=1 ϵ

⊤
i

k
) ≤λ1(2µ

∑k
i=1 ϵ

⊤
i

k
) ≤ 2

√
τ2xd

k
(1 + t)) > 1− exp(−kt2

8
)

Let γ =
√

d
k and s = t/2, we have:

P (τ2x(1−
t

2
− γ)2 − 2τxγ

√
1 + t ≤ λd(A) ≤ λ1(A) ≤ 1 + τ2x(1 +

t

2
+ γ)2 + 2τxγ

√
1 + t) > 1− 3 exp(−kt2

8
)

G.2 TASK LEARNING

In this subsection, we introduce the proof of Theorem 3.

Proof. Assuming we are using in-context samples following Assumption 4(a), i.e., xi ∼
N (µ∗, τ2xI), yi = ⟨xi,w

∗⟩, and we aim to have the prediction on Sk⊕xk+1 as ⟨xk+1,w
∗⟩, i.e., to

learn the prediction of the demonstration task. Let LL
k indicate the squared loss (F∗(Sk⊕xk+1)−

⟨xk+1,w
∗⟩)2 on Sk⊕xk+1. With the help of Lemma 1 and Corollary 2, we can derive the expected
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squared loss on the prediction F∗(Sk⊕xk+1) as follows:

ESk⊕xk+1
[LL

k]

=ESK
[(F∗(Sk⊕xk+1)− ⟨w∗,xk+1⟩)2]

=ESK
[(

M∑
β=1

π̃β⟨w̃β ,xk+1⟩ − ⟨w∗,xk+1⟩)2]

=ESK
[(⟨

M∑
β=1

π̃β(w̃β −w∗),xk+1⟩)2]

(See Eq. 13 for the derivation of w̃β)

=ESK
[(⟨

M∑
β=1

π̃β((I + kδwΣ̄w)−1(wβ −w∗) +w∗ −w∗),xk+1⟩)2]

(Let ∆Σ̄w = kδwΣ̄w)

=ESK
[(⟨(I +∆Σ̄w)−1

M∑
β=1

π̃β(wβ −w∗),xk+1⟩)2]

=ESK
[(⟨(I +∆Σ̄w)−1(

M∑
β=1

π̃βwβ −w∗),xk+1⟩)2]

(Let A = (I +∆Σ̄w)−1, b =

M∑
β=1

π̃βwβ −w∗.)

=ESK
[(b⊤Axk+1)

2]

(A is a random matrix only depending on Sk, while b is a random vector depending on both Sk and xk+1.)

≤ESK
[(∥b∥λ1(A)∥xk+1∥)2]

(Notice ∥b∥ ≤ 2)

≤ESK
[22λ2

1(A)∥xk+1∥2]
≤4ESK

[λ2
1(A)]Exk+1

[∥xk+1∥2]
=4(1 + dτ2x)ESK

[λ2
1(A)]

Apply Lemma 6, we have the upper bound on the expected loss we have:
ESk⊕xk+1

[LL
k]

<4(1 + dτ2x)ESK
[λ2

1(A)]

<4(1 + dτ2x)ESK
[(

1

1 + kδwλd(
∑k

i=1 xix⊤
i

k )
)2]

<4(1 + dτ2x)((
1

1 + kδw(τ2x(1− t
2 − γ)2 − 2τxγ

√
1 + t)

)2 + 3 exp(−kt2

8
)

Let t = kδ−
1
2 , where 1

2 > δ > 0 we have:

ESk⊕xk+1
[LL

k] <
4(1 + dτ2x)

τ4xδ
2
wk2

+O(kδ−
5
2 )

G.3 TASK RETRIEVAL

In this subsection, we introduce the proof of Theorem 4.

Proof. Assuming we are using demonstrations following Assumption 4(a), i.e., xi ∼
N (µ∗, τ2xI), yi = ⟨xi,w

∗⟩, and we aim to have the prediction on Sk⊕xk+1 as ⟨xk+1,wα⟩, i.e., to

22
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retrieve the prediction of the clean task α. In order to have an upper bound on the loss, we consider
xi ∼ N (µ∗, τ2xI) in two regions: (1) C: L < λd(

∑k
i=1 xix

⊤
i

k ) ≤ λ1(
∑k

i=1 xix
⊤
i

k ) < U (see Lemma 6
for L and U) and (2) ¬C: either the previous inequality does not hold. The probability of ¬C is
bounded by:

P (¬C) <3 exp(−kt2

8
).

Let LR
k indicate the squared loss (F∗(Sk⊕xk+1) − ⟨xk+1,wα⟩)2 on Sk⊕xk+1. With the help of

Lemma 1 and Corollary 2, we can derive the expected squared loss on the prediction F∗(Sk⊕xk+1),
and then based on C and the target task α, we split the expected squared loss into three parts:

ESk⊕xk+1
[LR

k ]

=ESK
[(

M∑
β=1

π̃β⟨w̃β ,xk+1⟩ − ⟨wα,xk+1⟩)2]

(Notice
M∑
β=1

πβ = 1)

=ESK
[(

M∑
β=1

π̃β(⟨w̃β ,xk+1⟩ − ⟨wα,xk+1⟩))2]

(Notice (

M∑
β=1

π̃βaβ)
2 ≤

M∑
β=1

π̃βa
2
β , since E[a]2 ≤ E[a2])

≤ESK
[

M∑
β=1

π̃β(⟨w̃β ,xk+1⟩ − ⟨wα,xk+1⟩)2]

=ESK
[

M∑
β=1

π̃β(⟨w̃β −wα,xk+1⟩)2]

=P (C)ESK
[

M∑
β=1

π̃β(⟨w̃β −wα,xk+1⟩)2 | C]+

P (¬C)ESK
[

M∑
β=1

π̃β(⟨w̃β −wα,xk+1⟩)2 | ¬C]

=P (C)ESK
[
∑
β ̸=α

π̃β(⟨w̃β −wα,xk+1⟩)2 | C]+ (14)

P (C)ESK
[π̃α(⟨w̃α −wα,xk+1⟩)2 | C]+ (15)

P (¬C)ESK
[

M∑
β=1

π̃β(⟨w̃β −wα,xk+1⟩)2 | ¬C] (16)

We firstly analyze the first term P (C)ESK
[
∑

β ̸=α π̃β(⟨w̃β −wα,xk+1⟩)2 | C] in Part. 14, we have:

P (C)ESK
[
∑
β ̸=α

π̃β(⟨w̃β −wα,xk+1⟩)2 | C]

<P (C)ESK
[
∑
β ̸=α

π̃β

π̃β + π̃β
(⟨w̃β −wα,xk+1⟩)2 | C]

=P (C)ESK
[
∑
β ̸=α

π̃β/π̃α

1 + π̃β/π̃α
(⟨w̃β −wα,xk+1⟩)2 | C]

<P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
(⟨w̃β −wα,xk+1⟩)2 | C]
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<P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
∥w̃β −wα∥2∥xk+1∥2 | C]

<P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
∥w̃β −wα∥2∥xk+1∥2 | C]

(See Eq. 13 for the derivation of w̃β)

=P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
∥(I + kδwΣ̄w)−1(wβ −w∗) +w∗ −wα∥2∥xk+1∥2 | C]

(Let ∆Σ̄w = kδwΣ̄w)

=P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
∥(I +∆Σ̄w)−1(wβ −w∗) +w∗ −wβ +wβ −wα∥2∥xk+1∥2 | C]

=P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
∥ − (I − (I +∆Σ̄w)−1)(wβ −w∗) + (wβ −wα)∥2∥xk+1∥2 | C]

=P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
(2∥(I − (I +∆Σ̄w)−1)(wβ −w∗)∥2 + 2∥(wβ −wα)∥2)∥xk+1∥2 | C]

<2P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
(λ2

1(I − (I +∆Σ̄w)−1)∥(wβ −w∗)∥2 + ∥(wβ −wα)∥2)∥xk+1∥2 | C]

(where λ1(A) is the largest eigenvalue of matrix A)

<2P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
(12 · 4 + 4)∥xk+1∥2 | C]

<16P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
∥xk+1∥2 | C]

Apply Eqs. 4, 5, and 6 and Assumption 3(b) to π̃β

π̃α
, we have:

ESK
[
∑
β ̸=α

π̃β

π̃α
∥xk+1∥2 | C]

<16ESK
[
∑
β ̸=α

r exp(
−∑k

i=1 ∥µβ − xi∥2 +
∑k

i=1 ∥µα − xi∥2
2σ2

x(1 + (k + 1)δµ)
)·

exp(
−∥wβ −w∗∥2

I−(I+∆Σ̄w)−1 + ∥wα −w∗∥2
I−(I+∆Σ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

=16r
∑
β ̸=α

ESK
[exp(

−∑k
i=1 ∥µβ − xi∥2 +

∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)·

exp(
−∥wβ −w∗∥2

I−(I+∆Σ̄w)−1 + ∥wα −w∗∥2
I−(I+∆Σ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xi∥2 + ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

Recall in case C we have:

∥
∑k

i=1 ϵi
k

∥ < τxγ
√
1 + t
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Therefore, when conditioned on case C we have:∑k
i=1(−∥µβ − xi∥2 + ∥µα − xi∥2)

1 + (k + 1)δµ

(Let xi = µ∗ + ϵi)

=k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 +

∑k
i=1 2⟨µβ−µα,ϵi⟩

k

1 + (k + 1)δµ

=k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + ⟨2(µβ − µα),

∑k
i=1 ϵi
k ⟩

1 + (k + 1)δµ

≤k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 4τxγ

√
1 + t

1 + (k + 1)δµ

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

(Let t = kδ−
1
2 and δ is small.)

=−d2µ
δµ

+
4τx

√
d

δµ
k

δ
2−

3
4 +O(k−1)

(let t = k−
1
4 ,When δµ ≪ 1, such that ∃k ≤ 1

δµ
, s.t.

d2µ
2

> 4τxγ

√
1 + k−

1
4 )

<− d2µ
4

Recall in case C we have:

L < λd(

∑k
i=1 xix

⊤
i

k
) < λ1(

∑k
i=1 xix

⊤
i

k
) < U

Therefore when conditioned on case C we also have:

− ∥wβ −w∗∥2I−(I+∆Σ̄w)−1 + ∥wα −w∗∥2I−(I+∆Σ̄w)−1

<− ∥wβ −w∗∥2λd(I − (I +∆Σ̄w)−1) + ∥wα −w∗∥2λ1(I − (I +∆Σ̄w)−1)

(where λ1(A) and λd(A) indicate the maximal and minimal eigenvalues of the matrix A ∈ Rd×d)

<− ∥wβ −w∗∥2(1− 1

1 + kδwL
) + ∥wα −w∗∥2(1− 1

1 + kδwU
)

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

=(−∥wβ −w∗∥2 + ∥wα −w∗∥2) + (+
∥wβ −w∗∥2
1 + kδwL

− ∥wα −w∗∥2
1 + kδwU

)

(Let t = kδ−
1
2 and δ is small.)

=−(∥wβ −w∗∥2 − ∥wα −w∗∥2) + (
∥wβ −w∗∥2

kδwτ2x
− ∥wα −w∗∥2

kδw(1 + τ2x)
) +O(kδ−

3
2 )

<−(d2w) +
4

δwτ2x
k−1 +O(kδ−

3
2 )

=−∥wβ −w∗∥2 kδwL
1 + kδwL

+ ∥wα −w∗∥2 kδwU
1 + kδwU

<−∥wβ −w∗∥2 kδwL
1 + kδwτ2x

+ ∥wα −w∗∥2 kδwU
1 + kδwτ2x

(let t = k−
1
4 ,When δw ≪ 1, such that ∃k ≤ 1

δwτ2x
, s.t. L∥wβ −w∗∥2 − U∥wα −w∗∥2 > τ2xu

2
w/2)

<−kδw
τ2xu

2
w

4
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Further, we have:

P (C)ESK
[exp(

−∥µβ − xk+1∥2 + ∥µα − xk+1∥2
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2 | C]

<ESK
[exp(

−∥µβ − xk+1∥2 + ∥µα − xk+1∥2
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2]

(Let xk+1 = µ∗ + ϵ)

=ESK
[exp(

−∥µβ − µ∗ − ϵ∥2 + ∥µα − µ∗ − ϵ∥2
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2]

=ESK
[exp(

−∥µβ − µ∗∥2 + ∥µα − µ∗∥2 + ⟨2(µβ − µα), ϵ⟩
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2]

(Let − ∥µβ − µ∗∥2 + ∥µα − µ∗∥2 = −D, 2σ2
x(1 + (k + 1)δµ) = E, b = 2(µβ − µα))

=ESK
[exp(

−D + b⊤ϵ

E
)∥xk+1∥2]

≤ESK
[exp(

−D + b⊤ϵ

E
)(2∥µ∗∥2 + 2∥ϵ∥2)]

=2(ESK
[exp(

−D + b⊤ϵ

E
)] + ESK

[exp(
−D + b⊤ϵ

E
)∥ϵ∥2])

=2(exp(
τ2x∥b∥2
2E2

− D

E
) + ESK

[exp(
−D + b⊤ϵ

E
)∥ϵ∥2])

=2(exp(
τ2x∥b∥2
2E2

− D

E
) + τ2x(1 +

τ2x∥b∥2
E2

) exp(
τ2x∥b∥2
2E2

− D

E
) + (d− 1)τ2x exp(

τ2x∥b∥2
2E2

− D

E
))

=2(1 + τ2x(d+
τ2x∥b∥2
E2

)) exp(
τ2x∥b∥2
2E2

− D

E
)

=Ck=0 (17)

Thus we have:

P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
∥xk+1∥2 | C]

<16r
∑
β ̸=α

P (C)ESK
[exp(

−∑k
i=1 ∥µβ − xi∥2 +

∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)·

exp(
−∥wβ −w∗∥2

I−(I+∆Σ̄w)−1 + ∥wα −w∗∥2
I−(I+∆Σ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xi∥2 + ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

<16r
∑
β ̸=α

exp(
−d2

µ

δµ
+ 4τx

√
d

δµ
k

δ
2−

3
4 +O(k−1)

2σ2
x

) exp(−
−d2w + 4

δwτ2
x
k−1 +O(kδ−

3
2 )

2σ2
w

)Ck=0

=16rMCk=0 exp(
−d2µ + 4τx

√
dk

δ
2−

3
4 +O(k−1)

2σ2
µ

) exp(−
−d2w + 4

δwτ2
x
k−1 +O(kδ−

3
2 )

2σ2
w

)

=16rMCk=0 exp(−
d2µk

8σ2
x

) exp(−u2
wτ2xk

8σ2
y

)

We then deal with the second term P (C)ESK
[π̃α(⟨w̃β −wα,xk+1⟩)2 | C], the part 15:

P (C)ESK
[π̃α(⟨w̃α −wα,xk+1⟩)2 | C]

<P (C)ESK
[∥ − (I − (I +∆Σ̄w)−1)(wα −w∗) + (wα −wα)∥2∥xk+1∥2 | C]
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< ∥wα −w∗∥2P (C)ESK
[λ2

1(I − (I +∆Σ̄w)−1)∥xk+1∥2 | C]

(Let λ1(A) be the maximal eigenvalue of the matrix A)

<4P (C)ESK
[λ2

1(I − (I +∆Σ̄w)−1)∥xk+1∥2 | C]

<4P (C)ESK
[(1− 1

1 + kδwU
)2∥xk+1∥2 | C]

<4ESK
[∥xk+1∥2](1−

1

1 + kδwU
)2

=4(1 + dτ2x)(1−
1

1 + kδwU
)2

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

(Let t = kδ−
1
2 )

=4(1 + dτ2x)(1−
1

kδw(1 + τ2x)
+O(kδ−

3
2 ))2

=4(1 + dτ2x)(1−
2

kδw(1 + τ2x)
) +O(kδ−

3
2 )

(Let t = k−
1
4 , and assuming δw ≪ 1, such that ∃k ≤ 1

δwτ2x
, s.t. U < 2(1 + τ2x))

<4(1 + dτ2x)(
kδwU

1 + kδwU
)2

<4(1 + dτ2x)max{1, 4k2δ2w(1 + τ2x)
2}

Finally for the third term P (¬C)ESK
[
∑M

β=1 π̃β(⟨w̃β −wα,xk+1⟩)2 | ¬C], the part 16:

P (¬C)ESK
[

M∑
β=1

π̃β(⟨w̃β −wα,xk+1⟩)2 | ¬C]

=P (¬C)ESK
[

M∑
β=1

π̃β∥(I +∆Σ̄w)−1(wβ −w∗) +w∗ −wα∥2∥xk+1∥2 | ¬C]

<P (¬C)ESK
[

M∑
β=1

π̃β(2∥(I +∆Σ̄w)−1(wβ −w∗)∥2 + 2∥w∗ −wα∥2)∥xk+1∥2 | ¬C]

<P (¬C)ESK
[
M∑
β=1

π̃β(2 · 4 + 2 · 4)∥xk+1∥2 | ¬C]

=16P (¬C)ESK
[

M∑
β=1

π̃β∥xk+1∥2 | ¬C]

<16P (¬C)ESK
[∥xk+1∥2 | ¬C]

<16P (¬C)ESK
[∥xk+1∥2]

<16(1 + dτ2x)P (¬C)

<48(1 + dτ2x) exp(−
k2δ

8
)

Summarizing three terms, we have:

ESk⊕xk+1
[LR

k ]

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

<16rMCk=0 exp(
−d2µ + 4τx

√
dk

δ
2−

3
4 +O(k−1)

2σ2
µ

) exp(−
−d2w + 4

δwτ2
x
k−1 +O(kδ−

3
2 )

2σ2
w

)+
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4(1 + dτ2x)(1−
2

kδw(1 + τ2x)
) +O(kδ−

3
2 ) + 48(1 + dτ2x) exp(−

k2δ

8
)

<16rMCk=0 exp(−(
d2µ
2σ2

µ

+
d2w
2σ2

w

)) exp(
4τx

√
dk

δ
2−

3
4

2σ2
µ

+O(k−1))+

4(1 + dτ2x)(1−
2

kδw(1 + τ2x)
) +O(kδ−

3
2 )

=16rMCk=0 exp(−(
d2µ
2σ2

µ

+
d2w
2σ2

w

))(1 +
2τx

√
dk

δ
2−

3
4

σ2
µ

) + 4(1 + dτ2x) +O(k−1)

<16rMCk=0 exp(−
d2µk

8σ2
x

) exp(−u2
wτ2xk

8σ2
y

)+

4(1 + dτ2x)max{1, 4k2δ2w(1 + τ2x)
2}+ 48(1 + dτ2x) exp(−

k
1
2

8
)

The region for the orange formula are:

k ≤ min{ 1

δµ
,

1

δwτ2x
}

4τxγ

√
1 + k−

1
4 ) <

d2µ
2

L∥wβ −w∗∥2 − U∥wα −w∗∥2 > τ2xu
2
w/2

U < 2(1 + τ2x)

H PROOF OF LEMMA 5

In this subsection, we introduce the proof of Lemma 5. The proof techniques are very similar to the
proof techniques for task retrieval in Sec. G.3.

Proof. We are using in-context samples following xi ∼ N (µ∗, τ2xI), yi = 0, i.e., w∗ = 0, and we
aim to have the prediction on Sk⊕xk+1 as ⟨xk+1,wα⟩, i.e., to retrieve the prediction of the clean
task α. In order to have an upper bound on the loss, we consider xi ∼ N (µ∗, τ2xI) in two regions:

(1) C: L < λd(
∑k

i=1 xix
⊤
i

k ) ≤ λ1(
∑k

i=1 xix
⊤
i

k ) < U (see Lemma 6 for L and U) and (2) ¬C: either
the previous inequality does not hold. The probability of ¬C is bounded by:

P (¬C) <3 exp(−kt2

8
).

Let LR
k indicate the squared loss (F∗(Sk⊕xk+1) − ⟨xk+1,wα⟩)2 on Sk⊕xk+1. With the help of

Lemma 1 and Corollary 2, we can derive the expected squared loss on the prediction F∗(Sk⊕xk+1),
and then based on C and the target task α, we split the expected squared loss into three parts similar
to Sec. G.3:

ESk⊕xk+1
[LR

k ]

<P (C)ESK
[π̃β(⟨w̃β −wα,xk+1⟩)2 | C]+ (18)

P (C)ESK
[π̃α(⟨w̃α −wα,xk+1⟩)2 | C]+ (19)

P (¬C)ESK
[

2∑
β=1

π̃β(⟨w̃β −wα,xk+1⟩)2 | ¬C] (20)

We firstly analyze the first term P (C)ESK
[π̃β(⟨w̃β − wα,xk+1⟩)2 | C] in Part. 18. Similar to

Sec. G.3, we have:
P (C)ESK

[π̃β(⟨w̃β −wα,xk+1⟩)2 | C]

<16P (C)ESK
[
π̃β

π̃α
∥xk+1∥2 | C]
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Apply Eqs. 4, 5, and 6 and Assumption 3(b) to π̃β

π̃α
, we have a different results from Sec. G.3 since

we have wβ = −wα and w∗ = 0:

ESK
[
∑
β ̸=α

π̃β

π̃α
∥xk+1∥2 | C]

<16ESK
[
∑
β ̸=α

r exp(
−∑k

i=1 ∥µβ − xi∥2 +
∑k

i=1 ∥µα − xi∥2
2σ2

x(1 + (k + 1)δµ)
)·

exp(
−∥wβ −w∗∥2

I−(I+∆Σ̄w)−1 + ∥wα −w∗∥2
I−(I+∆Σ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

(Notice w∗ = 0,wβ = −wα)

=16r
∑
β ̸=α

ESK
[exp(

−∑k
i=1 ∥µβ − xi∥2 +

∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)·

exp(
−∥µβ − xi∥2 + ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

Recall in case C we have:

∥
∑k

i=1 ϵi
k

∥ < τxγ
√
1 + t

Therefore, when conditioned on case C, similar to Sec. G.3, we have:∑k
i=1(−∥µβ − xi∥2 + ∥µα − xi∥2)

1 + (k + 1)δµ

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

(Let t = kδ−
1
2 and δ is small.)

<−d2µ
δµ

+
4τx

√
d

δµ
k

δ
2−

3
4 +O(k−1)

(let t = k−
1
4 ,When δµ ≪ 1, such that ∃k ≤ 1

δµ
, s.t.

d2µ
2

> 4τxγ

√
1 + k−

1
4 )

<− d2µ
4

And similar to Sec. G.3 we have:

P (C)ESK
[
∑
β ̸=α

π̃β

π̃α
∥xk+1∥2 | C]

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

<16r
∑
β ̸=α

exp(
−d2

µ

δµ
+ 4τx

√
d

δµ
k

δ
2−

3
4 +O(k−1)

2σ2
x

)Ck=0

=16rCk=0 exp(
−d2µ + 4τx

√
dk

δ
2−

3
4 +O(k−1)

2σ2
µ

)

<16rCk=0 exp(−
d2µk

8σ2
x

)

The analysis for the second term P (C)ESK
[π̃α(⟨w̃β −wα,xk+1⟩)2 | C], the part 19 and the third

term P (¬C)ESK
[
∑2

β=1 π̃β(⟨w̃β −wα,xk+1⟩)2 | ¬C], the part 20, are the same as Sec. G.3.
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Summarizing three terms, we have:

ESk⊕xk+1
[LR

k ]

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

<16rCk=0 exp(
−d2µ + 4τx

√
dk

δ
2−

3
4 +O(k−1)

2σ2
µ

)+

4(1 + dτ2x)(1−
2

kδw(1 + τ2x)
) +O(kδ−

3
2 ) + 48(1 + dτ2x) exp(−

k2δ

8
)

<16rCk=0 exp(−
d2µ
2σ2

µ

) exp(
4τx

√
dk

δ
2−

3
4

2σ2
µ

+O(k−1))+

4(1 + dτ2x)(1−
2

kδw(1 + τ2x)
) +O(kδ−

3
2 )

=16rCk=0 exp(−
d2µ
2σ2

µ

)(1 +
2τx

√
dk

δ
2−

3
4

σ2
µ

) + 4(1 + dτ2x) +O(k−1)

<16rCk=0 exp(−
d2µk

8σ2
x

) + 4(1 + dτ2x)max{1, 4k2δ2w(1 + τ2x)
2}+ 48(1 + dτ2x) exp(−

k
1
2

8
)

I DEMO PROBLEM AS A WARMUP

We study how demonstrations of ICL affect the prediction of a pretrained LM, and how the pretraining
distribution affects this phenomenon. In other words, the LM denoted as f is initially pretrained on a
dataset distribution to produce the minimum risk minimizer f∗, and then the pretrained f∗ is used to
predict the y value of the input x. However, instead of directly inferencing via f(x), we consider
inferencing with additional k demonstrations {xi}ki=1 via the format f̂([x1, . . . , xk, x]). We aim
to theoretically examine the effect of demonstrations {xi}ki=1 on the prediction f̂([x1, . . . , xk, x]).
Before going to the formal problem setting, we introduce this demo section to illustrate the basic
phenomenon for better delivering our work.

The following demo subsections are organized as follows. We first introduce the problem setting
in Sec. I.1. We then connect ICL with Bayesian inference in Sec. I.2. Further, we introduce the
assumptions for the pretrained dataset in Sec. I.3. And finally, we derive a closed-form posterior and
introduce two phenomena “Topic Shifting” and “Topic Re-weighting” in Sec. I.4.

I.1 DEMO: PROBLEM SETTING

ICL (In-context learning) involves two important components: the pretraining dataset, and the LM
(language model) supporting varied input lengths. We assume the LM f : ∪k∈{0,...,K−1}Rk×1 →
R1×1 can fit the pretraining distribution exactly with enough data and expressivity. Each sample is
generated from firstly picking a task µ from underlying task distribution Dµ, and then we generate
context/tokens from a distribution Dx(µ) based on the task µ. The sample generation process is
described below:
Assumption 6 (Demo Generation Process). Given a task prior distribution Dµ, and a condi-
tioned x sampler Dx(µ) conditioned on task µ, the process of generating a sequence/sample
SK = [x1, x2, . . . , xK ] with length K follows:

(a) Sample a Task µ from the Prior: µ ∼ Dµ, and the probability of µ is indicated by P (µ);

(b) Sample x from the Conditioned x Sampler: For i ∈ {1, 2, . . . ,K}, xi ∼ Dx(µ), and the
probability of xi = x is indicated by P (x|µ);

(c) Define a Sequence: For capital K, SK = [x1, . . . , xK ]; and for lowercase k, the sequence
of the first k demonstrations of SK is indicated by Sk = [x1, . . . , xk], e.g., S2 = [x1, x2].
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Remark 1. The generation process is related to real-world scenarios via two points: (1) For sampling
step (i), the LM is trained on varied tasks; (2) For sampling step (ii), when one person/agent produces
texts for one task, the generated text could be varied. An instance of the two points is that, given
several tasks such as describing the fruit market, describing a football game, and describing the
world environment, etc, one person picks the task of describing the fruit category, and he potentially
has multiple ways to describe it.

Now we consider training the LM f(·) using the sample SK generated via above generation process 6
via squared loss:

L(f) = E
µ∼Dµ

[ E
xi∼D(µ),
i∈{1,...,K}

[

K−1∑
k=0

(f(Sk)− xk+1)
2|µ]]. (21)

How is this prediction related to Bayesian inference? We show the relationship between the prediction
and Bayesian inference in the next Sec. I.2.

I.2 DEMO: CONNECTING ICL WITH BAYESIAN INFERENCE

In this subsection, we try to connect ICL to Bayesian inference. Starting from Eq. 21, we can
disentangle the loss function for inputs with different token lengths as follows:

L(f) = E
µ∼Dµ

[ E
xi∼D(µ),
i∈{1,...,K}

[

K−1∑
k=0

(f(Sk)− xk+1)
2|µ]]

= E
SK

[

K−1∑
k=0

(f(Sk)− xk+1)
2]

=

K−1∑
k=0

E
SK

[(f(Sk)− xk+1)
2].

Thus when the model f has enough expressivity, the optimization problem argminf L(f) of mini-
mization of the loss function L(f) could be regarded as K different minimization tasks:

argmin
f

E
SK

[(f(Sk)− xk+1)
2], k ∈ {0, . . . ,K − 1}.

Thus the solution for each k is a minimum mean square error (MMSE) estimator. Assuming f has
enough expressivity, exists f∗ that satisfy f∗ ∈ argminf E

SK

[(f(Sk)− xk+1)
2], k ∈ {0, . . . ,K − 1}

simultaneously, and the prediction of f∗(Sk) satisfies:

f∗(Sk) = E
SK

[xk+1|Sk] = E
µ∼Dµ

[ E
xi∼D(µ),
i∈{1,...,K}

[xk+1|µ, Sk]|Sk] = E
µ∼Dµ

[ E
xk+1∼D(µ)

[xk+1|µ]|Sk] (22)

Where the prediction is the expectation of E
xk+1∼D(µ)

[xk+1|µ] under the posterior of Dµ after observ-

ing Sk.

I.3 DEMO: ASSUMPTIONS

Now in the previous Sec. I.2, we connect ICL with Bayesian inference. From Eq. 22 we observe that
the prediction f∗(Sk) depends on the posterior. We are interested in how the demonstrations affect
the prediction of ICL, i.e., how observation affects the posterior/prediction of Bayesian inference. In
order to make further derivation on the posterior, we make further assumptions on the pretraining
dataset as follows:
Assumption 7 (Demo Prior Distribution). Assumptions on the task prior distribution Dµ, and the
conditioned token sampler Dx(µ) conditioned on task µ:
(a) The distribution Dµ is a mixture of M Gaussian distributions: Dµ =

∑M
β=1 πβTβ =∑M

β=1 πβN (µβ , σ
2), where µβ is the center of the mixture component Tβ , and all M mixture
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Figure 10: The left part of the figure indicates the LM is pretrained on samples generated from the
prior distribution according to Assumption 7, and without demonstration, the pretrained LM predicts
based on the prior. The right part of the figure indicates that with demonstrations, the pretrained
language model predicts based on posterior, regarding the demonstrations as observed samples.

components share the same variance σ2;
(b) The distribution Dx(µ) is a Gaussian distribution: N (µ, τ2), where τ2 is the variance of the
Gaussian and could be regarded as the noise scale when sampling µ;

Remark 2. In our setting, we train the LM on M tasks, mirroring real-world LM pretrained on
varied topics including environment, market, movie, sports, etc. These tasks have text sequences
from diverse sources like individuals, agents, and websites. Given that each source interprets tasks
uniquely, they effectively provide “noisy” versions of the same task. We model this using a Gaussian
mixture for the task prior. Each component’s mean represents a specific task, while its variance
captures the interpretive noises. Consequently, our invariant generator produces tokens based on
these “noisy” task interpretations.

I.4 DEMO: DERIVATION OF POSTERIOR

With further Assumption 7 on the prior, i.e., the pretraining distribution of ICL in Sec. I.3, we can
make further derivation on the posterior:

P (µ|Sk) ∝
M∑

m=1

π̃βN (µ|µ̃β , σ̃
2) (23)

(π̃β = πβ exp(
(µβ −

∑k
i=1 xi

k )2

2(τ2 + kσ2)
), µ̃β =

τ2µβ + σ2
∑k

i=1 xi

τ2 + kσ2
)2, σ̃2 =

τ2σ2

τ2 + kσ2
)

From Eq. 23, we observe two factors when comparing the posterior with the prior in Assumption 7:
(i) Topic-Shifting: after observing Sk = [x1, x2, . . . , xk], each mixture component’s center is

shifted to τ2µβ+σ2 ∑k
i=1 xi

τ2+kσ2 ; (ii) Topic Re-weighting: each mixture component’s mixture weight πβ

is re-weighted by multiplying exp(
(µβ−

∑k
i=1 xi

k )2

2(τ2+kσ2) ) (which needs to be further normalized so that
re-weighted mixture weights sum to 1). Fig. 10 illustrates the phenomena of Topic Shifting and Topic
Re-weighting when observing samples transferring prior to posterior.

J PROOF OF POSTERIOR DERIVATION IN DEMO

In this section, we give a detailed derivation of the posterior in Eq. 23 in Sec. I.4:

P (µ | Sk) ∝ P (µ, Sk)

= P (Sk | µ)P (µ)
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= (Πk
i=1P (xi | µ))P (µ)

= (Πk
i=1N (xi | µ, τ2))

M∑
m=1

πβN (µ | µβ , σ
2)

∝ (Πk
i=1 exp(−

(xi − µ)2

2τ2
))

M∑
m=1

πβ exp(−
(µ− µβ)

2

2σ2
)

= exp(−
∑k

i=1(xi − µ)2

2τ2
)

M∑
m=1

πβ exp(−
(µ− µβ)

2

2σ2
)

=

M∑
β=1

πβ exp(−
τ2(µ− µβ)

2 + σ2
∑k

i=1(xi − µ)2

2τ2σ2
)

=

M∑
m=1

πβ exp(−
µ2(τ2 + kσ2)− 2µ(τ2µβ + σ2

∑
xi) + (τ2µ2

β + σ2
∑

x2
i )

2τ2σ2
)

=

M∑
m=1

πβ exp(−
(µ− τ2µβ+σ2 ∑

xi

τ2+kσ2 )2 +
τ2µ2

β+σ2 ∑
x2
i

τ2+kσ2 − (
τ2µβ+σ2 ∑

xi

τ2+kσ2 )2

2 τ2σ2

τ2+kσ2

)

∝
M∑

m=1

πβ exp(
(µβ −

∑k
i=1 xi

k )2

2(τ2 + kσ2)
) exp(−

(µ− τ2µβ+σ2 ∑k
i=1 xi

τ2+kσ2 )2

2 τ2σ2

τ2+kσ2

)

∝
M∑

m=1

π̃βN (µ | µ̃β , σ̃
2)

(π̃β = πβ exp(
(µβ −

∑k
i=1 xi

k )2

2(τ2 + kσ2)
), µ̃β =

τ2µβ + σ2
∑k

i=1 xi

τ2 + kσ2
)2, σ̃2 =

τ2σ2

τ2 + kσ2
)
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