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Abstract

Catala is a domain-specific programming lan-
guage for tax law, meant to facilitate the transla-
tion of legal text into executable computer code,
thanks to a syntax close to that of legal lan-
guage and reasoning. Legal statutes paired with
their Catala translation have been published
online periodically, but manual translation re-
mains labor-intensive. In this work, we develop
a benchmark for the evaluation of Catala code
generation from legal text, including a training
set to fine-tune Large Language Models. To
assess the quality of the generated code, we
introduce an evaluation framework extending
current metrics for code generation. Our ex-
periments with few-shot learning, as well as
fine-tuned models, suggest the feasibility of au-
tomating legal code generation, and contrast
with prior attempts to translate legal language
into a formal representation. !

1 Introduction

Since the 1990s, the French tax administration
has maintained an expert system to calculate taxes
and social benefits. This expert system must be
periodically updated to follow the evolution of
tax law, a process hampered by the limitations of
the current programming paradigm. The Catala
programming language (Merigoux et al., 2021)
was designed to address these limitations: first,
by providing a domain-specific language better
aligned with the syntax of legal language and
reasoning, and second, by encouraging collabo-
ration between lawyers and computer scientists us-
ing pair programming. A considerable amount of
Catala code has already been written and published
on GitHub (Merigoux, 2023).

How to translate legal language into executable
computer code is an open research question (Ser-
vantez et al., 2023; Garzo and Palumbo, 2025; Zi-
touni et al., 2024), which can be traced back to

'The dataset is available at anonymized_url

{
"input”: "4 A compter du ler janvier 2022,
pour 1'application du 5 de 1'article D.
823-17 (...) pas celui des AL.",

"metadata”: "declaration champ d'application
CalculAidePersonnaliseelogementlLocatif:
entree loyer_principal contenu argent
(...)-- Mayotte",

"output”: "champ d'application
CalculAidePersonnaliseelLogementLocatif
sous condition date_courante >=
|2023-01-01| et date_courante <
|2023-10-01|: exception metropole (...)8
181 EUR",

"generated_output”: "champ d'application
CalculAidePersonnaliseelogementLocatif
sous condition date_courante >=
|2023-01-01| et date_courante <=
12023-12-31|: exception metropole (...)8
181 EUR"

Figure 1: Extracts of one sample from our dataset, with
its input, metadata and reference output. We also show
an output generated by Qwen2.5-Coder-32B-Instruct.

initial efforts at representing parts of legislation
with tools from expert systems (McCarty, 1976;
Sergot et al., 1986). It is also of practical signifi-
cance, as many tax agencies across the world face
the problem of computing tax amounts, with vary-
ing obligations (Lawsky, 2020). A significant chal-
lenge is the substantial human effort required for
translation: each section of tax law takes hours to
convert into code, the volume of existing laws is
immense — e.g. the French tax code spans approx-
imately 3,500 pages — and frequent amendments
necessitate continuous updates and translations. In
addition, the structure of laws is not strictly linear.
For instance, some sections modify or override pro-
visions stated in earlier parts. This requires careful
management of dependencies between provisions
to ensure a consistent and faithful implementation




of the legal text.

This law-to-code translation task is related to
that of semantic parsing of legal language (Pertierra
et al., 2017; Morgenstern, 2014; Sinh and Nguyen,
2018). So far, results have been mostly negative,
for two main reasons. There is a stark contrast be-
tween the language semantic parsers are made for,
and legal language. Further, there is no large col-
lection of legal text annotated for semantic parsing.
Strictly speaking, Catala code is not a semantic
representation of legal language, because it com-
mits to one interpretation. But it trades the ability
to represent multiple interpretations for the ability
to perform legal reasoning. We report results on
par with code generation for other programming
languages, making this a positive result in semantic
parsing for legal language.

Our main contributions are:

* Starting from the existing Catala code corpus,
we created a new dataset suited for the fine-
tuning of Large Language Models (LLMs).

* We adapted existing evaluation metrics to as-
sess the accuracy of the outputs produced by
our fine-tuned models.

* We benchmark state-of-the-art LLMs, with
few-shot learning and fine-tuning.

2 Related work

Meaning representations Semantic parsing
aims at faithfully representing the meaning of lan-
guage and is a long-standing NLP task — see for
example (Blackburn and Bos, 2005) for a com-
prehensive review. First-order logic is sufficient
to model legal reasoning, as long as humans pro-
vide values for ambiguous or vague predicates, as
was done in (Sergot et al., 1986). But formalisms
for semantic parsing generally aim for close syn-
tactic alignment between input and output, as can
be found in Abstract Meaning Representation (Ba-
narescu et al., 2013) and Universal Decomposi-
tional Semantics (White et al., 2020). Semantic
parsing of legal language has been shown to be
a major challenge (Morgenstern, 2014; Pertierra
et al., 2017; Sinh and Nguyen, 2018). In particu-
lar, sentence length and logical connectives are a
problem (Allen and Engholm, 1977). Alignment
between legal language and formal representation
is hard to achieve, even if some formalisms achieve
moderate correspondence.

Legal expert systems While first-order logic
frameworks such as Prolog are sufficient to rep-
resent the logic of laws and regulations, legal lan-
guage has a specific way of expressing logic, for in-
stance through defeasible logic (Nute, 1988). This
has prompted the creation of semantic formalisms
to represent legal rules. Proleg (Satoh, 2023) is an
extension of Prolog designed to represent Japanese
law. In particular, it has been augmented with a
feature to visualize reasoning traces, to identify
bugs in the formalization or issues in a legal text
(Fungwacharakorn and Satoh, 2022). There have
been attempts to generate Proleg from legal lan-
guage, with promising results on narrow scopes
(Zin et al., 2023, 2024). OpenFisca is a software
package aimed at representing financial law. So far,
it has been developed and published open-source,’
and has been used to model specific aspects of
law in scientific publications (Pratten and Math-
ieson, 2024). Logical English (Kowalski and Da-
too, 2022) is a simplified version of the English lan-
guage, which may be easily mapped to first-order
logic. In that respect, it is close to a controlled
natural language (Kaji, 1999; Fuchs, 2021).

Code generation Existing models can generate
code in a variety of programming languages, and at
varying levels of granularity (Chen et al., 2021). In
particular, GitHub repositories are a source of data
to train LLMs on code. Codex (Chen et al., 2021)
is a GPT-3 model fine-tuned on code from GitHub.
Similarly, Deepseek-Coder-V2 was fine-tuned
from Deepseek-V2 (DeepSeek-Al et al., 2024), and
CodeLlama from Llama 2 (Roziere et al., 2023). In
contrast, StarCoder models were trained on code
only (Lozhkov et al., 2024). LLMs trained on
code are generally proficient on widely-used lan-
guages such as Python. But Catala is a very-low-
ressource language. To the best of our knowledge,
the only existing ressource is the GitHub repos-
itory we used in this paper. Querying the tool
“Am I in the Stack?” for “CatalalLang” showed
that Stack v2.0.1 and v1.2 (Lozhkov et al., 2024)
contain the repositories Catalalang/catala and
Catalalang/catala-website. The former holds
the compiler for Catala, in OCaml. The latter is
the source code for http://catala-lang.paris.
inria.fr/. This means StarCoder models have
seen a trace amount of Catala code, in the form

Zhttps://openfisca.org/
3https://huggingface.co/spaces/bigcode/
in-the-stack
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of snippets written on the Catala website. Code
generation with LLMs may leverage controlled lan-
guages and constrained decoding (Shin et al., 2021).
Given the amount of data available, we turn instead
to efficient methods for fine-tuning LLMs: low-
rank parameter adaptation (Hu et al., 2022) and its
quantized versions (Dettmers et al., 2023).

Evaluation metrics Benchmarks for code gen-
eration generally pair natural-language instruc-
tions with reference, expected code output. This
makes it possible to evaluate code generation as
a machine-translation task. Borrowing from the
BLEU score (Papineni et al., 2002), (Ren et al.,
2020) introduce CodeBLEU, a combination of
4 metrics meant to measure different aspects of
the generated code. How to appropriately as-
sess the quality of code is an active field of re-
search (Paul et al., 2024; Evtikhiev et al., 2023),
and we use all relevant metrics to measure model
performance. Some benchmarks additionally have
unit tests for the generated code, allowing to mea-
sure metrics based on functional correctness, such
as Pass@k (Chen et al., 2021). While we do have
access to some unit tests for Catala code, they are
scarce and operate at the level of an entire Catala
program, so that we leave to future research how to
best leverage them for code evaluation.

3 Dataset

The publicly available Catala code repository on
GitHub* contains examples of legal texts translated
into Catala by computer scientists and lawyers.
Topics include housing aid (aides logement), family
allowances (allocations familiales), the monthly ba-
sis for family benefits (base mensuelle allocations
familiales), inheritance law (droit successions), and
income tax (impot sur le revenu). We extracted and
structured the data into JSON format. Each sample
in our dataset corresponds to a single provision in
a legal statute, structured as follows (see Figure 1):

* Input: The text of the original legal provision
in French. This text describes rules, condi-
tions, and regulations that need to be trans-
lated into Catala code.

* Metadata: Catala code describing legal con-
cepts and data types involved in the imple-
mentation. This includes definitions of enu-

4https://github.com/CatalaLang/
catala-examples

merations, structures, and dependencies, used
directly in the Catala translation of the input.

* Qutput: The translation of the Input in Catala.

The dataset was randomly split into 70% train-
ing, 15% validation and 15% test. Since samples
come from diverse legal contexts and are shuffled
before splitting, the training, validation and test
sets share similar statistical properties. As shown
in Table 1, the dataset has 416 training, 86 valida-
tion and 89 test samples, with varying input and
metadata lengths. This can be challenging, as our
4096-token context window may not capture all
information. However, we estimate it fully cov-
ers 85% of the samples. The size of the resulting
dataset is comparable to other specialized code gen-
eration datasets (Ling et al., 2016; Yin et al., 2018).

4 Metrics

We use multiple metrics, each analyzing the code
from a different perspective. Our approach con-
siders lexical similarity, syntactic correctness, and
structural validity. The evaluation framework
includes 5 metrics: (1) ChrF, character-based
similarity between reference and generated code,
(2) BERTScore: semantic similarity using text em-
bedding models, (3) Tree Edit Distance (TED):
structural similarity of syntax trees, (4) Valid Syn-
tax (VS): checks if the generated code is syntacti-
cally correct, and (5) CodeBLEU (Ren et al., 2020).

4.1 ChrF

Character n-gram F-score (ChrF) (Popovi¢, 2015)
is often used in translation tasks because it captures
small differences that word-based metrics might
miss. In our evaluation, we use the python evalu-
ate’ library by Hugging Face to compute this score.
According to (Evtikhiev et al., 2023), ChrF aligns
best with human assessment among other code gen-
eration metrics.

4.2 BERTScore

BERTScore (Zhang et al., 2020) uses an encoder-
only transformer model to compare the meaning of
two pieces of text by computing the similarity be-
tween their embeddings. Unlike token-based meth-
ods, it evaluates similarity based on context and text
embeddings. This is useful because different pieces
of code can have different syntax but still perform

5https://huggingface.co/spaces/
evaluate-metric/chrf
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Number of Mean length Max length
Split samples Input Metadata Output | Input Metadata Output
Train 416 1293.1 24914 7163 | 44211 10136 37583
Validation 86 1128.5 2599.6 626.5 10214 11081 7574
Test 89 1658.3 2847.7 487.0 | 26267 9662 2626

Table 1: Dataset statistics. Length measured in number of characters.

the same task. We use the BERTScore implemen-
tation from the evaluate® library. BERTScore —
together with ChrF — is the closest metric to hu-
man assessment (Evtikhiev et al., 2023).

4.3 Tree Edit Distance

TED quantifies the differences between two Ab-
stract Syntax Trees (ASTs) by computing the mini-
mum number of operations required to transform
one tree into another. The allowed operations are
node insertion, deletion, and modification, each as-
signed a cost of 1. This metric considers the global
syntactic structure of the code.

To compute the TED, we first generate the Ab-
stract Syntax Tree for both the generated and ref-
erence code using the tree-sitter’ parser generator
tool. In order to do this, we exploit the Catala
grammar for tree-sitter®. Once the ASTs are ob-
tained, we convert them into a format compatible
with the zss library® for tree edit distance computa-
tion. Specifically, we traverse the tree-sitter AST
and transform it into a zss tree. After constructing
the zss tree representations, we compute the zss
distance using the tree edit distance algorithm as
described by (Zhang and Shasha, 1989).

One important aspect of using TED for evalu-
ation is normalization. Since AST sizes can vary
significantly, raw TED values alone are not always
informative. To ensure a fair comparison, we nor-
malize TED by dividing it by the number of nodes
in the larger tree, excluding certain common nodes
that do not add meaningful differences. The nor-
malized TED is given by:

TED.,ss

TED, =
" max(n,,n,) — ex. nodes

where TED .4, is the computed edit distance,

Shttps://huggingface.co/spaces/
evaluate-metric/bertscore
"https://tree-sitter.github.io/tree-sitter/
8https://github.com/CatalaLang/
tree-sitter-catala
https://pythonhosted.org/zss

n, and n,, are the number of nodes in the reference
and generated ASTs respectively, and ex. nodes
is the number of excluded common nodes — 4 in

our case. 10

A lower TED value means fewer transforma-
tions are needed to make the syntax trees identi-
cal, indicating a high structural similarity between
the generated and reference code. Conversely, a
higher TED value suggests significant structural
differences. For example, in the case illustrated in
Figure 2, the two ASTs contain 16 and 26 nodes.
The raw TED value is equal to 10 (the number of
white nodes in the Figure), and after normalization,
the final T'E'D,, score is 45.5%.

4.4 Valid Syntax

Even if a generated code snippet appears similar
to a reference implementation, it may still contain
syntax errors that prevent it from compiling. We
measure whether a snippet of generated code com-
piles using its AST. While generating the AST, the
Tree-Sitter parser introduces specific error-labeled
nodes when encountering syntactic anomalies in
the input code. We check for the presence of these
error nodes (see for instance the ERROR node in
the right tree in Figure 2). If such nodes exist, the
generated code is marked as syntactically invalid.
This metrics effectively assesses how often model
produces functional code.

4.5 CodeBLEU

The CodeBLEU metric (Ren et al., 2020) is de-
signed to evaluate the similarity between generated
and reference code while taking into considera-
tion syntactic structure and semantics. The eval-
uation consists of four components: (1) BLEU
Score, (2) Weighted N-gram Match, (3) Syntax
Tree Match, and (4) Semantic Data Flow Match.
Each of these components contributes to the final
score through a weighted sum, as described later in
this section.
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Figure 2: Comparison of ASTs from Figure 3 (left) and Figure 4 (right). Green nodes are shared by both ASTs,
while white nodes appear only in the right-hand tree. The labels of the nodes correspond to the elements defined in

the grammar, such as keywords and symbols.

champ d'application
CalculAidePersonnalisee

sous condition date_courante
>= |2023-01-01]:

Figure 3: Example of generated Catala code.

champ d'application
CalculAidePersonnalisee

sous condition date_courante
>= |2023-01-01]| et
date_courante < |2023-10-01]:
exception metropole

Figure 4: Example of reference Catala code.

BLEU Score The first component of CodeBLEU
is the standard BLEU score, measuring n-gram
overlap between the generated and reference code.
We use the default space-based tokenizer.

Weighted N-gram Match Keywords in the pro-
gramming language play a crucial role in defining
the logic and structure of a program, while variable
names and literals can often be modified without
affecting the overall functionality. To address this,
CodeBLEU incorporates a weighted n-gram match
component, where keywords are given higher im-
portance compared to variable names. We achieve
this by using a specialized tokenizer that splits the
code based on a predefined list of Catala-specific
keywords (see Appendix A). Each token is then as-
signed a weight (1 for the keywords and 0.2 for the
others), ensuring that incorrect predictions of key-
words impact the final score more than incorrect
predictions of variable names.

Syntax Tree Match To incorporate syntax aware-
ness, CodeBLEU includes a syntax tree match com-
ponent, which evaluates the similarity between the
ASTs of the generated and reference code. Here,
we compare both trees by counting the number of
matching subtrees, making this a different metric
from TED. The more subtrees that match between
the generated and reference ASTs, the higher the
score. To measure similarity, we compute the num-
ber of common subtrees and normalize it using the
longest subtree list. This helps reduce the impact
of overly long ASTs. We extract all subtrees from
both ASTs while preserving duplicates. The inter-
section gives the count of common subtrees, and
normalization is based on the length of the longest
subtree list rather than set cardinality. The similar-
ity score is defined as

T(A1) NT(A2)|
max(len(7'(Ay)),len(T(As2)))
where T'(A1) and T'( Ag) are the lists of subtrees for
ASTs A; and Ag, respectively. |T(A;) NT(Asg)|
represents the number of common subtrees. The
denominator ensures that if an AST prediction con-
tains excessive erroneous substructures, the simi-
larity score is penalized.

S(A1,Ag) =

Semantic Data Flow Match The meaning and
functionality of code depends on how variables are
related. To capture this, CodeBLEU includes a
semantic matching method based on data-flow. A
data-flow graph (Guo et al., 2021) represents how
values move between variables in a program. Even
if two code snippets have similar syntax or struc-
ture, their behavior can be different. For example,
two functions might be identical, up to the final re-
turn statement, one returning the variable x and the



other the variable y. Other metrics may still assign
a high score, but the semantics of both functions
are quite different.

To measure the semantic similarity using data-
flow, we follow three steps, following (Guo et al.,
2021): (1) Construct data-flow graphs for both can-
didate and reference code. These graphs are built
based on the AST and show how values are passed
between variables. (2) Normalize the data-flows.
We ignore the original variable names and rename
them as var_0, var_1, etc., based on their order of
appearance. (3) Compute the semantic data-flow
match score as:

Countcl,-p (DFcand)
Count(DFy.y)

Here, Count(DF,.y) is the total number of data-
flows in the reference, and Count,;p, (D Frong) is
the number of data-flows in the candidate that
match the reference.

In this work, we focused on the most fundamen-
tal and commonly used operators in Catala: as-
signments and if-then-else constructs. Specifically,
for if-then-else statements, the DFG is computed
separately for the condition, then-branch, and else-
branch. Variable states from all branches are then
unified, while variables that appear only in the con-
dition are discarded, as they do not contribute to
the semantic data dependencies.

Matchdf =

CodeBLEU Final Score Computation The final
CodeBLEU score is a weighted sum of the 4 met-
rics described above. By default, all weights are
equal to i. If no data-flows are extracted from the
reference code (Count(DF,..r) == 0), the data-flow
match score is set to 0. In this case, we ignore the
data-flow component and adjust the weights used
in the final CodeBLEU score. The new weights
become %, %, %, 0 for the n-gram match, weighted
syntax match, AST match, and data-flow match
respectively. We adapted the implementation of the
CodeBLEU Python library'! to suit our specific
use case.

5 Experiments

Our primary goal in this experimental evaluation
is to assess the effectiveness of different LLMs in
translating legal text into Catala code. Code gener-
ation can be approached as either an autoregressive
task or a translation task, with LLMs represent-
ing the current frontier in this domain. These two

"https://pypi.org/project/codebleu/

n  CodeBLEU BERTScore ChrF TED VS
0 2.3 59.3 36.6 98.8 2.2
1 39.7 74.9 64.5 613 46.1
2 48.7 76.5 677 495 629
4 50.4 77.5 69.3 467 69.7
8 51.5 76.8 694 458 83.1
16 52.2 78.6 70.3 432 88.8

Table 2: Performance (in %) of GPT-4.1 with varying
number of few-shot examples (n). Best value for each
metric is in bold.

interpretations correspond to different model ar-
chitectures: decoder-only models, which generate
code token-by-token in an autoregressive manner,
and encoder-decoder models, which process input
and output as a sequence-to-sequence task. We
focus on decoder-only models, as they are the most
common architecture used when working with text-
to-code generation.

5.1 Few-shot prompting with retrieval

As a starting point, we evaluate OpenAl’'s GPT-
4.1 model (gpt-4.1-2025-04-14) using few-shot
prompting, without any fine-tuning. We set the
temperature to 0, for reproducibility. To retrieve
the most relevant few-shot examples for each test
input, we use BM25, a ranking algorithm com-
monly used in information retrieval (Trotman et al.,
2014). We use it to retrieve samples from the train-
ing set whose input is most similar to the input of
the current test sample. For each input, we create
a structured prompt that includes the legal text, a
set of few-shot examples in JSON format, and op-
tional metadata. The model then responds with the
generated Catala code.

We evaluate performance using the metrics de-
fined in Section 4. Table 2 reports our results. We
experimented with varying number of few-shot ex-
amples, finding that performance consistently and
markedly improves with more samples. This is
expected, as GPT-4.1 likely hasn’t seen any Catala
during its training. We note that even with 1 or 2
examples, results are on par with those typically
obtained on other benchmarks (Yang et al., 2025).

5.2 Fine-tuning with QLORA

Since Catala is an uncommon programming lan-
guage, we can reasonably expect to reach higher
performance by fine-tuning smaller models on our
training set. We selected and tested the smaller
variants of four families of models:
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* Qwen 2.5 - base and coder version 7B-14B-
32B (Hui et al., 2024; Yang et al., 2024)

e Llama 3 - 3.1-8B, 3.2-3B, 3.3-70B (Grattafiori
et al.,, 2024)

* Phi 4 (Abdin et al., 2024)

* DeepSeek-Coder-V2-Lite-Instruct
(DeepSeek-Al et al., 2024)

All of these models were previously fine-tuned
by their creators to produce the "Instruct" variants.
We opted for this version instead of the base one, as
the conversational style aligns better with typical
user interactions.

Each training sample was formatted using a
structured chat template to align with the conver-
sational style of instruction-tuned models. The
template includes:

* A system message providing high-level
instructions on translating legal text to
Catala code.

* A user query containing the legal paragraph
and metadata.

* An assistant response for the Catala
code output.

5.2.1 Quantization

To adapt the selected models to our task, we fine-
tuned them using QLoRA (Dettmers et al., 2023),
a variation of LoORA (Low-Rank Adaptation) (Hu
et al., 2022), which enables efficient fine-tuning
with reduced memory usage. The fine-tuning was
conducted using the Unsloth library. (Daniel Han
and team, 2023)

First, to assess the impact of 4-bit quantization
on model performance, we compared the results
of the fine-tuned quantized models with their full-
precision counterparts. Fine-tuning was done for 3
epochs, with a maximum sequence length of 4096
tokens and a learning rate of 3 x 10~4,

Our evaluation, reported in Table 3, illustrates
the impact of different quantization levels on model
performance, comparing no quantization (none),
quantization at test time only (eval) and quanti-
zation at both train and test time (both). While
quantization enables efficiency in deployment, it
often comes at the cost of reduced precision in code
generation. Our experiments confirm this trade-off,
showing that models quantized only during infer-
ence suffer from performance degradation — an

Setting C.BLEU BERTS. ChrF TED VS
Phi-4:

none 42.6 79.4 68.8 46.0 83.1
eval 37.0 78.1 66.7 51.5 820
both 44.5 80.2 70.2 451 79.8
Qwen2.5-14B-Instruct:

none 43.2 78.7 69.5 482 742
eval 33.5 74.7 633 575 719
both 429 78.7 70.5 46.8 854

Table 3: Comparison between various settings of quan-
tization. Best for each quantization configuration is
bolded. Metrics in %.

expected outcome since Quantization-Aware Train-
ing methods were not used. However, we found
that models quantized during both finetuning and
inference perform similarly to their non-quantized
counterparts. Based on these results, we chose
4-bit quantized models for the remainder of our
evaluation.

5.2.2 Hyperparameter search

We performed a grid search over LoRA-specific
hyperparameters to identify the combination yield-
ing the best results under our hardware constraints.
We decided to optimize rank (8, 16, 32, 64)'? and
dropout (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), as prelim-
inary experiments showed they had the most sig-
nificant impact on downstream performance, while
other LoRA parameters (such as alpha) and the
learning rate contributed minimal improvements.
The list of best hyperparameters used during train-
ing can be found in Appendix B.

6 Discussion

Table 4 presents a comprehensive comparison of
fine-tuned model performance across our evalua-
tion metrics. We note that the smallest model with
fine-tuning achieves performance comparable to
that of few-shot GPT-4.1. Other models further
improve on few-shot GPT-4.1, and reach perfor-
mance beyond that achieved on other code bench-
marks (Yang et al., 2025). As expected, larger
models tend to perform better.

Our results break away from previous findings
on semantic parsing of legal language, and rep-
resent a qualitative jump. Based on the metrics
we report, LLMs frequently produce valid Catala
code, that could be used in production with mod-
erate edits. Some of that qualitative jump likely

12For Llama-70B, we did not try values of Rank beyond 8.



Model CodeBLEU BERTScore ChrF TED VS
LLaMA-3.1-8B-Instruct 46.6 76.1 629 492 741
LLaMA-3.2-3B-Instruct 44.9 75.0 61.5 526 719
LLaMA-3.3-70B-Instruct 48.5 81.1 73.8 423 875
Phi-4 56.4 814 71.8 39.8  92.1
Qwen2.5-7B-Instruct 46.6 76.3 65.1 524  61.8
Qwen2.5-14B-Instruct 60.3 82.5 76.3 46.8 93.2
Qwen2.5-32B-Instruct 59.0 81.9 76.7 40.6  86.5
Qwen2.5-Coder-7B-Instruct 47.3 77.2 64.2 50.0 71.9
Qwen2.5-Coder-14B-Instruct 58.1 82.0 75.0 41.6  88.8
Qwen2.5-Coder-32B-Instruct 61.2 82.9 77.3 39.7 93.2
DeepSeek-Coder-V2-Lite-Instruct 25.1 57.5 73.0 80.9 25.8

Table 4: Performance (in %) of instruction-tuned models across evaluation metrics. Best within each family is

underlined, overall best is bolded and underlined.

stems from design choices in the Catala language,
whose syntax is meant to align with that of legal
language. Our findings partially confirm that this
design choice was implemented successfully. In-
deed, as compared to other code benchmarks (Ling
et al., 2016; Yin et al., 2018), the translation of
legal language to Catala code seems to have a high
sample efficiency, both for few-shot learning and
fine-tuning. While the quality of the generated code
may be far from the quality required of an expert
system computing taxes at the scale of an entire
country, it may be good enough to help during the
pair-programming process intended in Catala trans-
lation (Huttner and Merigoux, 2022).

We complete our quantitative assessment with a
qualitative analysis of model outputs.

Sample A —  Appendix C.1 The
generated output is correct in  struc-
ture. Interestingly, the model generates

date_courante <= |2023-04-30| instead of
the reference date_courante < |2023-05-01].
Although logically equivalent, this lowers scores
based on exact matches. The TED Score of
7.3% and Syntax Match Score of 89.0% indicate
minor structural discrepancies. Despite this, the
BERTScore (99.2%) and ChrF score (97.4%)
confirm high token-level similarity.

Sample B — Appendix C.2 This example shows
that the model can correctly extract the amount of
euros (8,70) from the input. However, the dates
are incorrect due to their absence from the input.

Sample C — Appendix C.3 The generated out-
put closely matches the reference and follows the
correct structure and logic. It correctly interprets
the input, especially the linear relationship at the

end of the input (323 par personne a charge supple-
mentaire). The start date (2022-07-01) is correct
while the end date, which is not present in the input
text, is invented by the model.

Sample D — Appendix C.4 This example re-
veals some limitations and illustrates common er-
rors. First, the code is invalid and does not conform
to the Catala grammar. Second, the meaning is
only partially captured. The input introduces an
exception rule with "sauf s’il s’agit..."”, which is
entirely missing in the generated output. Instead, it
attempts — unsuccessfully — to express all logic
in a single condition. Additionally, it introduces a
date check date_courante >=12023-04-051, which
is not present in the input text.

7 Conclusion

In this paper, we have introduced a benchmark
and metrics for translating legal text to computer-
executable code, starting from open-source Catala
code. We further experiment with LLMs in few-
shot learning and fine-tuning settings. The per-
formance we report is comparable to other low-
resource programming languages. Our results con-
trast with prior attempts at semantic parsing of legal
language, as we reach non-trivial performance.

At present, the model takes as input the legal text
and its associated metadata, guiding the generation
of the corresponding Catala code. In future itera-
tions, we aim to (1) train and evaluate the model on
generating both output code and metadata directly
from legal text, (2) translate entire documents at
once and (3) include unit tests in the evaluation.



Limitations

We experimented with a specific subset of legal
language, French tax law, and with a specific tar-
get language, Catala. While we report reasonably
good performance, this is not directly compara-
ble to prior work on semantic parsing of legal lan-
guage, due to a mismatch in evaluation data, input
language and domain, and target semantic repre-
sentation.

The metrics we report have been generally found
to correlate with human assessments of the qual-
ity of the code. However, Catala code quality is
held to a very high standard, given the implications
of faulty code in an expert system deployed at a
large scale. We do not claim that code generated
by LLMs can be used as-is. In addition, we did
not include metadata generation, which would be
desirable for a practical application.

Finally, our experiments indicate a clear trend:
larger models consistently achieve better perfor-
mance across all evaluation metrics. This suggests
that even larger-scale models could yield further im-
provements. However, due to hardware constraints,
we were unable to test models beyond a certain
size, limiting our exploration of this scaling effect.
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A Catala Keywords for CodeBLEU

The following is the list of Catala-specific French
keywords used in our tokenizer. We used key-
words from the Catala tree-sitter grammar. champ
d’application, donnée,

conséquence, dépend de,

déclaration, contexte, décroissant, croissant, de,

liste, contient, énumération, entier, argent,
texte, décimal, date, durée, booléen, somme,
rempli, définition, état, étiquette, exception,
égal a, selon, n’importe quel, sous forme, sous
condition, si, alors, sinon, condition, contenu,

structure, assertion, varie, avec, pour, tout, on

a, fixé, par, régle, soit, existe, dans, parmi,

tel, que, et, ou, ou bien, non, maximum, minimum,

combinaison de, initialement, est, vide, mais en

remplacant, nombre, an, mois, jour, vrai, faux,

entrée, résultat, interne, arrondi, acceés_jour,

accés_mois, accés_année, premier_jour_du_mois,
dernier_jour_du_mois, Inclusion, Module, Usage de,

en tant que, externe
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B Hyperparameters

LoRA hyperparameters used for fine-tuning the
models.

Model Rank Alpha Dropout
Llama-3.1-8B 64 64 0.2
Llama-3.2-3B 128 128 0.2
Llama-3.3-70B 8 16 0.0
phi-4 64 64 0.4
Qwen2.5-7B 64 64 0.6
Qwen2.5-14B 64 64 0.3
Qwen2.5-32B 64 64 0.0
Qwen2.5-Coder-7B 64 64 0.4
Qwen2.5-Coder-14B 64 64 0.1
Qwen2.5-Coder-32B 128 128 0.2
DeepSeek-Coder-V2 64 64 0.0

Table 5: LoRA hyperparameters used during fine-tuning
for each model

C Samples

All the generated outputs below are generate by
the best model according to our metrics: Qwen2.5-
Coder-32B-Instruct.

C.1 Sample A

champ d'application Smic :

definition brut_horaire sous condition
date_courante >= |2023-01-01| et
date_courante < |2023-05-01| et (

(residence = Metropole) ou
(residence = Guadeloupe) ou
(residence = Guyane) ou

(residence = Martinique) ou
(residence = LaReunion) ou
(residence = SaintBarthelemy) ou
(residence = SaintMartin) ou
(residence = SaintPierreEtMiquelon)

)

consequence egal a 11.27 EUR

Listing 1: Reference Output for sample A

champ d'application Smic :

definition brut_horaire sous condition
date_courante >= |2023-01-01]| et
date_courante <= |2023-04-30| et (

(residence = Metropole) ou
(residence = Guadeloupe) ou
(residence = Guyane) ou

(residence = Martinique) ou
(residence = LaReunion) ou
(residence = SaintBarthelemy) ou
(residence = SaintMartin) ou
(residence = SaintPierreEtMiquelon)

)

consequence egal a 11.27 EUR

Listing 2: Generated Output for sample A

Metric Score
CodeBLEU 91.9
N-gram Match Score 93.3
Weighted N-gram Match Score ~ 93.3
Syntax Match Score 89.0
BERTScore F1 99.2
CHREF Score 97.4
TED Score 0.7
Validity True

Table 6: Evaluation scores (in %) for Sample A

C.2 Sample B

A Mayotte, son montant est fixe a
8,70 euros 1'heure.

Listing 3: Input for Sample B

champ d'application Smic :

definition brut_horaire sous condition
date_courante >= |2023-05-01]| et
date_courante < |2024-01-01| et (
(residence = Mayotte)

)

consequence egal a 8,70 EUR

Listing 4: Reference Output for Sample B

champ d'application Smic :

definition brut_horaire sous condition
date_courante >= |2023-01-01]| et
date_courante <= [2023-04-30| et (
(residence = Mayotte)

)

consequence egal a 8,70 EUR
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Listing 5: Generated Output for Sample B

Metric Score
CodeBLEU 71.9
N-gram Match Score 75.6
Weighted N-gram Match Score ~ 73.4
Syntax Match Score 66.7
BERTScore F1 95.1
CHREF Score 92.3
TED Score 2.2
Validity True

Table 7: Evaluation scores (in %) for Sample B




C.3 Sample C

NOTA :

Conformement a 1'article 3 de 1'arrete du

16 aout 2022 (TREL2220744A), ces

dispositions sont applicables pour les
prestations

dues a compter du ler

juillet 2022.

### Article 15 | LEGIARTIQ00046126962 [archive]

Pour 1'application du 5 degre de 1l'article D.
823-17

du meme code, le forfait " RO "

est fixe selon

le tableau suivant (en euros) :

Composition du foyer MONTANT (en euros)

Personne seule sans personne a charge 4 870
Couple sans personne a charge 6 977
Personne seule ou couple ayant :

-une personne a charge 8 322

-deux personnes a charge 8 509

-trois personnes a charge 8 834

-quatre personnes a charge 9 163

-cing personnes a charge 9 488

-six personnes a charge 9 816

-par personne a charge supplementaire 323

Listing 6: Input for Sample C

champ d'application
CalculAidePersonnaliseelLogementLocatif

sous condition date_courante >= |2022-07-01| et
date_courante <= |2022-12-31]:

etiquette metropole
definition multiplicateur_majoration_r@ egal a
decimal de (nombre_personnes_a_charge - 6)

etiquette metropole

definition abattement_forfaitaire_d823_17 egal a

si nombre_personnes_a_charge = @ alors

selon situation_familiale_calcul_apl sous forme

-- PersonneSeule: 4 870 EUR

-- Couple: 6 977 EUR

sinon si nombre_personnes_a_charge = 1

8 322 EUR

sinon si nombre_personnes_a_charge = 2

8 509 EUR

sinon si nombre_personnes_a_charge = 3

8 834 EUR

sinon si nombre_personnes_a_charge = 4

9 163 EUR

sinon si nombre_personnes_a_charge = 5

9 488 EUR

sinon si nombre_personnes_a_charge = 6

9 816 EUR

sinon

9 816 EUR + 323 EUR *
multiplicateur_majoration_r@

alors

alors

alors

alors

alors

alors

Listing 7: Reference Output for Sample C
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champ d'application
CalculAidePersonnaliseelogementlLocatif

sous condition date_courante >= |2022-07-01| et
date_courante < [2023-10-01]:

etiquette metropole definition
multiplicateur_majoration_r@ egal a

decimal de (nombre_personnes_a_charge - 6)

etiquette metropole definition

abattement_forfaitaire_d823_17 egal a

si nombre_personnes_a_charge = @ alors

(selon situation_familiale_calcul_apl sous forme

-- PersonneSeule: 4 870 EUR

-- Couple: 6 977 EUR)

sinon si nombre_personnes_a_charge = 1

8 322 EUR

sinon si nombre_personnes_a_charge = 2

8 509 EUR

sinon si nombre_personnes_a_charge = 3

8 834 EUR

sinon si nombre_personnes_a_charge = 4

9 163 EUR

sinon si nombre_personnes_a_charge = 5

9 488 EUR

sinon si nombre_personnes_a_charge = 6

9 816 EUR

sinon

9 816 EUR + 323 EUR *
multiplicateur_majoration_ro@

alors

alors

alors

alors

alors

alors

Listing 8: Generated Output for Sample C

Metric Score
CodeBLEU 95.0
N-gram Match Score 93.6
Weighted N-gram Match Score ~ 94.5
Syntax Match Score 91.8
BERTScore F1 98.0
CHRF Score 98.5
TED Score 0.6
Validity True

Table 8: Evaluation scores (in %) for Sample C




C.4 Sample D

#iHHH# Article L822-4 | LEGIARTIQ00049392199

Les aides personnelles au logement ne sont pas
dues si le local est loue ou

sous-loue en partie a des tiers, sauf s'il s'
agit d'une personne agee ou

handicapee adulte qui a passe un contrat
conforme aux dispositions de

1' article L. 442-1 du code de l'action sociale
et des familles ou d'une

personne de moins de trente ans.

Listing 9: Input for Sample D

champ d'application
EligibiliteAidesPersonnellelLogement:

etiquette cas_base_1822_4 regle
condition_logement_location_tiers

sous condition

menage.logement.loue_ou_sous_loue_a_des_tiers
sous forme

LoueOuSousLoueADesTiers.Non

consequence non rempli

exception cas_base_1822_4 regle
condition_logement_location_tiers

sous condition

selon menage.logement.
loue_ou_sous_loue_a_des_tiers sous forme

-- LoueOuSousLoueADesTiers.Non: vrai

-- LoueOuSouslLoueADesTiers.Oui de personne:

(resultat de France.VerificationAgeSuperieurA
avec

{ -- date_naissance: personne.
date_naissance_personne_sous_location

-- date_courante: date_courante

-- annees: 30 an }).est_superieur

ou

personne.conforme_article_1442_1

consequence rempli

Listing 10: Reference Output for Sample D

champ d'application
EligibiliteAidesPersonnellelogement:

regle condition_non_ouverture_1822_4

sous condition

selon menage.logement.
loue_ou_sous_loue_a_des_tiers sous forme

-- Qui de personne_sous_location:

date_courante >= |2023-04-05| et

(

(personne_sous_location.
date_naissance_personne_sous_location +

personne_sous_location.
conformement_article_1442_1 * 1 an <=

date_courante) ou

(personne_sous_location.
date_naissance_personne_sous_location +

personne_sous_location.
conformement_article_1442_1 * 30 an <=

date_courante)

-- Non: faux

consequence rempli
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Listing 11: Generated Output for Sample D

Metric Score
CodeBLEU 28.6
N-gram Match Score 15.6
Weighted N-gram Match Score ~ 11.6
Syntax Match Score 37.0
BERTScore F1 66.8
CHRF Score 50.8
TED Score 80.8
Validity False

Table 9: Evaluation scores (in %) for Sample D
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