
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCOVERING ALTERNATIVE SOLUTIONS BEYOND THE
SIMPLICITY BIAS IN RECURRENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training recurrent neural networks (RNNs) to perform neuroscience-style tasks
has become a popular way to generate hypotheses for how neural circuits in the
brain might perform computations. Recent work has demonstrated that task-
trained RNNs possess a strong simplicity bias. In particular, this inductive bias
often causes RNNs trained on the same task to collapse on effectively the same
solution, typically comprised of fixed-point attractors or other low-dimensional
dynamical motifs. While such solutions are readily interpretable, this collapse
proves counterproductive for the sake of generating a set of genuinely unique
hypotheses for how neural computations might be performed. Here we propose
Iterative Neural Similarity Deflation (INSD), a simple method to break this in-
ductive bias. By penalizing linear predictivity of neural activity produced by
standard task-trained RNNs, we find an alternative class of solutions to classic
neuroscience-style RNN tasks. These solutions appear distinct across a battery of
analysis techniques, including representational similarity metrics, dynamical sys-
tems analysis, and the linear decodability of task-relevant variables. Moreover,
these alternative solutions can sometimes achieve superior performance in diffi-
cult or out-of-distribution task regimes. Our findings underscore the importance
of moving beyond the simplicity bias to uncover richer and more varied models
of neural computation.

1 INTRODUCTION

Developing recurrent models of neural computations has become an increasingly popular approach
to generate hypotheses for neuroscience (Mante et al., 2013; Rajan et al., 2016; Maheswaranathan
et al., 2019; Yang et al., 2019; Sylwestrak et al., 2022; Daie et al., 2023; Beiran et al., 2023; Nair
et al., 2023; Driscoll et al., 2024; Javadzadeh et al., 2024; Genkin et al., 2025). In particular, re-
current neural networks (RNNs) trained on neuroscience-style tasks offer insight into possible so-
lutions that may be implemented at an approximate level by biological neural circuits. Such RNNs
are typically trained via backpropagation through time (Werbos, 1990) or FORCE (Sussillo & Ab-
bott, 2009), methods that seem to bear little resemblance to the way learning proceeds in biological
circuits (Crick, 1989; Lillicrap et al., 2020). Nonetheless, resemblances between solutions found
by artificial and biological networks have the potential to shed light on shared principles of neural
computation that emerge despite these differences (Mante et al., 2013; Yamins et al., 2014; Sussillo
et al., 2015; Kell et al., 2018; Banino et al., 2018; Schrimpf et al., 2020; Feather et al., 2023; Jensen
et al., 2024; Pagan et al., 2025).

Central to this research program is the ability to produce multiple competing hypotheses that can
then be evaluated on equal footing via comparisons against experimental data (Barak et al., 2013;
Sussillo et al., 2015; Soldado-Magraner et al., 2024; Pagan et al., 2025; Huang et al., 2025). Ideally,
training multiple RNNs on a particular task would be sufficient to yield a diverse range of solutions
for this purpose. Yet, this strategy faces major obstacles in scenarios where training procedures
overwhelmingly bias RNNs towards particular kinds of solutions.

Recent work has shown that task-trained RNNs exhibit a bias towards simple solutions—solutions
that use a minimal arrangement of low-dimensional dynamical structures such as fixed point attrac-
tors and limit cycles, and reuse dynamical motifs where possible (Turner & Barak, 2023; Driscoll
et al., 2024; Hazelden et al., 2025). These types of solutions have desirable properties including

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

parsimony and flexibility, and often lend themselves to relatively straightforward interpretation via
analysis techniques such as targeted dimensionality reduction and dynamical systems analysis (Sus-
sillo & Barak, 2013; Mante et al., 2013; Khona & Fiete, 2022; Driscoll et al., 2024). However, for
many neuroscience-style tasks, this simplicity bias can be strong enough to cause different networks
trained on the same task to collapse to effectively the same, minimal solution, a phenomenon referred
to as dynamic collapse (Hazelden et al., 2025). Despite the desirable properties of such solutions, it
remains far from clear that this bias towards simplicity is always aligned with the inductive biases
of biological circuits. For example, RNNs trained on simple memory tasks ubiquitously find solu-
tions using persistent activity held in stable attractor states (Maheswaranathan et al., 2019; Turner
& Barak, 2023; Driscoll et al., 2024; Hazelden et al., 2025), yet population-level recordings have
shown that the neural representations underlying memory functions can be highly dynamic (Spaak
et al., 2017; Lundqvist et al., 2018; Daie et al., 2023; Ritter & Chadwick, 2025). These observations
raise an important question: how can RNNs be trained to generate unique hypotheses for recurrent
computations that go beyond the simplicity bias?

The most natural toolkit for generating different task solutions includes varying hyperparameters
such as the initialization scale, training seed, and model architecture. The initialization scale in
particular has been shown to affect lazy versus rich learning in RNNs (Schuessler et al., 2020; Liu
et al., 2023; Bordelon et al., 2025), as well as the emergence of “aligned” or “oblique” solutions
(Schuessler et al., 2024). However, dynamic collapse can still be observed even when RNNs are
initialized in the highly chaotic regime (Hazelden et al., 2025). While varying these basic knobs is
sometimes sufficient to generate a multitude of qualitatively distinct solutions, (Turner et al., 2021;
Huang et al., 2025; Murray, 2025; Kurtkaya et al., 2025), many classes of realistic solutions are
likely still inaccessible through these means. For instance, Pagan et al. (2025) found that a large
population of RNNs trained on the same context-dependent decision making task populated only
one corner of the solution space compatible with neural data. Moreover, solutions obtained by
varying architectural details can appear representationally distinct, but often implement the same
underlying dynamical solution, as revealed by fixed-point topology (Maheswaranathan et al., 2019).

In this paper, we propose a simple method for generating unique solutions to RNN tasks, extending
beyond solutions discoverable by standard means. This method, which we call Iterative Neural
Similarity Deflation (INSD), is loosely analogous to the Gram-Schmidt procedure but in the space
of RNN solutions. By iteratively penalizing the linear predictivity of neural activity produced by
previously trained RNNs in an online fashion, we find solutions that diverge from the prototypical
solutions to classic neuroscience-style tasks. We show that the alternative solutions generated in this
manner not only use distinct representational geometry as expected, but also use different dynamical
motifs and encode task variables more nonlinearly. Across all tasks, these solutions forgo the usage
of fixed point attractors and slow manifolds for keeping track of task-relevant information, and
instead tend to maintain task-relevant information in dynamically evolving subspaces of activity.
Surprisingly, we find that these alternative solutions can sometimes achieve superior performance
when tested in difficult out-of-distribution task conditions.

2 METHODS

2.1 SETUP AND TRAINING PROCEDURES

We consider rate-based RNNs obeying the dynamics

dx

dt
= −x+Wr + J inu(t) (1)

where x ∈ RN represent neural activations over N units, W ∈ RN×N is the recurrent weight
matrix, J in ∈ RN×Nin and u(t) ∈ RNin are the input weights and inputs, respectively, r = ϕ(x)
are the “firing rates”, and ϕ is an elementwise nonlinearity which we take to be tanh. The output is
given by y(t) = Joutr(t), for readout weights Jout ∈ RNout×N .

For each task, we first train a reference RNN to minimize the mean squared error

L =
1

T

∫ T

0

∥y(t)− y⋆(t)∥2dt, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

averaged over different input conditions u(t), via batch gradient descent over the parameters Θ =
{W ,J in,Jout}. We initialize the recurrent weights as Wij ∼ N (0, g2/N), where g is a gain
parameter. The input and output weights are both initialized with entries drawn from N (0, 1/N).

We then apply a neural activity similarity penalty to subsequent RNNs trained on the same task. In
particular, for each batch of input conditions, firing rates R1 ∈ R(BLt)×N and R2 ∈ R(BLt)×N

are collected from the reference RNN and the second RNN, respectively, where the batch (B) and
discrete timestep (Lt) dimensions have been flattened. These firing rates are then projected into their
respective readout null spaces, yielding R⊥

1 and R⊥
2 . The second RNN is then trained with the loss

L′ = L+ λS(R⊥
2 ,R

⊥
1), (3)

where S is some neural similarity measure, and λ is a hyperparameter representing the strength of the
penalty. We project firing rates to readout nullspaces prior to applying the similarity penalty because
allowing it to operate on the output potent component of activity would be counterproductive to
solving the task. In particular, if the reference RNN achieves near perfect outputs y(t) ≈ y⋆(t),
then to achieve similar task performance, the second RNN’s activity must necessarily be able to
linearly predict the output potent component of the reference RNN’s activity. This procedure can be
continued iteratively, with a third RNN penalized with respect to both previous RNNs via a loss

L′′ = L+ λ
[
S(R⊥

3 ,R
⊥
1) + S(R⊥

3 ,R
⊥
2)
]
, (4)

and so on. We refer to this procedure as Iterative Neural Similarity Deflation (INSD), and label
RNNs trained in this manner alt-1, alt-2, etc. This approach for explicitly encouraging different task
solutions somewhat resembles the Barlow Twins method (Zbontar et al., 2021) in computer vision
and the method of linear adversarial concept erasure (Ravfogel et al., 2022) in algorithmic fairness.

For comparison, we also train a population of “standard” RNNs on each task. For simplicity, we use
the same architecture for all RNNs, training ten RNNs with different seeds for each initialization
scale g ∈ [0.01, 0.5, 1.0, 1.5]. A more detailed sweep including architecture, hyperparameters, and
nonlinearities can be found in Maheswaranathan et al. (2019). Training details are specified in A.1.

2.2 NEURAL SIMILARITY MEASURES

There exists a large variety of neural similarity measures that could be used for the similarity penalty,
each with their own advantages and drawbacks (Raghu et al., 2017; Kornblith et al., 2019; Williams
et al., 2021; Harvey et al., 2024a; Williams, 2024; Cloos et al., 2024; Harvey et al., 2024b). For our
purposes, we seek a metric which is invariant to relabeling or rotation of neural axes, and for which
forwards and backwards passes can be efficiently computed online.

For many neural similarity measures, solving a task while maintaining low neural similarity with
respect to a reference network admits a trivial yet undesirable solution: a subspace of activity im-
plements a version of the reference solution, while the remaining degrees of freedom simply inflate
the dimensionality of the neural activity with task-irrelevant dynamics. In particular, centered kernel
alignment, representational similarity analysis (RSA), and linear predictivity scores in the direction
of [reference RNN → penalized RNN] can all be driven arbitrarily close to 0 in this manner (see
A.2). To avoid this solution, we use linear predictivity in the opposite direction [penalized RNN →
reference RNN] as the similarity penalty. We remark that canonical correlation analysis (Hotelling,
1936; Raghu et al., 2017) can also avoid this undesirable solution, although the extra whitening step
incurs a slight additional computational cost.

We define linear predictivity as r2(X,Y) = 1−minM∈RN×N
∥XM−Y ∥2

∥Y ∥2 = ∥UXY ∥2

∥Y ∥2 where UX =

X(X⊤X)+X⊤ ∈ R(BLt)×(BLt) projects to the column space of X . As the input matrices are
often rank-deficient in our usage, for numerical stability, we also add a small ridge regularizer when
computing the similarity penalty: S(X,Y) =

∥UX,ρY ∥2

∥Y ∥2 , where UX,ρ = X(X⊤X + ρI)−1X⊤.

2.3 DYNAMICAL SYSTEMS ANALYSIS

We probe the dynamical properties of task solutions via numerically solving for fixed points, as in
(Sussillo & Barak, 2013). In line with previous studies (Sussillo & Barak, 2013; Maheswaranathan
et al., 2019; Driscoll et al., 2024; Kurtkaya et al., 2025), we include approximate fixed points, also

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PC1
PC2

−1

0

1

O
ut

pu
t

0.0

0.5

1.0
t/T

−2 0
Real

−1

0

1

Im
ag

Ctx A
Ctx B

−2.5 0.0 2.5
Real

−2.5

0.0

2.5 fixed point
PC1

PC2

−1

0

1

O
ut

pu
t

context cue

a b

c

d

e

Model 2
M

od
el

 1

linear predictivity

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5
MDS 1

−0.25

0.00

M
D

S
 2

g=0.01
g=0.5
g=1.0
g=1.5
ref. RNN

alt-1 RNN

alt-2 RNN

DSA embedding

g=
0.
01

g=
0.
5

g=
1.
0

g=
1.
5

alt
-1

 R
NN

alt
-2

 R
NN

Model 2

g=0.01

g=0.5

g=1.0

g=1.5

alt-1 RNN

alt-2 RNN

M
od

el
 1

init. seed avg

0.0

0.2

0.4

0.6

0.8

1.0

ref. RNN alt-1 RNN

ref. alt-1

Figure 1: Similarity-penalized RNNs yield distinct solutions to context-dependent integration.
a. Task schematic: two noisy stimuli are passed as input. In each trial, only the input stream selected
by the context cue needs to be integrated, while the other is ignored. b. Example trajectories shown
along the first two PCs and the output axis for the reference RNN (left) and alt-1 RNN (right),
respectively. Trajectories are colored by time and relevant context (Ctx A: viridis, Ctx B: magma)
during the corresponding trial. Fixed points (green x’s) and unstable oscillatory leading eigenmodes
(red bars) are shown. c. Representative examples of eigenvalue spectrums for Jacobians computed
at fixed points found for the reference RNN (left) and alt-1 RNN (right). d. Left: Linear predictivity
matrix across RNNs at different initialization scales and seeds trained on the task, along with the alt-
1 and alt-2 RNNs. Right: same, but with scores for the standard RNNs averaged over initialization
seed. e. MDS embedding of the DSA dissimilarity matrix computed across the same RNNs as in d.

referred to as slow points. Where relevant, we also report the stability, eigenvalue spectrum and
leading eigenmode(s) that govern the linearized dynamics in the vicinity of each fixed point.

3 RESULTS

We analyze and compare similarity-penalized solutions across three neuroscience-style tasks that
have been well studied in the literature (Barak et al., 2013; Mante et al., 2013; Maheswaranathan
et al., 2019; Schuessler et al., 2020; Smith et al., 2021; Krause et al., 2022; Valente et al., 2022;
Costacurta et al., 2024; Driscoll et al., 2024; Huang et al., 2025; Pagan et al., 2025). These tasks
span context-dependent processing, discrete and analog memory, and delayed output production.
Each of these tasks is associated with a prototypical solution that has been reported across multiple
studies, which we briefly describe for each task. Task parameters are specified in A.3.

Context-dependent integration. We begin by studying RNNs trained on context-dependent inte-
gration (Fig. 1a). For this task, the network receives two streams of noisy input stimuli and a fixed
context cue. For a short duration Tpre, only the one-hot encoded context cue is shown. Thereafter,
the context cue remains on, while the noisy input stimuli are sampled independently at each timestep
from N (µi, σ

2/dt) (following the convention in (Mante et al., 2013; Schuessler et al., 2024)). For
each trial, the stimuli coherences µi are sampled from U [−µmax, µmax]. At each timestep, the
network must output the cumulative sum (scaled by dt) of all inputs received so far in the stimu-
lus channel selected by the context cue. RNNs trained on this task and its binary decision making
variant have consistently been found to learn two lines of fixed points (line attractors), one for inte-
grating the relevant stimulus in each context (Mante et al. (2013); Maheswaranathan et al. (2019);
Smith et al. (2021); Krause et al. (2022); Pagan et al. (2025)).

To assess the properties of solutions, as in (Maheswaranathan et al., 2019), we first probe all trained
networks using task trials of varying stimuli coherences, turning off stimuli noise for visual clarity.
In line with previous findings, we observed that all standard RNNs found the aforementioned pro-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Choice

St
im

. A

Ctx A

Choice

St
im

. A

Ctx B

Choice

St
im

. B

Choice

St
im

. B

−1

0

1

St
im

. A
 c

oh
.

−1

0

1

St
im

. B
 c

oh
.

Choice
St

im
. A

Ctx A

Choice

St
im

. A

Ctx B

Choice

St
im

. B

Choice

St
im

. B

Jout

J
in A

Ctx A

Jout

J
in A

Ctx B

Jout

J
in B

Jout

J
in B

Jout

J
in A

Ctx A

Jout

J
in A

Ctx B

Jout

J
in B

Jout

J
in B

−1

0

1

St
im

. A
 c

oh
.

−1

0

1

St
im

. B
 c

oh
.

ref. RNN alt-1 RNN
b

w
ei

gh
t s

ub
sp

ac
e

re
gr

es
si

on
 s

ub
sp

ac
e

a
subspace alignment

1 2 3
0

1

co
s(
Θ

i)

ref RNN
alt-1 RNN
alt-2 RNN

r1

w1

r2

w2

r3

w3

Θ1

Θ2

Θ3

Ctx A/B decoding

standard alt-1 alt-20.0

0.5

1.0

te
st

 a
cc

ur
ac

y

linear
RBF

c

Figure 2: Linear encoding of task-relevant information is degraded in similarity-penalized
RNNs. Task: context-dependent integration. a. Averaged trajectories plotted on different sets of
axes, colored by the coherences of the input stimuli. Top row: axes directions estimated via pre-
dicting current target output (choice), stimulus A coherence, and stimulus B coherence via linear
regression over neural activity aggregated over trials and time points. Bottom row: same averaged
trajectories, but plotted on axes of the input and output weights. In each quadrant, left and right plots
correspond to context A and B trials, respectively. Colorbars are normalized so that ±1 corresponds
to the minimum/maximum coherence value. b. Alignment between the regression and weight sub-
spaces, as measured by the cosine of the principal angles. Grey dots represent alignments computed
for the population of standard RNNs. c. Decodability of the relevant context from neural activity
under linear or RBF kernel regression, as quantified by test accuracy on a heldout set. Error bars
report the standard error of the mean. The grey dotted line represents the baseline accuracy.

totypical solution, regardless of initialization scale and training seed. We illustrate this solution for
a reference RNN in Fig. 1b (left), showing activity trajectories plotted on the axes of the first two
principal components and the readout. During the context-only period, trajectories quickly segregate
into separate regions of state space. Then, in each context, activity is driven along a line of approx-
imate fixed points that densely tile the span of trajectories observed in that context. In contrast,
similarity penalized RNNs yielded solutions characterized by oscillatory dynamics (Fig. 1, right).
Activity in each context was readily distinguishable by the shape of trajectories, rather than the por-
tion of state space they occupy. Moreover, activity was no longer driven along slow/fixed points.
Instead, unstable fixed points with oscillatory eigenmodes were found, but were not used (at least
directly) for remembering the cumulative input in either context. Comparing the eigenspectrums
of the Jacobians at representative fixed points for both networks confirmed that marginally stable
linearized dynamics were only present for fixed points of the reference RNN (Fig. 1c). For brevity,
we defer the trajectory and eigenspectrum plots for the alt-2 RNN to the Appendix (Fig. A.1).

We compute linear predictivity scores in both directions between all pairs of models, including the
population of standard RNNs and models produced by two iterations of INSD. We find that the
representations used by standard RNNs are all highly linearly predictive of each other, with only
slight deviations from perfect predictivity observed when predicting models of high initialization
scale from models of lower initialization scale (Fig. 1d). Further, similarity penalized RNNs were
markedly less predictive and less predictable with respect to standard solutions. To quantify rela-
tionships between the solutions beyond geometrical similarity, we also compute their Dynamical
Similarity Analysis (DSA, Ostrow et al. (2023)) dissimilarity matrix, visualizing the scores via a
multi-dimensional scaling embedding (Fig. 1e). This embedding reveals a degree of clustering by
initialization scale. However, similarity-penalized solutions achieve a dynamical dissimilarity with
respect to the standard population that far exceeds the scale of variability observed across clusters.

Next, we analyzed population responses via projecting activity trajectories onto task-relevant sub-
spaces. For the reference and alt-1 RNNs, we first construct a regression-based subspace comprising

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

PC1

PC2

P
C

3
O

ut
 1 Out 2

O
ut

 3

fixed point

unstable (complex)

unstable (real)

stable (real)

ref. RNN alt-1 RNNa

i ii

iv v

b

alt-2 RNN
iii

vi −1
0
1

O
ut

 1

−1
0
1

O
ut

 2

−1
0
1

O
ut

 3

ref. alt-1 alt-2

Figure 3: Sustaining discrete memory states without fixed-point attractors. Task: 3-bit flipflop.
a. Example trajectories plotted on the principal component (i, ii, iii) and output (iv, v, vi) axes,
shown for the reference (i, iv), alt-1 (ii, v), and alt-2 (iii, vi) RNNs . Fixed points (green x’s) and
their leading eigenmodes (colored bars) are shown. A larger marker size is used for stable fixed
points. b. Example timeseries of network output for all three networks.

of the “stimulus A”, “stimulus B”, and “choice” axes. These directions were estimated via linearly
regressing the coherences of stimulus A, stimulus B, and the task target, respectively, from neural
activity aggregated across timesteps and 5000 trials. Consistent with prior studies (Mante et al.,
2013; Smith et al., 2021; Pagan et al., 2025), projecting the averaged trajectories of standard RNNs
onto this set of axes revealed a temporally stable and consistent encoding of the coherences of both
input stimuli, regardless of the selected context (Fig. 2a, top left). In contrast, for the alt-1 RNN,
the coherence of the relevant stimulus in each trial could still be linearly decoded somewhat con-
sistently, but estimates of the irrelevant stimulus were often inconsistent with actual trial conditions
(Fig. 2a, top right). We repeated these analyses, but for a weight-based subspace, projecting aver-
aged trajectories onto the axes [J in

A ,J
in
B ,J

out] defined by the input and output weights of each RNN.
We again find that, for the standard solution, stimuli coherences for both relevant and irrelevant
stimuli can be stably distinguished under these axes (Fig. 2a, bottom left). However, for the alt-1
RNN, the directions encoded by the input weights poorly captured the coherences of both stimuli,
regardless of context (Fig. 2a, bottom right). To assess the relationship between the weight and re-
gression subspaces, we quantified their alignment via computing the principal angles between them
(Fig. 2b). Across all models, the leading overlap was near unity, likely due to the high alignment be-
tween the regression “choice” axis and Jout weight axis. Although the standard RNNs demonstrated
varying degrees of moderate alignment between the remaining axes, these angles were near orthog-
onal for both the alt-1 and alt-2 RNNs. Finally, we assessed the extent to which task context—the
most basic task variable—can be accurately decoded from activity. Consistent with the geometric
picture of Fig. 1b, we find that context is linearly decodable at high accuracy for standard RNNs,
whereas the alt-1 RNN (and to a lesser extent, alt-2 RNN) requires additional nonlinear featurization
of representations for context to be decodable at similarly high accuracy (Fig. 2c).

3-bit flipflop. We next seek alternative solutions on 3-bit flipflop, a simple discrete memory task.
For this task, three input channels are given. At each timestep, each channel independently has a
probability p of having an upward or downward spike of magnitude 1/dt, with both directions having
equal probability. The target output for the network begins at 0 for all channels, and thereafter tracks
the sign of the last spike in each channel. Trained RNNs consistently learn the most minimal and
sensible solution: fixed point attractors arranged in a cube associated with each of the 8 main output
states (aside from the starting outputs at 0), as well as saddle points whose unstable directions are
aligned with edges of the cube to facilitate state transitions (Barak et al., 2013; Maheswaranathan
et al., 2019; Ostrow et al., 2023). We plot trajectories of solutions as well as fixed points for a
reference, alt-1 and alt-2 RNN trained on this task. We confirm that the reference RNN indeed
learns the standard solution involving the cube of stable fixed points, and saddle points that transition
between them (Fig. 3a,i). Moreover, the geometrical structure of activity in PCA space is minimal in
the sense that it mirrors the cube-like geometry of the task output. For the similarity penalized RNNs,
however, observed trajectories no longer show this geometry in PCA space, and instead follow
oscillations generated by unstable fixed points with complex leading eigenmodes (Fig. 3a,ii,iii).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PC1
PC2

−1

0

1

O
ut

pu
t

PC1
PC2

−1

0

1

O
ut

pu
t

PC1
PC2

−1

0

1

O
ut

pu
t

PC1
PC2

−1

0

1

O
ut

pu
t

memory response

0.0

0.5

1.0
t/T

fixed point

all activity readout nullspace

linear predictivity

0.0 0.5 1.0
MDS 1

−0.50

−0.25

0.00

M
D

S
 2

g=0.01
g=0.5
g=1.0
g=1.5
ref. RNN

alt-1 RNN

alt-2 RNN

−0.10 −0.05 0.00

0.00

0.05

DSA embedding

−1

0

1

stimulus memory response

input

−1

0

1

targeta b

c

d

i ii

iii iv
g=
0.
01

g=
0.
5

g=
1.
0

g=
1.
5

alt
-1

 R
NN

alt
-2

 R
NN

Model 2

g=0.01

g=0.5

g=1.0

g=1.5

alt-1 RNN

alt-2 RNN

M
od

el
 1

g=
0.
01

g=
0.
5

g=
1.
0

g=
1.
5

alt
-1

 R
NN

alt
-2

 R
NN

Model 2

0.0

0.2

0.4

0.6

0.8

1.0

ref.

alt-1

Figure 4: Similarity-penalized RNNs find dynamic, rather than persistent, encoding of analog
memories. a. Task: MemoryPro. an angle encoded as a 2D vector is passed as input during a
stimulus phase, followed by a memory phase where the angle input is absent. Only once the fixation
cue (grey) is removed must the network output the angle that was observed. All inputs are noisy.
b. Example trajectories divided by the memory (i, iii) and response (ii, iv) phases, shown for the
reference RNN (i, ii) and alt-1 RNN (iii, iv). All plots are along the first two memory phase PCs
and the cos output axis, with trajectories colored by time. The start and end of every trajectory is
colored by the target output angle. Fixed points (green x’s) and unstable oscillatory eigenmodes
(red bars) are shown. The right corner of each subplot shows the direction encoding the target angle
over time, as estimated by linear regression. c. Linear predictivity matrices comparing standard
RNNs at different initialization scales to similarity penalized RNNs (alt-1, alt-2). Scores involving
standard RNNs are averaged with respect to the initialization seed. Left: base linear predictivity
scores. Right: linear predictivity scores when activity is first projected to the readout nullspace. d.
MDS embedding of the DSA similarity matrix computed across the same RNNs as in c.

Despite these apparent differences in representational geometry, all three networks must ultimately
produce cube-like geometry when trajectories are projected onto the output subspace; this is de-
manded by the structure of the target output of the task. Thus, to compare the solutions found more
aptly, we also plot trajectories and fixed points on the output axes of each RNN. This reveals that,
even in the output subspace, similarity-penalized RNNs exhibit distinct arrangements and stability
properties of fixed points. In this example, the alt-1 RNN lacks fixed points that stabilize any of
the output states, instead showing two groups of unstable fixed points with oscillatory eigenmodes,
and saddle points that appear to transition between them (Fig. 3a,v). The alt-2 RNN recovers the
presence of fixed points at each corner, but they are no longer stable/attractive (Fig. 3,vi). Moreover,
the directions of saddle points that line the edges of the cube are often misaligned. These differ-
ences in dynamical motifs manifest as slight but noticeable imperfections in the output produced by
the similarity-penalized RNNs (Fig. 3b). We also assess the similarity of representations across all
RNNs using linear predictivity and DSA (Fig. A.2). Similar to the findings for context-dependent
integration, all standard solutions are found to be perfectly linear predictive of each other, whereas
the similarity-penalized RNNs occupy disparate areas of the DSA MDS embedding.

MemoryPro. Lastly, we turn our attention to the MemoryPro task (Fig. 4a). The RNN receives
three piecewise constant inputs: a fixation cue and 2 stimuli channels encoding an angle. For each
trial, the angle θ is sampled from U [−π, π]. Following Driscoll et al. (2024), at train time, stimuli
and response onsets and offsets are variable. Specifically, after a delay of length Tdel ∼ U [T−

del, T
+
del],

the angle stimuli (sin θ cos θ)
⊤are shown for a duration Tstim ∼ U [T−

stim, T
+
stim]. Then, the stimuli are

turned off for a duration Tmem ∼ U [T−
mem, T

+
mem], following which the fixation cue is removed and the

response period begins. For a duration Tresp ∼ U [T−
resp, T

+
resp], the network must output the angle seen

during the stimuli phase, also as a 2D vector. The network must also produce an output that tracks
the fixation cue. All three inputs are also subjected to independent noise at each timestep, drawn
from N (0, σ2). Previous studies consistently report the following prototypical solution: during the
memory phase, angles are encoded along a ring manifold of persistent states in the output nullspace,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MemoryProcontext-dependent int. flipflop

0.2 0.6 1.0
0.0

0.5

1.0
σ= 0.1 σ= 0.2 σ= 0.3 σ= 0.4

ac
cu

ra
cy

frac. memory load

ref. RNN alt-1 RNN alt-2 RNN

a

0 1

10
−4

10
−2

10
0

Tmult = 1.0 Tmult = 1.2 Tmult = 1.4 Tmult = 1.6

M
SE

noise scale σ

b c

trained values

0.0 0.5

10
−3

10
−2

10
−1

10
0 Tmult = 1.0 Tmult = 4.0 Tmult = 10.0

M
SE

noise scale σ

Figure 5: Similarity penalized models can outperform standard models in difficult task
regimes. a, b. Mean squared error on the context-dependent integration (a) and flipflop (b) tasks,
respectively, across different noise scales σ and trial length scaling Tmult. The grey dotted lines in-
dicate the noise scale used during training. c. Accuracy on the MemoryPro task versus fractional
memory load, at different noise scales σ. We assess accuracy using the same criteria as in (Driscoll
et al., 2024). Small blue dots represent the scores achieved by the population of standard RNNs.

stabilized by a ring attractor. During the response phase, this ring of fixed points quickly rotates to
become output potent (Driscoll et al., 2024; Costacurta et al., 2024; Hazelden et al., 2025).

To probe the properties of solutions, we plot trajectories collected over trials with various target
angles and in the absence of input noise (Fig. 4b). As in Driscoll et al. (2024), we use the axes of the
first two memory phase PCs and the cos θ output channel, separating trajectories by the memory and
response phases. Our results confirm that standard RNNs ubiquitously find the prototypical solution
involving a ring attractor that rotates outwards, shown for the reference network (Fig. 4b,i,ii). We
also plot the direction in activity space that best predicts the target angle via linear regression at
each timestep, confirming that memorized angles are statically encoded (Fig. 4b,i,ii, bottom right).
In contrast, the alt-1 RNN exhibits rotational dynamics during the memory phase that nonetheless
maintains the relative ordering of trajectories by their corresponding target output (Fig. 4b, iii). The
ring of fixed points is no longer present, and is instead replaced by a line of unstable fixed points
with oscillatory leading eigenmodes. Linear decoding analysis reveals that the direction encoding
the target angle is indeed rotating with the activity (Fig. 4b, iii, bottom right). Moreover, this
direction even acquires output potency at times, despite the fact that the output potent component
is, by task necessity, a low-variance fraction of the activity during the memory phase. During the
response phase, these trajectories continue to oscillate, but rotate to become output potent (Fig. 4b,
iv). We defer the corresponding plots for the alt-2 RNN to the Appendix (Fig. A.3).

As done for previous tasks, we compute linear predictivity and DSA dissimilarity scores between all
pairs of models across the standard and similarity-penalized RNNs. While the linear predictivity of
standard solutions from similarity-penalized solutions is degraded, we find that it is still significantly
above zero (Fig. 4c, left). However, this partial predictivity is ablated once activities are projected
into their respective readout nullspaces. This indicates that the only component of activity that the
similarity penalized models can predict from standard solutions is that which is necessary to solve
the task, namely, the output potent component. An MDS embedding of the DSA dissimilarity matrix
confirms that the similarity-penalized RNNs achieve dynamically dissimilar solutions (Fig. 4d).

Assessing solutions by their performance under atypical task conditions. Across all three tasks,
we found solutions that appear distinct from standard solutions by a variety of measures. However,
are these solutions actually functionally distinct, or are they merely approximating the standard
solution in ways that are difficult to discern? To answer this question, we tested all models under
task conditions seldom or never seen during training. For the context-dependent integration task, we
measured task performance across different noise scales σ of the input stimuli. We also introduce
and sweep over the parameter Tmult, a factor that uniformly scales the duration of trials. We conduct
a similar performance sweep for the flipflop task. For the MemoryPro task, we again sweep the
input noise scale σ, but also sweep the fractional memory load, which we define as Tmem

Tstim+Tmem
. To

tune this parameter, we fix the duration of the pre-stimulus and response phases, as well as the total
duration of the stimulus and memory phases combined. We then adjust the timing of the transition
from the stimulus to the memory phase to produce test trials of varying fractional memory loads.

We report model performance across these sweeps in Fig. 5, as well as the corresponding effective
dimensionality of activity as measured by the participation ratio in Fig. A.4. Across all tasks, we find

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

that standard RNNs typically outperform similarity-penalized RNNs when tested under conditions
seen during training (Fig. 5). However, we also observe many cases where similarity-penalized
RNNs outperform standard models. For instance, for the context-dependent integration task, the
alt-2 RNN moderately outperforms the population of standard RNNs in highly noisy conditions, all
the while remaining robust to lengthened trial durations. For the flipflop task, although we observe
near-identical performance across most models, the alt-2 RNN achieves a moderate but significant
gain in relative performance when noise is high. Lastly, for MemoryPro, we observe that the alt-1
RNN significantly outperforms standard RNNs on the most difficult trials, where both noise and
memory load are high, but significantly underperforms the population under low memory loads.
The alt-2 RNN only matched or underperformed the population under all conditions, suggesting
that it simply failed to learn the task as well. Altogether, these performance deviations confirm that
similarity-penalized models indeed produce solutions that are functionally distinct.

4 DISCUSSION

Generating a rich set of diverse hypotheses that can be tested against experimental data is founda-
tional for progressing our understanding of the brain. Motivated by recent observations of dynamic
collapse in task-trained RNNs (Maheswaranathan et al., 2019; Driscoll et al., 2024; Hazelden et al.,
2025), we propose a method called Iterative Neural Similarity Deflation (INSD) for expanding the
space of accessible solutions. Across three neuroscience-style tasks, we extensively study and com-
pare the solutions generated by iteratively penalizing the linear predictivity of past solutions. These
analyses revealed alternative solutions that did not directly use simple dynamical motifs such as fixed
point attractors or continuous slow manifolds to store information. Instead, similarity-penalized
RNNs tended to produce activity characterized by quasi-periodic oscillatory modes. Further analy-
sis revealed that these oscillations were not simply nuisance dynamics that emerged as a peculiarity
of the similarity penalty, but rather actively supported the dynamic encoding of task-relevant infor-
mation. These solutions are reminiscent of a theory proposed by Park et al. (2023) on how memories
can be stably maintained in the phase difference between two oscillations, rather than through per-
sistent attractor states. In the same vein, recent work by Ritter & Chadwick (2025) argues that
optimally efficient and noise-robust working memory requires high-dimensional rotational dynam-
ics, and further finds signatures of such dynamics in monkey prefrontal cortex. These observations
are consistent with our finding of improved robustness for some similarity-penalized solutions.

For context-dependent integration, unlike similarity-penalized RNNs, standard RNNs produced so-
lutions where task-relevant information was stably represented in linear subspaces, consistent with
neural data recorded during analogous tasks (Mante et al., 2013; Pagan et al., 2025). Thus, a natural
concern is that similarity-penalized RNNs may produce solutions whose population coding proper-
ties are not realistic. In principle, however, one could construct networks that interpolate between
standard and similarity-penalized solutions. Most simply, this could be achieved by an RNN with
two populations of neurons, one dedicated to implementing each solution. Much as how ensembling
is used in machine learning to reduce variance and improve generalization, such mixed models may
possibly enjoy greater robustness, all the while maintaining more realistic linear encoding properties
at the population level. We leave a more detailed investigation of this idea to future work.

Finally, we acknowledge that linear predictivity is an imperfect measure of both dynamical similarity
and functional equivalence (Ostrow et al., 2023; Qian et al., 2024; Braun et al., 2025). The recently
proposed Dynamical Similarity Analysis (DSA, Ostrow et al. (2023)) has been shown to effectively
identify RNN solutions whose dynamical properties are only superficially distinct, while other met-
rics often fall short. However, computing this metric as a similarity penalty in an online fashion
would be prohibitively computationally expensive. Despite the limitations of linear predictivity, we
found that penalizing the predictivity of representations used by standard RNNs was sufficient to
generate solutions with distinct dynamical features and unique task performance profiles.

A limitation of our study is that we focus on simple single-task settings where standard solutions
invoke attractor dynamics. Future work should investigate tasks that require transient dynamics,
such as timing tasks, where standard RNN solutions are already somewhat varied (Turner et al.,
2021; Beiran et al., 2023; Huang et al., 2025). Experiments in multitask settings would also be
insightful for understanding whether greater task demands make it more difficult to find solutions
that are not linearly predictive of reference solutions (Cao & Yamins, 2024; Huang et al., 2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr Mirowski,
Alexander Pritzel, Martin J. Chadwick, Thomas Degris, Joseph Modayil, Greg Wayne, Hubert
Soyer, Fabio Viola, Brian Zhang, Ross Goroshin, Neil Rabinowitz, Razvan Pascanu, Charlie
Beattie, Stig Petersen, Amir Sadik, Stephen Gaffney, Helen King, Koray Kavukcuoglu, Demis
Hassabis, Raia Hadsell, and Dharshan Kumaran. Vector-based navigation using grid-like repre-
sentations in artificial agents. Nature, 557(7705):429–433, May 2018. ISSN 1476-4687. doi:
10.1038/s41586-018-0102-6.

Omri Barak, David Sussillo, Ranulfo Romo, Misha Tsodyks, and L. F. Abbott. From fixed points to
chaos: Three models of delayed discrimination. Progress in Neurobiology, 103:214–222, April
2013. ISSN 0301-0082. doi: 10.1016/j.pneurobio.2013.02.002.

Manuel Beiran, Nicolas Meirhaeghe, Hansem Sohn, Mehrdad Jazayeri, and Srdjan Ostojic. Para-
metric control of flexible timing through low-dimensional neural manifolds. Neuron, 111(5):
739–753.e8, March 2023. ISSN 0896-6273. doi: 10.1016/j.neuron.2022.12.016.

Blake Bordelon, Jordan Cotler, Cengiz Pehlevan, and Jacob A. Zavatone-Veth. Dynamically Learn-
ing to Integrate in Recurrent Neural Networks, March 2025.

Lukas Braun, Erin Grant, and Andrew M. Saxe. Not all solutions are created equal: An analytical
dissociation of functional and representational similarity in deep linear neural networks. In Forty-
Second International Conference on Machine Learning, June 2025.

Rosa Cao and Daniel Yamins. Explanatory models in neuroscience, Part 2: Functional intelligibility
and the contravariance principle. Cognitive Systems Research, 85:101200, June 2024. ISSN
1389-0417. doi: 10.1016/j.cogsys.2023.101200.

Nathan Cloos, Moufan Li, Markus Siegel, Scott L. Brincat, Earl K. Miller, Guangyu Robert Yang,
and Christopher J. Cueva. Differentiable Optimization of Similarity Scores Between Models and
Brains. In The Thirteenth International Conference on Learning Representations, October 2024.

Julia C. Costacurta, Shaunak Bhandarkar, David M. Zoltowski, and Scott Linderman. Structured
flexibility in recurrent neural networks via neuromodulation. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, November 2024.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, January
1989. ISSN 1476-4687. doi: 10.1038/337129a0.

Kayvon Daie, Lorenzo Fontolan, Shaul Druckmann, and Karel Svoboda. Feedforward amplifica-
tion in recurrent networks underlies paradoxical neural coding. bioRxiv, pp. 2023.08.04.552026,
August 2023. doi: 10.1101/2023.08.04.552026.

Laura N. Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
networks utilizes shared dynamical motifs. Nature Neuroscience, 27(7):1349–1363, July 2024.
ISSN 1546-1726. doi: 10.1038/s41593-024-01668-6.

Jenelle Feather, Guillaume Leclerc, Aleksander Madry, and Josh H. McDermott. Model
metamers reveal divergent invariances between biological and artificial neural networks. Na-
ture Neuroscience, 26(11):2017–2034, November 2023. ISSN 1546-1726. doi: 10.1038/
s41593-023-01442-0.

Mikhail Genkin, Krishna V. Shenoy, Chandramouli Chandrasekaran, and Tatiana A. Engel. The
dynamics and geometry of choice in the premotor cortex. Nature, 645(8079):168–176, September
2025. ISSN 1476-4687. doi: 10.1038/s41586-025-09199-1.

Matthew D. Golub and David Sussillo. FixedPointFinder: A Tensorflow toolbox for identifying and
characterizing fixed points in recurrent neural networks. Journal of Open Source Software, 3(31):
1003, November 2018. ISSN 2475-9066. doi: 10.21105/joss.01003.

Sarah E. Harvey, Brett W. Larsen, and Alex H. Williams. Duality of Bures and Shape Distances
with Implications for Comparing Neural Representations. In Proceedings of UniReps: The First
Workshop on Unifying Representations in Neural Models, pp. 11–26, May 2024a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sarah E. Harvey, David Lipshutz, and Alex H. Williams. What Representational Similarity Measures
Imply about Decodable Information. In UniReps: 2nd Edition of the Workshop on Unifying
Representations in Neural Models, October 2024b.

James Hazelden, Laura Driscoll, Eli Shlizerman, and Eric Shea-Brown. KPFlow: An Operator
Perspective on Dynamic Collapse Under Gradient Descent Training of Recurrent Networks, July
2025.

Harold Hotelling. RELATIONS BETWEEN TWO SETS OF VARIATES. Biometrika, 28(3-4):
321–377, December 1936. ISSN 0006-3444. doi: 10.1093/biomet/28.3-4.321.

Ann Huang, Satpreet H. Singh, Flavio Martinelli, and Kanaka Rajan. Measuring and Controlling
Solution Degeneracy across Task-Trained Recurrent Neural Networks, May 2025.

Mitra Javadzadeh, Marine Schimel, Sonja B. Hofer, Yashar Ahmadian, and Guillaume Hennequin.
Dynamic consensus-building between neocortical areas via long-range connections, December
2024.

Kristopher T. Jensen, Guillaume Hennequin, and Marcelo G. Mattar. A recurrent network model of
planning explains hippocampal replay and human behavior. Nature Neuroscience, 27(7):1340–
1348, July 2024. ISSN 1546-1726. doi: 10.1038/s41593-024-01675-7.

Alexander J. E. Kell, Daniel L. K. Yamins, Erica N. Shook, Sam V. Norman-Haignere, and Josh H.
McDermott. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts
Brain Responses, and Reveals a Cortical Processing Hierarchy. Neuron, 98(3):630–644.e16, May
2018. ISSN 0896-6273. doi: 10.1016/j.neuron.2018.03.044.

Mikail Khona and Ila R. Fiete. Attractor and integrator networks in the brain. Nature Reviews Neuro-
science, 23(12):744–766, December 2022. ISSN 1471-0048. doi: 10.1038/s41583-022-00642-0.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of Neu-
ral Network Representations Revisited. In Proceedings of the 36th International Conference on
Machine Learning, pp. 3519–3529, May 2019.

Renate Krause, Matthew Cook, Sepp Kollmorgen, Valerio Mante, and Giacomo Indiveri. Opera-
tive dimensions in unconstrained connectivity of recurrent neural networks. Advances in Neural
Information Processing Systems, 35:17073–17085, December 2022.

Bariscan Kurtkaya, Fatih Dinc, Mert Yuksekgonul, Marta Blanco-Pozo, Ege Cirakman, Mark
Schnitzer, Yucel Yemez, Hidenori Tanaka, Peng Yuan, and Nina Miolane. Dynamical phases of
short-term memory mechanisms in RNNs. In Forty-Second International Conference on Machine
Learning, June 2025.

Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Back-
propagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, June 2020. ISSN
1471-0048. doi: 10.1038/s41583-020-0277-3.

Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Todd SheaBrown, and
Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural circuits. In
The Twelfth International Conference on Learning Representations, October 2023.

Mikael Lundqvist, Pawel Herman, and Earl K. Miller. Working Memory: Delay Activity, Yes!
Persistent Activity? Maybe Not. Journal of Neuroscience, 38(32):7013–7019, August 2018.
ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.2485-17.2018.

Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Uni-
versality and individuality in neural dynamics across large populations of recurrent networks. In
Advances in Neural Information Processing Systems, volume 32, 2019.

Valerio Mante, David Sussillo, Krishna V. Shenoy, and William T. Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84, November
2013. ISSN 1476-4687. doi: 10.1038/nature12742.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keith T. Murray. Phase codes emerge in recurrent neural networks optimized for modular arithmetic,
July 2025.

Aditya Nair, Tomomi Karigo, Bin Yang, Surya Ganguli, Mark J. Schnitzer, Scott W. Linderman,
David J. Anderson, and Ann Kennedy. An approximate line attractor in the hypothalamus encodes
an aggressive state. Cell, 186(1):178–193.e15, January 2023. ISSN 0092-8674, 1097-4172. doi:
10.1016/j.cell.2022.11.027.

Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond Geometry: Comparing the
Temporal Structure of Computation in Neural Circuits with Dynamical Similarity Analysis. Ad-
vances in Neural Information Processing Systems, 36:33824–33837, December 2023.

Marino Pagan, Vincent D. Tang, Mikio C. Aoi, Jonathan W. Pillow, Valerio Mante, David Sussillo,
and Carlos D. Brody. Individual variability of neural computations underlying flexible decisions.
Nature, 639(8054):421–429, March 2025. ISSN 1476-4687. doi: 10.1038/s41586-024-08433-6.

Il Memming Park, Ábel Ságodi, and Piotr Aleksander Sokół. Persistent learning signals and working
memory without continuous attractors, August 2023.

William Qian, Jacob A. Zavatone-Veth, Benjamin S. Ruben, and Cengiz Pehlevan. Partial obser-
vation can induce mechanistic mismatches in data-constrained models of neural dynamics. Ad-
vances in Neural Information Processing Systems, 37:67467–67510, December 2024.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singular Vector
Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. In Advances
in Neural Information Processing Systems, volume 30, 2017.

Kanaka Rajan, Christopher D. Harvey, and David W. Tank. Recurrent Network Models of Sequence
Generation and Memory. Neuron, 90(1):128–142, April 2016. ISSN 0896-6273. doi: 10.1016/j.
neuron.2016.02.009.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D. Cotterell. Linear Adversarial Con-
cept Erasure. In Proceedings of the 39th International Conference on Machine Learning, pp.
18400–18421, June 2022.

Laura Ritter and Angus Chadwick. Efficient Working Memory Maintenance via High-Dimensional
Rotational Dynamics. bioRxiv, pp. 2025.09.08.674838, September 2025. ISSN 2692-8205. doi:
10.1101/2025.09.08.674838.

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohi-
tij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt, Daniel L. K.
Yamins, and James J. DiCarlo. Brain-Score: Which Artificial Neural Network for Object Recog-
nition is most Brain-Like? bioRxiv, pp. 407007, January 2020. doi: 10.1101/407007.

Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, and Omri Barak.
The interplay between randomness and structure during learning in RNNs. In Advances in Neural
Information Processing Systems, volume 33, pp. 13352–13362, 2020.

Friedrich Schuessler, Francesca Mastrogiuseppe, Srdjan Ostojic, and Omri Barak. Aligned and
oblique dynamics in recurrent neural networks. eLife, 13, October 2024. doi: 10.7554/eLife.
93060.2.

Jimmy Smith, Scott Linderman, and David Sussillo. Reverse engineering recurrent neural networks
with Jacobian switching linear dynamical systems. In Advances in Neural Information Processing
Systems, volume 34, pp. 16700–16713, 2021.

Joana Soldado-Magraner, Valerio Mante, and Maneesh Sahani. Inferring context-dependent compu-
tations through linear approximations of prefrontal cortex dynamics. Science Advances, 10(51):
eadl4743, December 2024. doi: 10.1126/sciadv.adl4743.

Eelke Spaak, Kei Watanabe, Shintaro Funahashi, and Mark G. Stokes. Stable and Dynamic Coding
for Working Memory in Primate Prefrontal Cortex. Journal of Neuroscience, 37(27):6503–6516,
July 2017. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.3364-16.2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

David Sussillo and L. F. Abbott. Generating Coherent Patterns of Activity from Chaotic Neural
Networks. Neuron, 63(4):544–557, August 2009. ISSN 0896-6273. doi: 10.1016/j.neuron.2009.
07.018.

David Sussillo and Omri Barak. Opening the Black Box: Low-Dimensional Dynamics in High-
Dimensional Recurrent Neural Networks. Neural Computation, 25(3):626–649, March 2013.
ISSN 0899-7667. doi: 10.1162/NECO a 00409.

David Sussillo, Mark M. Churchland, Matthew T. Kaufman, and Krishna V. Shenoy. A neural net-
work that finds a naturalistic solution for the production of muscle activity. Nature Neuroscience,
18(7):1025–1033, July 2015. ISSN 1546-1726. doi: 10.1038/nn.4042.

Emily L. Sylwestrak, YoungJu Jo, Sam Vesuna, Xiao Wang, Blake Holcomb, Rebecca H. Tien,
Doo Kyung Kim, Lief Fenno, Charu Ramakrishnan, William E. Allen, Ritchie Chen, Krishna V.
Shenoy, David Sussillo, and Karl Deisseroth. Cell-type-specific population dynamics of diverse
reward computations. Cell, 185(19):3568–3587.e27, September 2022. ISSN 1097-4172. doi:
10.1016/j.cell.2022.08.019.

Elia Turner and Omri Barak. The Simplicity Bias in Multi-Task RNNs: Shared Attractors, Reuse of
Dynamics, and Geometric Representation. Advances in Neural Information Processing Systems,
36:25495–25507, December 2023.

Elia Turner, Kabir V Dabholkar, and Omri Barak. Charting and Navigating the Space of Solu-
tions for Recurrent Neural Networks. In Advances in Neural Information Processing Systems,
volume 34, pp. 25320–25333, 2021.

Adrian Valente, Jonathan W. Pillow, and Srdjan Ostojic. Extracting computational mechanisms
from neural data using low-rank RNNs. Advances in Neural Information Processing Systems, 35:
24072–24086, December 2022.

P.J. Werbos. Backpropagation through time: What it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, October 1990. ISSN 1558-2256. doi: 10.1109/5.58337.

Alex H. Williams. Equivalence between representational similarity analysis, centered kernel align-
ment, and canonical correlations analysis. In UniReps: 2nd Edition of the Workshop on Unifying
Representations in Neural Models, October 2024.

Alex H. Williams, Erin Kunz, Simon Kornblith, and Scott Linderman. Generalized Shape Metrics
on Neural Representations. In Advances in Neural Information Processing Systems, November
2021.

Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James J.
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences, 111(23):8619–8624, June 2014. doi:
10.1073/pnas.1403112111.

Guangyu Robert Yang, Madhura R. Joglekar, H. Francis Song, William T. Newsome, and
Xiao-Jing Wang. Task representations in neural networks trained to perform many cogni-
tive tasks. Nature Neuroscience, 22(2):297–306, February 2019. ISSN 1546-1726. doi:
10.1038/s41593-018-0310-2.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow Twins: Self-Supervised
Learning via Redundancy Reduction. In Proceedings of the 38th International Conference on
Machine Learning, pp. 12310–12320, July 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 TRAINING AND OTHER MISCELLANEOUS DETAILS

For all experiments, we use RNNs with N = 128 neurons. All RNNs are trained in PyTorch. We
use the Adam optimizer with a learning rate of 10−3, a weight decay of 10−5, and a batch size of
32. For the strength of the similarity penalty, we use λ = 0.05 throughout. When computing linear
predictivity, we use ρ = 10−3 as the ridge regularizer. RNNs trained as part of the INSD procedure
are initialized at the scale g = 1. All networks are trained for a minimum of 106 iterations, with
training terminating when the loss stops improving. Training runs were primarily done using 4th
Generation Intel Xeon CPUs; GPU acceleration was not necessary.

For computing DSA dissimilarity matrices, we use the open source package from (Ostrow et al.,
2023). Across all tasks, we used a rank of 100, 8 delays, and a delay interval of 10 timesteps. The
delay parameters were selected to be compatible with trials of duration 100 timesteps, as used for
context-dependent integration and 3-bit flipflop.

For finding fixed points, we use the open source package FixedPointFinder (Golub & Sussillo, 2018).
We report approximate fixed points with velocities q spanning q = 5 × 10−4 to q = 10−9, and
subsample redundant fixed points by adjusting the uniqueness tolerance parameter. As in (Driscoll
et al., 2024), we report fixed points over a wide range of velocity tolerances to best account for
variations in relevant timescales across the different tasks.

All training and analysis code will be made public on GitHub upon acceptance.

A.2 A BRIEF NOTE ON NEURAL SIMILARITY PENALTY LOOPHOLES

We model the scenario described in the main text as follows: we are given two sets of neural
representations X,Y ∈ RP×N . Suppose that the representations in X are contained in a low
dimensional subspace of dimension k ≪ N,P . We represent this by factorizing X = LW ,
where L ∈ RP×k are the latent representations and W ∈ Rk×N . Suppose further that Y is com-
posed of identical latents, along with some irrelevant noise in other dimensions. We write this as
Y = [LQ σZ], where Q ∈ Rk×k is an orthogonal matrix, Z ∈ RP×d represents the irrelevant
noise, and d = N−k. For simplicity, we model the entries of Z as drawn i.i.d from N (0, 1). Below,
we compute and describe the behavior of various similarity metrics on these inputs at large N , P ,
and σ.

A.2.1 CENTERED KERNEL ALIGNMENT (CKA)

We focus on linear CKA:

CKA(X,Y) =
∥X⊤Y ∥2

∥X⊤X∥∥Y ⊤Y ∥
(5)

We expand the numerator as ∥X⊤Y ∥2 = ∥X⊤LQ∥2 + σ2∥X⊤Z∥2.

We also expand ∥Y ⊤Y ∥2 = ∥L⊤L∥2 + 2σ2∥L⊤Z∥2 + σ4∥Z⊤Z∥2.

At large N , we can approximate ZZ⊤/d → IP . This allows the simplification ∥X⊤Z∥2 =
Tr(Z⊤XX⊤Z) = Tr(ZZ⊤XX⊤) = d∥X∥2, and ∥Z⊤Z∥2 = d2P . At large σ, we can drop
subleading terms in σ, giving

CKA(X,Y) ≈ σ2d∥X∥2

σ2d
√
P∥X⊤X∥

≤ O

(√
k

P

)
, (6)

where the final inequality follows from the bound ∥X∥2 ≤
√
k∥X⊤X∥2.

Thus, CKA between otherwise identical representations can be suppressed through irrelevant noise.

A.2.2 REPRESENTATIONAL SIMILARITY ANALYSIS (RSA)

We take RSA to refer to the cosine similarity between the squared Euclidean distance representa-
tional dissimilarity matrices (RDMs), as in Williams (2024).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Let DX
ij = ∥xi − xj∥2 and DY

ij = ∥yi − yj∥2 represent the P × P RDMs. We have:

RSA(X,Y) =
⟨DX ,DY ⟩
∥DX∥∥DY ∥

(7)

We can write DY
ij = DS

ij + σ2DZ
ij , where S = LQ. Dropping terms subleading in σ, we have

RSA(X,Y) ≈ ⟨DX ,DZ⟩
∥DX∥∥DZ∥

(8)

Note that E[DZ
ij] = 2d for i ̸= j. At large N (and therefore large d), we can expect concentration,

yielding DZ/d → 2(J − I), where J is a P × P matrix of ones. Thus, we have

RSA(X,Y) ≈
∑

i ̸=j D
X
ij√∑

i ̸=j(D
X
ij)

2
√

P (P − 1)
= O

(
1

P

)
. (9)

Thus, RSA is also suppressed by irrelevant noise.

A.2.3 LINEAR PREDICTIVITY [REF. → PENALIZED]

As in the main text, define the projection operator UX = X(X⊤X)+X⊤. We have that

r2(X,Y) =
∥UXY ∥2

∥Y ∥2
. (10)

We can write ∥UXY ∥2 = ∥S∥2 + σ2∥UXZ∥2, where we have used that UXS = S, as by
construction, S = LQ is contained in the column space of X = LW . Similarly, we have
∥Y ∥2 = ∥S∥2 + σ2∥Z∥2, yielding r2(X,Y) ≈ ∥UXZ∥2

∥Z∥2 at large σ. Finally, at large N , we
have that

r2(X,Y) ≈ ∥UXZ∥2

∥Z∥2
→

E
[
∥UXZ∥2

]
E [∥Z∥2]

=
kd

Pd
=

k

P
, (11)

demonstrating that linear predictivity in this direction is also suppressed by irrelevant noise.

A.2.4 LINEAR PREDICTIVITY [PENALIZED → REF.]

Consider the opposite direction:

r2(Y ,X) =
∥UY X∥2

∥X∥2
. (12)

Since the column space of Y contains that of X , we have ∥UY X∥2 = ∥X∥2, yielding r2(Y ,X) =
1. Thus, perfect linear predictivity is maintained.

A.3 TASK PARAMETERS

Context-dependent integration: We use a timestep of dt = 0.1, a context-only duration Tpre = 2.5
(25 timesteps), and a total trial duration of T = 10 (100 timesteps). We set the noise scale to
σ =

√
0.1.

3-bit flipflop: We use a timestep of dt = 0.2, and a total trial duration of T = 20 (100 timesteps).
We set p = 0.1 as the spike probability per timestep.

MemoryPro: We use a timestep of dt = 0.2. Mirroring timing parameters selected in (Driscoll
et al., 2024), we set T−

del = T−
resp = 3/dt, T+

del = T+
resp = 7/dt, T−

stim = T−
mem = 2/dt, and

T+
stim = T+

mem = 16/dt. We use a noise scale of σ = 0.1. As in (Costacurta et al., 2024), we scale
down the output channel corresponding to the fixation target by a factor of 0.8.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 ADDITIONAL FIGURES

Jout

J
in A

Ctx A

Jout

J
in A

Ctx B

Jout

J
in B

Jout

J
in B

−1

0

1

S
tim

. A
 c

oh
.

−1

0

1

S
tim

. B
 c

oh
.

Choice

S
tim

.A

Ctx A

Choice

S
tim

.A

Ctx B

Choice

S
tim

. B

Choice

S
tim

. B

−1

0

1

S
tim

. A
 c

oh
.

−1

0

1

S
tim

. B
 c

oh
.

PC1
PC2

−1

0

1

O
ut

pu
t

−10 0
Real

−10

0

10

Im
ag

Ctx A
Ctx B

a

b

c

d

Figure A.1: Properties of the alt-2 RNN for the context-dependent integration task. a,b. Anal-
ogous to Figs. 1b,c. As for the alt-1 RNN, we observe oscillatory dynamics, as well as fixed points
with unstable oscillatory modes. However, these oscillatory modes are of much higher frequency.
c,d. Analogous to Fig. 2a. Unlike the alt-1 RNN, average trajectories plotted in the regression sub-
space to some extent maintain the relative ordering of the coherences of both stimuli. This is likely
explained by the alt-2 RNN still retaining a degree of linear predictivity of standard RNN represen-
tations, something that was entirely absent for the alt-1 RNN (Fig. 1d). However, representations in
the weight subspace reveal no consistent representation of stimuli coherences.

g=
0.0

1

g=
0.5

g=
1.0

g=
1.5

alt
-1

RNN

alt
-2

RNN

Model 2

g = 0.01
g = 0.5
g = 1.0
g = 1.5

alt-1 RNN

alt-2 RNN

M
od

el
 1

all activity

g=
0.0

1

g=
0.5

g=
1.0

g=
1.5

alt
-1

RNN

alt
-2

RNN

Model 2

readout nullspace

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50
MDS 1

−0.2

0.0

M
D

S
2

g = 0.01
g = 0.5
g = 1.0
g = 1.5
ref. RNN
2nd RNN
3rd RNN

linear predictivity
DSA embedding

a b

Figure A.2: Similarity measures across standard and similarity-penalized models trained on
the 3-bit flipflop task. Figures are analogous to those in Fig. 4c,d. Similarity-penalized RNNs retain
some degree of linear predictiity of standard RNNs, but that effect is ablated once representations
are projected to readout nullspaces. As for other tasks, we also observe a DSA embdding that
significantly separates the solutions similarity-penalized RNNs from those found by standard RNNs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

PC1
PC2

−1

0

1

O
ut
pu
t

PC1
PC2

−1

0

1

O
ut
pu
t

memory responsea

alt-2

b

Figure A.3: Properties of the alt-2 RNN for the MemoryPro task. Figures are analogous to those
in Fig. 4b. We again observe oscillatory dynamics supported by a center of unstable fixed points.
This RNN does poorly on the task relative to the RNNs shown in Fig. 4b, as indicated by the activity
itself prematurely acquiring significant output potence during the memory phase.

0.0 0.5
5

6

7

8

Tmult = 1.0 Tmult = 4.0 Tmult = 10.0

Pa
rti

ci
pa

tio
n

R
at

io

noise scale

0.2 0.6 1.0
2

4

6

8

σ= 0.1 σ= 0.2 σ= 0.3 σ= 0.4

Pa
rti

ci
pa

tio
n

R
at

io

frac. memory load

0 1

2.5

5.0

7.5

Tmult = 1.0 Tmult = 1.2 Tmult = 1.4 Tmult = 1.6

Pa
rti

ci
pa

tio
n

R
at

io

noise scale

MemoryPro

context-dependent int. flipflop

ref. RNN
alt-1 RNN
alt-2 RNN

a b

c

trained values

σ σ

Figure A.4: Effective dimensionality over different task conditions. Plots are analogous to those
in Fig. 5, but instead report the participation ratio, computed over neural activity during the task.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 LLM USAGE STATEMENT

Large language models were used sparingly for the sole purpose of trimming and polishing text. All
technical contributions, experiments, analyses, and figures are the authors’ own.

18

	Introduction
	Methods
	Setup and Training Procedures
	Neural Similarity measures
	Dynamical systems analysis

	Results
	Discussion
	Appendix
	Training and other miscellaneous details
	A brief note on neural similarity penalty loopholes
	Centered kernel alignment (CKA)
	Representational Similarity Analysis (RSA)
	Linear predictivity [ref. penalized]
	Linear predictivity [penalized ref.]

	Task parameters
	Additional Figures
	LLM Usage Statement

