

DISCOVERING ALTERNATIVE SOLUTIONS BEYOND THE SIMPLICITY BIAS IN RECURRENT NEURAL NETWORKS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Training recurrent neural networks (RNNs) to perform neuroscience-style tasks
 012 has become a popular way to generate hypotheses for how neural circuits in the
 013 brain might perform computations. Recent work has demonstrated that task-
 014 trained RNNs possess a strong simplicity bias. In particular, this inductive bias
 015 often causes RNNs trained on the same task to collapse on effectively the same
 016 solution, typically comprised of fixed-point attractors or other low-dimensional
 017 dynamical motifs. While such solutions are readily interpretable, this collapse
 018 proves counterproductive for the sake of generating a set of genuinely unique
 019 hypotheses for how neural computations might be performed. Here we propose
 020 Iterative Neural Similarity Deflation (INSD), a simple method to break this in-
 021 ductive bias. By penalizing linear predictivity of neural activity produced by
 022 standard task-trained RNNs, we find an alternative class of solutions to classic
 023 neuroscience-style RNN tasks. These solutions appear distinct across a battery of
 024 analysis techniques, including representational similarity metrics, dynamical sys-
 025 tems analysis, and the linear decodability of task-relevant variables. Moreover,
 026 these alternative solutions can sometimes achieve superior performance in diffi-
 027 cult or out-of-distribution task regimes. Our findings underscore the importance
 028 of moving beyond the simplicity bias to uncover richer and more varied models
 029 of neural computation.

1 INTRODUCTION

030 Developing recurrent models of neural computations has become an increasingly popular approach
 031 to generate hypotheses for neuroscience (Mante et al., 2013; Rajan et al., 2016; Maheswaranathan
 032 et al., 2019; Yang et al., 2019; Sylwestrak et al., 2022; Daie et al., 2023; Beiran et al., 2023; Nair
 033 et al., 2023; Driscoll et al., 2024; Javadzadeh et al., 2024; Genkin et al., 2025). In particular, re-
 034 current neural networks (RNNs) trained on neuroscience-style tasks offer insight into possible sol-
 035 utions that may be implemented at an approximate level by biological neural circuits. Such RNNs
 036 are typically trained via backpropagation through time (Werbos, 1990) or FORCE (Sussillo & Ab-
 037 bott, 2009), methods that seem to bear little resemblance to the way learning proceeds in biological
 038 circuits (Crick, 1989; Lillicrap et al., 2020). Nonetheless, resemblances between solutions found
 039 by artificial and biological networks have the potential to shed light on shared principles of neural
 040 computation that emerge despite these differences (Mante et al., 2013; Yamins et al., 2014; Sussillo
 041 et al., 2015; Kell et al., 2018; Banino et al., 2018; Schrimpf et al., 2020; Feather et al., 2023; Jensen
 042 et al., 2024; Pagan et al., 2025).

043 Central to this research program is the ability to produce multiple competing hypotheses that can
 044 then be evaluated on equal footing via comparisons against experimental data (Barak et al., 2013;
 045 Sussillo et al., 2015; Soldado-Magraner et al., 2024; Pagan et al., 2025; Huang et al., 2025). Ideally,
 046 training multiple RNNs on a particular task would be sufficient to yield a diverse range of solutions
 047 for this purpose. Yet, this strategy faces major obstacles in scenarios where training procedures
 048 overwhelmingly bias RNNs towards particular kinds of solutions.

049 Recent work has shown that task-trained RNNs exhibit a bias towards simple solutions—solutions
 050 that use a minimal arrangement of low-dimensional dynamical structures such as fixed point attrac-
 051 tors and limit cycles, and reuse dynamical motifs where possible (Turner & Barak, 2023; Driscoll
 052 et al., 2024; Hazelden et al., 2025). These types of solutions have desirable properties including

054 parsimony and flexibility, and often lend themselves to relatively straightforward interpretation via
 055 analysis techniques such as targeted dimensionality reduction and dynamical systems analysis (Susi-
 056 sillo & Barak, 2013; Mante et al., 2013; Khona & Fiete, 2022; Driscoll et al., 2024). However, for
 057 many neuroscience-style tasks, this simplicity bias can be strong enough to cause different networks
 058 trained on the same task to collapse to effectively the same, minimal solution, a phenomenon referred
 059 to as dynamic collapse (Hazelden et al., 2025). Despite the desirable properties of such solutions, it
 060 remains far from clear that this bias towards simplicity is always aligned with the inductive biases
 061 of biological circuits. For example, RNNs trained on simple memory tasks ubiquitously find solu-
 062 tions using persistent activity held in stable attractor states (Maheswaranathan et al., 2019; Turner
 063 & Barak, 2023; Driscoll et al., 2024; Hazelden et al., 2025), yet population-level recordings have
 064 shown that the neural representations underlying memory functions can be highly dynamic (Spaak
 065 et al., 2017; Lundqvist et al., 2018; Daei et al., 2023; Ritter & Chadwick, 2025). These observations
 066 raise an important question: how can RNNs be trained to generate unique hypotheses for recurrent
 067 computations that go beyond the simplicity bias?

068 The most natural toolkit for generating different task solutions includes varying hyperparameters
 069 such as the initialization scale, training seed, and model architecture. The initialization scale in
 070 particular has been shown to affect lazy versus rich learning in RNNs (Schuessler et al., 2020; Liu
 071 et al., 2023; Bordelon et al., 2025), as well as the emergence of “aligned” or “oblique” solutions
 072 (Schuessler et al., 2024). However, dynamic collapse can still be observed even when RNNs are
 073 initialized in the highly chaotic regime (Hazelden et al., 2025). While varying these basic knobs is
 074 sometimes sufficient to generate a multitude of qualitatively distinct solutions, (Turner et al., 2021;
 075 Huang et al., 2025; Murray, 2025; Kurtkaya et al., 2025), many classes of realistic solutions are
 076 likely still inaccessible through these means. For instance, Pagan et al. (2025) found that a large
 077 population of RNNs trained on the same context-dependent decision making task populated only
 078 one corner of the solution space compatible with neural data. Moreover, solutions obtained by
 079 varying architectural details can appear representationally distinct, but often implement the same
 underlying dynamical solution, as revealed by fixed-point topology (Maheswaranathan et al., 2019).

080 In this paper, we propose a simple method for generating unique solutions to RNN tasks, extending
 081 beyond solutions discoverable by standard means. This method, which we call Iterative Neural
 082 Similarity Deflation (INSD), is loosely analogous to the Gram-Schmidt procedure but in the space
 083 of RNN solutions. By iteratively penalizing the linear predictivity of neural activity produced by
 084 previously trained RNNs in an online fashion, we find solutions that diverge from the prototypical
 085 solutions to classic neuroscience-style tasks. We show that the alternative solutions generated in this
 086 manner not only use distinct representational geometry as expected, but also use different dynamical
 087 motifs and encode task variables more nonlinearly. Across all tasks, these solutions forgo the usage
 088 of fixed point attractors and slow manifolds for keeping track of task-relevant information, and
 089 instead tend to maintain task-relevant information in dynamically evolving subspaces of activity.
 090 Surprisingly, we find that these alternative solutions can sometimes achieve superior performance
 091 when tested in difficult out-of-distribution task conditions.

092 2 METHODS

093 2.1 SETUP AND TRAINING PROCEDURES

094 We consider rate-based RNNs obeying the dynamics

$$095 \frac{dx}{dt} = -x + Wr + J^{\text{in}}u(t) \quad (1)$$

096 where $x \in \mathbb{R}^N$ represent neural activations over N units, $W \in \mathbb{R}^{N \times N}$ is the recurrent weight
 097 matrix, $J^{\text{in}} \in \mathbb{R}^{N \times N_{\text{in}}}$ and $u(t) \in \mathbb{R}^{N_{\text{in}}}$ are the input weights and inputs, respectively, $r = \phi(x)$
 098 are the “firing rates”, and ϕ is an elementwise nonlinearity which we take to be tanh. The output is
 099 given by $y(t) = J^{\text{out}}r(t)$, for readout weights $J^{\text{out}} \in \mathbb{R}^{N_{\text{out}} \times N}$.

100 For each task, we first train a reference RNN to minimize the mean squared error

$$101 \mathcal{L} = \frac{1}{T} \int_0^T \|y(t) - y^*(t)\|^2 dt, \quad (2)$$

averaged over different input conditions $\mathbf{u}(t)$, via batch gradient descent over the parameters $\Theta = \{\mathbf{W}, \mathbf{J}^{\text{in}}, \mathbf{J}^{\text{out}}\}$. We initialize the recurrent weights as $\mathbf{W}_{ij} \sim \mathcal{N}(0, g^2/N)$, where g is a gain parameter. The input and output weights are both initialized with entries drawn from $\mathcal{N}(0, 1/N)$.

We then apply a neural activity similarity penalty to subsequent RNNs trained on the same task. In particular, for each batch of input conditions, firing rates $\mathbf{R}_1 \in \mathbb{R}^{(BL_t) \times N}$ and $\mathbf{R}_2 \in \mathbb{R}^{(BL_t) \times N}$ are collected from the reference RNN and the second RNN, respectively, where the batch (B) and discrete timestep (L_t) dimensions have been flattened. These firing rates are then projected into their respective readout null spaces, yielding \mathbf{R}_1^\perp and \mathbf{R}_2^\perp . The second RNN is then trained with the loss

$$\mathcal{L}' = \mathcal{L} + \lambda S(\mathbf{R}_2^\perp, \mathbf{R}_1^\perp), \quad (3)$$

where S is some neural similarity measure, and λ is a hyperparameter representing the strength of the penalty. We project firing rates to readout nullspaces prior to applying the similarity penalty because allowing it to operate on the output potent component of activity would be counterproductive to solving the task. In particular, if the reference RNN achieves near perfect outputs $\mathbf{y}(t) \approx \mathbf{y}^*(t)$, then to achieve similar task performance, the second RNN’s activity must necessarily be able to linearly predict the output potent component of the reference RNN’s activity. This procedure can be continued iteratively, with a third RNN penalized with respect to both previous RNNs via a loss

$$\mathcal{L}'' = \mathcal{L} + \lambda [S(\mathbf{R}_3^\perp, \mathbf{R}_1^\perp) + S(\mathbf{R}_3^\perp, \mathbf{R}_2^\perp)], \quad (4)$$

and so on. We refer to this procedure as Iterative Neural Similarity Deflation (INSD), and label RNNs trained in this manner alt-1, alt-2, etc. This approach for explicitly encouraging different task solutions somewhat resembles the Barlow Twins method (Zbontar et al., 2021) in computer vision and the method of linear adversarial concept erasure (Ravfogel et al., 2022) in algorithmic fairness.

For comparison, we also train a population of “standard” RNNs on each task. For simplicity, we use the same architecture for all RNNs, training ten RNNs with different seeds for each initialization scale $g \in [0.01, 0.5, 1.0, 1.5]$. A more detailed sweep including architecture, hyperparameters, and nonlinearities can be found in Maheswaranathan et al. (2019). Training details are specified in A.1.

2.2 NEURAL SIMILARITY MEASURES

There exists a large variety of neural similarity measures that could be used for the similarity penalty, each with their own advantages and drawbacks (Raghu et al., 2017; Kornblith et al., 2019; Williams et al., 2021; Harvey et al., 2024a; Williams, 2024; Cloos et al., 2024; Harvey et al., 2024b). For our purposes, we seek a metric which is invariant to relabeling or rotation of neural axes, and for which forwards and backwards passes can be efficiently computed online.

For many neural similarity measures, solving a task while maintaining low neural similarity with respect to a reference network admits a trivial yet undesirable solution: a subspace of activity implements a version of the reference solution, while the remaining degrees of freedom simply inflate the dimensionality of the neural activity with task-irrelevant dynamics. In particular, centered kernel alignment, representational similarity analysis (RSA), and linear predictivity scores in the direction of [reference RNN \rightarrow penalized RNN] can all be driven arbitrarily close to 0 in this manner (see A.2). To avoid this solution, we use linear predictivity in the opposite direction [penalized RNN \rightarrow reference RNN] as the similarity penalty. **This asymmetry between predictivity and predictability in their sensitivity to irrelevant dynamics has also been noted in recent work on latent variable models of neural activity (Versteeg et al., 2024; Dabholkar & Barak, 2025).** We remark that canonical correlation analysis (Hotelling, 1936; Raghu et al., 2017) can also avoid this undesirable solution, although the extra whitening step incurs a slight additional computational cost.

We define linear predictivity as $r^2(\mathbf{X}, \mathbf{Y}) = 1 - \min_{\mathbf{M} \in \mathbb{R}^{N \times N}} \frac{\|\mathbf{X}\mathbf{M} - \mathbf{Y}\|^2}{\|\mathbf{Y}\|^2} = \frac{\|\mathbf{U}_X \mathbf{Y}\|^2}{\|\mathbf{Y}\|^2}$ where $\mathbf{U}_X = \mathbf{X}(\mathbf{X}^\top \mathbf{X})^+ \mathbf{X}^\top \in \mathbb{R}^{(BL_t) \times (BL_t)}$ projects to the column space of \mathbf{X} . As the input matrices are often rank-deficient in our usage, for numerical stability, we also add a small ridge regularizer when computing the similarity penalty: $S(\mathbf{X}, \mathbf{Y}) = \frac{\|\mathbf{U}_{X,\rho} \mathbf{Y}\|^2}{\|\mathbf{Y}\|^2}$, where $\mathbf{U}_{X,\rho} = \mathbf{X}(\mathbf{X}^\top \mathbf{X} + \rho \mathbf{I})^{-1} \mathbf{X}^\top$.

2.3 DYNAMICAL SYSTEMS ANALYSIS

We probe the dynamical properties of task solutions via numerically solving for fixed points, as in (Sussillo & Barak, 2013). In line with previous studies (Sussillo & Barak, 2013; Maheswaranathan

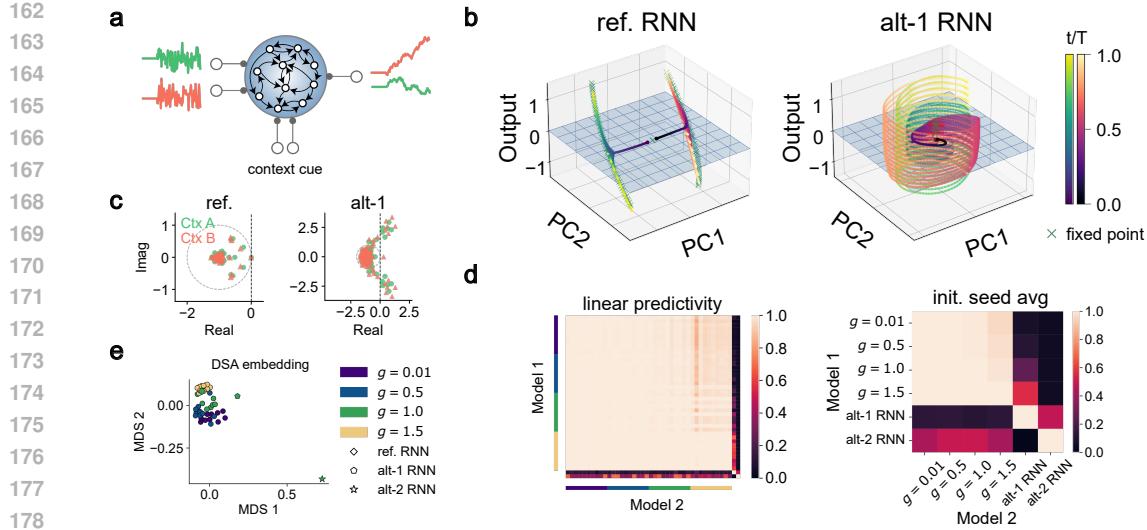


Figure 1: Similarity-penalized RNNs yield distinct solutions to context-dependent integration.
a. Task schematic: two noisy stimuli are passed as input. In each trial, only the input stream selected by the context cue needs to be integrated, while the other is ignored. **b.** Example trajectories shown along the first two PCs and the output axis for the reference RNN (left) and alt-1 RNN (right), respectively. Trajectories are colored by time and relevant context (Ctx A: viridis, Ctx B: magma) during the corresponding trial. Fixed points (green x's) and unstable oscillatory leading eigenmodes (red bars) are shown. **c.** Representative examples of eigenvalue spectrums for Jacobians computed at fixed points found for the reference RNN (left) and alt-1 RNN (right). **d.** Left: Linear predictivity matrix across RNNs at different initialization scales and seeds trained on the task, along with the alt-1 and alt-2 RNNs. Right: same, but with scores for the standard RNNs averaged over initialization seed. **e.** MDS embedding of the DSA dissimilarity matrix computed across the same RNNs as in **d**.

et al., 2019; Driscoll et al., 2024; Kurtkaya et al., 2025), we include approximate fixed points, also referred to as slow points. Where relevant, we also report the stability, eigenvalue spectrum and leading eigenmode(s) that govern the linearized dynamics in the vicinity of each fixed point.

3 RESULTS

We analyze and compare similarity-penalized solutions across three neuroscience-style tasks that have been well studied in the literature (Barak et al., 2013; Mante et al., 2013; Maheswaranathan et al., 2019; Schuessler et al., 2020; Smith et al., 2021; Krause et al., 2022; Valente et al., 2022; Costacurta et al., 2024; Driscoll et al., 2024; Huang et al., 2025; Pagan et al., 2025). These tasks span context-dependent processing, discrete and analog memory, and delayed output production. Each of these tasks is associated with a prototypical solution that has been reported across multiple studies, which we briefly describe for each task. Task parameters are specified in A.3.

Context-dependent integration. We begin by studying RNNs trained on context-dependent integration (Fig. 1a). For this task, the network receives two streams of noisy input stimuli and a fixed context cue. For a short duration T_{pre} , only the one-hot encoded context cue is shown. Thereafter, the context cue remains on, while the noisy input stimuli are sampled independently at each timestep from $\mathcal{N}(\mu_i, \sigma^2/dt)$ (following the convention in (Mante et al., 2013; Schuessler et al., 2024)). For each trial, the stimuli coherences μ_i are sampled from $\mathcal{U}[-\mu_{\text{max}}, \mu_{\text{max}}]$. At each timestep, the network must output the cumulative sum (scaled by dt) of all inputs received so far in the stimulus channel selected by the context cue. RNNs trained on this task and its binary decision making variant have consistently been found to learn two lines of fixed points (line attractors), one for integrating the relevant stimulus in each context (Mante et al. (2013); Maheswaranathan et al. (2019); Smith et al. (2021); Krause et al. (2022); Pagan et al. (2025)).

To assess the properties of solutions, as in (Maheswaranathan et al., 2019), we first probe all trained networks using task trials of varying stimuli coherences, turning off stimuli noise for visual clarity.

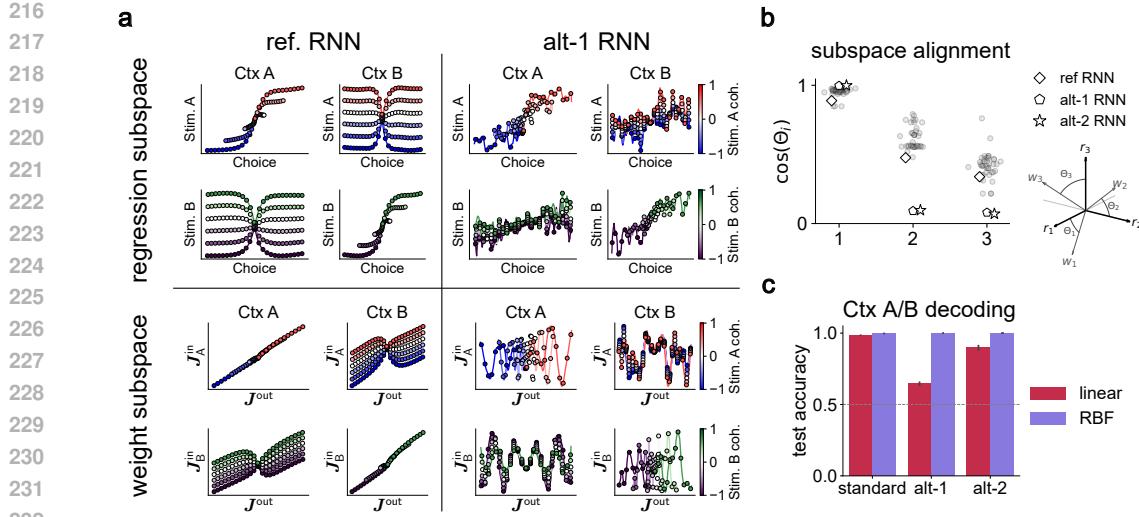


Figure 2: **Linear encoding of task-relevant information is degraded in similarity-penalized RNNs.** Task: context-dependent integration. **a.** Averaged trajectories plotted on different sets of axes, colored by the coherences of the input stimuli. Top row: axes directions estimated via predicting current target output (choice), stimulus A coherence, and stimulus B coherence via linear regression over neural activity aggregated over trials and time points. Bottom row: same averaged trajectories, but plotted on axes of the input and output weights. In each quadrant, left and right plots correspond to context A and B trials, respectively. Colorbars are normalized so that ± 1 corresponds to the minimum/maximum coherence value. **b.** Alignment between the regression and weight subspaces, as measured by the cosine of the principal angles. Grey dots represent alignments computed for the population of standard RNNs. **c.** Decodability of the relevant context from neural activity under linear or RBF kernel regression, as quantified by test accuracy on a heldout set. Error bars report the standard error of the mean. The grey dotted line represents the baseline accuracy.

In line with previous findings, we observed that all standard RNNs found the aforementioned prototypical solution, regardless of initialization scale and training seed. We illustrate this solution for a reference RNN in Fig. 1b (left), showing activity trajectories plotted on the axes of the first two principal components and the readout. During the context-only period, trajectories quickly segregate into separate regions of state space. Then, in each context, activity is driven along a line of approximate fixed points that densely tile the span of trajectories observed in that context. In contrast, similarity penalized RNNs yielded solutions characterized by oscillatory dynamics (Fig. 1, right). Activity in each context was readily distinguishable by the shape of trajectories, rather than the portion of state space they occupy. Moreover, activity was no longer driven along slow/fixed points. Instead, unstable fixed points with oscillatory eigenmodes were found, but were not used (at least directly) for remembering the cumulative input in either context. Comparing the eigenspectrums of the Jacobians at representative fixed points for both networks confirmed that marginally stable linearized dynamics were only present for fixed points of the reference RNN (Fig. 1c). For brevity, we defer the trajectory and eigenspectrum plots for the alt-2 RNN to the Appendix (Fig. A.1).

We compute linear predictivity scores in both directions between all pairs of models, including the population of standard RNNs and models produced by two iterations of INSD. We find that the representations used by standard RNNs are all highly linearly predictive of each other, with only slight deviations from perfect predictivity observed when predicting models of high initialization scale from models of lower initialization scale (Fig. 1d). Further, similarity penalized RNNs were markedly less predictive and less predictable with respect to standard solutions. To quantify relationships between the solutions beyond geometrical similarity, we also compute their Dynamical Similarity Analysis (DSA, Ostrow et al. (2023)) dissimilarity matrix, visualizing the scores via a multi-dimensional scaling embedding (Fig. 1e). This embedding reveals a degree of clustering by initialization scale. However, similarity-penalized solutions achieve a dynamical dissimilarity with respect to the standard population that far exceeds the scale of variability observed across clusters.

Next, we analyzed population responses via projecting activity trajectories onto task-relevant subspaces. For the reference and alt-1 RNNs, we first construct a regression-based subspace comprising

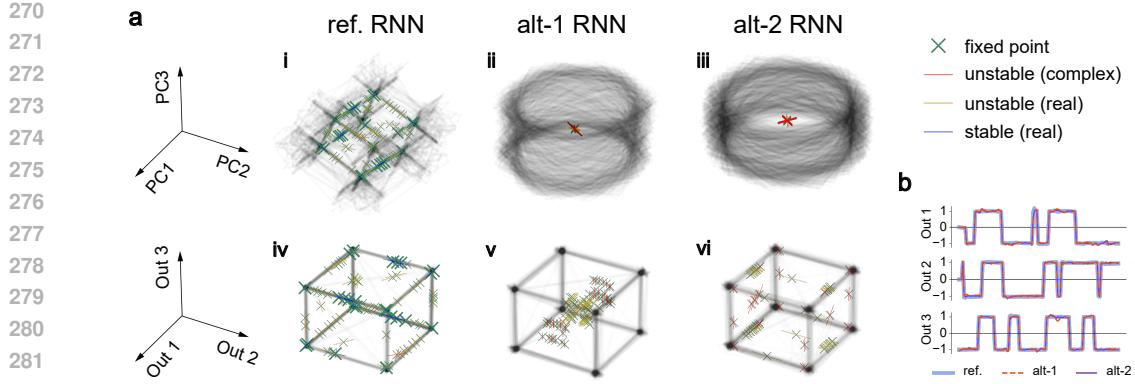


Figure 3: **Sustaining discrete memory states without fixed-point attractors.** Task: 3-bit flipflop. **a.** Example trajectories plotted on the principal component (i, ii, iii) and output (iv, v, vi) axes, shown for the reference (i, iv), alt-1 (ii, v), and alt-2 (iii, vi) RNNs. Fixed points (green x's) and their leading eigenmodes (colored bars) are shown. A larger marker size is used for stable fixed points. **b.** Example timeseries of network output for all three networks.

of the “stimulus A”, “stimulus B”, and “choice” axes. These directions were estimated via linearly regressing the coherences of stimulus A, stimulus B, and the task target, respectively, from neural activity aggregated across timesteps and 5000 trials. Consistent with prior studies (Mante et al., 2013; Smith et al., 2021; Pagan et al., 2025), projecting the averaged trajectories of standard RNNs onto this set of axes revealed a temporally stable and consistent encoding of the coherences of both input stimuli, regardless of the selected context (Fig. 2a, top left). In contrast, for the alt-1 RNN, the coherence of the relevant stimulus in each trial could still be linearly decoded somewhat consistently, but estimates of the irrelevant stimulus were often inconsistent with actual trial conditions (Fig. 2a, top right). We repeated these analyses, but for a weight-based subspace, projecting averaged trajectories onto the axes $[J_A^{\text{in}}, J_B^{\text{in}}, J^{\text{out}}]$ defined by the input and output weights of each RNN. We again find that, for the standard solution, stimuli coherences for both relevant and irrelevant stimuli can be stably distinguished under these axes (Fig. 2a, bottom left). However, for the alt-1 RNN, the directions encoded by the input weights poorly captured the coherences of both stimuli, regardless of context (Fig. 2a, bottom right). To assess the relationship between the weight and regression subspaces, we quantified their alignment via computing the principal angles between them (Fig. 2b). Across all models, the leading overlap was near unity, likely due to the high alignment between the regression “choice” axis and J^{out} weight axis. Although the standard RNNs demonstrated varying degrees of moderate alignment between the remaining axes, these angles were near orthogonal for both the alt-1 and alt-2 RNNs. Finally, we assessed the extent to which task context—the most basic task variable—can be accurately decoded from activity. Consistent with the geometric picture of Fig. 1b, we find that context is linearly decodable at high accuracy for standard RNNs, whereas the alt-1 RNN (and to a lesser extent, alt-2 RNN) requires additional nonlinear featurization of representations for context to be decodable at similarly high accuracy (Fig. 2c).

3-bit flipflop. We next seek alternative solutions on 3-bit flipflop, a simple discrete memory task. For this task, three input channels are given. At each timestep, each channel independently has a probability p of having an upward or downward spike of magnitude $1/dt$, with both directions having equal probability. The target output for the network begins at 0 for all channels, and thereafter tracks the sign of the last spike in each channel. Trained RNNs consistently learn the most minimal and sensible solution: fixed point attractors arranged in a cube associated with each of the 8 main output states (aside from the starting outputs at 0), as well as saddle points whose unstable directions are aligned with edges of the cube to facilitate state transitions (Barak et al., 2013; Maheswaranathan et al., 2019; Ostrow et al., 2023). We plot trajectories of solutions as well as fixed points for a reference, alt-1 and alt-2 RNN trained on this task. We confirm that the reference RNN indeed learns the standard solution involving the cube of stable fixed points, and saddle points that transition between them (Fig. 3a,i). Moreover, the geometrical structure of activity in PCA space is minimal in the sense that it mirrors the cube-like geometry of the task output. For the similarity penalized RNNs, however, observed trajectories no longer show this geometry in PCA space, and instead follow oscillations generated by unstable fixed points with complex leading eigenmodes (Fig. 3a,ii,iii).

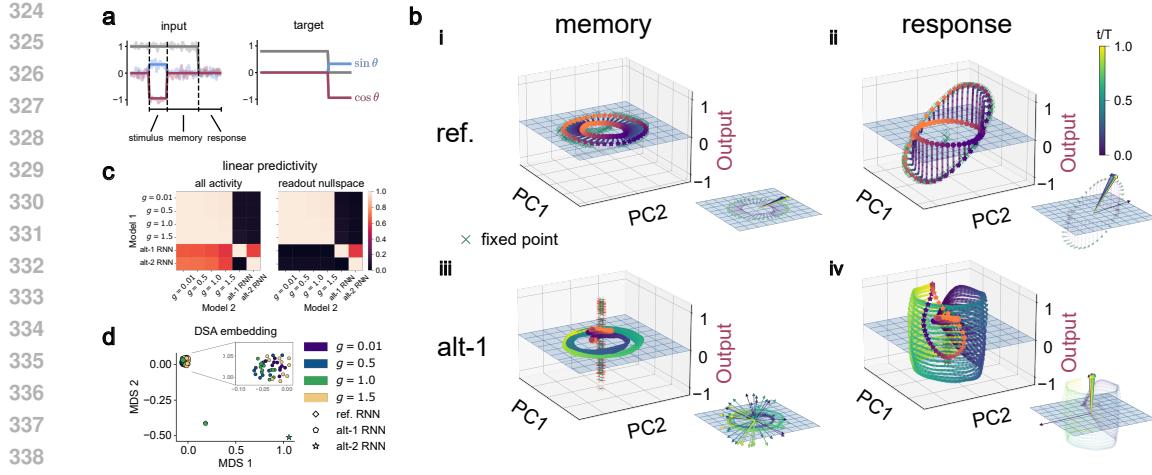


Figure 4: Similarity-penalized RNNs find dynamic, rather than persistent, encoding of analog memories. **a.** Task: MemoryPro. an angle encoded as a 2D vector is passed as input during a stimulus phase, followed by a memory phase where the angle input is absent. Only once the fixation cue (grey) is removed must the network output the angle that was observed. All inputs are noisy. **b.** Example trajectories divided by the memory (**i**, **iii**) and response (**ii**, **iv**) phases, shown for the reference RNN (**i**, **ii**) and alt-1 RNN (**iii**, **iv**). All plots are along the first two memory phase PCs and the cos output axis, with trajectories colored by time. The start and end of every trajectory is colored by the target output angle. Fixed points (green x's) and unstable oscillatory eigenmodes (red bars) are shown. The right corner of each subplot shows the direction encoding the target angle over time, as estimated by linear regression. **c.** Linear predictivity matrices comparing standard RNNs at different initialization scales to similarity penalized RNNs (alt-1, alt-2). Scores involving standard RNNs are averaged with respect to the initialization seed. Left: base linear predictivity scores. Right: linear predictivity scores when activity is first projected to the readout nullspace. **d.** MDS embedding of the DSA similarity matrix computed across the same RNNs as in **c**.

Despite these apparent differences in representational geometry, all three networks must ultimately produce cube-like geometry when trajectories are projected onto the output subspace; this is demanded by the structure of the target output of the task. Thus, to compare the solutions found more aptly, we also plot trajectories and fixed points on the output axes of each RNN. This reveals that, even in the output subspace, similarity-penalized RNNs exhibit distinct arrangements and stability properties of fixed points. In this example, the alt-1 RNN lacks fixed points that stabilize any of the output states, instead showing two groups of unstable fixed points with oscillatory eigenmodes, and saddle points that appear to transition between them (Fig. 3a,v). The alt-2 RNN recovers the presence of fixed points at each corner, but they are no longer stable/attractive (Fig. 3,vi). Moreover, the directions of saddle points that line the edges of the cube are often misaligned. These differences in dynamical motifs manifest as slight but noticeable imperfections in the output produced by the similarity-penalized RNNs (Fig. 3b). We also assess the similarity of representations across all RNNs using linear predictivity and DSA (Fig. A.2). Similar to the findings for context-dependent integration, all standard solutions are found to be perfectly linear predictive of each other, whereas the similarity-penalized RNNs occupy disparate areas of the DSA MDS embedding.

MemoryPro. Lastly, we turn our attention to the MemoryPro task (Fig. 4a). The RNN receives three piecewise constant inputs: a fixation cue and 2 stimuli channels encoding an angle. For each trial, the angle θ is sampled from $\mathcal{U}[-\pi, \pi]$. Following Driscoll et al. (2024), at train time, stimuli and response onsets and offsets are variable. Specifically, after a delay of length $T_{\text{del}} \sim \mathcal{U}[T_{\text{del}}^-, T_{\text{del}}^+]$, the angle stimuli $(\sin \theta \ \cos \theta)^\top$ are shown for a duration $T_{\text{stim}} \sim \mathcal{U}[T_{\text{stim}}^-, T_{\text{stim}}^+]$. Then, the stimuli are turned off for a duration $T_{\text{mem}} \sim \mathcal{U}[T_{\text{mem}}^-, T_{\text{mem}}^+]$, following which the fixation cue is removed and the response period begins. For a duration $T_{\text{resp}} \sim \mathcal{U}[T_{\text{resp}}^-, T_{\text{resp}}^+]$, the network must output the angle seen during the stimuli phase, also as a 2D vector. The network must also produce an output that tracks the fixation cue. All three inputs are also subjected to independent noise at each timestep, drawn from $\mathcal{N}(0, \sigma^2)$. Previous studies consistently report the following prototypical solution: during the memory phase, angles are encoded along a ring manifold of persistent states in the output nullspace,

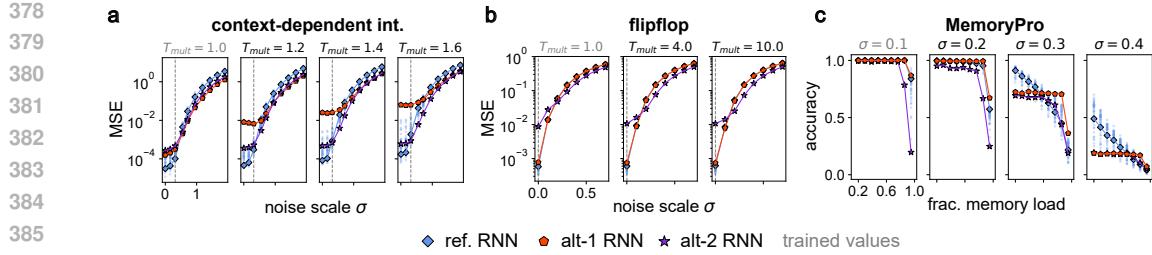


Figure 5: **Similarity penalized models can outperform standard models in difficult task regimes.** **a, b.** Mean squared error on the context-dependent integration (**a**) and flipflop (**b**) tasks, respectively, across different noise scales σ and trial length scaling T_{mult} . The grey dotted lines indicate the noise scale used during training. **c.** Accuracy on the MemoryPro task versus fractional memory load, at different noise scales σ . We assess accuracy using the same criteria as in (Driscoll et al., 2024). Small blue dots represent the scores achieved by the population of standard RNNs.

stabilized by a ring attractor. During the response phase, this ring of fixed points quickly rotates to become output potent (Driscoll et al., 2024; Costacurta et al., 2024; Hazelden et al., 2025).

To probe the properties of solutions, we plot trajectories collected over trials with various target angles and in the absence of input noise (Fig. 4b). As in Driscoll et al. (2024), we use the axes of the first two memory phase PCs and the $\cos \theta$ output channel, separating trajectories by the memory and response phases. Our results confirm that standard RNNs ubiquitously find the prototypical solution involving a ring attractor that rotates outwards, shown for the reference network (Fig. 4b,i,ii). We also plot the direction in activity space that best predicts the target angle via linear regression at each timestep, confirming that memorized angles are statically encoded (Fig. 4b,i,ii, bottom right). In contrast, the alt-1 RNN exhibits rotational dynamics during the memory phase that nonetheless maintains the relative ordering of trajectories by their corresponding target output (Fig. 4b, iii). The ring of fixed points is no longer present, and is instead replaced by a line of unstable fixed points with oscillatory leading eigenmodes. Linear decoding analysis reveals that the direction encoding the target angle is indeed rotating with the activity (Fig. 4b, iii, bottom right). Moreover, this direction even acquires output potency at times, despite the fact that the output potent component is, by task necessity, a low-variance fraction of the activity during the memory phase. During the response phase, these trajectories continue to oscillate, but rotate to become output potent (Fig. 4b, iv). We defer the corresponding plots for the alt-2 RNN to the Appendix (Fig. A.3).

As done for previous tasks, we compute linear predictivity and DSA dissimilarity scores between all pairs of models across the standard and similarity-penalized RNNs. While the linear predictivity of standard solutions from similarity-penalized solutions is degraded, we find that it is still significantly above zero (Fig. 4c, left). However, this partial predictivity is ablated once activities are projected into their respective readout nullspaces. This indicates that the only component of activity that the similarity penalized models can predict from standard solutions is that which is necessary to solve the task, namely, the output potent component. An MDS embedding of the DSA dissimilarity matrix confirms that the similarity-penalized RNNs achieve dynamically dissimilar solutions (Fig. 4d).

Assessing solutions by their performance under atypical task conditions. Across all three tasks, we found solutions that appear distinct from standard solutions by a variety of measures. However, are these solutions actually functionally distinct, or are they merely approximating the standard solution in ways that are difficult to discern? To answer this question, we tested all models under task conditions seldom or never seen during training. For the context-dependent integration task, we measured task performance across different noise scales σ of the input stimuli. We also introduce and sweep over the parameter T_{mult} , a factor that uniformly scales the duration of trials. We conduct a similar performance sweep for the flipflop task. For the MemoryPro task, we again sweep the input noise scale σ , but also sweep the fractional memory load, which we define as $\frac{T_{\text{mem}}}{T_{\text{stim}} + T_{\text{mem}}}$. To tune this parameter, we fix the duration of the pre-stimulus and response phases, as well as the total duration of the stimulus and memory phases combined. We then adjust the timing of the transition from the stimulus to the memory phase to produce test trials of varying fractional memory loads.

We report model performance across these sweeps in Fig. 5, as well as the corresponding effective dimensionality of activity as measured by the participation ratio in Fig. A.4. Across all tasks, we find

432 that standard RNNs typically outperform similarity-penalized RNNs when tested under conditions
 433 seen during training (Fig. 5). However, we also observe many cases where similarity-penalized
 434 RNNs outperform standard models. For instance, for the context-dependent integration task, the
 435 alt-2 RNN moderately outperforms the population of standard RNNs in highly noisy conditions, all
 436 the while remaining robust to lengthened trial durations. For the flipflop task, although we observe
 437 near-identical performance across most models, the alt-2 RNN achieves a moderate but significant
 438 gain in relative performance when noise is high. Lastly, for MemoryPro, we observe that the alt-1
 439 RNN significantly outperforms standard RNNs on the most difficult trials, where both noise and
 440 memory load are high, but significantly underperforms the population under low memory loads.
 441 The alt-2 RNN only matched or underperformed the population under all conditions, suggesting
 442 that it simply failed to learn the task as well. Altogether, these performance deviations confirm that
 443 similarity-penalized models indeed produce solutions that are functionally distinct.

4 DISCUSSION

447 Generating a rich set of diverse hypotheses that can be tested against experimental data is founda-
 448 tional for progressing our understanding of the brain. Motivated by recent observations of dynamic
 449 collapse in task-trained RNNs (Maheswaranathan et al., 2019; Driscoll et al., 2024; Hazelden et al.,
 450 2025), we propose a method called Iterative Neural Similarity Deflation (INSD) for expanding the
 451 space of accessible solutions. Across three neuroscience-style tasks, we extensively study and com-
 452 pare the solutions generated by iteratively penalizing the linear predictivity of past solutions. These
 453 analyses revealed alternative solutions that did not directly use simple dynamical motifs such as fixed
 454 point attractors or continuous slow manifolds to store information. Instead, similarity-penalized
 455 RNNs tended to produce activity characterized by quasi-periodic oscillatory modes. Further analy-
 456 sis revealed that these oscillations were not simply nuisance dynamics that emerged as a peculiarity
 457 of the similarity penalty, but rather actively supported the dynamic encoding of task-relevant infor-
 458 mation. These solutions are reminiscent of a theory proposed by Park et al. (2023) on how memories
 459 can be stably maintained in the phase difference between two oscillations, rather than through per-
 460 sistent attractor states. In the same vein, recent work by Ritter & Chadwick (2025) argues that
 461 optimally efficient and noise-robust working memory requires high-dimensional rotational dynam-
 462 ics, and further finds signatures of such dynamics in monkey prefrontal cortex. These observations
 463 are consistent with our finding of improved robustness for some similarity-penalized solutions.

464 For context-dependent integration, unlike similarity-penalized RNNs, standard RNNs produced sol-
 465 utions where task-relevant information was stably represented in linear subspaces, consistent with
 466 neural data recorded during analogous tasks (Mante et al., 2013; Pagan et al., 2025). Thus, a natural
 467 concern is that similarity-penalized RNNs may produce solutions whose population coding proper-
 468 ties are not realistic. **However, we argue that being able to also find unrealistic solutions is crucial for**
 469 **probing when and why simple solutions align with biology. Moreover**, in principle, one could con-
 470 struct networks that interpolate between standard and similarity-penalized solutions. Most simply,
 471 this could be achieved by an RNN with two populations of neurons, one dedicated to implementing
 472 each solution. Much as how ensembling is used in machine learning to reduce variance and improve
 473 generalization, such mixed models may possibly enjoy greater robustness, all the while maintaining
 474 more realistic linear encoding properties at the population level. We leave a more detailed investi-
 475 gation of this idea to future work.

476 Finally, we acknowledge that linear predictivity is an imperfect measure of both dynamical similarity
 477 and functional equivalence (Ostrow et al., 2023; Qian et al., 2024; Braun et al., 2025). The recently
 478 proposed Dynamical Similarity Analysis (DSA, Ostrow et al. (2023)) has been shown to effectively
 479 identify RNN solutions whose dynamical properties are only superficially distinct, while other met-
 480 rics often fall short. However, computing this metric as a similarity penalty in an online fashion
 481 would be prohibitively computationally expensive. Despite the limitations of linear predictivity, we
 482 found that penalizing the predictivity of representations used by standard RNNs was sufficient to
 483 generate solutions with distinct dynamical features and unique task performance profiles. **While we**
 484 **did not perform an extensive sweep over the strength of the predictivity penalty here**, solutions that
 485 differ from standard solutions in more fine-grained ways may potentially also be discoverable if the
 486 penalty is set to be small. For instance, for context-dependent decision making, a more granular form
 487 of solution degeneracy can be characterized in terms of the relative arrangements of input vectors
 488 and eigenvectors of the linearized dynamics across contexts (Pagan et al., 2025). Since the penalty

486 we use relates to neural activity, our approach likely cannot fully capture degeneracies in the relative
 487 arrangements between left eigenvectors and input vectors, but may be able to explore degeneracies
 488 in the relative arrangements of the right eigenvectors (integration directions) across contexts, which
 489 do directly manifest in activity.

490 A limitation of our study is that we focus on simple single-task settings where standard solutions
 491 invoke attractor dynamics. Future work should investigate tasks that require transient dynamics,
 492 such as timing tasks, where standard RNN solutions are already somewhat varied (Turner et al.,
 493 2021; Beiran et al., 2023; Huang et al., 2025). Experiments in multitask settings would also be
 494 insightful for understanding whether greater task demands make it more difficult to find solutions
 495 that are not linearly predictive of reference solutions (Cao & Yamins, 2024; Huang et al., 2025).
 496 **More generally, this “capacity” for distinct solutions is expected to depend on task difficulty and**
 497 **network size, and could be systematically explored using INSD. Such experiments could serve as a**
 498 **way to empirically assess ideas such as the Contravariance Principle and the Platonic Representation**
 499 **Hypothesis (Cao & Yamins, 2024; Huh et al., 2024), both of which assert that sufficiently difficult**
 500 **or constraining task demands necessitate representational convergence across systems.**

501 REFERENCES

502 Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr Mirowski,
 503 Alexander Pritzel, Martin J. Chadwick, Thomas Degris, Joseph Modayil, Greg Wayne, Hubert
 504 Soyer, Fabio Viola, Brian Zhang, Ross Goroshin, Neil Rabinowitz, Razvan Pascanu, Charlie
 505 Beattie, Stig Petersen, Amir Sadik, Stephen Gaffney, Helen King, Koray Kavukcuoglu, Demis
 506 Hassabis, Raia Hadsell, and Dhruv Kumaran. Vector-based navigation using grid-like repre-
 507 sentations in artificial agents. *Nature*, 557(7705):429–433, May 2018. ISSN 1476-4687. doi:
 508 10.1038/s41586-018-0102-6.

509 Omri Barak, David Sussillo, Ranulfo Romo, Misha Tsodyks, and L. F. Abbott. From fixed points to
 510 chaos: Three models of delayed discrimination. *Progress in Neurobiology*, 103:214–222, April
 511 2013. ISSN 0301-0082. doi: 10.1016/j.pneurobio.2013.02.002.

512 Manuel Beiran, Nicolas Meirhaeghe, Hansem Sohn, Mehrdad Jazayeri, and Srdjan Ostoic. Para-
 513 metric control of flexible timing through low-dimensional neural manifolds. *Neuron*, 111(5):
 514 739–753.e8, March 2023. ISSN 0896-6273. doi: 10.1016/j.neuron.2022.12.016.

515 Blake Bordelon, Jordan Cotler, Cengiz Pehlevan, and Jacob A. Zavatone-Veth. Dynamically Learn-
 516 ing to Integrate in Recurrent Neural Networks, March 2025.

517 Lukas Braun, Erin Grant, and Andrew M. Saxe. Not all solutions are created equal: An analytical
 518 dissociation of functional and representational similarity in deep linear neural networks. In *Forty-
 519 Second International Conference on Machine Learning*, June 2025.

520 Rosa Cao and Daniel Yamins. Explanatory models in neuroscience, Part 2: Functional intelligibility
 521 and the contravariance principle. *Cognitive Systems Research*, 85:101200, June 2024. ISSN
 522 1389-0417. doi: 10.1016/j.cogsys.2023.101200.

523 Nathan Cloos, Moufan Li, Markus Siegel, Scott L. Brincat, Earl K. Miller, Guangyu Robert Yang,
 524 and Christopher J. Cueva. Differentiable Optimization of Similarity Scores Between Models and
 525 Brains. In *The Thirteenth International Conference on Learning Representations*, October 2024.

526 Julia C. Costacurta, Shaunik Bhandarkar, David M. Zoltowski, and Scott Linderman. Structured
 527 flexibility in recurrent neural networks via neuromodulation. In *The Thirty-eighth Annual Con-
 528 ference on Neural Information Processing Systems*, November 2024.

529 Francis Crick. The recent excitement about neural networks. *Nature*, 337(6203):129–132, January
 530 1989. ISSN 1476-4687. doi: 10.1038/337129a0.

531 Kabir Dabholkar and Omri Barak. When predict can also explain: Few-shot prediction to select
 532 better neural latents, August 2025.

533 Kayvon Daie, Lorenzo Fontolan, Shaul Druckmann, and Karel Svoboda. Feedforward amplifica-
 534 tion in recurrent networks underlies paradoxical neural coding. *bioRxiv*, pp. 2023.08.04.552026,
 535 August 2023. doi: 10.1101/2023.08.04.552026.

540 Laura N. Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
 541 networks utilizes shared dynamical motifs. *Nature Neuroscience*, 27(7):1349–1363, July 2024.
 542 ISSN 1546-1726. doi: 10.1038/s41593-024-01668-6.

543 Jenelle Feather, Guillaume Leclerc, Aleksander Madry, and Josh H. McDermott. Model
 544 metamers reveal divergent invariances between biological and artificial neural networks. *Nature
 545 Neuroscience*, 26(11):2017–2034, November 2023. ISSN 1546-1726. doi: 10.1038/
 546 s41593-023-01442-0.

547 Mikhail Genkin, Krishna V. Shenoy, Chandramouli Chandrasekaran, and Tatiana A. Engel. The
 548 dynamics and geometry of choice in the premotor cortex. *Nature*, 645(8079):168–176, September
 549 2025. ISSN 1476-4687. doi: 10.1038/s41586-025-09199-1.

550 Matthew D. Golub and David Sussillo. FixedPointFinder: A Tensorflow toolbox for identifying and
 551 characterizing fixed points in recurrent neural networks. *Journal of Open Source Software*, 3(31):
 552 1003, November 2018. ISSN 2475-9066. doi: 10.21105/joss.01003.

553 Sarah E. Harvey, Brett W. Larsen, and Alex H. Williams. Duality of Bures and Shape Distances
 554 with Implications for Comparing Neural Representations. In *Proceedings of UniReps: The First
 555 Workshop on Unifying Representations in Neural Models*, pp. 11–26, May 2024a.

556 Sarah E. Harvey, David Lipshutz, and Alex H. Williams. What Representational Similarity Measures
 557 Imply about Decodable Information. In *UniReps: 2nd Edition of the Workshop on Unifying
 558 Representations in Neural Models*, October 2024b.

559 James Hazelden, Laura Driscoll, Eli Shlizerman, and Eric Shea-Brown. KPFlow: An Operator
 560 Perspective on Dynamic Collapse Under Gradient Descent Training of Recurrent Networks, July
 561 2025.

562 Harold Hotelling. Relations between two sets of variates. *Biometrika*, 28(3-4):321–377, December
 563 1936. ISSN 0006-3444. doi: 10.1093/biomet/28.3-4.321.

564 Ann Huang, Satpreet H. Singh, Flavio Martinelli, and Kanaka Rajan. Measuring and Controlling
 565 Solution Degeneracy across Task-Trained Recurrent Neural Networks, May 2025.

566 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. Position: The Platonic Repre-
 567 sentation Hypothesis. In *Proceedings of the 41st International Conference on Machine Learning*,
 568 pp. 20617–20642, July 2024.

569 Mitra Javadzadeh, Marine Schimel, Sonja B. Hofer, Yashar Ahmadian, and Guillaume Hennequin.
 570 Dynamic consensus-building between neocortical areas via long-range connections, December
 571 2024.

572 Kristopher T. Jensen, Guillaume Hennequin, and Marcelo G. Mattar. A recurrent network model of
 573 planning explains hippocampal replay and human behavior. *Nature Neuroscience*, 27(7):1340–
 574 1348, July 2024. ISSN 1546-1726. doi: 10.1038/s41593-024-01675-7.

575 Alexander J. E. Kell, Daniel L. K. Yamins, Erica N. Shook, Sam V. Norman-Haignere, and Josh H.
 576 McDermott. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts
 577 Brain Responses, and Reveals a Cortical Processing Hierarchy. *Neuron*, 98(3):630–644.e16, May
 578 2018. ISSN 0896-6273. doi: 10.1016/j.neuron.2018.03.044.

579 Mikail Khona and Ila R. Fiete. Attractor and integrator networks in the brain. *Nature Reviews Neuro-
 580 science*, 23(12):744–766, December 2022. ISSN 1471-0048. doi: 10.1038/s41583-022-00642-0.

581 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of Neu-
 582 ral Network Representations Revisited. In *Proceedings of the 36th International Conference on
 583 Machine Learning*, pp. 3519–3529, May 2019.

584 Renate Krause, Matthew Cook, Sepp Kollmorgen, Valerio Mante, and Giacomo Indiveri. Opera-
 585 tive dimensions in unconstrained connectivity of recurrent neural networks. *Advances in Neural
 586 Information Processing Systems*, 35:17073–17085, December 2022.

594 Bariscan Kurtkaya, Fatih Dinc, Mert Yuksekgonul, Marta Blanco-Pozo, Ege Cirakman, Mark
 595 Schnitzer, Yucel Yemez, Hidenori Tanaka, Peng Yuan, and Nina Miolane. Dynamical phases of
 596 short-term memory mechanisms in RNNs. In *Forty-Second International Conference on Machine
 597 Learning*, June 2025.

598 Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Back-
 599 propagation and the brain. *Nature Reviews Neuroscience*, 21(6):335–346, June 2020. ISSN
 600 1471-0048. doi: 10.1038/s41583-020-0277-3.

602 Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Todd SheaBrown, and
 603 Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural circuits. In
 604 *The Twelfth International Conference on Learning Representations*, October 2023.

605 Mikael Lundqvist, Pawel Herman, and Earl K. Miller. Working Memory: Delay Activity, Yes!
 606 Persistent Activity? Maybe Not. *Journal of Neuroscience*, 38(32):7013–7019, August 2018.
 607 ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.2485-17.2018.

609 Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Uni-
 610 versality and individuality in neural dynamics across large populations of recurrent networks. In
 611 *Advances in Neural Information Processing Systems*, volume 32, 2019.

612 Valerio Mante, David Sussillo, Krishna V. Shenoy, and William T. Newsome. Context-dependent
 613 computation by recurrent dynamics in prefrontal cortex. *Nature*, 503(7474):78–84, November
 614 2013. ISSN 1476-4687. doi: 10.1038/nature12742.

616 Keith T. Murray. Phase codes emerge in recurrent neural networks optimized for modular arithmetic,
 617 July 2025.

618 Aditya Nair, Tomomi Karigo, Bin Yang, Surya Ganguli, Mark J. Schnitzer, Scott W. Linderman,
 619 David J. Anderson, and Ann Kennedy. An approximate line attractor in the hypothalamus encodes
 620 an aggressive state. *Cell*, 186(1):178–193.e15, January 2023. ISSN 0092-8674, 1097-4172. doi:
 621 10.1016/j.cell.2022.11.027.

623 Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond Geometry: Comparing the
 624 Temporal Structure of Computation in Neural Circuits with Dynamical Similarity Analysis. *Ad-
 625 vances in Neural Information Processing Systems*, 36:33824–33837, December 2023.

626 Marino Pagan, Vincent D. Tang, Mikio C. Aoi, Jonathan W. Pillow, Valerio Mante, David Sussillo,
 627 and Carlos D. Brody. Individual variability of neural computations underlying flexible decisions.
 628 *Nature*, 639(8054):421–429, March 2025. ISSN 1476-4687. doi: 10.1038/s41586-024-08433-6.

630 Il Memming Park, Ábel Ságodi, and Piotr Aleksander Sokół. Persistent learning signals and working
 631 memory without continuous attractors, August 2023.

632 William Qian, Jacob A. Zavatone-Veth, Benjamin S. Ruben, and Cengiz Pehlevan. Partial obser-
 633 vation can induce mechanistic mismatches in data-constrained models of neural dynamics. *Ad-
 634 vances in Neural Information Processing Systems*, 37:67467–67510, December 2024.

635 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singular Vector
 636 Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. In *Advances
 637 in Neural Information Processing Systems*, volume 30, 2017.

639 Kanaka Rajan, Christopher D. Harvey, and David W. Tank. Recurrent Network Models of Sequence
 640 Generation and Memory. *Neuron*, 90(1):128–142, April 2016. ISSN 0896-6273. doi: 10.1016/j.
 641 neuron.2016.02.009.

642 Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D. Cotterell. Linear Adversarial Con-
 643 cept Erasure. In *Proceedings of the 39th International Conference on Machine Learning*, pp.
 644 18400–18421, June 2022.

646 Laura Ritter and Angus Chadwick. Efficient Working Memory Maintenance via High-Dimensional
 647 Rotational Dynamics. *bioRxiv*, pp. 2025.09.08.674838, September 2025. ISSN 2692-8205. doi:
 10.1101/2025.09.08.674838.

648 Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohi-
 649 tij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt, Daniel L. K.
 650 Yamins, and James J. DiCarlo. Brain-Score: Which Artificial Neural Network for Object Recog-
 651 nition is most Brain-Like? *bioRxiv*, pp. 407007, January 2020. doi: 10.1101/407007.

652 Friedrich Schuessler, Francesca Mastrogiosse, Alexis Dubreuil, Srdjan Ostoje, and Omri Barak.
 653 The interplay between randomness and structure during learning in RNNs. In *Advances in Neural*
 654 *Information Processing Systems*, volume 33, pp. 13352–13362, 2020.

655 Friedrich Schuessler, Francesca Mastrogiosse, Srdjan Ostoje, and Omri Barak. Aligned and
 656 oblique dynamics in recurrent neural networks. *eLife*, 13, October 2024. doi: 10.7554/eLife.
 657 93060.2.

658 Jimmy Smith, Scott Linderman, and David Sussillo. Reverse engineering recurrent neural networks
 659 with Jacobian switching linear dynamical systems. In *Advances in Neural Information Processing*
 660 *Systems*, volume 34, pp. 16700–16713, 2021.

661 Joana Soldado-Magraner, Valerio Mante, and Maneesh Sahani. Inferring context-dependent compu-
 662 tations through linear approximations of prefrontal cortex dynamics. *Science Advances*, 10(51):
 663 eadl4743, December 2024. doi: 10.1126/sciadv.adl4743.

664 Eelke Spaak, Kei Watanabe, Shintaro Funahashi, and Mark G. Stokes. Stable and Dynamic Coding
 665 for Working Memory in Primate Prefrontal Cortex. *Journal of Neuroscience*, 37(27):6503–6516,
 666 July 2017. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.3364-16.2017.

667 David Sussillo and L. F. Abbott. Generating Coherent Patterns of Activity from Chaotic Neural
 668 Networks. *Neuron*, 63(4):544–557, August 2009. ISSN 0896-6273. doi: 10.1016/j.neuron.2009.
 669 07.018.

670 David Sussillo and Omri Barak. Opening the Black Box: Low-Dimensional Dynamics in High-
 671 Dimensional Recurrent Neural Networks. *Neural Computation*, 25(3):626–649, March 2013.
 672 ISSN 0899-7667. doi: 10.1162/NECO_a_00409.

673 David Sussillo, Mark M. Churchland, Matthew T. Kaufman, and Krishna V. Shenoy. A neural net-
 674 work that finds a naturalistic solution for the production of muscle activity. *Nature Neuroscience*,
 675 18(7):1025–1033, July 2015. ISSN 1546-1726. doi: 10.1038/nn.4042.

676 Emily L. Sylwestrak, YoungJu Jo, Sam Vesuna, Xiao Wang, Blake Holcomb, Rebecca H. Tien,
 677 Doo Kyung Kim, Lief Fenno, Charu Ramakrishnan, William E. Allen, Ritchie Chen, Krishna V.
 678 Shenoy, David Sussillo, and Karl Deisseroth. Cell-type-specific population dynamics of diverse
 679 reward computations. *Cell*, 185(19):3568–3587.e27, September 2022. ISSN 1097-4172. doi:
 680 10.1016/j.cell.2022.08.019.

681 Elia Turner and Omri Barak. The Simplicity Bias in Multi-Task RNNs: Shared Attractors, Reuse of
 682 Dynamics, and Geometric Representation. *Advances in Neural Information Processing Systems*,
 683 36:25495–25507, December 2023.

684 Elia Turner, Kabir V Dabholkar, and Omri Barak. Charting and Navigating the Space of Solu-
 685 tions for Recurrent Neural Networks. In *Advances in Neural Information Processing Systems*,
 686 volume 34, pp. 25320–25333, 2021.

687 Adrian Valente, Jonathan W. Pillow, and Srdjan Ostoje. Extracting computational mechanisms
 688 from neural data using low-rank RNNs. *Advances in Neural Information Processing Systems*, 35:
 689 24072–24086, December 2022.

690 Christopher Versteeg, Andrew R. Sedler, Jonathan D. McCart, and Chethan Pandarinath. Expressive
 691 dynamics models with nonlinear injective readouts enable reliable recovery of latent features from
 692 neural activity. In *Proceedings of the 2nd NeurIPS Workshop on Symmetry and Geometry in*
 693 *Neural Representations*, pp. 255–278, August 2024.

694 P.J. Werbos. Backpropagation through time: What it does and how to do it. *Proceedings of the*
 695 *IEEE*, 78(10):1550–1560, October 1990. ISSN 1558-2256. doi: 10.1109/5.58337.

702 Alex H. Williams. Equivalence between representational similarity analysis, centered kernel align-
703 ment, and canonical correlations analysis. In *UniReps: 2nd Edition of the Workshop on Unifying*
704 *Representations in Neural Models*, October 2024.

705 Alex H. Williams, Erin Kunz, Simon Kornblith, and Scott Linderman. Generalized Shape Metrics
706 on Neural Representations. In *Advances in Neural Information Processing Systems*, November
707 2021.

708 Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James J.
709 DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
710 cortex. *Proceedings of the National Academy of Sciences*, 111(23):8619–8624, June 2014. doi:
711 10.1073/pnas.1403112111.

712 Guangyu Robert Yang, Madhura R. Joglekar, H. Francis Song, William T. Newsome, and
713 Xiao-Jing Wang. Task representations in neural networks trained to perform many cognitive
714 tasks. *Nature Neuroscience*, 22(2):297–306, February 2019. ISSN 1546-1726. doi:
715 10.1038/s41593-018-0310-2.

716 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow Twins: Self-Supervised
717 Learning via Redundancy Reduction. In *Proceedings of the 38th International Conference on*
718 *Machine Learning*, pp. 12310–12320, July 2021.

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 TRAINING AND OTHER MISCELLANEOUS DETAILS**
759

760 For all experiments, we use RNNs with $N = 128$ neurons. All RNNs are trained in PyTorch. We
761 use the Adam optimizer with a learning rate of 10^{-3} , a weight decay of 10^{-5} , and a batch size of
762 32. For the strength of the similarity penalty, we use $\lambda = 0.05$ throughout. When computing linear
763 predictivity, we use $\rho = 10^{-3}$ as the ridge regularizer. RNNs trained as part of the INSD procedure
764 are initialized at the scale $g = 1$. All networks are trained for a minimum of 10^6 iterations, with
765 training terminating when the loss stops improving. Training runs were primarily done using 4th
766 Generation Intel Xeon CPUs; GPU acceleration was not necessary.

767 For computing DSA dissimilarity matrices, we use the open source package from (Ostrow et al.,
768 2023). Across all tasks, we used a rank of 100, 8 delays, and a delay interval of 10 timesteps. The
769 delay parameters were selected to be compatible with trials of duration 100 timesteps, as used for
770 context-dependent integration and 3-bit flipflop.

771 For finding fixed points, we use the open source package FixedPointFinder (Golub & Sussillo, 2018).
772 We report approximate fixed points with velocities q spanning $q = 5 \times 10^{-4}$ to $q = 10^{-9}$, and
773 subsample redundant fixed points by adjusting the uniqueness tolerance parameter. As in (Driscoll
774 et al., 2024), we report fixed points over a wide range of velocity tolerances to best account for
775 variations in relevant timescales across the different tasks.

776 All training and analysis code will be made public on GitHub upon acceptance.
777

778 **A.2 A BRIEF NOTE ON NEURAL SIMILARITY PENALTY LOOPHOLES**
779

780 We model the scenario described in the main text as follows: we are given two sets of neural
781 representations $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{P \times N}$. Suppose that the representations in \mathbf{X} are contained in a low
782 dimensional subspace of dimension $k \ll N, P$. We represent this by factorizing $\mathbf{X} = \mathbf{LW}$,
783 where $\mathbf{L} \in \mathbb{R}^{P \times k}$ are the latent representations and $\mathbf{W} \in \mathbb{R}^{k \times N}$. Suppose further that \mathbf{Y} is
784 composed of identical latents, along with some irrelevant noise in other dimensions. We write this as
785 $\mathbf{Y} = [\mathbf{LQ} \ \sigma \mathbf{Z}]$, where $\mathbf{Q} \in \mathbb{R}^{k \times k}$ is an orthogonal matrix, $\mathbf{Z} \in \mathbb{R}^{P \times d}$ represents the irrelevant
786 noise, and $d = N - k$. For simplicity, we model the entries of \mathbf{Z} as drawn i.i.d from $\mathcal{N}(0, 1)$. Below,
787 we compute and describe the behavior of various similarity metrics on these inputs at large N, P ,
788 and σ .
789

790 **A.2.1 CENTERED KERNEL ALIGNMENT (CKA)**
791

We focus on linear CKA:

$$792 \text{CKA}(\mathbf{X}, \mathbf{Y}) = \frac{\|\mathbf{X}^\top \mathbf{Y}\|^2}{\|\mathbf{X}^\top \mathbf{X}\| \|\mathbf{Y}^\top \mathbf{Y}\|} \quad (5)$$

793 We expand the numerator as $\|\mathbf{X}^\top \mathbf{Y}\|^2 = \|\mathbf{X}^\top \mathbf{LQ}\|^2 + \sigma^2 \|\mathbf{X}^\top \mathbf{Z}\|^2$.

794 We also expand $\|\mathbf{Y}^\top \mathbf{Y}\|^2 = \|\mathbf{L}^\top \mathbf{L}\|^2 + 2\sigma^2 \|\mathbf{L}^\top \mathbf{Z}\|^2 + \sigma^4 \|\mathbf{Z}^\top \mathbf{Z}\|^2$.

795 At large N , we can approximate $\mathbf{Z}\mathbf{Z}^\top/d \rightarrow \mathbf{I}_P$. This allows the simplification $\|\mathbf{X}^\top \mathbf{Z}\|^2 =$
796 $\text{Tr}(\mathbf{Z}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Z}) = \text{Tr}(\mathbf{Z}\mathbf{Z}^\top \mathbf{X} \mathbf{X}^\top) = d\|\mathbf{X}\|^2$, and $\|\mathbf{Z}^\top \mathbf{Z}\|^2 = d^2 P$. At large σ , we can drop
797 subleading terms in σ , giving

$$800 \text{CKA}(\mathbf{X}, \mathbf{Y}) \approx \frac{\sigma^2 d \|\mathbf{X}\|^2}{\sigma^2 d \sqrt{P} \|\mathbf{X}^\top \mathbf{X}\|} \leq \mathcal{O}\left(\sqrt{\frac{k}{P}}\right), \quad (6)$$

801 where the final inequality follows from the bound $\|\mathbf{X}\|^2 \leq \sqrt{k} \|\mathbf{X}^\top \mathbf{X}\|$.
802

803 Thus, CKA between otherwise identical representations can be suppressed through irrelevant noise.
804

805 **A.2.2 REPRESENTATIONAL SIMILARITY ANALYSIS (RSA)**
806

807 We take RSA to refer to the cosine similarity between the squared Euclidean distance representa-
808 tional dissimilarity matrices (RDMs), as in Williams (2024).
809

Let $\mathbf{D}_{ij}^X = \|\mathbf{x}_i - \mathbf{x}_j\|^2$ and $\mathbf{D}_{ij}^Y = \|\mathbf{y}_i - \mathbf{y}_j\|^2$ represent the $P \times P$ RDMs. We have:

$$\text{RSA}(\mathbf{X}, \mathbf{Y}) = \frac{\langle \mathbf{D}^X, \mathbf{D}^Y \rangle}{\|\mathbf{D}^X\| \|\mathbf{D}^Y\|} \quad (7)$$

We can write $\mathbf{D}_{ij}^Y = \mathbf{D}_{ij}^S + \sigma^2 \mathbf{D}_{ij}^Z$, where $\mathbf{S} = \mathbf{LQ}$. Dropping terms subleading in σ , we have

$$\text{RSA}(\mathbf{X}, \mathbf{Y}) \approx \frac{\langle \mathbf{D}^X, \mathbf{D}^Z \rangle}{\|\mathbf{D}^X\| \|\mathbf{D}^Z\|} \quad (8)$$

Note that $\mathbb{E}[\mathbf{D}_{ij}^Z] = 2d$ for $i \neq j$. At large N (and therefore large d), we can expect concentration, yielding $\mathbf{D}^Z/d \rightarrow 2(\mathbf{J} - \mathbf{I})$, where \mathbf{J} is a $P \times P$ matrix of ones. Thus, we have

$$\text{RSA}(\mathbf{X}, \mathbf{Y}) \approx \frac{\sum_{i \neq j} \mathbf{D}_{ij}^X}{\sqrt{\sum_{i \neq j} (\mathbf{D}_{ij}^X)^2} \sqrt{P(P-1)}} = \mathcal{O}\left(\frac{1}{P}\right). \quad (9)$$

Thus, RSA is also suppressed by irrelevant noise.

A.2.3 LINEAR PREDICTIVITY [REF. \rightarrow PENALIZED]

As in the main text, define the projection operator $\mathbf{U}_X = \mathbf{X}(\mathbf{X}^\top \mathbf{X})^+ \mathbf{X}^\top$. We have that

$$r^2(\mathbf{X}, \mathbf{Y}) = \frac{\|\mathbf{U}_X \mathbf{Y}\|^2}{\|\mathbf{Y}\|^2}. \quad (10)$$

We can write $\|\mathbf{U}_X \mathbf{Y}\|^2 = \|\mathbf{S}\|^2 + \sigma^2 \|\mathbf{U}_X \mathbf{Z}\|^2$, where we have used that $\mathbf{U}_X \mathbf{S} = \mathbf{S}$, as by construction, $\mathbf{S} = \mathbf{LQ}$ is contained in the column space of $\mathbf{X} = \mathbf{LW}$. Similarly, we have $\|\mathbf{Y}\|^2 = \|\mathbf{S}\|^2 + \sigma^2 \|\mathbf{Z}\|^2$, yielding $r^2(\mathbf{X}, \mathbf{Y}) \approx \frac{\|\mathbf{U}_X \mathbf{Z}\|^2}{\|\mathbf{Z}\|^2}$ at large σ . Finally, at large N , we have that

$$r^2(\mathbf{X}, \mathbf{Y}) \approx \frac{\|\mathbf{U}_X \mathbf{Z}\|^2}{\|\mathbf{Z}\|^2} \rightarrow \frac{\mathbb{E}[\|\mathbf{U}_X \mathbf{Z}\|^2]}{\mathbb{E}[\|\mathbf{Z}\|^2]} = \frac{kd}{Pd} = \frac{k}{P}, \quad (11)$$

demonstrating that linear predictivity in this direction is also suppressed by irrelevant noise.

A.2.4 LINEAR PREDICTIVITY [PENALIZED \rightarrow REF.]

Consider the opposite direction:

$$r^2(\mathbf{Y}, \mathbf{X}) = \frac{\|\mathbf{U}_Y \mathbf{X}\|^2}{\|\mathbf{X}\|^2}. \quad (12)$$

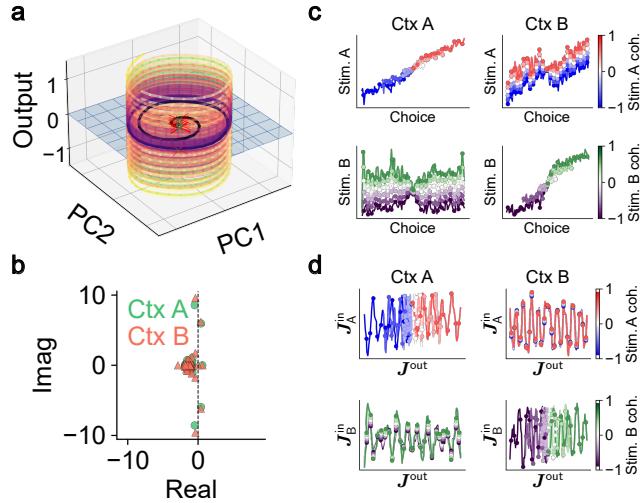
Since the column space of \mathbf{Y} contains that of \mathbf{X} , we have $\|\mathbf{U}_Y \mathbf{X}\|^2 = \|\mathbf{X}\|^2$, yielding $r^2(\mathbf{Y}, \mathbf{X}) = 1$. Thus, perfect linear predictivity is maintained.

A.3 TASK PARAMETERS

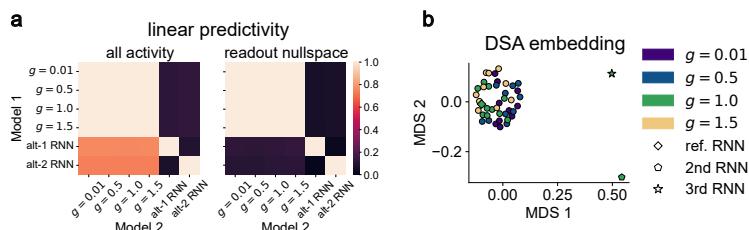
Context-dependent integration: We use a timestep of $dt = 0.1$, a context-only duration $T_{\text{pre}} = 2.5$ (25 timesteps), and a total trial duration of $T = 10$ (100 timesteps). We set the noise scale to $\sigma = \sqrt{0.1}$.

3-bit flipflop: We use a timestep of $dt = 0.2$, and a total trial duration of $T = 20$ (100 timesteps). We set $p = 0.1$ as the spike probability per timestep.

MemoryPro: We use a timestep of $dt = 0.2$. Mirroring timing parameters selected in (Driscoll et al., 2024), we set $T_{\text{del}}^- = T_{\text{resp}}^- = 3/dt$, $T_{\text{del}}^+ = T_{\text{resp}}^+ = 7/dt$, $T_{\text{stim}}^- = T_{\text{mem}}^- = 2/dt$, and $T_{\text{stim}}^+ = T_{\text{mem}}^+ = 16/dt$. We use a noise scale of $\sigma = 0.1$. As in (Costacurta et al., 2024), we scale down the output channel corresponding to the fixation target by a factor of 0.8.

864 A.4 ADDITIONAL FIGURES
865

883 Figure A.1: **Properties of the alt-2 RNN for the context-dependent integration task.** **a,b.** Analogous to Figs. 1b,c. As for the alt-1 RNN, we observe oscillatory dynamics, as well as fixed points
884 with unstable oscillatory modes. However, these oscillatory modes are of much higher frequency.
885 **c,d.** Analogous to Fig. 2a. Unlike the alt-1 RNN, average trajectories plotted in the regression sub-
886 space to some extent maintain the relative ordering of the coherences of both stimuli. This is likely
887 explained by the alt-2 RNN still retaining a degree of linear predictivity of standard RNN rep-
888 resentations, something that was entirely absent for the alt-1 RNN (Fig. 1d). However, representations in
889 the weight subspace reveal no consistent representation of stimuli coherences.
890



900 Figure A.2: **Similarity measures across standard and similarity-penalized models trained on**
901 **the 3-bit flipflop task.** Figures are analogous to those in Fig. 4c,d. Similarity-penalized RNNs retain
902 some degree of linear predictivity of standard RNNs, but that effect is ablated once representations
903 are projected to readout nullspaces. As for other tasks, we also observe a DSA embedding that
904 significantly separates the solutions similarity-penalized RNNs from those found by standard RNNs.
905
906
907
908
909
910
911
912
913
914
915
916
917

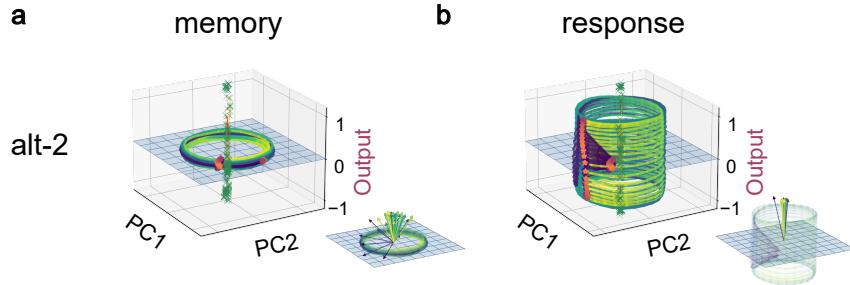


Figure A.3: **Properties of the alt-2 RNN for the MemoryPro task.** Figures are analogous to those in Fig. 4b. We again observe oscillatory dynamics supported by a center of unstable fixed points. This RNN does poorly on the task relative to the RNNs shown in Fig. 4b, as indicated by the activity itself prematurely acquiring significant output potency during the memory phase.

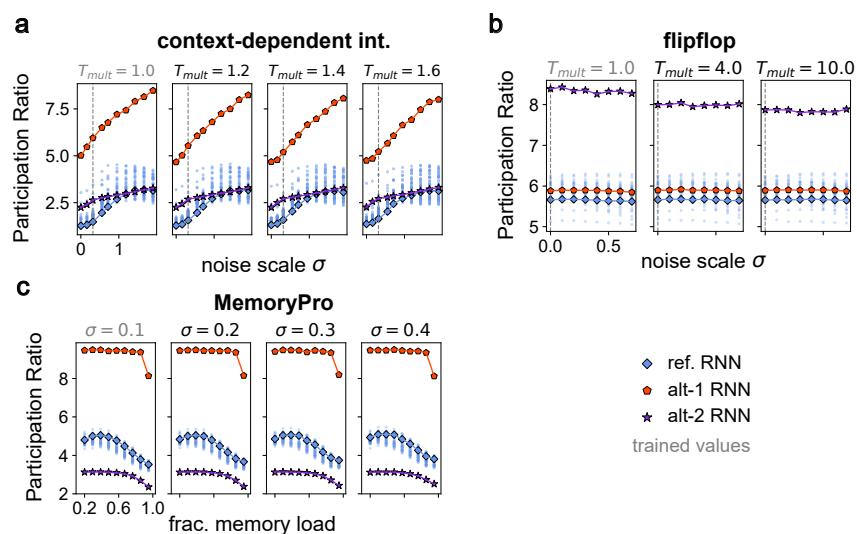


Figure A.4: **Effective dimensionality over different task conditions.** Plots are analogous to those in Fig. 5, but instead report the participation ratio, computed over neural activity during the task.

972
973

A.5 LLM USAGE STATEMENT

974
975

Large language models were used sparingly for the sole purpose of trimming and polishing text. All technical contributions, experiments, analyses, and figures are the authors' own.

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025