Under review as submission to TMLR

Pitfalls in Evaluating Inference-time Methods
for Improving LLM Reliability

Anonymous authors
Paper under double-blind review

Abstract

Though Large Language Models (LLMs) have demonstrated remarkable capabilities, they
are still prone to outputting falsehoods using seemingly persuasive language. Many recent
works attempt to address this problem by using LLMs in a framework where a single seed
prompt results in a series of interactions involving augmented prompts with an otherwise
unchanged LLM, and the results are aggregated with a goal of producing a more reliable
output. We consider the replicability and generalizability of evaluations of inference-time
methods intended to improve the reliability of responses from a base LLMs. We survey how
methods have been evaluated in the literature and find a great variety of benchmarks and
models in use. Motivated by this, we conduct our own evaluation to evaluate the effectiveness
of a few methods across a range of benchmarks and models. Our evaluation reveals that while
these techniques show promise in improving reliability, there is still significant variability
in performance across different domains and tasks, and methods that show substantial
improvements on weaker base models often do not improve reliability for better base models.

1 Introduction

Large language models (LLMs) have made remarkable progress, but are still unable to reliably provide factual
responses. Research on LLM reliability has increased with the widespread excitement about these models
and recognition of their current limitations. Methods aiming to improve reliability have been proposed across
various stages of the LLM lifecycle, including training, deployment, and inference. Training methods include
various methods for fine-tuning and knowledge distillation. Reliability can also be improved by incorporating
methods in how an LLM is deployed, such as retrieval-augmented generation and integration with external
tools and knowledge sources. All of these types of methods can contribute to improving LLM reliability
and are worth investigating. In this study we limit our focus to methods that are intended to improve the
reliability of an underlying LLM by changing the way it is used at inference time. Although there is often
value in considering the impact of changes in a full system with a particular LLM and on a specific task,
many works claim to provide general methods for improving reliability at inference time, with expectations
that performance improvements in tested settings generalize to other tasks and different base models. The
goal of our work is to understand the robustness and generalizability of inference-time LLM methods.

We focus on approaches that are implemented within the generalized pipeline of a user interacting with
an LLM—a user submits a seed prompt that is intended to capture what the user wants from the LLM
system, the system performs some automated computations including interactions with an underlying LLM
to generate a response to that seed prompt, and then outputs a response to the user. We explore system-level
inference-time methods intended to improve reliability, which is a limited, but important, part of the solution
space being explored to improve LLM reliability. Many of these methods involve redundancy and variation,
combining multiple interactions with the underlying LLM with the goal of deriving a better response than
would be obtained through a single, straightforward submission of the prompt. These methods are in general
complementary with methods to improve underlying models, but differ in that they can readily be applied
to any LLM. They do not rely on any additional training or tuning, or on external knowledge sources or
tools.

Under review as submission to TMLR

Contributions. We survey the evaluation of inference-time methods to improve LLM reliability. We analyze
how research in this area evaluates the effectiveness of proposed methods (Section 3). We find a broad range of
approaches, and a lack of agreement on the benchmarks (Section 3.2) and models (Section 3.3) that are used
in these evaluations. Motivated by these findings, we conduct an experiment to comprehensively evaluate a
few methods with a group of representative benchmarks and a diverse set of models (Section 4). Our main
findings are that claims about the effectiveness of inference-time LLM methods are fragile to both the models
and benchmarks used. In particular, methods that result in large improvements for weaker models and on
poorly-chosen benchmarks often have disappointing performance when evaluated more comprehensively.

2 Related Work

Many works have conducted evaluations on the reliability of LLMs. Notable examples include Chang et al.
(2023) and the HELM project (Liang et al., 2023). Other works have focused on evaluating the reliability of
a single LLM. For example, Shen et al. (2023) studied ChatGPT. Yang et al. (2024) focused on analyzing the
performance of LLMs on specific downstream tasks. Wang et al. (2024) evaluate particular characteristics
of specific models and examined various aspects of trustworthiness, including toxicity, bias, robustness,
privacy, ethics, and fairness on GPT-3.5-turbo and GPT-4. Kadavath et al. (2022) studied reliability of
LLM responses and whether it is possible to predict whether a model’s response is reliable. These works
(and many others) share with ours the broader goal of understanding the performance of LLMs, but all
of them focus on the unaided model, whereas our focus is on inference-time methods that are intended to
improve the reliability of an underlying model.

Prompt engineering, defined by Reynolds & McDonell (2021) as methods whereby humans iteratively modify
prompts to elicit desired behaviors from LLMs, is also a common technique used to improve LLM outputs,
and there is extensive work in this area. Schulhoff et al. (2024) provide a comprehensive taxonomy of prompt
engineering techniques, many of which can be used in conjunction with the inference-time methods that we
study. Similarly, answer engineering involves crafting or selecting algorithms to extract precise answers from
LLM outputs, often requiring human involvement (Schulhoff et al., 2024, p. 17). Although some notions
of prompt engineering are broad enough to include many of the inference-time methods we consider here,
prompt engineering typically involves manual human effort (at either the task or individual query level)
and post-hoc refinement in selecting seed prompts, which is outside the scope of the general-purpose and
automated inference-time methods we consider here.

Mialon et al. (2023) surveys LLMs that are augmented with reasoning capabilities and external tools and
considers how to evaluate these augmented LLMs. They do consider some inference-time methods like the
ones we focus on in this paper, but the main emphasis is on the use of external tools like web search engines
and symbolic reasoning modules. A recent literature review by Welleck et al. (2024) reviews different types
of inference-time algorithms used with LLMs. Although the authors define differently than us, there is an
overlap between some of the algorithms that they review and the methods that we evaluate. Our evaluation
of these methods across various benchmarks and models, including state-of-the-art LLMs, provides novel
insights and recommendations for future reliability studies.

The work closest to ours is a recent review by Sprague et al. (2024), focused on the popular “Chain-of-
Thought” (CoT) method (Section 4.1). Their approach of evaluating methods with common goals across a
standard set of datasets and benchmarks is similar to what we do in Section 4, and several of our conclusions
are consistent with their results. In particular, the authors found that advantages of using the CoT method
are largely limited to improving symbolic execution, although it does not perform as well as external symbolic
solvers. This work was limited to studying just the CoT method, unlike our study which reviews a range of
inference-time methods (including CoT) for LLM reliability.

3 Evaluations in the Literature

To assess the efficacy and generalizability of the inference-time reliability methods, we conducted a com-
prehensive automated analysis of the evaluation approaches employed in the relevant research literature
(Section 3.1). For each paper, we catalog the evaluation benchmarks and models used by the authors to

Under review as submission to TMLR

test their proposed methods. Our analysis reveals a large variety of different benchmarks (Section 3.2) and
models (Section 3.3) in use; no single model or benchmark is used in more than a third of the papers. This
motivates our experiments in Section 4 to understand how robust evaluations are to choices of underlying
models and benchmarks.

3.1 Literature selection

We performed our analysis using a collection of papers on inference-time methods for improving LLM relia-
bility. To identify relevant papers, we implemented an automated system using the Semantic Scholar API.!
This system systematically collected all papers that cited the “Chain-of-Thought” paper (Wei et al., 2022),
which amounted to 6318 papers in the Semantic Scholar index. We selected this paper as a starting point
because it is widely considered a seminal early work in the field, so we expect it to be cited by most later
research papers on inference-time techniques to improve LLM reliability.

To enable automated analysis and avoid licensing issues, we then filtered this set to only papers available
on arXiv, which reduced the set to 4895 papers. Of these, our automated script successfully retrieved 4 886
papers; the nine unsuccessful retrievals were all papers that had been withdrawn from arXiv. Our dataset
spans from January 2022 (when the Wei et al. (2022) (“Chain-of-Thought”) paper was posted on arXiv)
through the end of 2024 (our collection search was run on 7 January 2025). For each identified paper, we
retrieved the full text using the arXiv API, implementing appropriate rate limiting and error handling to
ensure reliable data collection. The papers were stored with standardized naming conventions based on their
titles, facilitating systematic organization and analysis.

To validate the automated analysis, we manually analyzed a set of 50 papers to extract model and benchmark
data. For these 50 papers, we compared the results from the manual analysis to those from the automated
GPT-40 analysis, finding a Jaccard similarity index of 0.887 for benchmark categorization and 0.874 for model
categorization. A detailed examination of the discrepancies revealed three main types of cases. First, there
were four instances where the automated analysis was more precise than human annotation, such as when
the human analysts incorrectly classified certain models as foundational in papers like "ReAct" Yao et al.
(2023c). We found five cases where terminology ambiguity in the original papers led to different but equally
justifiable interpretations between human and automated analysis, as seen in papers discussing variations
of benchmark names. There were also occasional oversights by the automated system, such as missing the
text-curie-001 model in the "Boosted Prompt Ensembles" paper Pitis et al. (2023). The automated analysis
showed consistency in identifying both common and rare model /benchmark combinations, suggesting reliable
performance across the full spectrum of papers. These findings suggest that the high similarity index and
the nature of the discrepancies support that the data resulting from our automated analysis is high enough
quality to use for our purposes. Additional notes and inconsistencies between the categorizations can be
found in the literature_analysis subdirectory in our repository.

Following this assurance mechanism, we used our automated system to systematically extract and categorize
information from our corpus. This automated extraction was designed with specific criteria, though we
encountered technical limitations when processing certain papers due to tokenization conflicts with special
tokens like ’<|endoftext|>’ in the source text. Thus, we were unable to catalog requisite information from
12 papers, although we plan to address this issue in the future. For benchmarks, we included both standard
evaluation datasets and custom evaluation sets, while excluding datasets used solely for training. For models,
we captured all baseline comparisons, proposed models, and variants tested in ablation studies, but excluded
models that were only referenced without experimental evaluation. We also normalize benchmark and model
names following the categorizations, as the same model or benchmark could have been classified in different
ways. For example, LLaMA-2-7B could have been referred to as LLaMA-2 7B or LLaMA 2 (7 billion), among
other variants. We normalized these different ways of referring to the same model to a canonical name.

IThis, and all of the data and code to reproduce our work, is available under a permissive open source license in a public
GitHub repository which would normally be linked here. To support anonymous review, we do not include the URL in this
submission, but provide an anonymized version at https://anonymous.4open.science/r/LLM-Evaluation-Framework-EQOFO0.

https://anonymous.4open.science/r/LLM-Evaluation-Framework-E0F0

Under review as submission to TMLR

Table 1: Twenty most frequently used benchmarks and models in evaluations (Jan 2022-Dec 2024).

Benchmarks Models

Name #Papers Name #Papers
GSMS8K 425 GPT-4 1789
MATH 175 ChatGPT 1739
MMLU 171 GPT-3 709
SVAMP 139 PaLM-2 415
StrategyQA 126 GPT-40 373
HotPotQA 120 LLaMA-2-7B 372
HumanEval 119 BERT 266
Truthful QA 81 LlaMA-3-8B 264
CommonsenseQA 78 Mistral-7B 243
HellaSwag 71 LLaMA-1 230
TriviaQA 64 LLaMA-7B 201
AQUA 64 LLaMA-2-13B 198
MBPP 63 GPT-4V 195
MultiArith 61 LlaMA-3-70B 175
Winogrande 57 LLaMA-2-70B 172
BoolQ 56 T5 171
PIQA 53 RoBERTa 159
OpenBookQA 50 LLaMA-2 116
ASDiv 46 GPT-2 110
SQuAD 45 LLaMA-2-7B-Chat 108

3.2 Benchmarks

We catalog the evaluation methods used in the reviewed research works, focusing on the specific benchmarks,
data types, and metrics employed. There were a total of 7635 different benchmarks used across the 4874
papers. The total number of benchmark mentions across all papers was 14 970, so on average each benchmark
is used in fewer than two papers. The average number of benchmarks used per paper is 3.07.

Table 1 lists the most popular benchmarks used for evaluation across the set of paper. A few popular bench-
marks are used in hundreds of papers, but no benchmark is common to more than 10% of the papers. Among
the benchmarks, GSM8K (Grade School Math 8K) (Cobbe et al., 2021) is the most widely used, with 425
uses across the papers considered. GSM8K is a dataset of multiple-choice word problems, where the accuracy
of the predicted answers is used as the evaluation metric. Several other popular benchmarks primarily test
mathematical reasoning including SVAMP (139 uses), HumanEval (119), MBPP (63), MultiArith (61), and
ASDiv (Academia Sinica Diverse MWP Dataset) Miao et al. (2020) with 46 mentions.

The most popular benchmarks that do not focus just on mathematical reasoning are MMLU (171 mentions)
and StrategyQA (126). MMLU (Multi-task Language Understanding) Hendrycks et al. (2021) is a large-scale
multi-subject benchmark that covers a wide range of academic subjects. StrategyQA (Geva et al., 2021)
consists of multiple-choice questions that require reasoning over both a question and a given context to
arrive at the correct answer. Other notable benchmarks include HotpotQA (120 mentions), Truthful QA (81
mentions), and CommonsenseQA (78 mentions). HotPotQA is a dataset of multi-hop question-answering
problems that require reasoning over multiple paragraphs. Truthful QA is a benchmark for evaluating the
truthfulness of generated answers, where models are assessed based on their ability to generate truthful
and informative responses. SVAMP (Patel et al., 2021) is another multiple choice dataset of verb argument

Under review as submission to TMLR

443

400
327 320 311
277251 300
216 238 o1
203 207 200
158 157 168162 155 174 152
97 g8 116
79 67 72 100
34 31 ot
2 3 6 11 19 12 11 g 24 |
B S M AR : 0

0.50

[|—||_|_||_| .—||_|—|I_I|—|—.l_l—|l_l—|I_II_I_II_I_I|—|I_I—|I_I_||—|—|I_||_I_II_|0_|14 GSMBK (425)

| [L e [| | | |) e P | | | I 1L MATH (174)
0.5 =
il - e I e) O s e ey 1111 (171)
0.5
[[| I | I_l—||_| P | e SYAMP (139)
0.50
T (] [PR |15 P S S o o e [- — === StrategyQA (126)
T = g——— - — i = == HotpotQA (120)
7L77777577=7 e [i I e e | | — HumanEval (119)
0.11
5 1477:[77 e) e [[| i S Truthful QA (81)
_ N Newm P—— (S p—— Y CommonsenseQA (77)
0.09
[o1 I == = = — = HellaSwag (70)
— . — = 1 === AQuA (64)
L ozs—— 50|_|.—. = = = TriviaQA (63)
77|:I777 I — —. =, MBPP (63)
| — | [== | — MultiArith (61)
0.07
| — o (T Winogrande (56)
— . m - == BoolQ (55)
0.5 0.11
B - mem i = PIQA (52)
|| — — — OpenBookQA (49)
0.5 0.12
=l I = === ASDiv (46)
I T T T T T T I \'_|\ T T T I T T T SQuAD (44)
2022 2023 2024

Figure 1: Proportions of papers posted in each month using each of the Top-20 LLM benchmarks (1 Jan
2022-31 Dec 2024). The top plot shows the total number of papers published per month. The bottom plot
shows the proportion of the top-20 benchmarks. Each bar represents the proportion of papers in that month
that used the given benchmark, calculated as (number of papers using benchmark) / (total benchmark
mentions in papers that month). Total uses of each benchmark across the dataset are shown in parentheses.

structure alternations, and the accuracy of predicted verb forms serves as the evaluation method. Figure 1
shows these distribution changes, as different benchmarks become more popular in the research space.

Our analysis reveals a lack of consensus on what benchmarks should be used to evaluate methods for
improving LLM reliability. For our experiments in Section 4, we select a representative set of benchmarks
to evaluate methods across a diverse set of tasks and domains.

3.3 Models

Although there is somewhat more consensus on the models to use for evaluations than there is on the
benchmarks, there is still a large variation in the models used with a total of 4809 distinct models identified
across 16647 total model mentions in the analyzed papers. The large number of models may be partly due
to variations in how the same model is named or very minor variations of a common model, although we
attempted to canonicalize model names, at least for the commonly used models, in our analysis. The average
number of models used per paper is 3.42.

Under review as submission to TMLR

443

400
327 320 311
277251 300
216 238 o1
203 207 200
158 157 168162 155 174 152
116
79 &7 97 88 721 100
341 31,0t
2 3 6 1119 12 11 o 24 |
7 , 0

e I T S S S -
7ﬁﬁ:ﬁ!: |i_i.=._:—| |_||—||_||_"_||_|l_"_”_"_|_|’_"_"_"_"_|l_|l_h—|l_| GPT-3.5-turbo (1739)
—

_ | loa3 | [[GPT-3 (705)

L [’_||—||_|_J_||_||_|.—.|—|—| o T S — — g7~ PaLM-2 (415)

L | - —— e I GPT-40 (373)

| 020 | | S — LLaMA-2-7B (372)
| | e e — BERT (266)

0.14
[LLaMA-3-8B (264)
0.07
fr— Mistral 7B (243)

e —_ 209 LLaMA (230)

0.05
— —_— S —— LLaMA-7B (201)

- — | 0.0 LLAMA-2-13B (198)

e —_ —_ — GPT-4V (195)

0.07
1.0 — e = === L LaMA-3-70B (175)

S I LLaMA-2-70B (172)

[R M I | [TS (171)

|_||—||_|.—. s RoBERTa (159)

—_ —_ —_ 5.0 LLaMA-2 (116)
0.11

| I o e | e GPT-2 (110)

0.04

' " 2024

— — LLaMA-2-7B-Chat (108)
2022 2023
Figure 2: Monthly proportions of papers using each of the Top-20 LLMs (Jan 2022 - Dec 2024). The top
plot shows the total number of papers published per month. Each bar in the bottom plot shows the fraction
of papers published in that month that used the given model, computed as (papers mentioning model) /
(total models that month). Total usage counts across the entire period are shown in parentheses.

The right side of Table 1 summarizes the models most commonly used across the considered papers. GPT-4
is the most frequently mentioned model, appearing in 1789 of the 4874 papers, followed by ChatGPT with
1739 mentions and GPT-3 with 709 mentions. The diversity in model selection even among the top twenty
spans from smaller models like T5 (171 mentions) to large open models like LLaMA-2-70B (172 mentions),
reflecting the research community’s interest in understanding performance across different model scales and
architectures.

Open-weights models also feature prominently in the evaluations, with Mistral-7B (243 mentions), LLaMA-
2-7B (372 mentions), and various LLaMA variants collectively used in a significant portion of the evaluations.
Of important note is that there are 116 mentions of LLaMA-2 without specific distinction of the size of the
model used. The frequent use of open-weights models enables reproducibility and transparency in a way that
is not possible with models only available through an API. Open models also have important cost advantages
over models that can only be access through pay-per-use APIs.

Model selection also changes over time, as new models become available. Figure 2 show how the distribution
of models has changed over time. While newer models like GPT-4 dominate evaluations through the end
of 2024, established models like BERT (266 mentions) and RoBERTa (159 mentions) continue to serve as

Under review as submission to TMLR

important baselines. Notably, the emergence of multi-modal models is evident with GPT-4V receiving 195
mentions, highlighting the growing interest in models that can handle both text and visual inputs.

4 Experiments

Our review of the research literature revealed variation in the benchmarks and underlying models used to
evaluate inference-time methods for improving LLM reliability, motivating us to conduct experiments to
assess the robustness and generalizability of proposed methods. Our primary goal is to determine whether
results obtained from specific benchmarks and models in previous evaluations hold up when tested more
comprehensively across a diverse range of state-of-the-art language models and previously unseen test data.

In our experiments, we evaluate the performance of the selected methods on different LLMs including more
recent and powerful language models than may have been used in the original evaluations. We also test
proposed methods on a broader set of benchmarks, including both common and rarely used benchmarks.
Our experiments also assess the consistency of inference-time method performance across different model
architectures and types, comparing both proprietary and open-weights models. With these experiments, we
aim to provide a more nuanced understanding of the effectiveness of current techniques, identifying both
strengths and limitations that may not have been apparent in original evaluations.

4.1 Methods Evaluated

Given our limited resources, we were not able to include all methods in our experiment. We selected methods
to evaluate from papers in the literature review based on availability of standard implementations with a
goal of having a representative set of methods to test. We conduct experiments using the following methods,
ordered by the date that the methods were posted on arXiv: Chain of Thought (CoT) (Wei et al., 2022),
Self-Consistency Wang et al. (2023), ReAct (Yao et al., 2023c), Tree of Thoughts (ToT) (Yao et al., 2024),
Graph of Thoughts (GoT) (Besta et al., 2024), and LLM Multi-Agent Debate (Du et al., 2024). We provide
descriptions of each of these methods and how we configured them for our experiments below.

The selected methods range from the basic prompt augmentation and output aggregation in CoT to complex
multi-model interactions and sophisticated aggregation in LLM Multi-Agent Debate. Although CoT involves
manually designing prompts to guide the model through step-by-step reasoning, we include the Chain-
of-Thought method as a baseline to compare its effectiveness against the other automated inference-time
techniques. We emphasize that our goal is not to identify the “best” inference-time method, hence this
limited but representative selection of methods, but rather to understand what is necessary to perform a
robust evaluation of an inference-time method in general.

For each method, we used the default settings provided by their respective repositories to ensure reproducibil-
ity and maintain consistency with the original implementations. It’s important to note that this approach
means the same language models may have different hyper-parameters when used across different methods.
While this could potentially introduce confounding factors in performance trends, we prioritize fidelity to
the original implementations as reported in their respective papers and repositories. This allows for a more
direct comparison with previously published results. Full prompt structures for each method can be found
in Appendix A.

In evaluating some of the methods, reproducing and running results proved challenging due to resource
limitations, compatibility issues with current AI models, and the use of outdated or unsupported models in
original evaluations. Some methods required excessive processing time or computing power, while others used
packages incompatible with state-of-the-art models like those from Anthropic and newer OpenAl versions.
Some methods include Pitis et al. (2023), Arora et al. (2022), and Si et al. (2023). We take these into
consideration when comparing methods, models, and benchmarks and providing recommendations.

Chain-of-Thought (CoT) (Wei et al., 2022). CoT is a method designed to enhance the reasoning abilities
of large language models. Each exemplar in few-shot prompting is augmented with a series of intermediate
natural language reasoning steps—that leads to the final answer. The method samples from the output
using greedy decoding. The original experiments used multiple arithmetic reasoning benchmarks (GSMS8K,

Under review as submission to TMLR

SVAMP, ASDiv, MAWPS, and AQuA), and several models reflecting the state-of-the-art at the time: GPT-3
(350M-175B parameters), LaMDA (422M-137B), PaLM (8B-540B), UL2 (20B), and Codex.

For evaluating models on multiple-choice benchmarks, we used a CoT implementation based on the approach
outlined in the referenced repository (Yao et al., 2023a). For more generative benchmarks, we used the
method outlined in Besta et al. (2024). Each of the models were configured with a temperature of 0.7 and a
maximum token limit of 1024 to allow for more elaborate reasoning chains. The prompt included multiple
stages, with the model first analyzing the problem, laying out intermediate thought processes, and then
computing or inferring the final result. We use “Let’s think step by step” as a leading instruction guided the
model in decomposing tasks into manageable chunks. More information on the prompt structure is found in
Appendix A.

Self-Consistency (Wang et al., 2023). Self-consistency is an enhancement to CoT prompting that aims
to improve language models’ performance on complex reasoning tasks. While standard CoT uses greedy
decoding to generate a single reasoning path, self-consistency samples multiple diverse reasoning paths
from the model. It then extracts the final answer from each path and determines the most consistent
answer through majority voting. The authors evaluated self-consistency on a variety of arithmetic and
commonsense reasoning benchmarks (GSM8K, SVAMP, AQuA, StrategyQA, and ARC-challenge) with four
underlying LLMs—PaLM (540B), GPT-3 (175B), LaMDA (137B), and UL2 (20B).

The original authors did not provide a public implementation, so we produced our own implementation
following the description in the paper to include this in our experiments. The method was applied by gener-
ating 3, 5, and 10 diverse reasoning paths for each task. These reasoning paths were produced by prompting
the model multiple times, with a focus on encouraging variation in the intermediate steps taken toward
the solution. The prompt augmentation phase utilizes CoT prompt methods. Each path was evaluated
independently, and the final answer was determined by aggregating the results to select the most consistent
outcome across all generated paths. The process allowed the model to explore a range of potential solutions,
increasing the likelihood of arriving at a good answer through collective reasoning.

ReAct (Yao et al., 2023c). The ReAct method combines reasoning and acting by augmenting a language
model’s action space to include both external actions and language-based thoughts. For each seed prompt,
the model generates a series of thoughts that update the context without affecting the environment. The
model’s responses are based on few-shot in-context examples, each containing a human-generated trajectory
of actions, thoughts, and observations for a specific task instance. The original study tested the method
using PaLM-540B and GPT-3 on the HotpotQA, Fever, Alfworld, and WebShop benchmarks. Subsequent
ablation studies also included testing GPT-3.5-turbo on the GSM8k dataset (Face, 2023).

For our experiments, ReAct was implemented using a custom LangChain agent based on the original reference
repository Chase (2022). Format errors were corrected during execution to ensure the output followed the
required structure. The model was configured with a temperature of 0.5, a maximum token limit of 512,
and up to two retries in case of errors. It was instructed to stop generating text at specific markers such as
“\nHuman:” or “Final Answer:”.

Tree of Thoughts (ToT) (Yao et al., 2024). While CoT generates a single sequence of thoughts and lacks
exploration of alternative reasoning paths and Self-Consistency improves upon this by sampling multiple
independent chains, Tree of Thoughts frames problem-solving as a search over a tree of thoughts, allowing
for both local and global exploration of the problem space. This paradigm incorporates planning, look-
ahead, and backtracking, enabling the evaluation and pruning of intermediate states. The ToT framework
consists of four key components: thought decomposition, thought generation, state evaluation, and search
algorithms. Thought decomposition breaks down the intermediate process into discrete steps, adapting to
different problem types. The thought generator produces k candidates for the next thought given a tree
state. It employs two strategies: sampling, which uses a CoT prompt to generate thoughts, and proposing,
which uses a “propose prompt” to sequentially generate thoughts. The state evaluator then assesses the
progress of different states towards solving the problem, serving as a heuristic for the search algorithm. It
can either value each state independently or vote across states, depending on the problem’s characteristics.

Under review as submission to TMLR

The search algorithm navigates the tree structure to find the solution, using either a breadth-first search
(BFS) or depth-first search (DFS) strategy. BFS maintains a set of the most promising states per step and
is used for problems with limited tree depth, while DF'S explores the most promising state first until a final
output is reached or deemed impossible to solve.

For benchmarks based on multiple-choice question answering solutions, we used a ToT implementation based
on the approach outlined in the referenced repository (Yao et al., 2023b). For more generative benchmarks,
we used the method outlined in Besta et al. (2024). To run the experiments, we used the standard prompt
format to generate sequences of thoughts through sequential proposals, where each intermediate thought
was sampled based on previous reasoning steps, creating a more structured exploration. For this, the model
used a propose strategy for thought generation and a value approach for evaluating the intermediate states.
During evaluation, each path was sampled multiple times, with the system generating thoughts multiple
times to improve diversity. The default parameters prompted the model to generate sequences 10 times and
evaluate each generated state five times, while the BFS algorithm was configured to retain the top three
states at each step to explore further.

Graph of Thoughts (GoT) (Besta et al., 2024). GoT introduces a graph-based structure to model rea-
soning paths, allowing for more flexible exploration of possible solutions by dynamically connecting paths.
GoT models the LLM’s reasoning process as an arbitrary graph, where thoughts are represented as vertices
and dependencies between thoughts as edges. This graph-based approach allows for more complex trans-
formations than previous methods like Chain-of-Thought or Tree of Thoughts. The framework is modeled
as a tuple containing the reasoning process graph, “thought” transformations, an evaluator function, and a
ranking function. GoT enables several graph-enabled transformations, including thought aggregation, where
multiple thoughts can be combined into new ones, thought refinement through iterative improvement, and
parallel thought generation. These transformations are managed through a scoring and ranking system
that evaluates thoughts and selects the most promising forward paths. For our experiments, we used the
open-source repository (Blach et al., 2023).

LLM Multi-Agent Debate (Du et al., 2024). In an LLM Multi-Agent Debate, multiple agents are
prompted to evaluate a problem from different perspectives, and through a series of interactions, they
converge on a solution through collective reasoning. For our experiments we used the repositories (Du et al.,
2023) for proprietary models and (Gauss5930, 2023) for open-source models. Furthermore, we utilized three
agents, all based on the same model, and conducted two rounds of debate per task. During each round,
the agents would present their arguments, and subsequent rounds allowed them to refine or rebut each
other’s points. The debate was structured to ensure that the agents were working both collaboratively and
competitively to arrive at the most accurate solution. The response was determined based on the consensus
or the strongest argument presented by the agents at the end of the debate. While the same model was used
for all agents in this study, future research could explore the potential benefits of using a diverse range of
models as agents, allowing for even greater variation in reasoning and argumentation.

4.2 Setup

For our experiments, we selected a set of representative methods to evaluate and a common set of models
and benchmarks to use in the evaluation, informed by our literature analysis from Section 3.

Models. As reported in Table 1, many different models have been used in evaluations, and most works
only evaluate on three different models, averaged across papers. For our experiments, we selected a mix
of models to enable us to measure both the performance of each method on state-of-the-art models and
how that performance varies with smaller models. For the state-of-the-art models, we selected GPT-40 and
Claude 3.5-Sonnet. As of May 2024 (when we started our experiments) the two models performed well in the
LMSYS Chatbot Arena Leaderboard Chiang et al. (2024). Although more recent models have now surpassed
these models in most rankings, both GPT-40 and Claude 3.5-Sonnet are still reasonably highly-ranked in
LMSYS and other rankings such as the SCALE AI rankings (Scale AI). We include GPT-3.5-turbo to
compare our results with most of the reported results across methods. We include two open-weights models,
Llama-3.1-8B-Instruct and Mixtral 8x22B, both for comparison and to enable reproducibility.

Under review as submission to TMLR

Benchmarks. For our analysis, we choose five of the most commonly used benchmarks in the literature—
GSM8K, MMLU, AQUA, SVAMP, Truthful QA. These benchmarks are described in Section 3.2, and include
three commonly used mathematical reasoning benchmarks (GSM8K, AQUA, and SVAMP) and two broad
language understanding benchmarks (MMLU and TruthfulQA).

We also include GSM-Symbolic (Mirzadeh et al., 2024), a relatively new benchmark that was not used by any
of the papers in our analysis. GSM-Symbolic was constructed by converting GSM8K questions into symbolic
templates that allow for controlled variation of parameters like names, numbers, and problem complexity.
Using 100 templates from GSMS8K, it generates 50 samples per template, resulting in 5000 total examples for
each benchmark variant. The dataset includes different difficulty levels, from simpler versions with clauses
removed (GSM-Symbolic-M1) to more complex versions with additional clauses (GSM-Symbolic-P1, P2),
and a special variant (GSM-NoOp) that tests models’ ability to identify relevant information. The dataset
enables evaluation of models’ robustness to parameter changes, handling of increasing complexity, and true
understanding of mathematical concepts versus pattern matching. Our evaluation follows the methodology
established in Mirzadeh et al. (2024).

We include two additional benchmarks that were not commonly used, but were chosen to further evaluate
generalization. Sorting 032 (Besta et al., 2024) evaluates a model’s ability to sort a sequence of numbers in
ascending order. It consists of array sequences of 32 numbers in the range 0-9, and measures the model’s
performance as the percentage of correctly sorted sequences. Document Merging (Besta et al., 2024) was
introduced in the Graph of Thoughts paper. It assesses a model’s ability to merge multiple documents
into a single coherent document. To evaluate an output, we use the same evaluation criteria as in Besta
et al. (2024). We use the underlying LLM in each experiment to assess two key metrics, each queried three
times to obtain an average. The first metric measures conciseness, with 0 suggesting at least 50% redundant
information and 10 indicating no redundancy. The second metric gauges information preservation, where 0
indicated total information loss and 10 signifies complete retention. The final score is the harmonic mean of
these two values and the average rating across multiple document sets is used as the evaluation metric.

5 Results

A key goal of our experiments is to understand how well results from reported benchmarks and models
predict the performance of a method on other benchmarks and with better models. Section 5.1 reports on
the overall performance of the inference-time methods. Section 5.2 considers how well results in previous
evaluations are reproduced in our experiments, and Section 5.3 evaluates the how the execution costs vary.

5.1 Performance of Inference-Time Methods

Figure 3 compares the results from different methods using different models on the selected benchmarks and
Table 2 summarizes the average performance improvement for each method across the benchmarks across
the five evaluation models.

Due to the high cost of running some of the methods (which we discuss in Section 5.3), for each of the
methods we randomly sample 150 data points from each of benchmarks. We then normalize the data by
employing a min-max normalization to standardize data across different methods, scaling all values to a 0-1
range to achieve consistent comparisons across benchmarks. The baseline refers to the accuracy achieved by
each model when no inference-time method is employed. Positive deviations, colored green in the heat map,
indicate improvements over the unaided model baseline, whereas negative deviations, shown in red, indicate
a decline in performance.

We observe that significant variations in performance across different tasks, models, methods, and bench-
marks, which remains a problem in evaluating large language models and respective ensemble methods.
Note in particular that each method has a negative impact on at least one of the benchmarks. Two of the
benchmarks (GSM8K, Document Merging) have positive improvements on average for all of them methods,
but for every other benchmarks at least one of the methods results in worse performance.

10

Under review as submission to TMLR

—0.270 —0.135 0 0.135 0.255

AQUA

Document |
Merging

GSM- | .
Symbolic
GSMSK. .

MMLU
SVAMP |
Sorting 032
Truthful QA 4
& T e §oe T e e § oo T e e f oo T e e §oe T e o %
O8§H@go8zgo;o8290308;90308:903
Llama-3.1-8B Mixtral 8x22B GPT-3.5-turbo GPT-40 Claude-3.5-Sonnet

Figure 3: Heatmap displaying the deviation from baseline accuracy for various inference-time methods
applied across different models and benchmarks. Positive deviations (in green) indicate improvements over
the unaided model (baseline), while negative deviations (in red) indicate performance decline.

Table 2: Average performance change across all models and methods. Positive values indicate improved
performance relative to a baseline. Results show varying effectiveness of each technique, highlighting the
challenge of developing methods that work across different problem types. Cost is measured in average
number of API calls per problem for GPT-3.5-turbo.

CoT SC ReAct ToT GoT Debate
Relative Cost 3.5 10.0 5.2 53.8 37.2 6.0
GSMS8K 0.073 £0.078 0.044 +0.067 0.092 +0.092 0.033 £0.069 0.081 +0.080 0.002 £ 0.103
GSM-Symbolic 0.051 £0.044 —0.002 +0.146 0.052 = 0.054 —0.075+1.000 0.034 +1.000 0.063 £ 0.092
MMLU —0.024 £0.120 0.099 +0.054 —0.031 +=0.114 —0.002 £+ 0.099 —0.147 4+ 0.068 —0.008 £ 0.107
AQUA 0.110 £0.057 0.057 +0.040 —0.024 +0.102 0.045 £ 0.024 0.090 +0.062 0.054 £ 0.081
SVAMP 0.070 £0.030 —0.011 +0.143 0.028 0.010 —0.026 £0.092 0.074 +0.030 0.080 £ 0.054
Sorting —0.041 £0.082 0.026 +=0.044 0.028 =0.040 0.024 +£0.020 0.026 +0.019 0.042 £+ 0.051
Document Merg 0.001 +£0.019 0.054 +£0.051 0.019+0.008 0.096 +0.057 0.079 +0.042 0.079 £ 0.060
TruthfulQA 0.026 £ 0.031 —0.102 +0.042 —0.038 +0.026 0.036 £ 0.033 0.042 + 0.044 —0.050 £ 0.029

For the Llama-3.1-8B-Instruct model, we observe significant improvements (visible in Figure 3) across most
benchmarks when using ensemble methods. The Graph of Thoughts method shows particularly strong
performance on the Document Merging task. Chain of Thought and Tree of Thoughts also demonstrate
consistent improvements across various benchmarks for this model. Mixtral 8x22B shows a more varied
performance profile. While it benefits from ensemble methods in tasks like AQUA and GSMS8k, it shows
some negative deviations in benchmarks such as MMLU and Truthful QA. The Multi-Agent Debate approach
appears particularly effective for this model on the AQUA benchmark. GPT-3.5-turbo demonstrates more
modest improvements from ensemble methods compared to the previous two models. However, it still shows
positive deviations in several benchmarks, particularly when using the Self-Consistency method on GSMSK
and the ReAct method on AQUA.

For the more advanced models, GPT-40 and Claude-3.5-Sonnet, the impact of the tested methods is less
pronounced, as visible in the lighter color shades in the heat map. This suggests that these models already
perform well on many tasks without additional ensemble techniques and obtaining further improvements
through inference-time methods is more challenging. We do observe some improvements, particularly in the
Document Merging task for both models when using the Graph of Thoughts method (which introduced this
benchmark). The SVAMP benchmark shows interesting variations across models and methods. While some

11

Under review as submission to TMLR

Table 3: Comparison of reported and reproduced results across different methods and benchmarks. The
Chain of Thought reported results are from the Chain-of-Thought-Hub repository Fu et al. (2023). The
Tree of Thoughts Yao et al. (2024) GSMS8K reported results are from the original GPT-4 experiments. The
Self-Consistency reported results are from experiments with GPT-3 Wang et al. (2023). All reproduced
results are from our own experiments using GPT-3.5-turbo.

GPT-3.5-turbo

Unaided Using Method

Methods and Benchmarks Reported Reproduced Reported Reproduced
Chain of Thought

GSMS8K - 0.63 0.75 (4+0.12) 0.70 (+0.07)

MMLU - 0.63 0.67 (+0.04) 0.69 (40.06)

AQuA - 0.64 - 0.74 (+0.10)

SVAMP - 0.72 - 0.76 (+0.04)

Sorting 032 0.86 0.96 (4+0.10) 0.79 (-0.17) 0.96 (+0.00)

Document Merging 0.64 0.70 (40.06) 0.66 (-0.04) 0.71 (+0.01)
Self-Consistency

GSMSK - 0.63 - 0.70 (+0.07)

MMLU - 0.63 - 0.79 (+0.16)

AQuA - 0.63 -

SVAMP - 0.72 - 0.87 (4+0.15)
ReAct

GSMS8K - 0.63 - 0.76 (+0.13)
Tree of Thoughts

GSMSK - 0.63 - 0.64 (+0.01)

Sorting 032 0.86 0.96 (4+0.10) 0.95 (-0.01) 0.98 (+0.02)

Document Merging 0.64 0.70 (40.06) 0.78 (40.08) 0.81 (4+0.11)
Multi-Agent Debate

GSMSK 0.77 0.63 (-0.14) 0.85 (+0.22) 0.81 (40.18)

MMLU 0.64 0.63 (-0.01) 0.71 (40.08) 0.72 (+0.09)

ensemble methods yield improvements for Llama-3.1-8B and Mixtral 8x22B, the more advanced models show
minimal changes or even slight negative deviations when applying these methods to SVAMP.

Overall, our experiments reveal that the effectiveness of tested methods varies not only across different
benchmarks but also across different model capacities. Less powerful models like Llama-3.1-8B-Instruct
tend to benefit more consistently from the inference-time methods, while more advanced models like GPT-
40 and Claude-3.5-Sonnet show limited improvements.

5.2 Reproducibility

In addition to understanding how well methods generalize to different models and benchmarks, we also
wanted to study now reliably results reports in papers could be reproduced.

We compare GPT-3.5-turbo’s performance both without any inference-time method (Unaided) to the tested
method (Using Method) in Table 3, showing both the results reported in the original papers and our repro-
ductions and generalizations. The table reveals discrepancies between the reported and reproduced results
for GPT-3.5-turbo, underscoring reproducibility challenges in evaluating large language models.

Detailed view of Document Merging benchmark. Figure 4 shows a more detailed view of the impact
of the methods on the Document Merging benchmark. This task serves as a useful benchmark to compare

12

Under review as submission to TMLR

10

Score
N

Unaided Chain-of-Thought Tree-of-Thought Graph-of-Thought

Model: I:I GPT-3.5-turbo D GPT-40 D Claude-3.5 I:I Llama-3.1-8B I:I Mixtral-8x22B

Figure 4: Comparison of document merging task across different models and approaches Besta et al. (2024).
The plot illustrates the performance of different approaches (Unaided, Chain-of-Thought, Tree-of-Thoughts,
and Graph-of-Thoughts), using box plots to summarize score distributions and swarm plots to show scores
of individual iterations.

the performance of different language models, as it represents a common use case across various LLM
applications. While this benchmark was not originally used in the papers introducing Chain-of-Thought and
Tree-of-Thoughts, the authors of the Graph-of-Thoughts paper instantiated their own replications of these
methods for comparison purposes. This explains the discrepancy between the benchmark data presented
in Table 3. The Document Merging benchmark thus offers a unique perspective on how these different
approaches perform when implemented under consistent conditions by the same research team.

We first replicate the results reported by Besta et al. (2024) for this task using GPT-3.5-turbo. We then
extend our evaluation to use our selected models. Our analysis reveals interesting patterns in model perfor-
mance. While state-of-the-art models like GPT-40 and Claude 3.5-Sonnet show negligible improvements over
the baseline, the magnitude of these gains varies. These results not only demonstrate the varying capabilities
of different models in handling complex tasks like document merging but also highlight the importance of
model selection for specific applications. The findings suggest that while more powerful models generally
perform better, the degree of improvement can vary based on the task complexity and the specific strengths
of each model.

5.3 Cost

Although our analysis focused on reliability, the cost of executing an inference-time method can be substan-
tial. We measure costs by the number of APT calls used to solve a given problem in a benchmark and include
these results in Table 2.

It is clear that the cost of all of the methods are high, requiring an average of from 3.5 (CoT) to over 50
(ToT) instantiations of the base LLM for each seed prompt. We use APT calls to measure cost due to the
changing nature of token costs for black box models. We report the number of calls when the base model is
GPT-3.5-turbo, and the multiple may vary slightly based on the base model used.

Recent work has explored optimizing these costs: Snell et al. (2024) studies how to optimally scale test-
time computation for LLMs on math reasoning tasks, while Chen et al. (2024) examines the cost-benefit
tradeoffs of multiple API calls. These findings align with our observations about the importance of balancing
performance gains against computational costs.

13

Under review as submission to TMLR

As mentioned earlier, these high costs limited our experiments, but they are a more important factor in any
considered deployment. One measure of the practical value of these methods would be if the total cost of
obtaining the same performance is lower using the inference-time method with a less expensive model than
the cost of obtaining similar performance from a state-of-the-art high cost model.

6 Discussion

Improving LLM reliability is a critical goal, and there is an active research community exploring myriad
approaches, including much focus on the inference-time methods we study here. To make progress in this
area, it is critical that evaluations are done in a way that can robustly determine if a proposed method is a
meaningful improvement on other methods. Our analysis of the evaluation approaches used in the considered
literature shows a large range of different evaluation methods, with hundreds of different benchmarks used
and more than half of the papers conducting evaluations with just one benchmark and no benchmark used
by more than a quarter of the evaluations (although these are primarily the result of surveys in the citation
chain). There is somewhat more consensus on the models to use, and the available state-of-the-art proprietary
and open weights models will continue to change over time.

As demonstrated in our experiments, and captured in Figure 3, the impact of an inference-time method on
reliability varies substantially across both underlying models and selected benchmarks. Methods that produce
large improvements with weaker models often produce little improvement (or even make things worse) for
stronger models. As further emphasized by Table 2, methods that produce significant improvements for
certain mathematical reasoning benchmarks, may not result in improvements for other benchmarks.

Our results highlight the importance of evaluating methods with a range of underlying models, but especially
with models representative of the state-of-the-art, at least if the goal is to develop methods that are useful
in making overall improvements in reliability. The choice of benchmarks is also important. Unfortunately,
the resources required to run extensive tests on all available benchmarks are not available to researchers
outside of the largest industry groups, so it is important to select a suite of benchmarks that are sufficient
to understand the impact of a method across a range of settings that cover the intended use cases. None of
the current benchmarks, at least of the ones considered in our evaluation, are representative enough to be
used as a single benchmark that would allow researchers to draw general conclusions.

Much work is needed in understanding the effectiveness of different benchmarks and underlying models to
predict the performance of a method in other settings. Developing new benchmarks is part of this, but it
is important that the predictive value of any new benchmark is evaluated by also using more established
benchmarks. Research will accelerate in this area as the community makes progress to a set of standardized
benchmarks and better understanding of how performance impacts translate across models and tasks.

Availability. Code for reproducing our experiments is available anonymously for reviewers (and will be
made public) at https://anonymous.4open.science/r/LLM-Evaluation-Framework-EOF0.

References

Simran Arora, Avanika Narayan, Mayee F. Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami, Frederic
Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language models. In
International Conference on Learning Representations (ICLR), 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph of thoughts:
Solving elaborate problems with large language models. AAAI Conference on Artificial Intelligence, 2024.

Nils Blach, Robert Gerstenberger, and Ales Kubicek. Graph of thoughts. https://github.com/spcl/graph-of-t
houghts, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
A survey on evaluation of large language models, 2023. URL https://arxiv.org/abs/2307.03109.

14

https://anonymous.4open.science/r/LLM-Evaluation-Framework-E0F0
https://github.com/spcl/graph-of-thoughts
https://github.com/spcl/graph-of-thoughts
https://arxiv.org/abs/2307.03109

Under review as submission to TMLR

Harrison Chase. Langchain, October 2022. URL https://github.com/langchain-ai/langchain. Version 1.2.0.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James Zou.
Are more llm calls all you need? towards scaling laws of compound inference systems, 2024. URL
https://arxiv.org/abs/2403.02419.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Hao
Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena: An open
platform for evaluating llms by human preference. In International Conference on Machine Learning
(ICML), 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. LLM multi-agent debate.
https://github.com/composable-models/llm_multiagent_debate, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving factuality
and reasoning in language models through multiagent debate. In International Conference on Machine
Learning (ICML), 2024.

Hugging Face. Open-source llms as agents: How they work and why they matter. https://huggingface.co/blo
g/open-source-lims-as-agents, 2023.

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng, and Tushar Khot. Chain-of-thought hub: A
continuous effort to measure large language models’ reasoning performance. ICML Workshop Deployable-
GenerativeAI homepage, 2023.

Gaussb930. Llm-agora, September 2023. URL https://github.com/gauss5930/LLM-Agora. Version 1.0.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle Use
a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies. Transactions of the
Association for Computational Linguistics (TACL), 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. International Conference on Learning Representa-
tions (ICLR), 2021.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk, Andy
Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, Deep Gan-
guli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse,
Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam
McCandlish, Chris Olah, and Jared Kaplan. Language models (mostly) know what they know. arXiv
preprint arXiv:2207.05221, 2022.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie,
Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaud-
hary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of
language models. arXiv preprint arXiv:2211.09110, 2023.

15

https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2403.02419
https://github.com/composable-models/llm_multiagent_debate
https://huggingface.co/blog/open-source-llms-as-agents
https://huggingface.co/blog/open-source-llms-as-agents
https://github.com/gauss5930/LLM-Agora

Under review as submission to TMLR

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann Le-
Cun, and Thomas Scialom. Augmented language models: A survey. Transactions on Machine Learning
Research, 2023.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing english
math word problem solvers. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, 2020.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models, 2024.
URL https://arxiv.org/abs/2410.05229.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple math
word problems? In Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2021.

Silviu Pitis, Michael R. Zhang, Andrew Wang, and Jimmy Ba. Boosted prompt ensembles for large language
models. arXiv preprint arXiw:2304.05970, 2023.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-shot
paradigm, 2021. URL https://arxiv.org/abs/2102.07350.

Scale Al. Leaderboards. https://scale.com/leaderboard.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si, Yinheng
Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, Pranav Sandeep Dulepet, Saurav Vidyadhara, Dayeon
Ki, Sweta Agrawal, Chau Pham, Gerson Kroiz, Feileen Li, Hudson Tao, Ashay Srivastava, Hevander Da
Costa, Saloni Gupta, Megan L. Rogers, Inna Goncearenco, Giuseppe Sarli, Igor Galynker, Denis Peskoff,
Marine Carpuat, Jules White, Shyamal Anadkat, Alexander Hoyle, and Philip Resnik. The prompt report:
A systematic survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024.

Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang Zhang. In ChatGPT we trust? measuring and
characterizing the reliability of ChatGPT. arXiv preprint arXiv:2304.08979, 2023.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan Boyd-Graber, and Lijuan
Wang. Prompting gpt-3 to be reliable. In International Conference on Learning Representations (ICLR),
2023.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-thought helps
mainly on math and symbolic reasoning. arXiv preprint arXiv:2409.12183, 2024.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi
Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks,
Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li. Decodingtrust: A comprehensive assessment
of trustworthiness in gpt models, 2024. URL https://arxiv.org/abs/2306.11698.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In International
Conference on Learning Representations (ICLR), 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Advances in
Neural Information Processing Systems, 2022.

16

https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2102.07350
https://scale.com/leaderboard
https://arxiv.org/abs/2306.11698

Under review as submission to TMLR

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms for large
language models, 2024. URL https://arxiv.org/abs/2406.16838.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. Harnessing the power of llms in practice: A survey on chatgpt and beyond. ACM Transactions
on Knowledge Discovery from Data, 2024.

Francis Yao, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng, Tushar Khot, and Wenhu Chen. Chain-of-
thought hub. https://github.com/FranxYao/chain-of-thought-hub, 2023a. Accessed: 2024-09-14.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts. https://github.com/princeton-nlp/tree-of-thought-lim, 2023b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. In International Conference on Learning Represen-
tations (ICLR), 2023c.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In Advances in Neural Infor-
mation Processing Systems, 2024.

17

https://arxiv.org/abs/2406.16838
https://github.com/FranxYao/chain-of-thought-hub
https://github.com/princeton-nlp/tree-of-thought-llm

Under review as submission to TMLR

A Experimental Prompts

/{ ReAct Prompt Example }

You are an Al assistant designed to answer multiple-choice questions. Analyze the problem and select
the best answer from the provided options (A, B, C, D).

Question:

Options: A: B: C: D:

Previous steps:

Your task is to provide a final answer.

Use the following format: Thought: [Your reasoning] Final Answer: [Letter choice (A, B, C, or D)]
[Brief explanation]

If you cannot determine the answer with certainty, make your best guess based on the information
available.

Your response:

,[Chain-of-Thought Prompt Example }

Question: Angelo and Melanie want to plan how many hours over the next week they should study
together for their test next week. They have 2 chapters of their textbook to study and 4 worksheets
to memorize. They figure out that they should dedicate 3 hours to each chapter of their textbook and
1.5 hours for each worksheet. If they plan to study no more than 4 hours each day, how many days
should they plan to study total over the next week if they take a 10-minute break every hour, include 3
10-minute snack breaks each day, and 30 minutes for lunch each day? Let’s think step by step Angelo
and Melanie think they should dedicate 3 hours to each of the 2 chapters, 3 hours x 2 chapters = 6 hours
total. For the worksheets they plan to dedicate 1.5 hours for each worksheet, 1.5 hours x 4 worksheets
= 6 hours total. Angelo and Melanie need to start with planning 12 hours to study, at 4 hours a day,
12 / 4 = 3 days. However, they need to include time for breaks and lunch. Every hour they want to
include a 10-minute break, so 12 total hours x 10 minutes = 120 extra minutes for breaks. They also
want to include 3 10-minute snack breaks, 3 x 10 minutes = 30 minutes. And they want to include 30
minutes for lunch each day, so 120 minutes for breaks + 30 minutes for snack breaks + 30 minutes for
lunch = 180 minutes, or 180 / 60 minutes per hour = 3 extra hours. So Angelo and Melanie want to
plan 12 hours to study + 3 hours of breaks = 15 hours total. They want to study no more than 4 hours
each day, 15 hours / 4 hours each day = 3.75 They will need to plan to study 4 days to allow for all the
time they need. The answer is 4

Question: Mark’s basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents
score double the 2 pointers but half the 3 pointers and free throws. What’s the total number of points
scored by both teams added together? Let’s think step by step Mark’s team scores 25 2 pointers,
meaning they scored 25*2= 50 points in 2 pointers. His team also scores 6 3 pointers, meaning they
scored 8*3= 24 points in 3 pointers They scored 10 free throws, and free throws count as one point so
they scored 10*1=10 points in free throws. All together his team scored 50+24+10= 84 points Mark’s
opponents scored double his team’s number of 2 pointers, meaning they scored 50*2=100 points in 2
pointers. His opponents scored half his team’s number of 3 pointers, meaning they scored 24/2= 12
points in 3 pointers. They also scored half Mark’s team’s points in free throws, meaning they scored
10/2=5 points in free throws. All together Mark’s opponents scored 100+12+5=117 points The total
score for the game is both team’s scores added together, so it is 84+117=201 points The answer is 201
... Therefore, 1000 - 480 = 520 do not like to play basketball. The percentage of the school that do not
like to play basketball is 520/1000 * 100 = 52 The answer is 52

18

Under review as submission to TMLR

/{ Tree-of-Thought Prompt Example }

Here’s a math word problem: [input]

Current solution steps:[partial solution]

What should be the next step in solving this problem?

Here’s a math word problem: [input]

Partial solution: [partial solution]

How likely is this partial solution to lead to the correct answer? (impossible/unlikely/likely/very like-
ly/certain)

Here’s a math word problem: [input]

Proposed final answer: [answer]

How likely is this answer to be correct? (impossible/unlikely /likely/very likely/certain)

/{ Graph-of-Thought Prompt Example }

<Instruction> Merge the following 2 sorted lists of length lengthl each, into one sorted list of length
length2 using a merge sort style approach. Only output the final merged list without any additional
text or thoughts!: < /Instruction>

<Approach> To merge the two lists in a merge-sort style approach, follow these steps: 1. Compare
the first element of both lists. 2. Append the smaller element to the merged list and move to the next
element in the list from which the smaller element came. 3. Repeat steps 1 and 2 until one of the lists
is empty. 4. Append the remaining elements of the non-empty list to the merged list. </Approach>
Merge the following two lists into one sorted list: 1: inputl 2: input2

Merged list:

- Self-Consistency Prompt Example |

You will be provided with the answer to a question. The question and options are delimited by triple
backticks, and the answer is delimited by triple hashtags. Extract the final answer from the provided
solution. Return only the letter corresponding to the chosen option (A, B, C, D, or E), prefixed by
"Final answer:’

/{ LLM Multi-Agent Debate Prompt Example }

Using the solutions from other agents as additional information, can you provide your answer to the
math problem? The original math problem is []. Your final answer should be a single numerical number,
in the form [answer], at the end of your response.

19

Under review as submission to TMLR

B Experimental Results

Table 4: Comparison of Benchmarks across Methods and Models.

Method Benchmarks Results
GPT-3.5-turbo GPT-40 Claude-3.5-Sonnet Mixtral 8x22B Llama-3.1-8B
GSMS8K 0.767 0.910 0.963 0.707 0.593
GSM-Symbolic 0.733 0.893 0.847 0.740 0.580
MMLU 0.630 0.760 0.840 0.760 0.667
AQUA 0.639 0.820 0.857 0.662 0.613
Unaided SVAMP 0.720 0.890 0.840 0.790 0.770
Sorting 032 0.961 0.992 0.985 0.968 0.818
Document Merging 0.702 0.858 0.858 0.740 0.600
Truthful QA 0.848 0.949 0.993 0.931 0.911
GSMS8K 0.700 0.960 1.000 0.900 0.745
GSM-Symbolic 0.753 0.920 0.940 0.853 0.764
MMLU 0.689 0.871 0.600 0.748 0.631
AQUA 0.740 0.860 0.920 0.860 0.760
Chain of Thought SVAMP 0.760 0.920 0.920 0.880 0.880
Sorting 032 0.960 0.992 0.951 0.768 0.850
Document Merging 0.711 0.825 0.862 0.766 0.600
Truthful QA 0.920 0.960 0.980 0.940 0.960
GSMSK 0.700 0.902 0.966 0.900 0.767
GSM-Symbolic 0.804 0.972 0.957 0.463 0.520
MMLU 0.795 0.867 0.845 0.844 0.800
AQUA 0.649 0.886 0.876 0.727 0.736
Self-Consistency SVAMP 0.875 0.854 0.886 0.840 0.500
Sorting 032 0.975 0.990 0.985 0.972 0.930
Document Merging 0.740 0.870 0.870 0.800 0.750
Truthful QA 0.680 0.900 0.920 0.840 0.780
GSMSK 0.760 0.960 0.980 0.920 0.857
GSM-Symbolic 0.873 0.933 0.867 0.800 0.630
MMLU 0.700 0.880 0.800 0.640 0.480
AQUA 0.600 0.900 0.900 0.671 0.400
ReAct SVAMP 0.730 0.920 0.880 0.820 0.800
Sorting 032 0.980 1.000 1.000 0.960 0.923
Document Merging 0.735 0.870 0.870 0.760 0.620
Truthful QA 0.780 0.880 0.980 0.900 0.900
GSMSK 0.640 0.950 0.970 0.860 0.760
GSM-Symbolic 0.707 0.751 0.521 0.794 0.647
MMLU 0.769 0.653 0.867 0.640 0.720
AQUA 0.670 0.881 0.867 0.740 0.660
Tree of Thoughts SVAMP 0.760 0.935 0.867 0.750 0.570
Sorting 032 0.982 0.998 0.998 0.985 0.881
Document Merging 0.814 0.898 0.881 0.873 0.774
Truthful QA 0.940 0.960 0.990 0.980 0.940
GSM8K 0.780 0.960 0.980 0.900 0.800
GSM-Symbolic 0.733 0.813 0.813 0.813 0.793
MMLU 0.440 0.680 0.600 0.700 0.500
AQUA 0.700 0.840 0.900 0.840 0.760
Graph of Thoughts SVAMP 0.800 0.920 0.940 0.900 0.820
Sorting 032 0.993 0.998 0.997 0.990 0.878
Document Merging 0.808 0.902 0.886 0.812 0.743
Truthful QA 0.960 0.960 0.980 0.960 0.980
GSM8K 0.810 0.920 0.904 0.780 0.610
GSM-Symbolic 0.833 0.823 0.971 0.901 0.650
MMLU 0.720 0.880 0.854 0.625 0.540
AQUA 0.680 0.960 0.780 0.800 0.640
LLM Multi-Agent Debate SVAMP 0.902 0.958 0.916 0.833 0.800
Sorting 032 0.989 0.998 0.997 0.990 0.960
Document Merging 0.780 0.890 0.870 0.830 0.785
Truthful QA 0.800 0.880 0.900 0.920 0.880

20

	Introduction
	Related Work
	Evaluations in the Literature
	Literature selection
	Benchmarks
	Models

	Experiments
	Methods Evaluated
	Setup

	Results
	Performance of Inference-Time Methods
	Reproducibility
	Cost

	Discussion
	Experimental Prompts
	Experimental Results

