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Abstract

The multifaceted challenge of accurately mea-001
suring gender bias in language models is akin002
to discerning different segments of a broader,003
unseen entity. This short paper mainly fo-004
cuses on intrinsic bias mitigation and measure-005
ment strategies for language models, building006
on prior research that demonstrate a lack of007
correlation between intrinsic and extrinsic ap-008
proaches. We delve deeper into the realm of009
intrinsic measurements, identifying inconsis-010
tencies and positing that these metrics might re-011
flect diverse facets of gender bias. Our method-012
ology encompasses an analysis of data distri-013
bution across benchmarks coupled with the im-014
plementation of an intricate gender bias cate-015
gorization derived from social psychology. Ad-016
justments made to the distributions of the two017
datasets lead to significant enhancement in the018
alignment of their outcomes. Our findings not019
only underscore the complexity inherent in gen-020
der bias in language models but also forge new021
paths toward more refined techniques for bias022
detection and reduction. 1023

1 Introduction024

Due to its critical importance, the endeavor to mea-025

sure and reduce gender bias in language models026

has recently gained substantial interest (Silva et al.,027

2021; Kaneko and Bollegala, 2021; Lauscher et al.,028

2021; Zhao et al., 2018; Webster et al., 2020). How-029

ever, despite these advancements, a persistent ob-030

servation is the inconsistency among metrics eval-031

uating stereotypical bias (Goldfarb-Tarrant et al.,032

2021; Orgad et al., 2022). This recurring observa-033

tion highlights a crucial gap in comprehending the034

nuances of bias dynamics within language models.035

Cao et al. (2022) suggested that issues such as mis-036

alignment in data distribution might contribute to037

the inconsistent conclusions from various metrics,038

1The dataset, available to reviewers as supplementary ma-
terial, will be publicly released upon the paper’s publication.

StereoSet
Stereotype He's a brute, just like a typical male.

Anti-Stereotype He's a softy, just like a typical male.

Annotation Personality Traits
General characteristics that are attributed to a
gender group

CrowS-Pairs

Stereotype It was his wife's duty to wash the dishes.

Anti-Stereotype It was her husband's duty to wash the dishes.

Annotation Roles and Behaviors
Actions and activities typically associated
with a gender group

Figure 1: Representative samples from StereoSet and
CrowS-Pairs (the two datasets examined in this work)
that highlight the distinct thematic focus of each dataset.
StereoSet predominantly features sentences related to
personality traits, i.e., psychological characteristics as-
sociated with different genders. In contrast, CrowS-
Pairs primarily focuses on roles and behaviors, i.e., ob-
servable, temporally consistent actions and patterns.

though their investigation in this area was some- 039

what limited. In this work, we aim to expand on 040

this area, with a particular focus on intrinsic metrics 041

and their interrelationships. 042

Our study specifically examines two widely rec- 043

ognized intrinsic stereotyping metrics: StereoSet 044

(Nadeem et al., 2021) and CrowS-Pairs (Nangia 045

et al., 2020). We begin by highlighting the incon- 046

sistencies in the results yielded by the two metrics, 047

despite them sharing a common definition of bias. 048

Building on this, we put forth the hypothesis that 049

the influence of data distribution on bias quantifica- 050

tion may be more critical than previously consid- 051

ered. To investigate this hypothesis, we incorpo- 052

rate fine-grained gender stereotype subcategories, 053

derived from social psychology. This detailed ex- 054

amination reveals that the datasets used by these 055

metrics display markedly different sample distribu- 056

tions. 057

The aim of our analysis is to assess whether a 058
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more nuanced and carefully structured data compo-059

sition can substantially affect the consistency and060

reliability of intrinsic bias metrics. We demonstrate061

that even a basic rebalancing of data, adhering to062

a structured framework, can significantly improve063

the alignment between StereoSet and CrowS-Pairs,064

underlining the importance of balanced data for065

metric coherence and reliability.066

2 Related Works067

2.1 Gender Bias068

The investigation into stereotypes, including those069

based on gender, mainly originates from the field070

of social psychology (Lippman, 1922). Early071

research broadly categorized gender into “men”072

and “women,” focusing on the terms and concepts073

linked to these categories (Broverman et al., 1972).074

As research evolved, there was a shift towards075

recognizing more nuanced subcategories of gen-076

der, indicating a more sophisticated grasp of gen-077

der stereotypes (Eckes, 1994). A pivotal study078

by Deaux and Lewis (1984) explored the various079

facets of gender stereotyping, analyzing the inter-080

action of these aspects within the larger framework081

of societal perceptions of gender.082

This evolution towards a more refined under-083

standing of gender stereotypes in social psychology084

mirrors a similar progression in the field of Natu-085

ral Language Processing (NLP). Initial gender bias086

studies in NLP mirrored the broad categorizations087

of traditional social psychology (Islam et al., 2016;088

Bolukbasi et al., 2016). Recently, however, there089

has been a shift towards addressing more specific090

gender subtypes and complexities (Felkner et al.,091

2023).092

This study builds on these foundations, integrat-093

ing insights from social psychology into NLP to094

deepen our understanding of gender bias in lan-095

guage models. By bridging these fields, we aim096

to refine bias evaluation metrics in NLP, recogniz-097

ing gender stereotype as a complex, multifaceted098

phenomenon.099

2.2 Consistency of Bias Metrics100

The techniques to mitigate and measure bias in101

NLP models are generally categorized into two102

main approaches: intrinsic and extrinsic. Intrinsic103

methods directly engage with the language model-104

ing task to tackle bias (Nangia et al., 2020; Nadeem105

et al., 2021), while extrinsic methods focus on106

downstream tasks, often targeting the outputs of107

the classifiers built on top of a language model 108

(De-Arteaga et al., 2019). 109

One might expect that addressing bias through 110

either intrinsic or extrinsic methods would improve 111

a model’s fairness across various evaluation met- 112

rics. However, recent studies have begun to reveal 113

that this assumption may not hold true. Research 114

led by Goldfarb-Tarrant et al. (2021) unveiled a sur- 115

prising disconnect: intrinsic debiasing techniques 116

and their measurable impacts on bias, as captured 117

by intrinsic bias metrics like WEAT (Islam et al., 118

2016), do not align with the biases manifesting in 119

practical applications such as co-reference resolu- 120

tion and hate speech detection. This observation 121

was further supported by Orgad et al. (2022), who 122

discovered a similar lack of correlation but in the 123

reverse direction. Their work demonstrated that 124

even when bias is mitigated extrinsically in tasks 125

like occupation classification, it does not always 126

reflect in intrinsic bias metrics such as CEAT (Guo 127

and Caliskan, 2021). Cao et al. (2022) added to this 128

discourse by suggesting that intrinsic and extrin- 129

sic measures often operate independently, without 130

any significant correlation in their outcomes. They 131

proposed that aligning the definitions of bias, pro- 132

tected groups, and evaluation datasets could be key 133

to bridging this gap. 134

Building on these insights, our study delves into 135

the intricacies of intrinsic bias mitigation and mea- 136

surement within NLP. We aim to investigate the 137

relationships–or lack thereof–between different in- 138

trinsic bias measurement and mitigation strategies, 139

hoping to shed light on how these techniques can 140

be more effectively aligned and applied. 141

3 Correlation Analysis 142

Our analysis focuses on two widely used bench- 143

marks for the intrinsic evaluation of encoded biases: 144

StereoSet and CrowS-Pairs, specifically honing in 145

on the gender stereotype subcategory within these 146

datasets. Given that both StereoSet and CrowS- 147

Pairs are tailored for evaluating encoder models, 148

we selected a range of models from this family, in- 149

cluding BERT base and large (Devlin et al., 2019), 150

RoBERTa base (Liu et al., 2019), and ALBERT 151

large (Lan et al., 2020), to ensure a comprehen- 152

sive examination across different sizes and training 153

methodologies.2 154

Additionally, we examined various intrinsically 155

2Our model selection was mainly limited by the availability
of debiased model weights.
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debiased variants of the aforementioned models,156

utilizing techniques such as counterfactual data157

augmentation (Zhao et al., 2018, CDA), adapter158

modules (Lauscher et al., 2021, ADELE), ad-159

justments in dropout parameters (Webster et al.,160

2020), and orthogonal gender subspace projection161

(Kaneko and Bollegala, 2021). These methods rep-162

resent a broad spectrum of novel approaches to mit-163

igating encoded bias. Detailed information about164

the models and the sources of their weights can be165

found in Appendix C.166

3.1 Dataset Refinement167

Acknowledging the critical role of dataset integrity168

in our analysis, we implemented measures to re-169

duce noise and other confounding factors in the170

evaluation datasets, drawing on recommendations171

from Blodgett et al. (2021). More details about172

this process are provided in Appendix B. Moreover,173

to rule out the impact stemming from differences174

in metrics, we standardized the evaluation setting175

across the two metrics. Notably, StereoSet incor-176

porates a language modeling score in its final as-177

sessment, penalizing models that perform poorly178

in language modeling objectives. However, CrowS-179

Pairs employs a pseudo-log-likelihood calculation,180

argued to be more reliable due to its incorporation181

of word occurrence frequencies. For our analy-182

sis, we opted for the pseudo-likelihood calculation,183

focusing solely on stereotyping behavior without184

considering other model attributes.185

3.2 Experimental Findings186

To assess the effectiveness of bias measurement187

metrics, numerous comparative approaches can be188

employed. A straightforward method might involve189

directly contrasting the outcomes derived from two190

distinct metrics across various models and their191

debiased counterparts. Yet, we posit that a more192

insightful comparison focuses on the variations in193

metric outcomes resulting from the application of194

debiasing techniques to baseline (vanilla) models.195

Accordingly, our strategy involved calculating the196

differential impact of debiasing on the models by197

comparing the scores from the two metrics of each198

debiased model against its vanilla equivalent. This199

approach allows us to observe not just the raw met-200

ric scores but the relative change induced by debi-201

asing efforts, offering a clearer lens through which202

to examine the efficacy and alignment of bias mea-203

surement metrics. This method is premised on the204

expectation that if the metrics are congruent and205
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Figure 2: Correlation between the adjusted results (dif-
ference between debiased models and their vanilla coun-
terparts) of CrowS-Pairs and StereoSet, both prior to
and following the balancing of their distributions. Each
point on the plot represents the outcome of a model vari-
ant. For a comprehensive breakdown of these results,
please refer to Table 3 in the Appendix.

effectively measuring the same aspect of bias, then 206

the changes they register upon debiasing should 207

exhibit a significant degree of correlation. 208

Following our dataset refinement efforts, we 209

observed that the outcomes from StereoSet and 210

CrowS-Pairs exhibit a lack of correlation. A Pear- 211

son correlation analysis yielded a mere 0.13 across 212

all model comparisons (see results in Figure 2). 213

This finding opens a Pandora’s box of questions 214

regarding the nature and effectiveness of these eval- 215

uation metrics. The most pressing questions in- 216

clude: Why do these metrics, even after extensive 217

adjustments, fail to correlate? Considering their 218

shared goal of measuring stereotypes in language 219

models, what causes this disconnect? And what are 220

the broader implications of this lack of correlation? 221

4 Divergence in Dataset Distributions 222

We hypothesized that the divergent perspectives 223

of StereoSet and CrowS-Pairs, reflected in their 224

sample distributions, significantly contribute to the 225

lack of correlation seen in our preliminary findings. 226

Inspired by core principles from social psychology, 227

we developed a framework focused on essential 228

gender aspects to examine the distribution patterns 229

across the two datasets. 230
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4.1 Dimensions of Gender Stereotyping231

Recognizing gender stereotypes as complex, multi-232

faceted constructs highlights their significant yet233

nuanced impact on shaping perceptions. Inspired234

by this understanding, we introduce a framework235

designed to examine gender bias within NLP236

datasets, integrating key social psychology theories237

with our analytical insights. Our framework merges238

the categories proposed by Deaux and Lewis (1984)239

and Eckes (1994) with observations from our com-240

prehensive analysis of bias in datasets. This synthe-241

sis results in four distinct, identifiable dimensions:242

• Personality Traits: Stable, individual psycho-243

logical characteristics that attributed differ-244

ently to genders.245

• Attitudes and Beliefs: Value judgments and246

beliefs about various social issues and targets.247

• Roles and Behaviors: Actions and activities248

commonly associated with specific gender249

groups, including occupations, roles, overt250

behaviors, and behavioral preferences.251

• Physical Characteristics: Biases related to252

appearance and physical strength.253

4.2 Experimental Findings254

In the StereoSet and CrowS-Pairs datasets, sen-255

tence pairs with perturbations were specifically de-256

signed to challenge models with societal stereo-257

types, thereby uncovering embedded biases. Our258

approach posited that these stereotypes fall into259

one of the four gender stereotype components we260

defined. We conducted a thorough review of 266261

sentences that were refined and enhanced as de-262

scribed in Section 3.1, to assess their congruence263

with our gender stereotype framework. This evalu-264

ation process demanded a high degree of diligence,265

necessitating a deep dive into each sentence’s im-266

plications within the complex matrix of societal267

norms and stereotypical representations.268

Figure 3 shows the distribution of instances in269

the two datasets across the four dimensions. Our270

analysis highlighted the significant gap between271

the compositions of the two datasets: StereoSet272

predominantly explores stereotypes related to per-273

sonality traits with more than half of the instances274

belonging to this dimension (9.3% of instances in275

CrowS-Pairs lie within this category). On the con-276

trary, CrowS-Pairs focuses on roles and behaviors277

with nearly half of its instances (compared to 12.8%278

for StereoSet).279

0 20 40 60 80 100
Percentage (%)

StereoSet

CrowS-Pairs

51.351.3 24.824.8 12.812.8 11.111.1

9.39.3 34.734.7 48.748.7 7.37.3

Personality Traits

Attitudes and Beliefs

Roles and Behaviors
Physical Characteristics

Figure 3: Distribution of samples across gender stereo-
typing components in the two datasets.

To explore the influence of dataset distribution 280

on the lack of correlation between StereoSet and 281

CrowS-Pairs outcomes, we balanced the datasets 282

for equitable representation across gender stereo- 283

type components and re-evaluated the models. This 284

process, illustrated in Figure 2, significantly in- 285

creased the Pearson correlation from 0.13 to 0.59, 286

confirming that disparities in dataset distribution 287

are pivotal in determining the outcomes of evalu- 288

ation metrics. This finding not only supports Cao 289

et al. (2022)’s observations about the critical need 290

for dataset alignment in bias measurement but also 291

emphasizes that without aligned datasets, expect- 292

ing correlated results between different metrics be- 293

comes untenable. Our study highlights the essential 294

role of dataset harmonization in achieving reliable 295

bias measurement across metrics, proposing a uni- 296

fied approach to enhance the integrity of bias re- 297

search in NLP. 298

5 Conclusions 299

In this focused study, we examined how different 300

perspectives of two gender stereotyping datasets 301

can lead to significantly divergent outcomes. The 302

application of gender stereotype components from 303

social psychology to balance these datasets signifi- 304

cantly boosted the alignment of the corresponding 305

intrinsic metrics, emphasizing the critical role of 306

dataset composition in bias evaluation. Our find- 307

ings enrich the overarching discourse on gender 308

bias in language models, underscoring that bias 309

is a complex, multifaceted issue. It necessitates a 310

sophisticated approach to accurately measure and 311

effectively mitigate, highlighting the intricate inter- 312

play between dataset construction and bias evalua- 313

tion. 314
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Limitations315

Our investigation in this study was concentrated on316

gender stereotypes within language models, specif-317

ically examining the two most renowned metrics318

in this domain. While our study provides valuable319

insights, it acknowledges several avenues for broad-320

ening its scope. Future research could diversify321

by incorporating additional bias and/or stereotype322

metrics, extending analyses to languages beyond323

English, broadening the spectrum of stereotypes324

examined beyond the confines of gender, and em-325

ploying a wider array of models. However, each326

of these potential expansions would entail a sig-327

nificant escalation in both the time and financial328

resources required for data annotation and model329

evaluation—resources that were beyond our capac-330

ity for this particular study. Despite these con-331

straints, we endeavored to conduct a thorough in-332

vestigation within our chosen focus area, laying333

a foundation for more comprehensive inquiries in334

future research endeavors.335

Broader Impact336

This study underscores the importance of metrics337

in identifying and mitigating biases in Natural Lan-338

guage Processing (NLP), essential for preventing339

the perpetuation of societal biases through lan-340

guage technologies. The vulnerabilities identified341

in data annotation and metric methodologies high-342

light the risk of biases influencing NLP applications343

and reinforcing societal prejudices. By examining344

the limitations of current bias measurement tools,345

our research aims to foster the development of more346

robust and reliable metrics, contributing to the ad-347

vancement of equitable and unbiased language tech-348

nologies. Our findings advocate for enhanced tools349

and methods for bias detection and mitigation, as-350

piring to positively impact future NLP research and351

society at large.352
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Appendix

A Licensing534

The StereoSet and CrowS-Pairs datasets utilized535

in this research are published under Creative Com-536

mons licenses, permitting their use for scientific537

studies like ours. In keeping with this open-access538

spirit, the datasets refined through our analysis will539

also be released under a Creative Commons license540

and made available online for academic use. This541

ensures our contributions can be freely used, dis-542

tributed, and built upon by the research community,543

facilitating further advancements in the study of544

bias in natural language processing.545

B Enhancing Dataset Integrity546

In our detailed examination of gender bias within547

language models, we embarked on a rigorous548

alignment process for the StereoSet and CrowS-549

Pairs datasets, aiming for a standardized evaluation550

framework. This endeavor was significantly guided551

by the meticulous guidelines provided by Blodgett552

et al. (2021), focusing on the annotation and cor-553

rection of potential pitfalls to preserve the integrity554

of our analysis.555

A critical aspect of our methodology was ensur-556

ing the anonymity of the sentence pairs’ source557

during the annotation process. To mitigate any po-558

tential bias from the annotators based on dataset559

origin, sentences from both StereoSet and CrowS-560

Pairs were randomly shuffled into one pool. This561

approach ensured that the annotators were blind to562

whether a sentence originated from StereoSet or563

CrowS-Pairs, facilitating an unbiased labeling and564

editing process.565

During this process, we observed that CrowS-566

Pairs predominantly used names as proxies for gen-567

der, differing from StereoSet’s approach, which568

relied on gendered words. To ensure consistency in569

the representation of gender across both datasets,570

we adapted the CrowS-Pairs sentences, substitut-571

ing name perturbations with gendered nouns. This572

adjustment was made to mirror StereoSet’s method-573

ology more closely, thereby facilitating a more uni-574

form analysis framework.575

Another notable distinction was the type of per-576

turbation each dataset employed. CrowS-Pairs fo-577

cused on subject perturbations as a means to evalu-578

ate model behavior, whereas StereoSet utilized ad-579

jective perturbations. This difference underscored 580

the diverse strategies in probing language models 581

for bias, necessitating careful consideration to align 582

our evaluation metrics. 583

Incorporating Blodgett et al. (2021)’s guidelines 584

was instrumental in navigating these dataset intri- 585

cacies. By addressing and correcting pitfalls, re- 586

placing names with gendered noun perturbations in 587

CrowS-Pairs, and acknowledging the perturbation 588

strategies’ impact, we prepared the datasets for a 589

comparative analysis that is both thorough and sen- 590

sitive to the nuances of gender bias. This ground- 591

work ensures our evaluation not only respects the 592

original dataset’s intentions but also aligns with our 593

goal of providing a detailed and harmonized exam- 594

ination of gender bias across language models. 595

C Resources and Material Sources 596

In this section, we detail the foundational compo- 597

nents that underpin our experimental framework, 598

delineating the origins and specifications of the 599

resources utilized throughout our study. 600

C.1 Models 601

This subsection outlines the models used in our 602

study, categorizing them into vanilla and debiased 603

variants to provide a comprehensive overview of 604

the computational tools that facilitated our analysis 605

of gender bias in language models. For the vanilla 606

models, we utilized the following pretrained ver- 607

sions available on Hugging Face: 608

• BERT-base-uncased: 609

https://huggingface.co/google-bert/bert- 610

base-uncased 611

• BERT-large-uncased: 612

https://huggingface.co/google-bert/bert- 613

large-uncased 614

• RoBERTa-base: 615

https://huggingface.co/FacebookAI/roberta- 616

base 617

• ALBERT-large: 618

https://huggingface.co/albert/albert-large-v2 619

Debiased models were sourced and trained as fol- 620

lows: 621
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• Scratch-trained BERT-large and ALBERT-622

large models, employing CDA and Dropout623

debiasing techniques, were provided by624

Webster et al. (2020) under Google Re-625

search: https://github.com/google-research-626

datasets/Zari.627

• Debiased variants of BERT-base and628

ROBERTa-base, utilizing orthogonal629

projection debiasing, were acquired630

from Kaneko and Bollegala (2021):631

https://github.com/kanekomasahiro/context-632

debias.633

Further, we extended the debiasing efforts to other634

models by continuing the training of the vanilla ver-635

sions according to best practices outlined by promi-636

nent researchers in the field. Our debiasing process637

was informed by the empirical guidelines of Meade638

et al. (2022) and Lauscher et al. (2021), utilizing639

10% of the Wikipedia corpus for training data. For640

ADELE and CDA techniques, we generated a two-641

way counterfactual augmented dataset, mirroring642

the approach used by Webster et al. (2020) for643

BERT and ALBERT models. The debiased vari-644

ants of BERT-base, BERT-large, and RoBERTa-645

base using CDA and Dropout were successfully646

trained. For the ADELE debiasing technique,647

adapter-transformers library (Pfeiffer et al., 2020)648

facilitated the training of ADELE debiased variants649

for BERT-base, BERT-large, and RoBERTa-base650

models, showcasing our comprehensive approach651

to mitigating gender bias across a spectrum of lan-652

guage models.653

C.2 Evaluation Code and Datasets654

In assessing the performance and bias of our mod-655

els, we relied on critical resources for both datasets656

and evaluation frameworks, as detailed below.657

For the StereoSet dataset, our primary re-658

source was the version of this dataset provided659

by Meade et al. (2022), accessible through660

the McGill NLP group’s GitHub repository:661

https://github.com/McGill-NLP/bias-bench. This662

repository offers the full StereoSet dataset, serving663

as a cornerstone for evaluating gender stereotypes664

within our selected language models.665

The evaluation code and dataset for CrowS-Pairs666

were sourced directly from its dedicated GitHub667

repository: https://github.com/nyu-mll/crows-pairs.668

This resource facilitated our analysis by providing669

a structured framework for assessing bias across670

various dimensions within language models.671

All operations, including extensions to these re- 672

sources, were conducted using the transformers 673

library (Wolf et al., 2020), ensuring our methods 674

were built on a robust and widely adopted NLP 675

framework. 676
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StereoSet CrowS-Pairs
Post-Labeling Post-Balancing Post-Labeling Post-Balancing

Personality Traits 60 11 14 14
Attitudes and Beliefs 29 29 52 37
Roles and Behaviors 15 15 73 19
Physical Characteristics 13 9 11 11

Table 1: Gender Stereotype Components Statistics Overview

Source Annotated Post-Labeling Post-Balancing

StereoSet 225 117 81
Crows-Pairs 184 149 64

Total 409 266 145

Table 2: Dataset Statistics Overview

9



Model Pre-Balance Post-Balance
Crows-Pairs StereoSet Crows-Pairs StereoSet

BERT-large Vanilla 60.0 58.1 61.0 58.9
BERT-large CDA Scratch 56.0 ↓4.0 59.0 ↑0.9 59.7 ↓1.4 61.4 ↑2.5

BERT-large CDA Finetuned 54.0 ↓6.0 59.8 ↑1.7 58.4 ↓2.6 60.2 ↑1.3

BERT-large Dropout Scratch 54.0 ↓6.0 53.9 ↓4.3 56.4 ↓4.6 57.5 ↓1.4

BERT-large Dropout Finetuned 57.3 ↓2.7 55.6 ↓2.6 60.3 ↓0.7 58.8 ↓0.1

BERT-large ADELE 60.0 61.5 ↑3.42 60.7 ↓0.3 57.8 ↓1.1

BERT-base Vanilla 61.3 65.0 66.2 67.2
BERT-base CDA Finetuned 54.7 ↓6.7 60.7 ↓4.3 55.4 ↓10.8 59.9 ↓7.3

BERT-base Dropout Finetuned 56.0 ↓5.3 59.0 ↓6.0 61.1 ↓5.0 62.7 ↓4.6

BERT-base Orthogonal Projection 55.3 ↓6.0 53.0 ↓12.0 57.0 ↓9.2 55.0 ↓12.2

BERT-base ADELE 56.67 ↓4.7 67.5 ↑2.6 58.822 ↓7.3 66.2 ↓1.0

RoBERTa-base Vanilla 56.7 65.0 58.7 62.6
RoBERTa-base CDA Finetuned 55.3 ↓1.3 59.0 ↓6.0 55.5 ↓3.2 61.0 ↓1.6

RoBERTa-base Dropout Finetuned 57.3 ↑0.7 64.1 ↓0.9 60.9 ↑2.2 65.2 ↑2.5

RoBERTa-base Orthogonal Projection 56.7 59.8 ↓5.1 59.6 ↑0.9 62.2 ↓0.4

RoBERTa-base ADELE 56.7 65.0 58.7 ↑2.0 62.5 ↓0.1

ALBERT-large Vanilla 55.3 61.5 56.4 64.6
ALBERT-large CDA Scratch 54.7 ↓0.7 52.1 ↓9.4 54.7 ↓1.7 54.5 ↓10.1

ALBERT-large Dropout Scratch 50.0 ↓5.3 59.8 ↓1.7 52.9 ↓3.5 54.7 ↓9.9

Table 3: Comparison of pre-balance and post-balance results. An optimal score approaches 50, indicating neutrality.
Scores significantly above or below this threshold imply a bias towards one group. The post-balance analysis was
performed on datasets that were balanced through down-sampling, using five different seeds to mitigate randomness
in the outcomes.
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