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Abstract

Predicting rheumatoid arthritis (RA) in an early-stage based on MRI can help initiate
timely treatment and therefore halt the progression of the disease and increase the pos-
sibility of recovery. Deep learning methods are in general highly suitable for this type of
labeling tasks. However, applying this approach to RA detection faces challenges from the
lack of a large number of samples, difficulty in distinguishing patterns of RA from imag-
ing artifacts, and a wide anatomical variation, leading to the failure of transfer learning
based on pre-trained models. In this paper, a pre- and post-training method for this few-
shot task is proposed. Based on the clinical MRI data, this method was validated through
cross-validation, achieving a significant improvement in AUC, F1 score, and accuracy to the
baseline deep learning models. Since these pre- and post-training strategies are intuitive,
effective and easy to implement, they can also contribute to other challenging few-shot
medical tasks.
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1. Introduction

Predicting rheumatoid arthritis (RA) through deep learning methods based on magnetic
resonance imaging (MRI) faces serious overfitting, which requires numerous labeled data.
However, this is not realistic for most clinical tasks. Moreover, pre-training models based
on natural images also fails in this few-shot task.
The purpose is therefore to provide a framework to train neural network models for early RA
prediction. As a first step, the aim of this paper is to distinguish patients with clinically
suspect arthralgia (CSA) from normal controls. Within this framework, a masked auto-
encoder reconstruction is introduced to stimulate the model to learn the underlying patterns.
Besides, an augmentation-based consistency loss function is proposed to make the model
independent of irrelevant information in the data.
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2. Methodology

The MRI scans contain both coronal and transversal 3D scans from the wrists of patients
from the CSA group, and the control group. Considering the total number of MRI scans
(789 patients and 177 controls), the sample size, and low resolution in the Z-direction (512
× 512 × 20), the central slices of coronal scans were used, which can also benefit from a
pre-trained model.

2.1. Masked autoencoder-based reconstruction
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Figure 2.1: The workflow of the reconstruction agent task design.

Inspired by the masked auto-encoder (He et al., 2021) and the model genesis (Zhou et al.,
2019), as shown in Figure 2.1, we defined an agent task that requires the auto-encoder model
to reconstruct the original images with randomly masked images as input.
The model can achieve a good reconstruction on the masked images from the test set with
a mask ratio of 75%. After this pre-training process, we transferred the parameters of the
encoder of this reconstruction model to the RA prediction model.

2.2. Augmentation-based consistency loss post-training process

While the reconstruction pre-training process is trying to get the model well-initialized, this
post-training process is aimed at improving the consistency of output predictions of images
before and after using augmentation methods.
This method is based on an observation that there is a significant inconsistency between the
prediction output probabilities of an image and its augmented image, which reveals that
much irrelevant spatial information remains in the model output.

Instead of inputting the original image and augmented image separately in two epochs, we
propose to individually input both of them into the model in one epoch, and then calculate a
mean squared error loss between the output prediction of these two images. The procedure
is shown in Figure 2.2.
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Figure 2.2: The workflow of the post-training procedure.

3. Experimental Results

The results shown in Table 1 are the average performances from the standard 5-fold cross-
validation. The baseline model is the VGG16 with normalization, which has a similar
encoder to U-Net that can be easily modified to an autoencoder structure. Besides, after
some early attempts, we found that VGG-based models have overall better performances
than ResNet-based models.

Table 1: the average performances
Spatial augmentation Masked reconstruction ImageNet pretrain Consistency loss AUC F1 score Acc

0.72 0.62 66.7%
Y 0.75 0.58 69.2%
Y Y 0.69 0.64 65.5%

Y 0.79 0.73 72.4%
Y Y 0.80 0.72 73.2%
Y Y 0.79 0.73 74.5%
Y Y Y 0.81 0.75 76.2%

According to Table1, the model with masked reconstruction pre-training and augmentation-
based post-training shows a significantly better performance than the baseline model and
ImageNet pre-trained model, which illustrates the effectiveness of this framework.

4. Conclusion

We proposed a framework to train neural network models for early RA diagnosis, which
can also be easily extended to other few-shot challenging diagnosis tasks. According to
the AUC, F1 score, and accuracy of all the models, this proposed framework significantly
improves the prediction results of the deep learning models.
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