
Abstract

By training linear physical networks to learn linear transformations, we discern1

how their physical properties evolve due to weight update rules. Our findings2

highlight a striking similarity between the learning behaviors of such networks3

and the processes of aging and memory formation in disordered and glassy sys-4

tems. We show that the learning dynamics resembles an aging process, where the5

system relaxes in response to repeated application of the feedback boundary forces6

in presence of an input force, thus encoding a memory of the input-output rela-7

tionship. With this relaxation comes an increase in the correlation length, which is8

indicated by the two-point correlation function for the components of the network.9

We also observe that the square root of the mean-squared error as a function of10

epoch takes on a non-exponential form, which is a typical feature of glassy sys-11

tems. This physical interpretation suggests that by encoding more detailed infor-12

mation into input and feedback boundary forces, the process of emergent learning13

can be rather ubiquitous and, thus, serve as a very early physical mechanism, from14

an evolutionary standpoint, for learning in biological systems.15

Emergent learning in physical systems as feedback-based aging in a glassy16

landscape17

Vidyesh Rao Anisetti,1 Ananth Kandala,2 J. M. Schwarz1,318
1Physics Department, Syracuse University, Syracuse, NY 13244 USA19
2Department of Physics, University of Florida, FL 32611-8440, USA20

3Indian Creek Farm, Ithaca, NY 14850 USA21

(Dated: October 4, 2023)22

I. INTRODUCTION23

Given the prevalence of emergent behavior, physicists, computer scientists, and biologists have long24

asked whether or not some subset of emergent behavior results in the capacity of a system of many25

interacting components to learn, i.e., to have intelligence [1, 2]. While there has been much focus26

looking for emergent learning in brain-like systems, such as neuronal networks in biology or artifi-27

cial neural networks in physics and computer science, recent research has demonstrated that simple28

physical systems, such as a spring network, have the potential to exhibit learning behavior similar29

to that of artificial neural networks [3–9]. In this context, learning refers to the ability to modify30

the properties of a physical system by adjusting its learning degrees of freedom in order to more31

efficiently achieve some task. For example, in a spring network, the spring stiffness and rest lengths32

represent the learning degrees of freedom, while the nodes of the springs correspond to the usual33

physical degrees of freedom.34

In these physical learning systems, once input boundary nodes, output boundary nodes, and a cost35

function are all chosen, the learning process is composed of two steps; 1) Signaling : System’s36

response to a given input is compared with the desired output and an update signal is sent which37

provides information on the necessary adjustments to each learning degree of freedom, so that the38

system’s response aligns more closely with the desired output. 2) Weight update : Each learning39

degree of freedom, or weight, is updated in response to the update signal. This weight update should40

allow the system to perform gradient descent. The two steps are repeatedly applied to train the41

system to learn.42

The major challenge applying this algorithm is to find physical processes that implement the above43

two steps. While methods such as Equilibrium Propagation (EP) [4], Multi-mechanism Learning44

(MmL) [3, 5], and Coupled Learning (CP) [6] have made strides in addressing this challenge, they45

are not entirely physical in nature. In particular, the learning stages involved, Signaling and Weight46

update, require the artificial modifications to the physical system. For instance, in EP and CL,47

to send the gradient information into the system, one needs to store the free state in some memory,48

which is not possible in typical systems such as spring networks or resistor networks. In our previous49

2

work unveiling MmL, we demonstrated that this issue of memory storage could be addressed by50

encoding the feedforward and feedback signal into two non-interfering physical quantities [3, 5].51

Despite this demonstration, however, a significant problem remains: we do not know of any physical52

process that can update the weights in the system. To physically implement weight updates, recent53

experimental efforts have resorted to using complex components such as transistors in the training54

of electrical networks [10, 11], and actuators and sensors in mechanical networks [12]. Yet, the55

reliance on such intricate and varied tools introduces challenges in terms of scalability and robust-56

ness in these approaches. Here, we explore the central question: Do effects of the weight update57

procedure resemble any natural physical phenomena? The answer to such a question will point us58

in the direction of a fully physical learning system, weight update included. To begin to answer59

this question, we train linear physical networks and investigate how the physical properties of this60

system change, given the weight update rule.61

Our manuscript consists of revisiting our MmL training procedure, as detailed in our prior work [3,62

5], in a general manner that emphasizes its physical plausibility in Section II. Results are then63

presented in Section III. We conclude with a discussion of the impact of our results. (We also64

review the specifics of multi-mechanism learning in Appendix A, followed by data generation and65

network generation in Appendix B.)66

II. THE LEARNING PROCESS67

We now demonstrate the process of physical learning within our system. Initially, we impose an68

input boundary condition, denoted by I . The system’s response is then captured by the Laplace69

equation Lv = I , where L is Laplacian, which depends on the learning degrees of freedom w, and70

v is the state of the system. To attain its intended functionality, the system need to update w to71

minimize the cost function C(v(w)). We encode the cost function as an interaction energy between72

the system and the environment. This energy causes a feedback boundary condition of the form73

−η
∂C(v)

∂v
to act on the system, due to which the state of the system evolves along a direction that74

decreases C(v):75

L(v + δv) = I − η
∂C(v)

∂v
. (1)

For a mechanical network, these input and feedback boundary conditions are applied as external76

stresses on the system. When the feedback stress is removed, the system tends to revert to its initial77

state v. However, with continuous exposure to feedback boundary forces, there’s a lasting change in78

the system’s learning degrees of freedom. This change is akin to a plastic deformation in materials79

where repeated stress leads to permanent alterations.80

Note that unlike the input boundary condition, the feedback boundary condition is a function of the81

state of the system. As a result, there exists an optimal state where the system experiences minimal82

feedback stress. Our hypothesis is that, through repeated application of these feedback stresses, the83

system’s learning parameters w evolve such that this optimal state is reached. The objective of this84

evolution is to minimize the external stress −η
∂C(v)

∂v
, by changes in state of the system v, through85

changes in w. This adaptation is represented as:86

∆wij = −αη
∂C(w)

∂wij
, (2)

where C is a function of w via C(v(w)). In our previous work [3], we showed that the above weight87

update rule can be written purely in terms of local physical quantities88

∆wij = −αvijδvij . (3)

Where, wij is the weight connecting nodes (i, j), and vij is the potential drop vi − vj , δvij is89

the change in this potential drop due to feedback[13]. Intriguingly, this learning rule exhibits a90

Hebbian-like behavior.91

92

Due to the evolution of the learning degrees of freedom, once reaching steady state, the sys-93

tem’s response is :94

3

FIG. 1. Training linear networks to learn linear transformations. [1a & 1b] : Network undergoes trimming. A
network with 40 nodes and 390 edges is trained to learn a linear transformation of size 10 × 10. Weights of
the network are uniformly sampled from [10−5, 0.2]. Colorbar on right shows weight values of each edge. [1c]
Non-exponential relaxation : Training curve for the case shown in 1a and 1b but for 50 different initializations
(shown in green). Y axis shows error defined as square root of mean square error, X axis shows epoch. In one
epoch the network goes through 100 data points . All green curves are obtained after normalization with their
respective inital errors. The blue curve shows the average over these 50 runs. The blue curve is fit to a non-
exponential curve of the form a+ be−λ·tβ . Fit parameters are shown in the legend. β > 1 shows the relaxation
shows a compressed exponential behaviour. The sum of squared residuals (SSR) is used to assess the goodness
of fit, it is defined as: SSR =

∑n
i=1(y

fit
i − ydata

i)2 [1d] Eigenvalues decrease while learning: Eigenvalues of
graph Laplacian before and after training for runs shown in 1c. These initial and final eigenvalues are averaged
over those 50 runs. The eigenvalues are sorted in increasing order. The x-axis shows eigenvalue index. The
network has 40 nodes so there are 40 eigenvalues. [2a, to d] These plots show the training performance for
a network with less number of edges (78 edges), due to which it does not learn well. When compared with
case 1, we see that trimming is less prominent and the eigenvalues do not decrease. The training curve shows
a stretched exponential relaxation (β < 1) and saturates well above zero error. [3a, to d] Training on random
data: Networks initialized with same parameters as that of 1a are trained on randomly generated data. No
trimming is observed, eigenvalues increase over training and the error curve does not decrease with the number
of epochs.

L′(v + δv) = I, (4)

where L′ is the updated Laplacian that encodes the memory of the feedback stress by adapting to it,95

i.e; C(v + δv) < C(v).96

In summary, the learning process goes as follows. An input is introduced to the system as an external97

force. Subsequently, based on the system’s reaction to this input, feedback forces are consistently98

applied. We postulate that such a process enables the system to adapt and become attuned to these99

feedback boundary forces. This continuous adaptation to feedback forces, in presence of the input,100

ingrains a memory of the input-output relationship within the system. This concept is elucidated101

further in the subsequent section.102

4

FIG. 2. Learning performance with overparametrization. Error curve is fit to a + be−λ tβ for networks with
varying edges and the fit parameters are plotted (Error bars shown are calculated using the diagonal terms of
covariance matrix). The Tuning Parameter (TP) serves as a metric to quantify the degree of connectivity in a
network. Specifically, it is calculated by taking the ratio of the number of edges M present in the graph to the
number of edges that would exist in a fully connected network with the same number of nodes. (a) We observe
that after adding a certain number of edges, the saturation value of the error curve begins to asymptote to zero.
(b) We also observe that the exponent β increases from less than one to greater than one, showing a shift from
stretched exponential to compressed exponential relaxation. (c) λ value also becomes very small after adding
a certain number of edges. We have done a fit robustness analysis for these plots in Appendix A. (In Fig.1, 390
and 78 edge networks correspond to a TP of 0.5 and 0.1, respectively.)

FIG. 3. Eigenvalue decrease and trimming with overparametrization . (a) Shows fractional decrease in the
sum of eigenvalues due to learning, averaged over 50 runs. (b) Shows fractional decrease in number of effective
weights due to learning, averaged over 50 runs. Here, the term ‘effective weights’ refers to those weights that
fall within the top 99 percent of the permissible weight value range([10−5, 0.2]).

III. RESULTS103

Figure 1.1a,1b shows the network before and after training for a network of N = 40 and M = 390.104

Since the intensity of the color indicates the magnitude of the weight, note that many of the weights105

of a trained network reach the minimum value. In other words, there is a trimming effect, where106

only the important edges remain. To ascertain whether or not the network has learned the linear107

transformation, we plot the square root of the mean-squared error in Fig. 1.1c as a function of epoch.108

Given that the error nearly vanishes at longer epoch, this network has successfully learned the task.109

This shows the dynamics through which the system relaxes to the feedback boundary forces due110

to the evolution of learning degrees of freedom. Interestingly, we performed a phenomenological111

fit for this curve. The curve is well-approximated by a non-exponential relaxation of the form112 √
MSE = a + b exp(−λ tβ), where a, b, λ, β are the fit parameters and t denotes the epoch113

number. Interestingly, these dynamics are quantitatively similar to what is observed in molecular114

glassy systems [14]. This finding demonstrates the existence of a glassy landscape. Appendix A115

addresses the reasonableness of this non-exponential fit.116

We seek to quantify further the relaxation of the system as it learns. We, therefore, compute the117

eigenvalues of the Laplacian matrix. Figure1.1d shows how learning results in decreasing Laplacian118

5

eigenvalues. Note that these eigenvalues are the square root of normal mode frequencies. Decreasing119

eigenvalues is evidence that the network is getting “softer” as the normal mode excitations become120

longer in wavelength. This observation demonstrates that the network moves from a state of stress121

to that of less stress due to repeated application feedback boundary forces. The network is, thus,122

“adapting” to these feedback forces indicating a transition towards a state that encodes a memory123

of the input-output relationship. Additionally, it draws parallels between this behavior and the self-124

organization observed in periodically sheared suspensions, where the system adapts to the periodic125

driving in a similar manner [15]. Moreover, when amorphous solids, modeled as purely repulsive126

particles in the jammed phase, are shear-stabilized by minimizing the energy with respect to the127

shear degrees of freedom, one finds longer wavelength excitations emerging [16]. Finally, recent128

work demonstrates that using a similar multiplicative learning rule as given in Eq. 7 to train physical129

networks to learn linear transformations also shows a decrease in the lowest eigenvalues of the130

Hessian [17]. Appendix D shows that the trends hold for larger system sizes.131

Figures 1.2(a-d) show the same quantities as Figure 1.1, however, for a network with N = 40 and132

M = 78. Given the smaller number of learning degrees of freedom, a network with this architecture133

does not successfully learn, as indicated by the square root of the mean-squared error not decreasing134

to zero as the number of epochs increase. Moreover, the eigenvalues of the Laplacian do not decrease135

and so the system does not relax, or soften. For comparative purposes, we also train the network136

to learn, if you will, random data. Fig. 1.(3a to d) shows the physical effects of learning random137

data. Here, the system, exposed to random input and feedback boundary conditions, does not relax,138

as indicated by the unchanged initial and final eigenvalues. With random input-output forces, the139

weight update signal in Eq. 3 averages to zero due to the absence of correlation between vij and140

δvij . This null result suggests that the system’s relaxation is driven by correlations between input141

and feedback boundary conditions and for certain network architectures.142

Given the nontrivial dependence of learning on the network architecture, we further extend our143

analysis by incrementally increasing the network connectivity to examine the implications of over-144

parametrization (see Fig. 2). We denote the ratio of the number of edges M to the number of edges145

in the fully connected equivalent network as TP for tuning parameter. The results indicate that146

as more edges are introduced, the cost landscape becomes steeper due to a reduced number of flat147

directions [18], leading to accelerated relaxation and enhanced learning performance. Notably, a148

parallel can be drawn with glasses; in these systems, increased connectivity also speeds up relax-149

ation dynamics [19, 20]. Both these studies, as well as ours, show a shift in relaxation dynamics150

from a stretched to a compressed exponential upon increasing connectivity. This further underscores151

the intrinsic link between learning processes and relaxation in disordered systems.152

Given the changes in the weights as the networks learns, in Fig. 3, we examine the relationship be-153

tween trimming, eigenvalue reduction, and network connectivity. As network connectivity increases154

by increasing TP , the fractional eigenvalue decrease tends to plateau, reaching a saturation point155

around TP ≈ 0.3. A comparison of Fig. 3(a) and Fig. 2(a) reveals a notable correlation: the point of156

eigenvalue saturation aligns with the disappearance of saturation error. This suggests a fundamental157

link between the processes of learning and eigenvalue reduction. Furthermore, Fig. 3(b) underscores158

the ubiquity of the trimming effect across networks of varying connectivity. Notably, the magnitude159

of the trimming effect intensifies as network size grows.160

Figure 4 illustrates the evolution of the resistance distance distribution during the learning process.161

In an electrical network, the effective resistance between two nodes can be interpreted as a measure162

of distance (more details in Appendix C). By calculating the average distribution of resistance dis-163

tances over all possible pairs of nodes, a two-point correlation function p(r) can be derived, which164

can be extended to spring and flow networks as well. As learning progresses, we observe a broad-165

ening of the two-point correlation function, indicating that the average conductance between two166

arbitrary nodes decreases. This phenomenon is analogous to a reduction in “stiffness” in elastic167

networks, as the system becomes more soft during learning.168

IV. DISCUSSION169

In summary, in learning about the physical signatures of multi-mechanism learning we find that; 1)170

The error curve for networks with low connectivity resembles a stretched exponential. However, as171

network connectivity increases, the error curve transitions to a compressed exponential form (Fig.172

6

FIG. 4. Resistance Distance Distribution and Learning. (a) The figure showcases the average resistance dis-
tance distribution, p(r), during learning, with the x-axis denoting resistance magnitude and the y-axis its nor-
malized frequency. This is averaged over 50 network initializations. The inset illustrates the outcome when the
network is trained on random data (note that the scale in the inset differs, making the initial distributions appear
distinct, though they are identical). (b) Represents a network with suboptimal learning performance due to a
limited number of edges.

2). 2) Eigenvalues of the graph Laplacian decrease with epoch and long wavelength modes are173

generated (Fig. 1). 3) The network undergoes trimming, i.e., lot of the weights go to zero (Fig. 1 &174

3). 4) The two point correlation function for the network broadens while learning (Fig. 4).175

176

Neuromorphic researchers have been actively seeking physical counterparts to facilitate au-177

tonomous weight updates. This pursuit has led to the development of physical learning systems178

utilizing memristors [21], nanoscale devices [22], and transistors [23]. However, the intricate179

design requirements for each component presents challenges in terms of robustness and scalability.180

We propose that soft materials might offer a more streamlined solution. These materials inherently181

exhibit self-adjustment to external conditions, as evidenced by the self-organization of granular182

systems in response to external driving [15, 24, 25] the adaptability of other disordered systems to183

external strain [26, 27]. Consequently, they emerge as promising candidates for crafting physical184

learning systems. Moreover, the model introduced in Section II provides insights into a potential185

training methodology for soft materials, be it particulate-based, such as a granular learner, where186

the topology of the system can change, or spring-based, such a spring network learner, where the187

topology of the network is fixed. By iteratively applying input and feedback boundary forces,188

the learning parameters can autonomously adapt to these forces to optimize a cost function. This189

approach paves the way for the creation of innovative disordered materials with neural network-like190

learning potential. We aim to validate this concept in our forthcoming research.191

Finally, by using multi-mechanism learning to train physical networks to learn linear transforma-192

tions, we demonstrate a simple, brain-like task in a typically non-brain-like material. As brains193

began to emerge several hundred million years ago in planarians [28], physical learning mecha-194

nisms are ripe candidates for life learning to survive in their environment before planarians. We,195

therefore, seek to validate such mechanisms in pre-planarian organisms.196

7

The authors thank Benjamin Scellier, Arvind Murugan, Eli Hawkins, Shabeeb Ameen and Samuel197

Ropert for helpful discussion. JMS acknowledges financial support from NSF-DMR-2204312.198

[1] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities.,”199

Proceedings of the national academy of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.200

[2] W. D. Hillis, “Intelligence as an emergent behavior; or, the songs of eden,” Daedalus, pp. 175–189, 1988.201

[3] V. R. Anisetti, B. Scellier, and J. M. Schwarz, “Learning by non-interfering feedback chemical signaling202

in physical networks,” Phys. Rev. Research, vol. 5, p. 023024, 2023.203

[4] B. Scellier, A deep learning theory for neural networks grounded in physics. PhD thesis, Université de204

Montréal, 2021.205

[5] V. R. Anisetti, A. Kandala, B. Scellier, and J. M. Schwarz, “Frequency propagation: Multi-mechanism206

learning in nonlinear physical networks,” arXiv preprint arXiv:2208.08862, 2022.207

[6] M. Stern, W. Bialek, J. W. Shaevitz, M. Pan, H. Zhang, and A. Murugan, “Supervised learning in physical208

networks: From machine learning to learning machines,” arXiv preprint arXiv:1804.10130, 2021.209

[7] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier, “Training end-to-end analog210

neural networks with equilibrium propagation,” arXiv preprint arXiv:2006.01981, 2020.211

[8] M. Stern and A. Murugan, “Learning without neurons in physical systems,” 2022.212

[9] M. Stern, C. Arinze, L. Perez, S. E. Palmer, and A. Murugan, “Supervised learning through physical213

changes in a mechanical system,” Proceedings of the National Academy of Sciences, vol. 117, no. 26,214

pp. 14843–14850, 2020.215

[10] S. Dillavou, B. Beyer, M. Stern, M. Z. Miskin, A. J. Liu, and D. J. Durian, “Circuits that train themselves:216

decentralized, physics-driven learning,” in AI and Optical Data Sciences IV, vol. 12438, p. 124380G,217

SPIE OPTO, 2023.218

[11] S. Dillavou, M. Stern, A. J. Liu, and D. J. Durian, “Demonstration of decentralized physics-driven learn-219

ing,” Phys. Rev. Applied, vol. 18, p. 014040, 2022.220

[12] R. H. Lee, E. A. B. Mulder, and J. B. Hopkins, “Mechanical neural networks: Architected materials that221

learn behaviors,” Science Robotics, 2022.222

[13] We could also have defined vij = vj − vi, note that the learning rule is independent of this choice.223

[14] J. C. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Reports on Progress224

in Physics, vol. 59, p. 1133, 1996.225

[15] L. Corté, P. M. Chaikin, J. P. Gollub, and D. J. Pine, “Random organization in periodically driven systems,”226

Nature Physics, vol. 4, pp. 420–424, 2008.227

[16] H. Mizuno, H. Shiba, and A. Ikeda, “Continuum limit of the vibrational properties of amorphous solids,”228

Proceedings of the National Academy of Sciences, vol. 114, no. 46, pp. E9767–E9774, 2017.229

[17] M. Stern, A. J. Liu, and V. Balasubramanian, “The physical effects of learning,” bioRxiv, pp. 2023–06,230

2023.231

[18] M. Baity-Jesi, L. Sagun, M. Geiger, S. Spigler, G. B. Arous, C. Cammarota, Y. LeCun, M. Wyart, and232

G. Biroli, “Comparing dynamics: deep neural networks versus glassy systems,” Journal of Statistical233

Mechanics: Theory and Experiment, vol. 2019, p. 124013, December 2019.234

[19] B. Cui, R. Milkus, and A. Zaccone, “The relation between stretched-exponential relaxation and the vi-235

brational density of states in glassy disordered systems,” Physics Letters A, vol. 381, no. 4, pp. 338–343,236

2016.237

[20] Z. W. Wu, W. Kob, W.-H. Wang, and L. Xu, “Stretched and compressed exponentials in the relaxation238

dynamics of a metallic glass-forming melt,” Nature Communications, vol. 9, 2018.239

[21] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature,240

vol. 453, pp. 80–83, 2008.241

[22] D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H.-S. P. Wong, “Nanoelectronic programmable synapses242

based on phase change materials for brain-inspired computing,” Nano Letters, vol. 12, no. 5, pp. 2179–243

2186, 2012.244

[23] M. Jerry, P. Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric fet analog synapse245

for acceleration of deep neural network training,” in 2017 IEEE International Electron Devices Meeting246

(IEDM), pp. 6.2.1–6.2.4, IEEE, 2017.247

[24] N. C. Keim and S. R. Nagel, “Generic transient memory formation in disordered systems with noise,”248

Phys. Rev. Lett., vol. 107, p. 010603, 2011.249

[25] D. Hexner, A. J. Liu, and S. R. Nagel, “Periodic training of creeping solids,” Physical Review E, vol. 101,250

no. 3, p. 032906, 2020.251

[26] N. Pashine, D. Hexner, A. J. Liu, and S. R. Nagel, “Directed aging, memory, and nature’s greed,” Science252

Advances, vol. 5, p. eaax4215, 2019.253

[27] D. Hexner, N. Pashine, A. J. Liu, and S. R. Nagel, “Effect of directed aging on nonlinear elasticity and254

memory formation in a material,” Physical Review Research, vol. 2, p. 043231, 2020.255

8

[28] H. B. Sarnat and M. G. Netsky, “The brain of the planarian as the ancestor of the human brain,” Canadian256

Journal of Neurological Sciences, vol. 12, no. 4, pp. 296–302, 1985.257

[29] D. A. Spielman, Spectral and Algebraic Graph Theory, ch. 12.8. 2023.258

Appendix A: A brief review of Multi-mechanism Learning259

We study a network comprised of nodes and connected by weighted edges. Let us represent the260

weight of the edge between node x and node y as wxy , which could signify conductances in an261

electrical network, spring constants in a mechanical spring network, or pipe thickness in a flow262

network, etc.263

Input Nodes: An “input” node pair is pair of nodes (b+j , b
−
j) such that an input current Ij enters the264

network via node b+j and exits through b−j .(For mechanical networks input current can be thought265

of as external forces acting at input nodes). Let there be q such input node pairs in the network,266

denoted by {(b+1 , b
−
1), (b

+
2 , b

−
2), . . . , (b

+
q , b

−
q)}.267

Output Nodes: In response to the input currents, the system develops an electric potential at each268

node. The network’s output is defined to be the set of potential differences across certain “output”269

node pairs, obtained as v(o+i , o
−
i) = v(o+i) − v(o−i) for each output node pair (o+i , o

−
i). Let there270

be p such output node pairs in the network, represented as {(o+1 , o
−
1), (o

+
2 , o

−
2), . . . , (o

+
p , o

−
p)}.271

Cost Function: The goal of training is to adjust the weights {wxy} so that for a given set of input272

currents, the desired potential drops {vd(o+i , o
−
i)} are achieved across all the output nodes. We273

employ a Mean Squared Error (MSE) cost function:274

C =
1

2

p∑
i=1

(v(o+i , o
−
i)− vd(o

+
i , o

−
i))

2. (A1)

Feedback Mechanism: To optimize this cost function, we introduce a feedback signal into the275

network at the output nodes. For each output node pair, the feed-back current is calculated as:276

ϵi = −η(v(o+i , o
−
i)− vd(o

+
i , o

−
i)) (A2)

This current enters the network through node o+i and exits via o−i , with η being a positive “nudging”277

factor. The feedback currents change the potentials at each node and let the change in the potential278

at node j be denoted by uj .279

Weight Update Rule: The weights are then updated as:280

∆wxy = −αu(x, y)v(x, y), (A3)

where α is the learning rate. This rule effectively performs gradient descent on the cost function:281

∆wxy = −αη
∂C

∂wxy
(A4)

Considerations: The weight update is local, and its sign depends on the potential drops due to282

input and feedback. We assume the system’s relaxation time is much shorter than the weight update283

time, ensuring a steady state during weight adjustments. The two quantities in the weight update284

must be independent. This can be ensured by encoding them into distinct physical quantities[5].285

(Further details on the learning procedure and its physical implementation are given in Ref.[3]). For286

larger networks, a higher learning rate is necessary to maintain the magnitude of weight changes.287

To address this, we conduct a trial run for one epoch, adjusting the learning rate to ensure ||∆w|| ≈288

10−3. Additionally, we impose regularization by (1) Limiting each weight update: |∆wxy| < ϵ ,and289

(2) Constraining weight values: wmin ≤ wxy ≤ wmax. This ensures a smooth training process and290

prevents weights from becoming too large or too small. In our simulations, we set wmin = 0.00001,291

wmax = 0.2, and ϵ = 0.01.292

Appendix B: Methodology293

Network Generation: We aim to create networks consisting of N nodes, with a varying number294

of edges M . For this, we first create a Barabási-Albert network with connection parameter 1. This295

graph generation algorithm connects a new node with 1 existing node in a manner that nodes with296

higher degree have a stronger likelihood for selection.This creates a network with N nodes and297

9

FIG. A1. Log-Linear Analysis of Error Curves: Panels (a) and (b) represent the log-linear plots corresponding
to the error curves from Fig. 1: 2c and 1c, respectively. These analyses pertain to a 40-node network with 78
and 390 edges, respectively.

N − 1 edges. To create a network with M edges, we add M − (N + 1) unique edges. This way,298

we can create networks with varying connectivity, ranging from being minimally connected to being299

maximally connected. Note that it is highly unlikely to create such minimally connected networks300

using the Erdős–Rényi model.301

The generated networks are then trained on data generated using a linear transformation. Note that302

in spite of using linear networks to learn linear transformations, the optimization needs to take place303

in a cost landscape which is non-convex, high- dimensional, and disordered.304

Data Generation: The input vector x (eg; (x1, x2, x3)) is encoded as external currents across305

input nodes {(b+1 , b
−
1), (b

+
2 , b

−
2), (b

+
3 , b

−
3)} with currents +xq and −xq applied across nodes b+q306

and b−q respectively. The output vector y (eg; (y1, y2, y3)) is the potential drop across nodes307

{(o+1 , o
−
1), (o

+
2 , o

−
2), (o

+
3 , o

−
3)}. When the network is trained we want the network’s output to308

closely approximate the matrix R, that is we want y ≈ Rx. To do so, we first generate training309

data of the form {(x, Rx)} by randomly sampling x from the surface of a unit sphere, and train the310

network using the procedure described in the previous section. To shorten the training time, we want311

the magnitude of output y to be of the same order as that of the input, therefore we make sure that the312

maximum eigenvalue of R is close to one. We do this by first generating an arbitrary matrix R′ with313

random entries between -1 and 1, and then normalizing it by dividing it with maximum eigenvalue314

: R = R′/max{eig(R′)}. Input and output data is generated using this matrix R. The network315

is trained using this ideal data, meaning each training step sees an entirely new data point. In the316

computer science community, this type of task is known as linear regression.317

Appendix C: Analyzing the time dependence of the relaxation318

To more rigorously ascertain whether the error curves depicted in Fig. 1 follow a non-exponential319

relaxation, we analyzed their log-linear plots. As evident in Fig. A1, these plots deviate significantly320

from a straight line, suggesting a departure from a simple exponential relationship. To demonstrate321322

the significance of the fit parameters, we examined their behavior with progressive increments in323

the data size (Fig. A2), fitting them to the non-exponential function. We observed that increasing324

the data size leads the fit parameters to converge to a stable value, especially when the error curve325

reaches saturation. In some instances, the error curve takes an extended period to saturate, resulting326

in less stable fit parameters. This phenomenon is particularly noticeable for smaller TP values,327

where the relaxation process is sluggish. Even with prolonged computations, the error curve does328

not achieve saturation under these conditions.329330

10

FIG. A2. Fit Robustness Plots: This figure illustrates the robustness of fit parameters depicted in Fig. 2. Each
subplot represents the evolution of fit parameters with increasing data size. Notably, for TP values of 0.1 and
0.2, the fit parameters exhibit less stability. In contrast, higher TP values yield more consistent and stable
parameters.

11

FIG. A3. Analysis for larger networks:[1a-c] shows fit parameters with increasing TP and [1d-e] shows frac-
tional eigenvalue change and fractional change in effective weights for 60 node networks [2a-e]. Shows similar
analysis for 80 node networks.

Appendix D: Analysis for larger network sizes331

To further investigate the learning performance, we expanded our analysis from the previously stud-332

ied 40-node network (as depicted in Fig. 2 and Fig. 3) to networks consisting of 60 and 80 nodes,333

represented in Fig. A3. These networks were tasked with learning linear transformations of sizes334

15 × 15 and 20 × 20, respectively, while varying the number of edges. We observe a sharper jump335

in β value for larger network sizes, but the saturation value of the error curve starts saturating above336

zero.337338

Appendix E: The two-point correlation function for resistance networks339

The effective resistance between nodes i and j in a resistance network, denoted as rij , provides a340

measure of the ‘distance’ between these nodes [29]. It quantifies the potential difference between341

nodes i and j when a unit current is injected at i and extracted at j, normalized by the total current.342

The mathematical representation is:343

rij = (δi − δj)
TL+(δi − δj) (A1)

In this expression, δi and δj are the Kronecker delta vectors. For a network with N nodes, δi is a344

vector of length N that has a value of 1 at the i-th position and 0 everywhere else. Similarly, δj345

has a value of 1 at the j-th position and 0 elsewhere. . The term L+ represents the Moore-Penrose346

pseudoinverse of the Laplacian matrix L of the network.347

As we consider a network with a constant node count and progressively introduce more edges, the348

average ‘distance’ between nodes diminishes. This is reflected in the reduction of the average path349

length, which represents the mean number of steps required to traverse from one node to another,350

12

averaged over all node pairs and paths. In the extreme case of a fully connected network, all nodes351

are adjacent. The effective resistance metric adeptly captures this behavior: as more edges are added,352

the effective resistance between nodes decreases.353

Building on this understanding, we can conceptualize a two-point correlation function as:354

p(r) =
1

N

∑
i ̸=j

δ(r − rij) (A2)

Where p(r) is normalized and N is chosen such that the area under p(r) is 1. In Fig. 4 we plot this355

< p(r) > averaged over 50 different network initializations.356

	Emergent learning in physical systems as feedback-based aging in a glassy landscape
	Introduction
	The learning process
	Results
	Discussion
	References
	A brief review of Multi-mechanism Learning
	Methodology
	Analyzing the time dependence of the relaxation
	Analysis for larger network sizes
	The two-point correlation function for resistance networks

