
Compute Optimal Inference and Provable Amortisation Gap
in Sparse Autoencoders

Charles O’Neill 1 Alim Gumran 2 David Klindt 3

Abstract
A recent line of work has shown promise in us-
ing sparse autoencoders (SAEs) to uncover in-
terpretable features in neural network representa-
tions. However, the simple linear-nonlinear en-
coding mechanism in SAEs limits their ability to
perform accurate sparse inference. Using com-
pressed sensing theory, we prove that an SAE en-
coder is inherently insufficient for accurate sparse
inference, even in solvable cases. We then de-
couple encoding and decoding processes to em-
pirically explore conditions where more sophis-
ticated sparse inference methods outperform tra-
ditional SAE encoders. Our results reveal sub-
stantial performance gains with minimal compute
increases in correct inference of sparse codes. We
demonstrate this generalises to SAEs applied to
large language models, where more expressive
encoders achieve greater interpretability. This
work opens new avenues for understanding neu-
ral network representations and analysing large
language model activations.

1. Introduction
Understanding the inner workings of neural networks has
become a critical task since these models are increasingly
employed in high-stakes decision-making scenarios (Fan
et al., 2021; Shahroudnejad, 2021; Räuker et al., 2023). As
the complexity and scale of neural networks continue to
grow, so does the importance of developing robust methods
for interpreting their internal representations. This paper
compares sparse autoencoders (SAEs) and sparse coding
techniques, aiming to advance our ability to extract inter-
pretable features from neural network activations.

Recent work has investigated the “superposition hypothe-

1Australian National University 2Nazarbayev University 3Cold
Spring Harbor Laboratory. Correspondence to: Charles O’Neill
<charles.oneill@anu.edu.au>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

sis” (Elhage et al., 2022), which posits that neural networks
represent interpretable features in a linear manner using
non-orthogonal directions in their latent spaces. Building
on this idea, researchers have shown that individual features
can be recovered from these superposed representations
using sparse autoencoders (Bricken et al., 2023; Cunning-
ham et al., 2023). These models learn sparse and overcom-
plete representations of neural activations, with the resulting
sparse codes often proving to be more interpretable than
the original dense representations (Cunningham et al., 2023;
Elhage et al., 2022; Gao et al., 2024).

The mathematical foundation of SAEs aligns closely with
that of sparse coding. Both approaches assume that a large
number of sparse codes are linearly projected into a lower-
dimensional space, forming the neural representation. How-
ever, while sparse coding typically involves solving an op-
timisation problem for each input, SAEs learn an efficient
encoding function through gradient descent, potentially sac-
rificing optimal sparsity for computational efficiency. This
trade-off introduces what statistical inference literature calls
the “amortisation gap” – the disparity between the best
sparse code predicted by an SAE encoder and the optimal
sparse codes that an unconstrained sparse inference algo-
rithm might produce (Marino et al., 2018).

In this paper, we explore this amortisation gap and inves-
tigate whether more sophisticated sparse inference meth-
ods can outperform traditional SAE encoders. Our key
contribution is decoupling the encoding and decoding pro-
cesses, allowing for a comparison of various sparse encod-
ing strategies. We evaluate four types of encoding methods
on synthetic datasets with known ground-truth features. We
evaluate these methods on two dimensions: alignment with
true underlying sparse features and inference of the correct
sparse codes, while accounting for computational costs dur-
ing both training and inference. To demonstrate real-world
applicability, we also train models on GPT-2 activations
(Radford et al., 2019), showing that more complex methods
such as MLPs can yield more interpretable features than
SAEs in large language models.

1

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

2. Background and Related Work
2.1. Sparse Neural Representations

Sparse representations in neural networks specifically refer
to activation patterns where only a small subset of neurons
are active for any given input (Olshausen & Field, 1996).
These representations have gained attention due to their
potential for improved interpretability and efficiency (Lee
et al., 2007). Sparse autoencoders (SAEs) are neural net-
work architectures designed to learn sparse representations
of input data (Ng et al., 2011; Makhzani & Frey, 2013).
An SAE consists of an encoder that maps input data to a
sparse latent space and a decoder that reconstructs the input
from this latent representation. Sparse coding, on the other
hand, is a technique that aims to represent input data as a
sparse linear combination of basis vectors (Olshausen &
Field, 1997). The objective of sparse coding is to find both
the optimal basis (dictionary) and the sparse coefficients
that minimise reconstruction error while maintaining spar-
sity. While both SAEs and sparse coding seek to find sparse
representations, they differ in their approach. SAEs learn
an efficient encoding function through gradient descent, al-
lowing for fast inference but potentially sacrificing optimal
sparsity. Sparse coding, in contrast, solves an optimisation
problem for each input, potentially achieving better sparsity
at the cost of increased computational complexity during
inference.

2.2. Superposition in Neural Representations

The superposition hypothesis suggests that neural networks
can represent more features than they have dimensions, par-
ticularly when these features are sparse (Elhage et al., 2022).
Features are often defined as interpretable properties of the
input that a sufficiently large neural network would reliably
dedicate a neuron to representing (Olah et al., 2020). For-
mally, let us consider a neural representation y ∈ RM and
a set of N features, where typically N > M . In a linear
representation framework, each feature fi is associated with
a direction wi ∈ RM . The presence of multiple features is
represented by y =

∑N
i=1 xiwi where xi ∈ R represents

the activation or intensity of feature i.

In an M -dimensional vector space, only M orthogonal vec-
tors can fit. However, the Johnson-Lindenstrauss Lemma
states that if we permit small deviations from orthogonality,
we can fit exponentially more vectors into that space. More
formally, for any set of N points in a high-dimensional
space, there exists a linear map to a lower-dimensional
space of O(logN/ϵ2) dimensions that preserves pairwise
distances up to a factor of (1± ϵ). This lemma supports the
hypothesis that LLMs might be leveraging a similar princi-
ple in superposition, representing many more features than
dimensions by allowing small deviations from orthogonal-
ity.

Superposition occurs when the matrix W = [w1, ..., wN] ∈
RM×N has more columns than rows (i.e., N > M), making
WTW non-invertible. Superposition relies on the sparsity
of feature activations. Let s = ||x||0 be the number of
non-zero elements in x = [x1, ..., xN]T . When s ≪ N ,
the model can tolerate some level of interference between
features, as the probability of many features being active
simultaneously (and thus interfering) is low.

2.3. Compressed Sensing and Sparse Coding

Compressed sensing theory provides a framework for under-
standing how sparse signals can be recovered from lower-
dimensional measurements (Donoho, 2006). This theory
suggests that under certain conditions, we can perfectly
recover a sparse signal from fewer measurements than tradi-
tionally required by the Nyquist-Shannon sampling theorem.
Let s ∈ RN be a sparse signal with at most K non-zero
components. If we make M linear measurements of this
signal, represented as y = Ws where W ∈ RM×N , com-
pressed sensing theory states that we can recover s from y
with high probability if:

M > O
(
K log

(
N

K

))
(1)

This result holds under certain assumptions about the mea-
surement matrix W , such as the Restricted Isometry Prop-
erty (RIP) (Candes, 2008).1 Sparse coding is one approach
to recovering such sparse representations. The objective
function for sparse coding (Olshausen & Field, 1996) is:

L(D,α) :=

N∑
i

||xi −Dαi||22 + λ||αi||1 (2)

where D ∈ RK×M is the dictionary, αi ∈ RM are the
sparse codes for data point xi ∈ RK , and λ is a hyperparam-
eter controlling sparsity. Optimisation of this objective typi-
cally alternates between two steps. First is sparse inference:
min
α

∑N
i ||xi−Dαi||22+λ||αi||1. Then dictionary learning:

min
D

∑N
i ||xi −Dαi||22 s.t. ∀i ∈ 1, ...,M : |D:, i| = 1.

These techniques allow extraction of interpretable, sparse
representations from high-dimensional neural data.

2.4. Sparse Autoencoders

Sparse autoencoders (SAEs) offer an alternative approach to
extracting sparse representations, using amortised inference
instead of the iterative optimisation used in sparse coding.
SAEs learn to reconstruct inputs using a sparse set of fea-
tures in a higher-dimensional space, potentially disentan-
gling superposed features (Elhage et al., 2022; Olshausen

1This property is readily satisfied by many common measure-
ment matrices, including random Gaussian and Bernoulli matrices
(Baraniuk et al., 2008).

2

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

& Field, 1997). The architecture of an SAE consists of an
encoder network that maps the input to a hidden, sparse
representation of latent coefficients, and a decoder network
that reconstructs the input as a linear combination of vectors,
with the coefficients defined by the sparse representation.
Let xi ∈ RK be an input vector (as in our sparse coding
formulation), and αi ∈ RM be the hidden representation
(analogous to the sparse codes in sparse coding), where
typically M > K. The encoder and decoder functions are:

Encoder : αi = fθ(xi) = σ(Wexi + be) (3)
Decoder : x̂i = gϕ(αi) = Wdαi + bd (4)

where We ∈ RM×K and Wd ∈ RK×M are the encoding
and decoding weight matrices, be ∈ RM and bd ∈ RK are
bias vectors, and σ(·) is a non-linear activation function
(e.g., ReLU). The parameters θ = We, be and ϕ = Wd, bd
are learned during training.

The training objective of an SAE maintains the same form
as Equation 2, minimising reconstruction error while pro-
moting sparsity. However, SAEs differ from sparse coding
in how they perform inference. In sparse coding, finding
the codes αi for a new input requires solving an iterative
optimisation problem that alternates between updating the
codes and the dictionary. In contrast, SAEs learn an encoder
function fθ during training that directly computes sparse
codes in a single forward pass. This amortised inference
trades off some precision in the optimisation for computa-
tional savings at inference time – while sparse coding must
solve a new optimisation problem for each input, an SAE
can instantly generate codes through its learned encoder.

SAE with Inference-Time Optimisation (SAE+ITO)
(SAE+ITO) is an extension of the standard SAE ap-
proach that combines the learned dictionary from SAEs
with inference-time optimisation for sparse code inference
(Nanda et al., 2024). In this method, the decoder weights
Wd learned during SAE training are retained, but the en-
coder function fθ is replaced with an optimisation procedure
at inference time. For each input xi, SAE+ITO solves the
optimisation problem outlined in Equation 2, except only
optimising the latent codes with the decoder weights fixed.

This formulation allows for potentially more accurate sparse
codes by directly minimising reconstruction error, rather
than relying on the learned encoder approximation, despite
incurring higher computational costs at inference time. The
optimisation problem can be solved using algorithms such as
matching pursuit (Blumensath & Davies, 2008) and gradient
pursuit (Nanda et al., 2024).

2.5. Applications in Neural Network Models

Sparse autoencoders (SAEs) have emerged as a promising
tool for enhancing the interpretability of large language

models (LLMs) by extracting interpretable features from
their dense representations. Early work by Cunningham
et al. (2023) and Bricken et al. (2023) demonstrated the
potential of sparse dictionary learning to disentangle fea-
tures, lifting them out of superposition in transformer MLPs.
This approach was extended to attention heads by Kissane
et al. (2024), who scaled it to GPT-2 (Radford et al., 2019).
These studies have shown that SAEs can extract highly ab-
stract, multilingual, and multimodal features from LLMs,
including potentially safety-relevant features related to de-
ception, bias, and dangerous content (Templeton, 2024). In
vision models, Gorton (2024) and Klindt et al. (2023) trained
SAEs on convolutional neural network activations. The
latter found that K-means (which is equivalent to one-hot
sparse coding) outperformed SAEs (Fig.12) in quantitative
interpretability metrics (Zimmermann et al., 2024).

The scaling of SAEs to larger models has been a focus of
recent research, with significant progress made in apply-
ing them to state-of-the-art LLMs. Gao et al. (2024) pro-
posed using k-sparse autoencoders (Makhzani & Frey, 2013)
to simplify tuning and improve the reconstruction-sparsity
frontier, demonstrating clean scaling laws with respect to
autoencoder size and sparsity. They successfully trained a
16 million latent autoencoder on GPT-4 activations. Sim-
ilarly, Templeton (2024) reported extracting high-quality
features from Claude 3 Sonnet, while Lieberum et al. (2024)
released a comprehensive suite of SAEs trained on all layers
of Gemma 2 models. These advancements underscore the
importance of developing efficient and accurate SAE tech-
niques, especially as applications to larger models become
more prevalent. The growing body of work on SAEs in
LLMs suggests that they may play a crucial role in future
interpretability research.

3. Methods
This section outlines our approach to comparing sparse
encoding strategies. We begin by presenting a theoretical
foundation for the suboptimality of sparse autoencoders
(SAEs), followed by our data generation process, encoding
schemes, evaluation metrics, and experimental scenarios.

3.1. Theory: Provable Suboptimality of SAEs

Theorem 3.1 (SAE Amortisation Gap). Let K ≥ 2 and
PK be a sparse distribution over RN , i.e., ∀s ∈ RN :
s ∈ supp(PK) ⇐⇒ ∥s∥0 ≤ K. This means that any
sample has at most K non-zero entries or, equivalently, the
support of PK is a union over K dimensional subspaces.
The sources are linearly projected into an M -dimensional
space, satisfying the restricted isometry property, where
K log N

K ≤ M < N . A sparse autoencoder (SAE) with
a linear-nonlinear (L-NL) encoder must have a non-zero
amortisation gap.

3

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

Sparse Codes
“true features”

Observations
“neural responses”

Learned Codes
“SAE output”

EncoderDecoder

Linear Linear-Nonlinear

Figure 1: Illustration of SAE Amortisation Gap. Left, shows sparse sources in an N = 3 dimensional space with
at most ∥s∥ ≤ K = 2 non-zero entries. Both blue and red points are valid sources, by contrast, the top right corner
s = (1, 1, 1) is not. Middle, shows the sources as they are linearly decoded into observation space. This is, in most
applications, the activation space of a neural network that we are trying to lift out of superposition. Right, shows how using
a linear-nonlinear encoder, a SAE is tasked to project the points back onto their correct positions. This is not possible,
because the pre-activations are at most M = 2 dimensional (see proof in Appendix A).

The complete proof of Theorem 3.1 is provided in Appendix
A. The theorem considers a setting where sparse signals
s ∈ RN with at most K non-zero entries are projected
into an M -dimensional space (M < N). Compressed
sensing theory guarantees that unique recovery of these
sparse signals is possible when M ≥ K log(N/K), up
to sign ambiguities (Donoho, 2006). However, we prove
that SAEs fail to achieve this optimal recovery, resulting
in a non-zero amortisation gap. The core of this limitation
lies in the architectural constraints of the SAE’s encoder.
The linear-nonlinear (L-NL) structure of the encoder lacks
the computational complexity required to fully recover the
high-dimensional (N) sparse representation from its lower-
dimensional (M) projection. Figure 1 illustrates this con-
cept geometrically.

For completeness, we compare our amortisation-gap argu-
ment with previous local and distribution-specific recovery
results (e.g., (Rangamani et al., 2018; Nguyen et al., 2019))
in Appendix B. In particular, we clarify why local con-
vergence guarantees for ReLU-based autoencoders do not
contradict our global impossibility result when addressing
all K-sparse signals in RN .

3.2. Synthetic data

To evaluate our sparse encoding strategies, we generate syn-
thetic datasets with known ground-truth latent representa-
tions and dictionary vectors. We first construct a dictionary
matrix D ∈ RM×N , where each column represents a dic-
tionary element. We then generate latent representations
si ∈ RN with exactly K non-zero entries (K ≪ N), drawn
from a standard normal distribution. This allows us to create
observed data points as xi = Dsi. This process yields a

dataset D = (xi, si)
n
i=1, where xi ∈ RM and si ∈ RN .

In Appendix D, we explore an alternative data generation
process that incorporates a Zipf distribution over feature
activations, motivated by recent observations that latent
representations in large models often follow heavy-tailed
distributions (Engels et al., 2024; Park et al., 2024)

3.3. Sparse Encoding Schemes

We compare four sparse encoding strategies:

1. Sparse Autoencoder (SAE): f(x) := σ(Wx), where
σ is a nonlinear activation function.

2. Multilayer Perceptron (MLP): f(x) :=
σ(Wnσ(Wn−1 . . . σ(W1x))), with the same de-
coder as the SAE.

3. Sparse Coding (SC): f(x) = argminŝ|x − Dŝ|22 +
λ||ŝ||1, solved iteratively with st+1 = st + η∇L,
where L is the MSE loss with L1 penalty.

4. SAE with Inference-Time Optimisation
(SAE+ITO): Uses the learned SAE dictionary,
optimising sparse coefficients at inference time.

For all methods, we normalise the column vectors of the
decoder matrix to have unit norm, preventing the decoder
from reducing the sparsity loss ||ŝ||1 by increasing feature
vector magnitudes.

3.4. Measuring the quality of the encoder and decoder

For any given x, how do we measure the quality of (1) the
encoding (i.e. the sparse coefficients); and (2) the decoding
(i.e. the actual reconstruction, given the coefficients)?

4

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

We employ the Mean Correlation Coefficient (MCC) to
evaluate both encoder and dictionary quality:

MCC =
1

d

∑
(i,j)∈M

|cij | (5)

where cij is the Pearson correlation coefficient between the
i-th true feature and the j-th learned feature, and M is the
set of matched pairs determined by the Hungarian algorithm
(or a greedy approximation when dimensions differ). This
metric quantifies alignment between learned sparse coeffi-
cients and true underlying sparse features (encoder quality),
and learned dictionary vectors and true dictionary vectors
(dictionary quality).

3.5. Disentangling Dictionary Learning and Sparse
Inference

Our study decomposes the sparse coding problem into two
interrelated tasks: dictionary learning and sparse inference.
Dictionary learning involves finding an appropriate sparse
dictionary D ∈ RM×N from data, while sparse inference
focuses on reconstructing a signal x ∈ RM using a sparse
combination of dictionary elements, solving for s ∈ RN

in x ≈ Ds where s is sparse. These tasks are intrinsically
linked: dictionary learning often involves sparse inference in
its inner loop, while sparse inference requires a dictionary.

Known Sparse Codes. In this scenario, we assume knowl-
edge of the true sparse codes s∗ and focus solely on the en-
coder’s ability to predict these latents, effectively reducing
the problem to latent regression. We define the objective as
minimising L(f(x), s∗) = 1 − cos(f(x), s∗), where f is
the encoding function and cos denotes cosine similarity.2 In
this setting, only the SAE encoder and MLP are applicable,
as they directly learn mappings from input to latent space.
The SAE encoder learns an amortised inference function,
while the MLP learns a similar but more complex mapping.
Conversely, SAE+ITO and sparse coding are not suitable for
this task. SAE+ITO focuses on optimising reconstruction
using a fixed dictionary, which is irrelevant when true la-
tents are known. Similarly, sparse coding alternates between
latent and dictionary optimisation, which reduces to encoder
training when the dictionary is disregarded.

Known Dictionary. When the true dictionary D∗ is
known, we focus on optimising the encoder or inference
process while keeping the dictionary fixed. This scenario
is applicable to SAE, MLP, and SAE+ITO methods. For
SAE and MLP, we optimise minθ Ex[|x − D∗fθ(x)|22],
where fθ represents the encoder function with parameters
θ. SAE+ITO, in contrast, performs gradient-based optimi-
sation at inference time: mins |x−D∗s|22 + λ|z|1 for each

2We use cosine similarity rather than MSE loss in this setting
because we found training to be more stable.

input x, incurring zero training FLOPs but higher inference-
time costs. This differs from SAE and MLP by directly
optimising latent coefficients rather than learning an encod-
ing function. Sparse coding is not applicable in this scenario,
as it reduces to SAE+ITO when the dictionary is known.

Unknown Sparse Codes and Dictionary. This scenario
represents the standard setup in sparse coding, where both
the sparse codes s and the dictionary D are unknown and
must be learned simultaneously. All four methods — SAE,
MLP, SAE+ITO, and sparse coding — are applicable here.
SAE and MLP learn both an encoder function fθ(x) and a
dictionary D simultaneously. SAE+ITO and sparse coding
learn a dictionary during training and optimises latents at
inference time.

4. Synthetic Sparse Inference Experiments
We present the results of our experiments comparing dif-
ferent sparse encoding strategies across various scenarios.
All experiments were conducted using synthetic data with
N = 16 sparse sources, M = 8 measurements, and K = 3
active components per timestep, unless otherwise specified
(more settings in Sec. 4.4, with larger values in App. B and
App. C).

4.1. Known Sparse Codes

102 103 104

Training Steps

0.00

0.25

0.50

0.75

1.00

M
CC SAE

MLP (H = 32)
MLP (H = 256)
MLP (H = 1024)

(a) MCC vs. training steps

108 109 1010 1011 1012

FLOPs

0.00

0.25

0.50

0.75

1.00

M
CC SAE

MLP (H = 32)
MLP (H = 256)
MLP (H = 1024)

(b) MCC vs. total FLOPs

Figure 2: Performance comparison of SAE and MLPs in
predicting known latent representations. The black dashed
line in (b) indicates the average FLOPs at which MLPs
surpass SAE performance.

We first compare the performance of sparse autoencoders
(SAEs) and multilayer perceptrons (MLPs) in predicting
known latent representations. Figure 2 illustrates the per-
formance of SAEs and MLPs with varying hidden layer
widths. MLPs consistently outperform SAEs in terms of
Mean Correlation Coefficient (MCC), with wider hidden
layers achieving higher performance (Figure 2a). The MLP
with H = 1024 reaches an MCC approximately 0.1 higher
than the SAE at convergence. While MLPs converge faster
in terms of training steps, this comes at the cost of increased
computational complexity (Figure 2b). All MLPs surpass
the SAE’s plateau performance at approximately the same
total FLOPs, suggesting a consistent computational thresh-

5

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

old beyond which MLPs become more effective, regardless
of hidden layer width.

We also validated our findings at larger scales that better
match real-world applications (N = 1000,M = 200,K =
20, and 500, 000 data points), finding that the amortisation
gap becomes even more pronounced (see Appendix C).

4.2. Known Dictionary

102 103 104

Training Steps

0.6

0.8

M
CC

SAE
SAE+ITO
MLP (H=32)
MLP (H=256)

(a) MCC vs. training steps

108 109 1010 1011 1012

FLOPs

0.6

0.8

M
CC

SAE
SAE+ITO
MLP (H=32)
MLP (H=256)

(b) MCC vs. total FLOPs

Figure 3: Performance comparison of SAE, SAE with
inference-time optimisation (SAE+ITO), and MLPs in pre-
dicting latent representations with a known dictionary.
Dashed lines in (b) indicate extrapolated performance be-
yond the measured range.

Next, we examine the performance of different encoding
strategies when the true dictionary D∗ is known. Figure
3 shows the performance of SAE, SAE+ITO, and MLPs.
MLPs consistently outperform the standard SAE, achiev-
ing an MCC nearly 10% higher at convergence (Figure 3a).
Both MLP configurations (H = 32 and H = 256) converge
to similar performance levels, with the wider network show-
ing faster initial progress. When plotted against total FLOPs,
the MLP curves overlap, suggesting a consistent compu-
tational cost-to-performance ratio across different hidden
layer widths (Figure 3b). SAE+ITO initialised with SAE
latents exhibits distinct, stepwise improvements throughout
training, ultimately achieving the highest MCC.

4.3. Unknown Sparse Codes and Dictionary

Finally, we evaluate all four methods when both latent rep-
resentations and dictionary are unknown. We use a dataset
of 2048 samples, evenly split between training and testing
sets, and conduct 5 independent runs of 100, 000 steps.

Figures 4 illustrates the performance in latent prediction
and dictionary learning, respectively. For latent prediction,
SAE, SAE+ITO, and MLPs converge to similar MCC, with
MLPs showing a slight advantage. Sparse coding demon-
strates superior performance, achieving an MCC over 10%
higher than other methods, despite an initial decrease in per-
formance. Sparse coding reaches this higher performance
while using comparable FLOPs to the MLP with H = 256.
For dictionary learning, both MLPs and sparse coding out-
perform SAE by a margin of approximately 10%. Sparse

0 10000 20000 30000 40000
Training Steps

0.4

0.6

M
CC SAE

SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(a) Latent prediction: MCC vs.
training steps

107 108 109 1010 1011 1012

FLOPs

0.3

0.4

0.5

0.6

0.7

M
CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(b) Latent prediction: MCC vs.
total FLOPs

0 10000 20000 30000 40000
Training Steps

0.4

0.6

0.8

Di
ct

io
na

ry
 M

CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(c) Dictionary learning: MCC
vs. training steps

107 108 109 1010 1011 1012

FLOPs

0.4

0.6

0.8

Di
ct

io
na

ry
 M

CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(d) Dictionary learning: MCC
vs. total FLOPs

Figure 4: Dictionary learning performance comparison
when both s∗ and D∗ are unknown.

coding again exhibits an initial decrease in dictionary MCC
before surpassing other methods.

4.4. Performance Across Varying Data Regimes

To understand how performance varies with changes in data
characteristics, we trained models under varying N , M , and
K, holding other hyperparameters constant.

Figure 5 shows the difference in final latent MCC between
methods. Sparse coding outperforms SAE in essentially all
data-generation regimes, for both K = 3 and K = 9. MLP
and SAE perform roughly equivalently, with MLP slightly
better as M (number of measurements) increases. The per-
formance advantage of sparse coding is more pronounced
in regimes where compressed sensing theory predicts recov-
erability (above and to the left of the black dashed line).

Sparsity-Performance Trade-off We also investigated
the trade-off between sparsity and performance for each
method in Figure 6. Sparse coding achieves slightly lower
reconstruction error for each L0 level, barring some very
small active latents. Sparse coding shows a Pareto improve-
ment at each L0 level in terms of MCC, even with very
small active latents. The improvement is more evident when
plotting against L1 rather than L0, as L1 accounts for the
magnitude of non-zero values. The presence of very small
non-zero latents in sparse coding motivates the exploration
of top-k sparse coding, detailed in Appendix H.2.

5. Interpretability of Sparse Coding Schemes
A common concern about more powerful encoding ap-
proaches is that they might learn unnatural features that

6

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

25 50 75 100 125
N

10

15

20

25

30

M

SparseCoding - SAE
Recovery Boundary

25 50 75 100 125
N

10

15

20

25

30
MLP - SAE
Recovery Boundary

-0.45
-0.36
-0.27
-0.18
-0.09
0.00
0.09
0.18
0.27
0.36
0.45

La
te

nt
 M

CC
 D

iff
er

en
ce

(a) K = 3

25 50 75 100 125
N

10

15

20

25

30

M

SparseCoding - SAE

Recovery Boundary
25 50 75 100 125

N

10

15

20

25

30
MLP - SAE

Recovery Boundary -0.24
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.24

La
te

nt
 M

CC
 D

iff
er

en
ce

(b) K = 9

Figure 5: Difference in final latent MCC between methods across varying N and M , for K = 3 and K = 9. Left: Sparse
coding vs. SAE. Right: MLP vs. SAE. The black dashed line indicates the theoretical recovery boundary.

0.00 0.25 0.50 0.75 1.00
L0 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L0 vs MSE Loss
SAE
MLP
SC (1e-03)
SC (1e-04)
SC (1e-05)
True L0

0.00 0.25 0.50 0.75 1.00
L0 Loss

0.2

0.4

0.6

0.8

M
CC

L0 vs MCC

SAE
MLP
SC (1e-03)
SC (1e-04)
SC (1e-05)
True L0

0.0 0.1 0.2 0.3
L1 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L1 vs MSE Loss
SAE
MLP
SparseCoding

0.0 0.1 0.2 0.3
L1 Loss

0.2

0.4

0.6

0.8

M
CC

L1 vs MCC

SAE
MLP
SparseCoding

Figure 6: Pareto curves showing sparsity (L0 or L1 loss) against performance (MSE loss or latent MCC) for models trained
with varying L1 penalty coefficients λ. The red dashed line in the top row shows the true L0 of the sparse sources. Multiple
thresholds for active features are shown for sparse coding due to the presence of very small non-zero values.

are not interpretable. To investigate the interpretability of
more complex encoding techniques, we trained three dis-
tinct methods on 406 million tokens from OpenWebText: a
sparse autoencoder with a single linear encoder layer and
ReLU activation, a multilayer perceptron encoder with one
hidden layer of width 8448, and a locally competitive algo-
rithm following the approach of Olshausen & Field (1997)
and Blumensath & Davies (2008). Each method learned
an overcomplete dictionary of size 16, 896 for the residual-
stream pre-activations at Layer 9 of GPT-2 Small (Radford
et al., 2019), which have dimension 768.

All methods were trained using Adam with a learning rate
of 3 ·10−4 and an L1 penalty of 1 ·10−4. Following Bricken
et al. (2023) and Cunningham et al. (2023), we resampled
dead neurons every 15, 000 steps by setting columns with
no activity to new random directions. The final results
across methods were: the SAE achieved a normalised MSE
of 0.061 with a mean L0 of 35.66 and 11% dead neurons,
while the MLP reached a normalised MSE of 0.055 with
a mean L0 of 31.13 and 22% dead neurons. The LCA
approach, with 100 gradient-based sparse-inference steps
per batch, achieved a normalised MSE of 0.070. While
technically none of the LCA codes were exactly zero, most
were extremely small, and thresholding values below 10−5

yielded an effective L0 of approximately 18.56. Notably,
the LCA dictionary maintained no strictly dead columns.

To assess the interpretability of the learned features, we
randomly selected 500 features from each method and em-
ployed an automated interpretability classification approach
using GPT-4o (full details in Appendix J). For each feature,
we identified its top 10 most highly activating tokens in
our 13.1 million-token test set and computed logit effects
through the path expansion WU · f , where WU represents
the model’s unembedding matrix and f denotes the feature
vector. We provided both the activating examples and the
top and bottom 10 tokens by logit effect to GPT-4o, which
generated a concise explanation of the feature’s function. To
validate these interpretations, we presented them to a second
instance of GPT-4o along with at least five new activating
examples and five non-activating examples, labelling the
activating tokens. The model predicted which examples
should activate the feature based on the first instance’s ex-
planation, allowing us to compute an F1-score against the
ground truth. This automated interpretability approach is
considered standard in the literature and relies on a base
prompt from Juang et al. (2024).

Figure 7 displays the distributions of F1-scores across the
evaluated features. The results indicate that SAE and LCA

7

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

SAE MLP LCA
0.00

0.25

0.50

0.75

1.00
F1

 sc
or

es
N=2500

=0.63
N=2500

=0.83
N=2500

=0.61

Figure 7: Distribution of F1 scores for feature interpretabil-
ity across three methods (SAE, MLP, and LCA) trained on
residual stream activations of Layer 9 in GPT-2. Each distri-
bution represents 500 randomly selected features evaluated
using GPT-4o for explanation generation and validation.

features demonstrate comparable interpretability, with me-
dian F1-scores around 0.6. Most notably, the MLP features
achieve substantially higher interpretability scores, with
a median F1-score of 0.83 and a tighter distribution. A
Kruskal-Wallis test revealed significant differences between
the methods (H = 1856.33, p < 0.001), and subsequent
Dunn’s tests with Bonferroni correction confirmed that both
SAE and LCA were significantly less interpretable than
MLP features (p < 0.001). See Appendix J for examples of
feature interpretations.

6. Discussion
Our study provides theoretical and empirical evidence for
an inherent amortisation gap in sparse autoencoders (SAEs)
when applied to neural network interpretability. We prove
that SAEs with linear-nonlinear encoders cannot achieve
optimal sparse recovery in settings where such recovery is
theoretically possible. This limitation is supported by exper-
imental results showing that sparse coding, and sometimes
MLPs, outperform SAEs across synthetic data scenarios.
Our investigation of GPT-2 activations demonstrates that
MLP-based features achieve higher interpretability scores
than both SAE and LCA features. These findings refute the
assumption that simpler encoders are necessary for main-
taining interpretability. The results carry implications for
neural network interpretability, suggesting that more sophis-
ticated encoding techniques can improve feature extraction
without compromising feature validity, though at increased
cost.

The use of linear-nonlinear encoders in SAEs for language
model interpretability stems from concerns that more pow-
erful methods might extract features not used by the trans-
former (Bricken et al., 2023). This approach appears overly
restrictive given the complexity of transformer layer rep-
resentations, which emerge from multiple rounds of atten-
tion and feed-forward computations. The superior perfor-

mance of MLPs suggests that matching the computational
complexity of the underlying representations improves fea-
ture extraction. Better encoders aligns with recent work on
inference-time optimisation (Nanda et al., 2024), and will
be validated as we improve encoding evaluation (Makelov
et al., 2024). Regardless, SAEs are sensitive to hyperparam-
eters and fragile (Cunningham et al., 2023), so exploring
more powerful encoders is warranted.

The computational cost of complex encoders must be evalu-
ated against gains in feature extraction and interpretability.
Projects like Gemma Scope (Lieberum et al., 2024) demon-
strate substantial resource investment in feature extraction,
suggesting that additional compute for improved representa-
tion quality may be justified. Complex encoders can main-
tain the linear decoder needed for downstream tasks such as
steering while providing better features. Future work should
systematically compare feature quality across encoder ar-
chitectures and address non-zero-centered representations
(Hobbhahn, 2023).

Limitations Our study has several limitations. Our LCA
implementation was not optimised for the scale of exper-
iments, requiring investigation of sparse coding methods,
sparsity levels, optimisation iterations, and thresholding of
near-zero activations. The gap between MLP and SAE/LCA
interpretability scores warrants examination – while LCA’s
lower performance likely stems from suboptimal training,
the MLP’s superior interpretability relative to SAEs requires
investigation. Our analysis also focused on scenarios with
constant sparsity and uncorrelated channels, which may
not capture real-world data complexity. Our synthetic data
generation process did not account for varying feature im-
portance described in Elhage et al. (2022)’s framework,
although we did begin to explore this in Appendix D.

Future work should incorporate recent SAE variants like
top-k SAEs (Makhzani & Frey, 2013; Gao et al., 2024) and
JumpReLU SAEs (Rajamanoharan et al., 2024b) to mea-
sure the amortisation gap with modern architectures. Our
SAE+ITO implementation did not use advanced techniques
like matched pursuit, potentially underestimating its perfor-
mance. The traditional dictionary learning approaches in
Appendix H indicate room for improvement. Finally, we
should explore sampling feature activations from different
parts of the activation spectrum when doing automated inter-
pretability, because features may exhibit different levels of
specificity at different activation strengths, and examining
only top activations could miss important collaborative be-
haviors between features and edge cases that help validate
feature interpretations (Bricken et al., 2023). Addressing
these limitations would advance understanding of sparse
encoding strategies for complex neural representations.

8

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

Impact Statement
This work advances neural network interpretability by im-
proving methods for extracting understandable features from
complex AI systems, with primarily positive societal impli-
cations for building trustworthy AI in high-stakes applica-
tions. By demonstrating that more sophisticated encoding
methods achieve superior interpretability while maintain-
ing computational efficiency, this research could accelerate
transparent AI development across domains like healthcare
and autonomous systems, and democratise access to inter-
pretability tools for smaller research groups. However, we
acknowledge potential risks including misuse for adversar-
ial attacks, exploitation of model vulnerabilities, and false
confidence in model safety if users over-rely on feature in-
terpretations. The computational improvements may also
lower barriers for both beneficial AI safety research and
potentially harmful applications. Overall, we believe the
benefits of advancing interpretability research significantly
outweigh the risks, as transparent and understandable AI
systems are fundamental to responsible AI deployment.

References
Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M.

A simple proof of the restricted isometry property for
random matrices. Constructive approximation, 28:253–
263, 2008.

Bills, S., Cammarata, N., Mossing, D., Tillman, H., Gao, L.,
Goh, G., Sutskever, I., Leike, J., Wu, J., and Saunders,
W. Language models can explain neurons in language
models. URL https://openaipublic. blob. core. windows.
net/neuron-explainer/paper/index. html.(Date accessed:
14.05. 2023), 2, 2023.

Blumensath, T. and Davies, M. E. Gradient pursuits. IEEE
Transactions on Signal Processing, 56(6):2370–2382,
2008.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
et al. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits
Thread, 2, 2023.

Candes, E. J. The restricted isometry property and its impli-
cations for compressed sensing. Comptes rendus. Mathe-
matique, 346(9-10):589–592, 2008.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly inter-
pretable features in language models. arXiv preprint
arXiv:2309.08600, 2023.

Donoho, D. L. Compressed sensing. IEEE Transactions on
information theory, 52(4):1289–1306, 2006.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least
angle regression. 2004.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., et al. Toy models of superposition. arXiv
preprint arXiv:2209.10652, 2022.

Engels, J., Liao, I., Michaud, E. J., Gurnee, W., and
Tegmark, M. Not all language model features are lin-
ear, 2024. URL https://arxiv.org/abs/2405.
14860.

Fan, F.-L., Xiong, J., Li, M., and Wang, G. On interpretabil-
ity of artificial neural networks: A survey. IEEE Transac-
tions on Radiation and Plasma Medical Sciences, 5(6):
741–760, 2021.

Foote, A., Nanda, N., Kran, E., Konstas, I., and Barez, F.
N2g: A scalable approach for quantifying interpretable
neuron representation in llms. In ICLR 2023 Workshop on
Trustworthy and Reliable Large-Scale Machine Learning
Models.

9

https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2405.14860

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll, R.,
Radford, A., Sutskever, I., Leike, J., and Wu, J. Scal-
ing and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Gorton, L. The missing curve detectors of inceptionv1:
Applying sparse autoencoders to inceptionv1 early vision.
arXiv preprint arXiv:2406.03662, 2024.

Gregor, K. and LeCun, Y. Learning fast approximations of
sparse coding. In Proceedings of the 27th international
conference on international conference on machine learn-
ing, pp. 399–406, 2010.

Hobbhahn, M. More findings on memo-
rization and double descent, 2023. URL
https://www.alignmentforum.
org/posts/KzwB4ovzrZ8DYWgpw/
more-findings-on-memorization-and-double-descent.
[Accessed 29-09-2024].

Juang, C., Paulo, G., Drori, J., and Belrose, N. Open source
automated interpretability for sparse autoencoder fea-
tures, 2024. URL https://blog.eleuther.ai/
autointerp/. [Accessed 29-09-2024].

Kissane, C., Krzyzanowski, R., Bloom, J. I., Conmy, A.,
and Nanda, N. Interpreting attention layer outputs with
sparse autoencoders. arXiv preprint arXiv:2406.17759,
2024.

Klindt, D., Sanborn, S., Acosta, F., Poitevin, F., and Mi-
olane, N. Identifying interpretable visual features in ar-
tificial and biological neural systems. arXiv preprint
arXiv:2310.11431, 2023.

Lee, H., Ekanadham, C., and Ng, A. Sparse deep belief net
model for visual area v2. Advances in neural information
processing systems, 20, 2007.

Lieberum, T., Rajamanoharan, S., Conmy, A., Smith, L.,
Sonnerat, N., Varma, V., Kramár, J., Dragan, A., Shah, R.,
and Nanda, N. Gemma scope: Open sparse autoencoders
everywhere all at once on gemma 2, 2024. URL https:
//arxiv.org/abs/2408.05147.

Makelov, A., Lange, G., and Nanda, N. Towards princi-
pled evaluations of sparse autoencoders for interpretabil-
ity and control, 2024. URL https://arxiv.org/
abs/2405.08366.

Makhzani, A. and Frey, B. K-sparse autoencoders. arXiv
preprint arXiv:1312.5663, 2013.

Marino, J., Yue, Y., and Mandt, S. Iterative amortized infer-
ence. In International Conference on Machine Learning,
pp. 3403–3412. PMLR, 2018.

Nanda, N., Conmy, A., Smith, L., Rajamanoharan, S.,
Lieberum, T., Kramár, J., and Varma, V. Progress up-
date from the gdm mech interp team, 2024. [Accessed
01-09-2024].

Ng, A. et al. Sparse autoencoder. CS294A Lecture notes, 72
(2011):1–19, 2011.

Nguyen, T. V., Wong, R. K., and Hegde, C. On the dynam-
ics of gradient descent for autoencoders. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 2858–2867. PMLR, 2019.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 5(3):e00024–001, 2020.

Olshausen, B. A. and Field, D. J. Emergence of simple-cell
receptive field properties by learning a sparse code for
natural images. Nature, 381(6583):607–609, 1996.

Olshausen, B. A. and Field, D. J. Sparse coding with an
overcomplete basis set: A strategy employed by v1? Vi-
sion research, 37(23):3311–3325, 1997.

Park, K., Choe, Y. J., Jiang, Y., and Veitch, V. The geometry
of categorical and hierarchical concepts in large language
models. arXiv preprint arXiv:2406.01506, 2024.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. Orthogo-
nal matching pursuit: Recursive function approximation
with applications to wavelet decomposition. In Proceed-
ings of 27th Asilomar conference on signals, systems and
computers, pp. 40–44. IEEE, 1993.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders. arXiv
preprint arXiv:2404.16014, 2024a.

Rajamanoharan, S., Lieberum, T., Sonnerat, N., Conmy, A.,
Varma, V., Kramár, J., and Nanda, N. Jumping ahead:
Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv:2407.14435, 2024b.

Rangamani, A., Mukherjee, A., Basu, A., Arora, A., Gana-
pathi, T., Chin, S., and Tran, T. D. Sparse coding and
autoencoders. In 2018 IEEE International Symposium on
Information Theory (ISIT), pp. 36–40. IEEE, 2018.

Räuker, T., Ho, A., Casper, S., and Hadfield-Menell, D. To-
ward transparent ai: A survey on interpreting the inner
structures of deep neural networks. In 2023 ieee confer-
ence on secure and trustworthy machine learning (satml),
pp. 464–483. IEEE, 2023.

10

https://www.alignmentforum.org/posts/KzwB4ovzrZ8DYWgpw/more-findings-on-memorization-and-double-descent
https://www.alignmentforum.org/posts/KzwB4ovzrZ8DYWgpw/more-findings-on-memorization-and-double-descent
https://www.alignmentforum.org/posts/KzwB4ovzrZ8DYWgpw/more-findings-on-memorization-and-double-descent
https://blog.eleuther.ai/autointerp/
https://blog.eleuther.ai/autointerp/
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2405.08366
https://arxiv.org/abs/2405.08366

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

Shahroudnejad, A. A survey on understanding, visualiza-
tions, and explanation of deep neural networks. arXiv
preprint arXiv:2102.01792, 2021.

Taggart, G. Profilu: A nonlinearity for sparse autoencoders.
In AI Alignment Forum, 2024.

Templeton, A. Scaling monosemanticity: Extracting in-
terpretable features from claude 3 sonnet. Anthropic,
2024.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 58(1):267–288, 1996.

Wright, B. and Sharkey, L. Addressing feature suppression
in saes. In AI Alignment Forum, pp. 16, 2024.

Zimmermann, R. S., Klindt, D. A., and Brendel, W. Measur-
ing mechanistic interpretability at scale without humans.
volume 38, 2024.

Contents

1 Introduction 1

2 Background and Related Work 2

2.1 Sparse Neural Representations 2

2.2 Superposition in Neural Representations . . 2

2.3 Compressed Sensing and Sparse Coding . . 2

2.4 Sparse Autoencoders 2

2.5 Applications in Neural Network Models . . 3

3 Methods 3

3.1 Theory: Provable Suboptimality of SAEs . 3

3.2 Synthetic data 4

3.3 Sparse Encoding Schemes 4

3.4 Measuring the quality of the encoder and
decoder 4

3.5 Disentangling Dictionary Learning and
Sparse Inference 5

4 Synthetic Sparse Inference Experiments 5

4.1 Known Sparse Codes 5

4.2 Known Dictionary 6

4.3 Unknown Sparse Codes and Dictionary . . 6

4.4 Performance Across Varying Data Regimes 6

5 Interpretability of Sparse Coding Schemes 6

6 Discussion 8

A Amortisation gap proof 12

B Relating Our Amortisation Gap to Prior Results
in Sparse Autoencoders 13

C Large-Scale Experiments 13

D A Different Distribution of Codes 14

E Decoder weight analysis 15

F MLP Ablations 15

11

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

G Including a bias parameter 16

H Comparison with traditional dictionary learning
methods 16

H.1 Optimised Sparse Autoencoders and Sparse
Coding . 17

H.1.1 Advanced Sparse Autoencoder
Techniques 17

H.1.2 Optimised Sparse Coding Approaches 17

H.2 Top-k sparse coding 18

I Measuring FLOPs 18

I.1 Sparse Coding 18

I.2 Sparse Autoencoder (SAE) 18

I.3 Multilayer Perceptron (MLP) 19

I.4 SAE with Inference-Time Optimisation
(SAE+ITO) 19

J Automated interpretability 19

J.1 Feature Interpreter Prompt 19

J.2 Feature Scorer Prompt 19

J.3 Evaluation of Automated Interpretability . . 20

A. Amortisation gap proof
Theorem A.1 (SAE Amortisation Gap). Let K ≥ 2 and
PK be a sparse distribution over RN , i.e., ∀s ∈ RN :
s ∈ supp(PK) ⇐⇒ ∥s∥0 ≤ K. This means that any
sample has at most K non-zero entries or, equivalently, the
support of PK is a union over K dimensional subspaces.
The sources are linearly projected into an M -dimensional
space, satisfying the restricted isometry property, where
K log N

K ≤ M < N . A sparse autoencoder (SAE) with
a linear-nonlinear (L-NL) encoder must have a non-zero
amortisation gap.

This setting is solvable according to compressed sensing the-
ory (Donoho, 2006), meaning that it is possible to uniquely
recover the true S up to sign flips – we cannot resolve the
ambiguity between the sign of any code element and the
corresponding row in the decoding matrix. If a SAE fails
to achieve the same recovery, then there must be a non-zero
amortisation gap, meaning that the SAE cannot solve the
sparse inference problem of recovering all sparse sources
from their M -dimensional projection. The problem is the
low computational complexity of the L-NL encoder as we
see by looking at its functional mapping. Essentially, the
SAE is not able, not even after the nonlinear activation func-

tion, to recover the high dimensionality (N) of the data after
a projection into a lower (M) dimensional space Figure 1.

Proof. Let S = diag(s11, ..., sNN) be a diagonal matrix
with non-zero diagonal elements sii ̸= 0,∀i ∈ {1, ..., N}.
Ever row si is a valid source signal because it has non-zero
support under PK since, ∥si∥0 = 1 ≤ K,∀i ∈ {1, ..., N}.
Since the support of PK includes all 1-sparse vectors (as 1 ≤
K), selecting S as the diagonal matrix of 1-sparse signals
is without loss of generality. Let Wd ∈ RN×M be the
unknown projection matrix from N down to M dimensions
and We ∈ RM×N be the learned encoding matrix of the
SAE. Define W := WdWe ∈ RN×N and

S′ := SW (6)

the pre-activation matrix from the encoder of the SAE. Since
Wd projects down into M dimensions,

rank(W) = rank(WdWe) ≤ M. (7)

It follows that

rank(S′) = rank(SW) ≤ M. (8)

As an intermediate results, we conclude that the pre-
activations S′ of the SAE encoder cannot recover the sources
S′ ̸= |S| since rank(|S|) = N , because S is a diagonal ma-
trix.

The next step is to see whether the nonlinear activation
function might help to map back to the sources. The SAE
must learn an encoding matrix We such that

|S| = max(0, SWdWe) = max(0, SW) = max(0, S′)
(9)

where max(0, ·) is the ReLU activation function. Thus, for
the SAE to correctly reconstruct the sparse signals up to
sign flips, for any source code σ ∈ supp(PK), we require

(σW)i =

{
|σi| if σi ̸= 0

≤ 0 otherwise
(10)

specifically, S′ must be non-positive off the diagonal and
identical to |S| on the diagonal.

Approach: Show that a matrix S′ cannot simultaneously
satisfy conditions (eq. 8) and (eq. 10).

According to (eq. 6) and condition (eq. 10), we require that

s1W = (s′11, s
′
12, s

′
13, ..., s

′
1N) = (|s11|, s′12, s′13, ..., s′1N)

(11)
with s′1i ≤ 0 for all i ∈ {2, ..., N}. Analogously,

s2W = (s′21, s
′
22, s

′
23, ..., s

′
2N) = (s′21, |s22|, s′23, ..., s′2N)

(12)

12

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

with s′2i ≤ 0 for all i ∈ {1, 3, ..., N}. Moreover, since
∥s1 + s2∥0 = 2 < K we know that s1 + s2 has non-zero
support under PK , so condition (eq. 10) must also hold for
it. Thus, we need that

(s1 + s2)W = (|s11 + s21|, |s12 + s22|, γ1, ..., γN−2)

= (|s11 + 0|, |0 + s22|, γ1, ..., γN−2)

= (|s11|, |s22|, γ1, ..., γN−2)

(13)

with some non-positive γi ≤ 0 for all i ∈ {1, ..., N − 2}.
However, because of linearity,

(|s11|, |s22|, γ1, ..., γN−2) = (s1 + s2)W

= s1W + s2W

= (|s11|, s′12, s′13, ..., s′1N)

+ (s′21, |s22|, s′23, . . . , s′2N)

= (|s11|+ s′21, s
′
12

+ |s22|, s′13 + s′23, ..., s
′
1N + s′2N)

(14)

Thus, |s11| = |s11| + s′21 and |s22| = s′12 + |s22|. From
which it follows that s′21 = 0 and s′12 = 0. By repeating this
for all si, sj combinations, we obtain that all off-diagonal
elements in S′ must be zero. However, that means S′ =
diag(|s11|, ..., |sNN |) must be diagonal. This leads to a
contradiction, since it would imply that rank(S′) = N ,
violating condition (eq. 8).

Notes: We can generalise the result to L1 sparse distribu-
tions Pk with ∀s ∈ RN : s ∈ supp(Pk) ⇐⇒ ∥s∥1 ≤ k for
some k > 0. In this case, we would choose ∥s1∥ < k

2 and
∥s2∥ < k

2 . Thus, again we would have (s1+s2) ∈ supp(Pk)
since ∥s1 + s2∥ < k, allowing the same reasoning.

B. Relating Our Amortisation Gap to Prior
Results in Sparse Autoencoders

In this appendix, we clarify how our amortisation-gap the-
orem aligns with prior work on shallow autoencoders in
the sparse coding literature, including references such as
(Rangamani et al., 2018) and (Nguyen et al., 2019). While
these earlier results may appear to contradict our statement
that a single feedforward linear-nonlinear encoder cannot
globally recover all sparse codes from fewer measurements
(M < N), we show that these works rely on local or prob-
abilistic assumptions. By contrast, our theorem provides a
global, worst-case statement.

Our work presents a global impossibility claim: a single-
layer linear+σ map cannot perfectly invert every K-sparse
code if M < N . This argument is rank-based and does not
rely on training initialisation or a specific data distribution.

In contrast, many prior theorems establish local (or near-
dictionary) results: they assume the encoder’s weights start
sufficiently close to the true dictionary, then show that a
ReLU (or threshold) gating can maintain or refine correct
sparse recovery for typical data.

The distinction between uniform and distribution-specific
recovery is also important. Our proof deals with uniform,
adversarially chosen K-sparse codes. If the model must
handle all codes in RN with ∥s∥0 ≤ K, a single feed-
forward pass will inevitably fail for some codes. By contrast,
much of the prior literature – including (Rangamani et al.,
2018; Nguyen et al., 2019) –requires that codes are drawn
from a random distribution (e.g., sub-Gaussian or mixture-
of-Gaussians). This assumption enables high-probability
success on most sampled codes, but does not guarantee
recovery of all codes.

Another key distinction lies in single-pass versus multi-pass
inference. Our amortisation-gap statement explicitly con-
cerns a single-layer feedforward autoencoder. Iterative or
unrolled algorithms (e.g., LISTA (Gregor & LeCun, 2010),
or multi-layer ReLU stacks) circumvent the rank restriction
by repeatedly refining the estimate. Thus, a multi-iteration
or multi-layer approach can approach near-optimal sparse
recovery; but this does not contradict our statement about
a one-pass linear-nonlinear encoder’s inability to decode
every sparse signal.

Finally, our result demands exact (or perfect) inversion of
all feasible codes, while prior analyses often accept ap-
proximate or high-probability correctness. They conclude
that, given some distribution on codes and an adequately
trained near-dictionary encoder, one recovers the support
with probability > 1 − δ. This does not conflict with a
global impossibility statement.

C. Large-Scale Experiments
To validate that our findings generalise to larger scales more
representative of real-world applications, we conducted ad-
ditional experiments with substantially increased dimen-
sionality. We scaled up our synthetic experiments for the
known Z case to N = 1000 sparse sources, M = 200
measurements, and K = 20 active components, training
on 500, 000 samples for 20, 000 steps. This represents a
significant increase from our base experiments (which used
N = 16, M = 8, K = 3), bringing us closer to the scale of
actual SAE applications.

For these experiments, we modified our training procedure
to use minibatch processing (batch size 1024) to handle
the increased data scale efficiently. We evaluated MLPs
with hidden layer widths of H = {256, 512, 1024} against
a standard SAE. The results, shown in Figures 8a and 8b,
demonstrate that our key findings about the amortisation

13

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

gap not only hold but become more pronounced at larger
scales.

102 103 104

Training Steps
0.7

0.8

0.9

1.0

M
CC SAE

MLP (H = 1024)
MLP (H = 512)
MLP (H = 256)

(a) MCC vs. training steps

1014 1015 1016 1017

FLOPs
0.7

0.8

0.9

1.0

M
CC SAE

MLP (H = 1024)
MLP (H = 512)
MLP (H = 256)

(b) MCC vs. total FLOPs

Figure 8: (Larger N , M and K) Performance comparison
of SAE and MLPs in predicting known latent representa-
tions. The black dashed line in (b) indicates the average
FLOPs at which MLPs surpass SAE performance.

Specifically, the performance gap is slightly more sub-
stantial than in our smaller-scale experiments, suggesting
that the limitations of linear-nonlinear encoders become
more significant as the problem dimensionality increases.
This aligns with our theoretical predictions, as the higher-
dimensional setting creates more opportunities for interfer-
ence between features that the simple SAE encoder struggles
to disentangle.

The FLOP analysis (Figure 8b) reveals that all MLPs surpass
the SAE’s performance at approximately 3× 1014 FLOPs,
regardless of hidden layer width. This consistent computa-
tional threshold, despite varying model capacities, suggests
a fundamental limitation in the SAE’s architecture rather
than a simple capacity constraint.

D. A Different Distribution of Codes
In this appendix, we explore an alternative data generation
process that better reflects the distributional properties ob-
served in real-world latent representations. While our main
experiments use uniformly sampled sparse codes, recent
work has shown that latent features in large models often
follow heavy-tailed distributions (e.g., power laws) with
varying activation frequencies (Engels et al., 2024; Park
et al., 2024). To investigate the robustness of our findings,
we modify our synthetic data generator to incorporate a Zipf
distribution (parameterised by α) over feature activations.
This creates a hierarchical structure where certain features
are consistently more likely to be active and have larger
magnitudes, while others are more rarely activated. The
modified generator maintains the core sparsity constraint of
K active dimensions, but weighs both the selection prob-
ability and magnitude of each dimension according to its
position in the Zipf distribution.

We reproduced all experiments from Section 4.4 using this
modified data generation process, with α = 1.0. The results
reveal several interesting differences while broadly support-

102 103 104

Training Steps

0.00

0.25

0.50

0.75

1.00

M
CC SAE

MLP (H = 32)
MLP (H = 256)
MLP (H = 1024)

(a) MCC vs. training steps

108 109 1010 1011 1012

FLOPs

0.00

0.25

0.50

0.75

1.00

M
CC SAE

MLP (H = 32)
MLP (H = 256)
MLP (H = 1024)

(b) MCC vs. total FLOPs

Figure 9: (Zipfian) Performance comparison of SAE and
MLPs in predicting known latent representations. The black
dashed line in (b) indicates the average FLOPs at which
MLPs surpass SAE performance.

ing our main conclusions. In the known sparse codes sce-
nario (Figure 9), all methods achieve higher absolute perfor-
mance, with MLPs reaching MCC values of approximately
0.8 compared to 0.6 in the uniform case. The advantage of
wider hidden layers becomes more pronounced under the
Zipfian distribution, though the computational threshold at
which MLPs surpass SAE performance remains consistent
with our original findings.

102 103 104

Training Steps
0.00

0.25

0.50

0.75

M
CC

SAE
SAE+ITO
MLP (H=32)
MLP (H=256)

(a) MCC vs. training steps

108 109 1010 1011 1012

FLOPs
0.00

0.25

0.50

0.75

M
CC

SAE
SAE+ITO
MLP (H=32)
MLP (H=256)

(b) MCC vs. total FLOPs

Figure 10: (Zipfian) Performance comparison of SAE, SAE
with inference-time optimisation (SAE+ITO), and MLPs in
predicting latent representations with a known dictionary.
Dashed lines in (b) indicate extrapolated performance be-
yond the measured range.

When the dictionary is known but sparse codes are unknown
(Figure 10), we observe similar relative performance pat-
terns but with higher peak MCC values (around 0.85 com-
pared to 0.75 in the uniform case). The SAE with inference-
time optimisation (SAE+ITO) exhibits more volatile train-
ing dynamics under the Zipfian distribution, showing a char-
acteristic performance drop around 104 training steps be-
fore recovery. This suggests that optimisation becomes
more challenging when dealing with hierarchically struc-
tured features, though the method ultimately achieves strong
performance.

The most substantial differences emerge in the fully unsu-
pervised setting, where both dictionary and sparse codes are
unknown (Figure 11). Here, the Zipfian distribution leads to
lower overall performance (MCC of 0.5-0.6 versus 0.7-0.8
in the uniform case) and creates clearer separation between
different methods. While sparse coding still outperforms

14

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

0 10000 20000 30000 40000
Training Steps

0.2

0.3

0.4

0.5

0.6

M
CC SAE

SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(a) Latent prediction: MCC vs.
training steps

107 108 109 1010 1011 1012

FLOPs
0.2

0.3

0.4

0.5

0.6

M
CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(b) Latent prediction: MCC vs.
total FLOPs

0 10000 20000 30000 40000
Training Steps

0.4

0.6

0.8

Di
ct

io
na

ry
 M

CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(c) Dictionary learning: MCC
vs. training steps

107 108 109 1010 1011 1012

FLOPs

0.4

0.6

0.8
Di

ct
io

na
ry

 M
CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(d) Dictionary learning: MCC
vs. total FLOPs

Figure 11: (Zipfian) Dictionary learning performance com-
parison when both s∗ and D∗ are unknown.

other approaches, its advantage is less pronounced than in
the uniform setting. Dictionary learning under the Zipfian
distribution shows increased volatility across all methods,
particularly for sparse coding, though the relative ordering
of performance remains consistent with our original results.

These findings suggest that while our conclusions about
the relative merits of different approaches hold under more
realistic distributional assumptions, the absolute difficulty
of the sparse inference problem increases when dealing with
hierarchically structured features.

E. Decoder weight analysis
A useful method for gaining insight into the behaviour of our
models is through examining the final weights of the decoder.
Specifically, we visualise W⊤W , an N×N matrix, for three
scenarios: when N equals the true sparse dimensionality,
when N exceeds it, and when N is smaller than the true
dimensionality.

In the case where N matches the true sparse dimension,
we observe the matrix D⊤D for the learned decoder ma-
trix D after training. Figure 12 illustrates this scenario for
N = 16 and M = 8, without applying decoder column
unit normalisation. For sparse coding, the matrix D⊤D is
approximately an N ×N identity matrix after softmax nor-
malisation. This means that the model has learned a set of
basis vectors where each column of D is nearly orthogonal
to all others, indicating that the features are independent.

In contrast, both the sparse autoencoder (SAE) and the mul-
tilayer perceptron (MLP) show D⊤D matrices with a mix
of diagonal and off-diagonal elements. In these cases, many

0 5 10 15
Column Index

0

5

10

15

Co
lu

m
n

In
de

x

SAE

0 5 10 15
Column Index

0

5

10

15

MLP

0 5 10 15
Column Index

0

5

10

15

SparseCoding

0.00

0.25

0.50

0.75

1.00

Figure 12: Visualisation of D⊤D when N matches the
true sparse dimension. Sparse coding achieves near-identity
matrices, while sparse autoencoders (SAE) and multilayer
perceptrons (MLP) show significant off-diagonal elements,
indicating superposition.

0 10 20
Column Index

0

5

10

15

20

Co
lu

m
n

In
de

x

SAE

0 10 20
Column Index

0

5

10

15

20

MLP

0 10 20
Column Index

0

5

10

15

20

SparseCoding

0.00

0.25

0.50

0.75

1.00

Figure 13: Visualisation of D⊤D when N exceeds the true
sparse dimension.

off-diagonal elements are close to 1.0, suggesting that these
models utilise superposition, representing more features
than there are dimensions. This is suboptimal in this par-
ticular scenario because the models have the exact number
of dimensions required to represent the feature space effec-
tively. Notably, this superposition effect diminishes when
vector normalisation is applied during training.

We observe similar patterns when N is greater than the true
sparse dimensionality (Figure 13) and when N is smaller
(Figure 14). In cases where N exceeds the required di-
mensionality, sparse coding still strives to maintain orthog-
onal feature directions, leading to a near-identity matrix.
However, both SAEs and MLPs show stronger correlations
between features, as indicated by larger off-diagonal ele-
ments, though MLPs exhibit less extreme correlations (e.g.,
off-diagonal values of around 0.5).

When N is smaller than the true sparse dimension (Figure
14), sparse coding again attempts to maintain orthogonality,
though it is constrained by the reduced number of dimen-
sions. The SAE and MLP models, in contrast, continue to
exhibit superposition, with off-diagonal elements close to
1.0. MLPs, however, show somewhat weaker correlations
between features, as indicated by off-diagonal values around
0.5 in some instances.

F. MLP Ablations
We also wanted to understand in more fine-grained detail
how the hidden width of the MLPs affects the key metrics of

15

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

0 5 10
Column Index

0
2
4
6
8

10

Co
lu

m
n

In
de

x

SAE

0 5 10
Column Index

0
2
4
6
8

10

MLP

0 5 10
Column Index

0
2
4
6
8

10

SparseCoding

0.00

0.25

0.50

0.75

1.00

Figure 14: Visualisation of D⊤D when N is smaller than
the true sparse dimension.

24 25 26 27 28 29

Hidden Width

0.005

0.010

0.015

0.020

M
SE

 L
os

s

N = 16, M = 8, K = 3
N = 32, M = 16, K = 6
N = 64, M = 16, K = 6

24 25 26 27 28 29

Hidden Width

0.3

0.4

0.5

0.6

0.7

La
te

nt
 M

CC

N = 16, M = 8, K = 3
N = 32, M = 16, K = 6
N = 64, M = 16, K = 6

24 25 26 27 28 29

Hidden Width

0.60

0.65

0.70

0.75

0.80

0.85

Di
ct

 M
CC

N = 16, M = 8, K = 3
N = 32, M = 16, K = 6
N = 64, M = 16, K = 6

Figure 15: Varying the hidden width of an MLP autoencoder
in varying difficulties of dictionary learning regimes. Each
data point is an MLP trained for 50,000 iterations with a
learning rate of 1e-4.

performance, in different regimes of N,M and K. We show
this in Figure 15. We use varying hidden widths and three
different combinations of increasingly difficult N,M,K
to test this. We train for 50,000 iterations with a learning
rate of 1e-4. We see that MCC (both latent and dictionary)
increases approximately linearly with hidden width, with
a slight drop-off at a hidden width of 512 (most likely due
to underfitting). We also see a similar trend in terms of
reconstruction loss, with the most difficult case being most
sensitive to hidden width.

G. Including a bias parameter
We examine the effect of including a bias parameter in our
models in Figure 16. Elhage et al. (2022) noted that a
bias allows the model to set features it doesn’t represent
to their expected value. Further, ReLU in some cases can
make “negative interference” (interference when a negative
bias pushes activations below zero) between features free.
Further, using a negative bias can convert small positive
interferences into essentially being negative interferences,
which helps deal with noise.

However, Theorem 3.1 doesn’t rely on having biases, and
although it generalises to the case with biases, we would
like to be able to simplify our study by not including them.
Thus, we show in Figure 16 that biases have no statistically
significant effect on reconstruction loss, latent MCC, dic-
tionary MCC, or L0, for any of the models, except for the
L0 and MCC of the MLP, which achieves a higher MCC
without bias at the cost of a greater L0.

SAE Sparse Coding MLP (H = 64)0.0000

0.0005

0.0010

0.0015

0.0020

Lo
ss

 Te
st

Loss Test
With Bias
Without Bias

SAE Sparse Coding MLP (H = 64)0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
cc

 Te
st

MCC Test

SAE Sparse Coding MLP (H = 64)0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
ct

 M
cc

Dict MCC

SAE Sparse Coding MLP (H = 64)0.0

0.1

0.2

0.3

0.4

0.5

L0
 Te

st

L0 Test

Figure 16: Effects on dictionary learning performance for
our three models, with and without a bias. Including a bias
has no statistically significant effect on results.

H. Comparison with traditional dictionary
learning methods

To provide a comparison with traditional dictionary learn-
ing methods, we incorporated the Least Angle Regression
(LARS) algorithm to compute the Lasso solution in our
experimental framework.

The traditional dictionary learning problem can be formu-
lated as a bi-level optimisation task. Given a set of training
samples X = [x1, . . . , xn] ∈ Rm×n, we aim to find a dic-
tionary D ∈ Rm×k and sparse codes A = [α1, . . . , αn] ∈
Rk×n that minimise the reconstruction error while enforcing
sparsity constraints:

min
D,A

n∑
i=1

(
1

2
∥xi −Dαi∥22 + λ∥αi∥1

)
subject to ∥dj∥2 ≤ 1 for j = 1, . . . , k, where dj represents
the j-th column of D, and λ > 0 is a regularisation parame-
ter controlling the trade-off between reconstruction fidelity
and sparsity.

In our experiment, we employed the LARS algorithm to
solve the Lasso problem for sparse coding, while alternat-
ing with dictionary updates to learn the optimal dictionary.
Specifically, we used the scikit-learn implementation
of dictionary learning, which utilises LARS for the sparse
coding step. The algorithm alternates between two main
steps: (1) sparse coding, where LARS computes the Lasso
solution for fixed D, and (2) dictionary update, where D is
optimised while keeping the sparse codes fixed.

To evaluate the performance of this traditional approach, we
generated synthetic data following the same procedure as in

16

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

100 200
N (no. components)

10

15

20

25

30

M
 (n

o.
 fe

at
ur

es
)

 Loss, k=3

100 200
N (no. components)

10

15

20

25

30
 Loss, k=6

100 200
N (no. components)

10

15

20

25

30
 Loss, k=9

100 200
N (no. components)

10

15

20

25

30

M
 (n

o.
 fe

at
ur

es
)

Latent MCC , k=3

100 200
N (no. components)

10

15

20

25

30
Latent MCC , k=6

100 200
N (no. components)

10

15

20

25

30
Latent MCC , k=9

100 200
N (no. components)

10

15

20

25

30

M
 (n

o.
 fe

at
ur

es
)

MCC Dict, k=3

100 200
N (no. components)

10

15

20

25

30
MCC Dict, k=6

100 200
N (no. components)

10

15

20

25

30
MCC Dict, k=9

0.0000
0.0075
0.0150
0.0225
0.0300
0.0375
0.0450
0.0525

0.16
0.28
0.40
0.52
0.64
0.76
0.88
1.00

0.660
0.705
0.750
0.795
0.840
0.885
0.930
0.975

Figure 17: Performance of Least-Angle Regression (LARS)
to compute the Lasso solution using our synthetic dictionary
learning setup. In general, when comparing to Figure 5,
we see an improvement when using LARS over our naı̈ve
implementations of SAEs, MLPs and sparse coding, across
loss, latent MCC, and dictionary MCC.

our main experiments, with N = 16 sparse sources, M = 8
measurements, and K = 3 active components per timestep.
We trained the dictionary learning model on the training
set and evaluated its performance on the held-out test set.
Performance was measured using the Mean Correlation
Coefficient (MCC) between the predicted and true latents,
as well as between the learned and true dictionary elements.

The results of this, presented in Figure 17, make clear
that traditional sparse coding significantly outperforms
our vanilla gradient-based implementations, particularly in
terms of latent MCC and dictionary MCC. Whilst our results
from the main body show that there does exist a significant
amortisation gap between the vanilla implementations of
each of the approaches, we should also attempt to under-
stand how the optimised versions of each method compare.
We discuss this in the following subsection.

H.1. Optimised Sparse Autoencoders and Sparse
Coding

Our initial implementations of sparse autoencoders (SAEs)
and sparse coding, while functional, are far from optimal.
They represent the minimum computational mechanisms
required to solve the problems as we have formulated them.
However, more sophisticated approaches can significantly
improve performance and address inherent limitations.

H.1.1. ADVANCED SPARSE AUTOENCODER
TECHNIQUES

Sparse autoencoders trained with L1 regularisation are sus-
ceptible to the shrinkage problem. Wright & Sharkey (2024)
identified feature suppression in SAEs, analogous to the
activation shrinkage first described by Tibshirani (1996) as
a property of L1 penalties. The shrinkage problem occurs
when L1 regularisation reduces the magnitude of non-zero
coefficients to achieve a lower loss, potentially underesti-
mating the true effect sizes of important features.

Several techniques have been proposed to mitigate this is-
sue:

• ProLU Activation: Taggart (2024) introduced the
ProLU activation function to maintain scale consis-
tency in feature activations.

• Gated SAEs: Rajamanoharan et al. (2024a) developed
Gated Sparse Autoencoders, which separate the pro-
cess of determining active directions from estimating
their magnitudes. This approach limits the undesir-
able side effects of L1 penalties and achieves a Pareto
improvement over standard methods.

• JumpReLU SAEs: Rajamanoharan et al. (2024b) pro-
posed JumpReLU SAEs, which set activations below
a certain threshold to zero, effectively creating a non-
linear gating mechanism.

• Top-k SAEs: Originally proposed by Makhzani & Frey
(2013), top-k SAEs were shown by Gao et al. (2024)
to prevent activation shrinkage and scale effectively to
large language models like GPT-4.

H.1.2. OPTIMISED SPARSE CODING APPROACHES

Our initial sparse coding model, using uniformly ini-
tialised latents and concurrent gradient-based optimisation
of both sparse codes and the dictionary, is suboptimal. The
sparse coding literature offers several more sophisticated
approaches:

• Least Angle Regression (LARS): Introduced by Efron
et al. (2004), LARS provides an efficient algorithm for
computing the entire regularisation path of Lasso. It is
particularly effective when the number of predictors is
much larger than the number of observations.

• Orthogonal Matching Pursuit (OMP): Pati et al.
(1993) proposed OMP as a greedy algorithm that iter-
atively selects the dictionary element most correlated
with the current residual. It offers a computationally
efficient alternative to convex optimisation methods.

Future work will involve pitting these against the optimised
SAE architectures discussed above.

17

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

H.2. Top-k sparse coding

Building on this exploration, we introduced a top-k sparse
coding approach. We aimed to determine whether (1) set-
ting very small active latents to zero would improve per-
formance and (2) optimising with a differentiable top-k
function, rather than using exponential or ReLU functions,
could yield further benefits.

Figure 18 presents the results of these experiments. We
first trained the sparse coding model for 20,000 steps on the
training data and optimised for an additional 1,000 steps
on the test data. During this process, we measured mean
squared error (MSE) loss, latent MCC, and the L0 norm of
the latent codes. Due to the presence of very small active
latents, all initial setups led to an L0 value of 1.0, indicating
that all latents were active, as shown by the blue star in
the figure. We also show a sparse autoencoder trained with
different L1 penalties as a comparison.

Next, we applied a top-k operation to enforce sparsity by
setting all but the top-k largest activations to zero. This
process resulted in improved L0 values, but the MSE loss
and MCC results indicated that the top-k optimisation itself
was hampered by an insufficient learning rate. We hypothe-
sise that with proper tuning of hyperparameters, we could
achieve Pareto improvements by using the top-k function
directly, rather than applying it to exponentiated codes.

We believe that further adjustments to the optimisation pro-
cess, including a higher learning rate for top-k functions,
could result in better performance. Additionally, apply-
ing the top-k function directly, without exponentiating the
codes, may offer further gains in performance and sparsity.

I. Measuring FLOPs
To quantify the computational cost of each method, we
calculate the number of floating-point operations (FLOPs)
required for both training and inference. This section details
our approach to FLOP calculation for each method.

I.1. Sparse Coding

For sparse coding, we calculate FLOPs for both inference
and training separately.

Inference: The number of FLOPs for inference in sparse
coding is given by:

FLOPsSC-inf =

{
3MN +Nns if learning D

2MN +Nns otherwise
(15)

where M is the number of measurements, N is the number
of sparse sources, and ns is the number of samples. The
additional MN term when learning D accounts for the
normalisation of the dictionary.

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L0 vs MSE Loss (L1 weight: 0.005)
SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.2

0.4

0.6

M
CC

L0 vs MCC (L1 weight: 0.005)

SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L0 vs MSE Loss (L1 weight: 0.05)
SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.2

0.4

0.6

0.8

M
CC

L0 vs MCC (L1 weight: 0.05)

SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L0 vs MSE Loss (L1 weight: 0.5)
SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.2

0.4

0.6

0.8

M
CC

L0 vs MCC (L1 weight: 0.5)

SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

Figure 18: Comparison of L0 loss vs. MSE loss and L0

loss vs. MCC for Sparse Coding with L1 regularization, top-
k inference, and top-k optimization, alongside results for
Sparse Autoencoder. Blue stars represent the initial model’s
performance, while curves illustrate the results of applying
top-k sparsity.

Training: For training, we calculate the FLOPs as:

FLOPsSC-train = neff · (FLOPsforward + FLOPsloss + FLOPsbackward + FLOPsupdate)

where neff = nsteps · nb

ns
is the effective number of iterations,

nsteps is the number of training steps, nb is the batch size,
and ns is the total number of samples. The component
FLOPs are calculated as:

FLOPsforward = FLOPsSC-inf

FLOPsloss = 2Mnb +Nnb

FLOPsbackward ≈ 2 · FLOPsforward

FLOPsupdate =

{
Nnb +MN if learning D

Nnb otherwise

I.2. Sparse Autoencoder (SAE)

For the sparse autoencoder, we calculate FLOPs for both
training and inference.

Training: The total FLOPs for SAE training is given by:

FLOPsSAE-train = neff · (FLOPsforward + FLOPsbackward)

18

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

where neff is defined as before, and:

FLOPsforward =

{
5MN +N if learning D

4MN +N otherwise

FLOPsbackward = N + (2NM +N) + 2NM+

2(MN +N) +

{
2NM if learning D

0 otherwise

Inference: For SAE inference, the FLOPs are calculated
as:

FLOPsSAE-inf = (4MN +N) · ns

I.3. Multilayer Perceptron (MLP)

For the MLP, we calculate FLOPs for both training and
inference, considering a single hidden layer of size H .

Training: The total FLOPs for MLP training is given by:

FLOPsMLP-train = neff · (FLOPsforward + FLOPsbackward)

where:

FLOPsforward =

{
2MH +H + 2HN +N + 2NM +MN if learning D

2MH +H + 2HN +N + 2NM otherwise

FLOPsbackward = N + (2NH +N) +H + (2MH +H) + 2NM + 2(MH +H +HN +N)

where we add 2NM to FLOPsbackward if learning D, and
not otherwise.

Inference: For MLP inference, the FLOPs are calculated
as:

FLOPsMLP-inf = (2MH +H + 2HN +N + 2NM) · ns

I.4. SAE with Inference-Time Optimisation (SAE+ITO)

For SAE+ITO, we calculate the additional FLOPs required
for optimising the codes during inference:

FLOPsITO = (MN+N+niter ·(4MN+2M+11N)) ·ns

where niter is the number of optimisation iterations per-
formed during inference.

J. Automated interpretability
In this section, we describe the automated interpretabil-
ity pipeline used to understand and evaluate the features
learned by sparse autoencoders (SAEs) and other models
in the context of neuron activations within large language
models (LLMs). The pipeline consists of two tasks: feature
interpretation and feature scoring. These tasks allow us to
generate hypotheses about individual feature activations and
to determine whether specific features are likely to activate
given particular token contexts.

J.1. Feature Interpreter Prompt

We use a feature interpreter prompt to provide an explana-
tion for a neuron’s activation. The interpreter is tasked with
analysing a neuron’s behaviour, given both text examples
and the logits predicted by the neuron. Below is a summary
of how the interpreter prompt works:

You are a meticulous AI researcher conducting an investiga-
tion into a specific neuron in a language model. Your goal
is to provide an explanation that encapsulates the behavior
of this neuron. You will be given a list of text examples on
which the neuron activates. The specific tokens that cause
the neuron to activate will appear between delimiters like
<<this>>. If a sequence of consecutive tokens causes the
neuron to activate, the entire sequence of tokens will be con-
tained between delimiters <<just like this>>. Each
example will also display the activation value in parentheses
following the text. Your task is to produce a concise descrip-
tion of the neuron’s behavior by describing the text features
that activate it and suggesting what the neuron’s role might
be based on the tokens it predicts. If the text features or
predicted tokens are uninformative, you can omit them from
the explanation. The explanation should include an anal-
ysis of both the activating tokens and contextual patterns.
You will be presented with tokens that the neuron boosts
in the next token prediction, referred to as Top logits,
which may refine your understanding of the neuron’s be-
havior. You should note the relationship between the tokens
that activate the neuron and the tokens that appear in the
Top logits list. Your final response should provide a
formatted explanation of what features of text cause the neu-
ron to activate, written as: [EXPLANATION]: <your
explanation>.

J.2. Feature Scorer Prompt

After generating feature interpretations, we implemented
a scoring prompt to predict whether a specific feature is
likely to activate on a given token. This ensures that the
explanations generated by the interpreter align with actual
activations. The scoring prompt tasks the model with evalu-
ating if the tokens marked in the examples are representative
of the feature in question.

You are provided with text examples where portions of the
sentence strongly represent the feature, with these portions
enclosed by << and >>. Some of these examples might be
mislabeled. Your job is to evaluate each example and return
a binary response (1 if the tokens are correctly labeled, and
0 if they are mislabeled). The output must be a valid Python
list with 1s and 0s, corresponding to the correct or incorrect
labeling of each example.

19

Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders

Table 1: Example interpretations from MLP and SAE neurons, shown with their F1 scores.

Model Interpretation F1 Score

MLP Activates on the token “to” when used to introduce an infinitive verb indicating
purpose or intent, promoting verbs that express actions or goals

0.899

Activates on concrete and functional nouns or specific actions that are often part of a
list or enumeration

0.899

Activates on the token “than” as part of a comparative structure, aiding in predicting
terms used for comparison or establishing norms

1.000

SAE Activates on parentheses and colons used in structured timestamps, date-time formats,
and categorisation notations

1.000

Activates on tokens within contexts related to font and text styling options, typically
presented in a technical or settings menu format

1.000

Activates on the token “first” within the formulaic expression “first come, first served
basis”

1.000

J.3. Evaluation of Automated Interpretability

To evaluate the accuracy of the interpretations generated
by the feature interpreter and feature scorer, we compared
model-generated explanations against held-out examples.
The evaluation involved calculating the F1-score, which was
done by presenting the model with a mix of correctly labeled
and falsely labeled examples. The model was then tasked
with predicting whether each token in the example repre-
sented a feature or not, based on the previously generated
interpretation. By comparing the model’s predictions with
ground truth labels, we can assess how accurately the feature
interpretation aligns with actual neuron activations. This
process helps validate the interpretability of the features
learned by SAEs, MLPs, and other models.

This pipeline is based on the work of Juang et al. (2024),
which itself builds on the work of others. Bills et al. (2023)
used GPT-4 to generate and simulate neuron explanations by
analyzing text that strongly activated the neuron. Bricken
et al. (2023) and Templeton (2024) applied similar tech-
niques to analyze sparse autoencoder features. Templeton
(2024) also introduced a specificity analysis to rate expla-
nations by using another LLM to predict activations based
on the LLM-generated interpretation. This provides a quan-
tification of how interpretable a given neuron or feature
actually is. Gao et al. (2024) demonstrated that cheaper
methods, such as Neuron to Graph (Foote et al.), which
uses n-gram based explanations, allow for a scalable feature
labeling mechanism that does not rely on expensive LLM
computations.

Table 1 presents illustrative examples of interpretations from
both MLP and SAE neurons, showing how our automated
pipeline can identify specific linguistic patterns and assign
quantitative reliability scores.

20

	Introduction
	Background and Related Work
	Sparse Neural Representations
	Superposition in Neural Representations
	Compressed Sensing and Sparse Coding
	Sparse Autoencoders
	Applications in Neural Network Models

	Methods
	Theory: Provable Suboptimality of SAEs
	Synthetic data
	Sparse Encoding Schemes
	Measuring the quality of the encoder and decoder
	Disentangling Dictionary Learning and Sparse Inference

	Synthetic Sparse Inference Experiments
	Known Sparse Codes
	Known Dictionary
	Unknown Sparse Codes and Dictionary
	Performance Across Varying Data Regimes

	Interpretability of Sparse Coding Schemes
	Discussion
	Amortisation gap proof
	Relating Our Amortisation Gap to Prior Results in Sparse Autoencoders
	Large-Scale Experiments
	A Different Distribution of Codes
	Decoder weight analysis
	MLP Ablations
	Including a bias parameter
	Comparison with traditional dictionary learning methods
	Optimised Sparse Autoencoders and Sparse Coding
	Advanced Sparse Autoencoder Techniques
	Optimised Sparse Coding Approaches

	Top-k sparse coding

	Measuring FLOPs
	Sparse Coding
	Sparse Autoencoder (SAE)
	Multilayer Perceptron (MLP)
	SAE with Inference-Time Optimisation (SAE+ITO)

	Automated interpretability
	Feature Interpreter Prompt
	Feature Scorer Prompt
	Evaluation of Automated Interpretability

