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ABSTRACT

By driving optimizers to converge to flat minima, sharpness-aware learning algo-
rithms (such as SAM) have shown the power to achieve state-of-art performances.
However, these algorithms will generally incur one extra forward-backward prop-
agation at each training iteration, which largely burdens the computation espe-
cially for scalable models. To this end, we propose an efficient training scheme,
called Randomized Sharpness-Aware Training (RST). Optimizers in RST would
perform a Bernoulli trial at each iteration to choose randomly from base algo-
rithms (SGD) and sharpness-aware algorithms (SAM) with a probability arranged
by a predefined scheduling function. Due to the mixture of base algorithms, the
overall count of propagation pairs could be largely reduced. Also, we give theoret-
ical analysis on the convergence of RST. Then, we empirically study the compu-
tation cost and effect of various types of scheduling functions, and give directions
on setting appropriate scheduling functions. Further, we extend the RST to a gen-
eral framework (G-RST), where we can adjust regularization degree on sharpness
freely for any scheduling function. We show that G-RST can outperform SAM in
most cases while saving 50% extra computation cost.

1 INTRODUCTION

Deep neural networks (DNNs) have shown great capabilities in solving many real-world complex
tasks (He et al., 2016; Redmon et al., 2016; Devlin et al., 2018). However, it is quite challenging to
efficiently train them to achieve good performance, especially for today’s severely overparameter-
ized networks (Dosovitskiy et al., 2021; Han et al., 2017). Although such numerous parameters can
improve the expressiveness of DNNs, yet they may complicate the geometry of the loss surface and
generate more global and local minima in this huge hypothesis weight space.

By leveraging the finding that flat minima could exhibit better generalization ability, Foret et al.
(2021) propose a sharpness-aware learning method called SAM, where loss geometry will be con-
nected to the optimization to guide optimizers to converge to flat minima. Training with the SAM
has shown the power to significantly improve model performance for various tasks (Foret et al.,
2021; Chen et al., 2021). But on the other hand, the computation cost of SAM is almost twice that of
the vanilla stochastic gradient descent (SGD), since it will incur one additional forward-backward
propagation for each training iteration, which largely burdens the computation in practice.

Recently, techniques are introduced to improve the computation efficiency in SAM. Specifically,
instead of using the full batch samples, Bahri et al. (2021) and Du et al. (2021a) select only part of
batch samples to make approximations for the two forward-backward propagations. Although the
computation cost can be reduced to some extent, unfortunately, the forward-backward propagation
count in the SAM training scheme will not change essentially. Mi et al. (2022) randomly masking
out part of weights during optimization in expectation to reduce the amount of gradient computations
at each iteration. However, the efficiency improvement of such a method is strongly limited by the
chain rule of gradient computation (Du et al., 2021a). Besides, Liu et al. (2022) propose to repeatedly
use the past descent vertical gradients in SAM to reduce the incurred computational overhead.

Meanwhile, random selection strategy is a powerful technique for boosting optimization efficiency,
particularly in the field of gradient boosting (Friedman, 2001), where a small set of learners in
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gradient boosting machines would be selected randomly to be optimized under certain rule (Lu &
Mazumder, 2020; Konstantinov et al., 2021).

Inspired by such randomization scheme in gradient boosting, we would present a simple but efficient
training scheme, called Randomized Sharpness-Aware Training (RST). In our RST, the learning pro-
cess would be randomized, where optimizers would randomly select to perform from base learning
algorithms and sharpness-aware learning algorithms at each training iteration with a given proba-
bility. And this selecting probability is arranged by a custom scheduling function predefined before
training. The scheduling function not only controls how much propagation count would be reduced,
but also impacts the model performance.

Our contribution can be summarized as,

1. We propose a simple but efficient training scheme, called RST, which could reduce the
propagation count via mixing base learning (SGD) algorithms and sharpness-aware learn-
ing (SAM) algorithms randomly.

2. We give interpretation of our RST scheme from the perspective of gradient norm regular-
ization (GNR) (Zhao et al., 2022), and theoretically prove the convergence of RST scheme.

3. We empirically study the effect when arranging different scheduling functions, including
totally three typical types of function families with six function groups.

4. We extend the RST to a general framework (G-RST), where GRN algorithm is mixed such
that regularization degree on gradient norm can be adjusted freely. By training both CNN
models and ViT models on commonly-used datasets, we show that G-RST can outperform
SAM mostly while saving at least 50% extra computation cost.

1.1 OTHER RELATED WORKS

We would like to discuss works associated with the research on flat minima. In Hochreiter &
Schmidhuber (1997), the authors are the first to point out that the flatness of minima could be associ-
ated with the model generalization, where models with better generalization should converge to flat
minima. And such claim has been supported extensively by both empirical evidences and theoretical
demonstrations (Keskar et al., 2017; Dinh et al., 2017). In the meantime, researchers are also fasci-
nating by how to implement practical algorithms to force the models to converge to such flat minima.
By summarizing this problem to a specific minimax optimization, Foret et al. (2021) introduce the
SAM training scheme, which successfully guides optimizers to converge to flat minima. Further,
Zheng et al. (2021) perform gradient descent twice to solve the minimization and maximization re-
spectively in this minimax optimization. In Kwon et al. (2021), Adaptive SAM training scheme for
improving SAM to be able to remain steady when performing weight rescaling operations. Zhao
et al. (2022) seek flat minima by explicitly penalizing the gradient norm of the loss function. Un-
like SAM-related training schemes, without a restriction on neighborhood region, Du et al. (2022)
We propose to minimize the KL-divergence between the output distributions yielded by the current
model and the moving average of past models, similar to the idea of knowledge distillation.

2 METHOD

2.1 RANDOMIZED SHARPNESS-AWARE TRAINING (RST)

The general idea of RST follows a randomization scheme, where the learning process will be ran-
domized. Specifically, for each training iteration t, optimizers would perform a Bernoulli trial to
choose from base learning algorithms and sharpness-aware learning algorithms. Here, we will con-
sider first mixing the two most commonly-used algorithms, SGD and SAM. Thus, in each Bernoulli
trial, the optimizer would perform the SAM algorithm with a probability p(t) or perform the SGD al-
gorithm with probability 1−p(t). Here, p(t) could be a predefined custom function of iteration t, and
we would call it the scheduling function of RST. Apparently, the sample space for this Bernoulli trial
corresponds to the set Ω = {SGD, SAM}. Correspondingly, a random variable could be defined
on this sample space, X(t) : Ω → {0, 1}, where X(t) = 0 denotes performing the SGD algorithm
while X(t) = 1 denotes performing the SAM algorithm. In summary, X(t) ∼ Bernoulli(p(t)), and

θ0
X(1)−−−→ θ1 · · ·θt

X(t+1)−−−−−→ θt+1, X(t) ∈ {0, 1} (1)
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Algorithm 1 Randomized Sharpness-Aware Training (RST)
Input: Training set S = {(xi,yi)}Ni=0; loss function L(·); batch size B; learning rate α; total
iterations T ; neighborhood radius of SAM ρ, scheduling function p(t).
Parameter: Model weights θ.
Output: Optimized model weights θ̂.
Algorithm:

1: Initialize weight θ0; initialize optimizer with scheduling function p(t).
2: for iteration t = 1 to T do
3: Compute the gradient g = ∇θL(θt).
4: Perform the Bernoulli trial with probability pt and record the result Xt.
5: if Xt = 0 then . Implement SGD algorithm
6: gt = g.
7: else . Implement SAM algorithm
8: gt = ∇θL(θt) at θt = θt + εt with εt = ρ g

||g|| .
9: end if

10: Update weight θt+1 = θt − η · gt
11: end for
12: return final weight θ̂ = θT

Additionally, Algorithm 1 shows the complete implementation when training with RST scheme.

Compared to the SAM training scheme, every time SGD algorithm is selected instead of SAM
algorithm in the RST scheme, we would save one forward-backward propagation. Therefore, for
training iteration t, the expectation of propagation count η̂t in RST could be

η̂t = 2 · pt + 1 · (1− pt) = 1 + pt (2)
Here, pt denotes the scheduling probability of p(t) at training iteration t. Equation 2 indicates RST
would incur extra more pt propagation count in expectation than the vanilla SGD training. Further,
the average of the extra expected propagation count ∆η̂ over the total training iterations T is,

∆η̂ =

∑T
t=0(pt)

T
(3)

where ∆η̂ ∈ [0, 1], bounded between ∆η̂ in the vanilla SGD scheme and the SAM scheme.

Obviously, the scheduling function p(t) would straightforwardly control the number of propagations
being saved. ∆η would be larger if performing the SAM optimization with a higher probability.
Also, an appropriate schedule could improve model performance further while a bad one may largely
harm the training. We would provide a detailed study on the scheduling function in the later sections.

2.2 UNDERSTANDING RST FROM GRADIENT NORM REGULARIZATION

From previous demonstration, the gradient of RST at training iteration t could be expressed as,
gt = (1−Xt) · ∇θL(θt) +Xt∇θL(θt + εt) (4)

where εt = ρ · ∇θL(θt)/||∇θL(θt)||. And the expectation of this gradient over X is,
EX [gt] = (1− pt)∇θL(θt) + pt∇θL(θt + εt) (5)

According to Zhao et al. (2022), gradients in the form of Equation 5 can be interpreted as regular-
izations on the gradient norm (GRN) of loss function.

Specifically, when imposing penalty on the gradient norm during training with a penalty coefficient
γ, L(θ) + γ||∇θL(θ)||, the corresponding gradient could be approximated via the combination
between ∇θL(θt) and ∇θL(θt + εt), which is

g
(gnr)
t = (1− γ

ρ
)∇θL(θt) +

γ

ρ
∇θL(θt + εt) (6)

meaning that SAM is one special implementation of gradient norm regularization, where γsam = ρ.

From Equation 5 and Equation 6, we could reason that pt in Equation 5 has an equivalent effect with
the term γ/ρ in GNR. It means the equivalent penalty coefficient in RST would be

γrst = pt · ρ = pt · γsam (7)
Compared to the SAM training scheme, the penalty degree is reduced by a factor of pt in RST.
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2.3 CONVERGENCE ANALYSIS OF RST

In this section, we would give analysis in regards to the convergence in RST.
Theorem 1. Assume the gradient of the loss function L(·) is β-smoothness, i.e. ||∇L(θ1) −
∇L(θ2)|| ≤ β||θ1 − θ2|| for ∀θ1,θ2 ∈ Θ. For iteration steps T ≥ 0, learning rate αt ≤ 1/β
and
√
ptρ ≤ 1/β, we have

min
t∈{0,1,··· ,T−1}

||∇L(θt)||2 ≤
2(L(θ0)− L∗)∑
t∈{0,1,··· ,T−1} αt

+

∑
t∈{0,1,··· ,T−1} αtptρ

2β2∑
t∈{0,1,··· ,T−1} αt

We would provide detailed proof in the Appendix. Basically, ||∇L(θ)||2 ≤ ε is generally used as
one stopping criteria in optimization. The theorem implies that the minimum of ||∇L(θt)||2 over
the training steps would reach such condition at a certain step within finite training steps.
Corollary 1. For constant learning rate αt = C/β or cosine learning rate schedules αt = 2C/β ·
( 1
2 + 1

2 cos( tT π)), and constant scheduling probability pt = p, we have

min
t∈{0,1,··· ,T−1}

||∇L(θt)||2 ≤
2β(L(θ0)− L∗)

CT
+ pρ2β2

Corollary 2. For decayed learning rate αt = C/t and constant scheduling probability p, we have

min
t∈{0,1,··· ,T−1}

||∇L(θt)||2 ≤
2(L(θ0)− L∗)

C log T
+ pρ2β2

Corollary 1 and 2 show the convergence of common implementation in practice.
Theorem 2. Assume the gradient of the loss function L(·) is β-smoothness. Assume Polyak-
Lojasiewicz condition, i.e. 1

2 ||∇L(θt)||2 ≥ %(L(θt) − L∗). For iteration steps T ≥ 0, learning
rate αt ≤ 1/β and

√
ptρ ≤ 1/β, we have,

EX [L(θt)]− L∗
L(θ0)− L∗

≤
∏

t∈{0,1,··· ,T−1}

(
1− αt%(1− ptρ2tβ2)

)
Appendix shows the proof. Theorem 2 indicates that RST experiences a linear convergence rate.

3 EMPIRICAL STUDY OF SCHEDULING FUNCTION p(t)

In this section, we would investigate the computation efficiency and the impact on model perfor-
mance when training with the RST scheme under different types of scheduling functions p(t).

3.1 BASIC SETTING AND BASELINES

In our investigation of the effect of scheduling functions, we will train models with different schedul-
ing functions from scratch to tackle the image classification tasks on Cifar-{10, 100} datasets, and
compare the corresponding convergence performance and the incurred extra computation overhead.

For models, we would choose ResNet18 (He et al., 2016) and WideResNet-28-10 (Zagoruyko &
Komodakis, 2016) architectures as our main target. For data augmentation, we would follow the ba-
sic strategy, where each image would be randomly flipped horizontally, then padded with four extra
pixels and finally cropped randomly to 32 × 32. Expect for the scheduling functions implemented
in the RST schemes, all the involved models are trained for 200 epochs with exactly the same hy-
perparameters. For each training case, we would run with five different seeds and report the average
mean and standard deviation of these five runs. All the training details could be found in Appendix.
Meanwhile, we have also reported additional results regarding other model architectures and other
data augmentation strategy in Appendix.

Before our investigations on scheduling functions in RST, we would like to clarity the baseline
first, where models are trained with the vanilla SGD scheme and SAM scheme. Table 1 shows
the corresponding results, including the testing error rate (Error column), the training time (Time
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Table 1: Testing error rate of ResNet18 and WideResNet28-10 models on Cifar10 and Cifar100
datasets when training with the SGD scheme and SAM scheme respectively.

Cifar10 Cifar100

Model Scheme ∆η̂c Time[m] Error[%] Time[m] Error[%]

ResNet18 SGD − 15.8±0.4 4.48±0.10 15.4±0.3 20.79±0.12
SAM 1.0 +16.0±0.5 3.81±0.07 +15.8±0.4 19.99±0.13

WRN28-10 SGD − 33.3±0.5 3.53±0.10 33.7±0.6 18.69±0.12
SAM 1.0 +27.4±0.3 2.78±0.07 +28.0±0.4 16.53±0.13

column) and the extra expected propagation count (∆η̂ column). For the training time, we would
report the total wall time spent to train for 200 epochs on four A100 Nvidia GPUs. From the table,
we could find that compared to the SGD scheme, the SAM scheme could indeed improve the model
performance, but in the meantime would incur more computations (102% for ResNet18 and 83%
for WideResNet28-10).

3.2 IMPLEMENTATION OF SCHEDULING FUNCTION

Here, we will focus on studying three types of function families, which can cover most scheduling
patterns. Table 2 shows the basic information regarding the three function scheduling families.

Table 2: Scheduling functions p(t) and extra propagation counts ∆η̂ of the three function families.

Constant Piecewise Linear

Scheduling Function p(t) ac

{
ap, t ≤ bpT

1− ap, t > bpT
alt+ bl

Propagation Count ∆η̂ ac 1 + 2apbp − bp − ap pl(
T
2 )

Constant Function Family In constant scheduling function family, the scheduling probability is
pc(t) = ac, where ac ∈ [0, 1]. Optimizers would select to perform the SAM algorithm with a
fixed probability ac and the SGD algorithm with 1 − ac during the whole training process. This
implies that the extra computation overhead for constant scheduling function is proportional to the
scheduling probability ac.

Here, we will experimentally investigate a group of implementation with constant functions, where
the scheduling probability ac will be set from 0.1 to 0.9 with an interval of 0.1. Figure 1A shows the
scheduling functions of this group and Figure 1B shows the relationship between the extra expected
propagation count η̂ (x-axis) and the extra practical training wall time (y-axis) incurred by selecting
SAM algorithm in RST. We could see that for both ResNet18 and WideResNet28-10 models, all the
points locate very close to the reference line (x = y). The actual extra training wall time can be
almost fully decided by the theoretical extra ∆η̂. Therefore, we could directly use ∆η̂ to indicate
the extra computation cost for RST in the following demonstrations.

Then, Figure 1C shows the corresponding testing error rates of the two models with error bars
(neighbor area) on Cifar10 (left) and Cifar100 (right). In the figure, x-axis denotes the extra ∆η̂ and
meanwhile the markers are scaled by the actual training wall time. And the endpoints on both sides
of the lines denote the testing error rates of training with the SGD scheme and the SAM scheme.
Firstly, we could find that even with the lowest probability ac = 0.1, as long as SAM algorithm is
involved during training process, testing error rates could be generally reduced compared to those
trained with only the SGD algorithm. But on the other side, model performance can not be im-
proved continuously with the growth selecting probability towards the SAM algorithm. Secondly,
compared to the SAM scheme, testing error rates would already reach comparable performance
when ac = 0.6 in RST, which would save about 40% computation overhead. In particular, when
around ac = 0.8, models would achieve the best performance, slightly outperforming the SAM
scheme (3.65%/19.61% for ResNet18 and 2.71%/16.17% for WideResNet28-10 in RST). Addition-
ally, we could see from the error bars that despite the randomness introduced in RST, training would
still be fairly stable over the five runs.
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Figure 1: (A) Scheduling function plots for the constant scheduling function family. (B) Scatter
plot between the extra expected propagation count η̂ (x-axis) and the extra practical training wall
time (y-axis) incurred in RST. (C) Testing error rates of ResNet18 and WideResNet-28-10 models
with error bars on Cifar10 (left) and Cifar100 (right) when training with these constant scheduling
functions. The markers are scaled by the training wall time.
Piecewise Function Family Generally, the selecting probability in piecewise function would ex-
perience a stage conversion during training. In the first stage, optimizers would be arranged to
perform SAM algorithm with a probability of ap in the beginning bpT training iterations, and then
in the second stage, this probability would change to 1−ap for the rest training iterations. In our in-
vestigation, we would consider totally three typical groups of piecewise scheduling functions, where
Figure 2 shows the corresponding scheduling function plots and their final results.

For the first group, we would set ap = 0 and change the stage-related parameter bp from 0.1 to
0.9 with an interval of 0.1. Now, the optimizer actually behaves in a deterministic manner, which
performs SGD algorithm in the first bpT iterations and then switches to SAM algorithm for the
rest. Therefore, the larger bp is, the longer SGD algorithm will be performed, and the less extra
computation overhead will be incurred. From the results, we could find that for all the training cases
in this group, as implementing more iterations with SAM algorithm, we could get better performance
gradually, which could achieve better performance than those trained with the SAM scheme. And
the best performance between this group and the constant group are very close (3.66%/19.47% for
ResNet18 and 2.69%/16.31% for WideResNet28-10 in this group).

Next, in the second group, we would arrange training in an opposite way from piecewise group
1, where we will keep all the settings except deploying ap = 1. Optimizers would perform SAM
algorithm in the first bpT iterations and then switch to SGD for the rest steps. Actually, models
could not get good performance under such arrangement. The results show that training needs to
accumulate sufficient SAM iterations to completely outperform SGD scheme. Models could reach
competitive performance only when performing SGD algorithm in the last few iterations. Intuitively,
implementation pattern of piecewise group 2 would somewhat go against the core of sharpness-
aware learning. Frequently implementing SGD algorithm near the end of training would be harmful
to the convergence to flat minima.

Unlike previous patterns, in piecewise group 3, we fix bp = 0.5 and change ap from 0.1 to 0.9 with
an interval of 0.1. Now, optimizers will pick SAM algorithm with probability ap for the first half of
training iterations and then switch the probability to 1−ap for the rest. For all the training instances
in this group, we have ∆η̂ = 0.5. And, the actual training wall time between these cases are rather
close (Time[m]: +8.2(±0.4) for ResNet18 and +13.9(±0.7) for WideResNet28-10). Note that the
results of this group are plotted against the evolution of ap, not the propagation count. We could
see in the results that model performance would gradually get higher as the growth probability of
implementation with SAM algorithm in the second stage. This somehow again confirms the previous
demonstration of avoiding frequently implementing SGD algorithm near the end of training.

Linear Function Family For linear scheduling functions, the selecting probability p(t) is sched-
uled linearly, changing monotonously with either an increasing or a decreasing pattern. Optimizers
would select to perform SAM algorithm with decreasing probability when al ≤ 0 while with in-
creasing probability when al ≥ 0. Notably, from the summary table 2, the computation overhead of
such implementation is actually decided by the scheduling probability at T/2. We would focus on
two typical groups of linear scheduling functions in our experiments. Figure 2 show the scheduling
functions and the results.

In the first group, we would schedule the functions to pass through two given points, where the
first point is (T/2,m) and the second point is either (0, 0) or (1, 1) depending on the value of m.
Here, the parameter m denotes the probability to be set at the training iteration T/2. And we would
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Figure 2: Testing error rates of ResNet18 and WideResNet-28-10 models with error bars on Cifar10
(left) and Cifar100 (right) when training separately with the three groups of piecewise scheduling
functions and the two groups of linear scheduling functions in RST.
set it from 0.1 to 0.9 with an interval of 0.1. Clearly, in this group, the probability of selecting
SAM algorithm would increase over the iterations. Also, as m increases, SAM algorithm would
experience an overall higher probability of selection. We could find in the results that as performing
more SAM algorithm, model performance would be more and more better. And the trend of model
performance in this group would be quite similar to that in piecewise group 1. Actually, these two
groups share very close selection patterns in general, where the scheduling probability is changed
instantaneously in piecewise group 1 while it becomes gradually in this group.

As for the second group, the scheduling functions would pass through two points that are (T/2, 0.5)
and (0, bl). This means that training will always incur 0.5 extra propagation count in expectation,
∆η = 0.5. From the results, we can find that similar to those in piecewise group 3, model perfor-
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Figure 3: Summary plot of model performance in regards to the extra computation overhead for all
the scheduling function cases.
mance will also progressively become higher, but more mildly. Likewise, the two groups also have
close selection pattern, as in the same way of that between piecewise group 1 and linear group 1.

3.3 SUMMARY

To give a summary view of these scheduling functions, Figure 3 gives the scatter plot of
WideResNet28-10 between the model performance and the incurred extra propagation counts for
all the scheduling function cases. From previous demonstrations and the figure, we can conclude,

• Avoid to schedule the SGD algorithm with relatively high probability near the end of train-
ing since it would largely harm the training.

• Generally, scheduling SAM algorithm with higher probability in total would bring better
model performance, where the best model performance in RST would outperform those in
SAM scheme.

• Compared to other schedules, simple constant scheduling functions could give decent
model performance. So, we recommend using constant scheduling functions in practice
for both their simplicity and effectiveness.

4 GENERAL FRAMEWORK FOR RST

Recall that from Equation 7, SAM training is actually regularizing the gradient norm with γsam = ρ,
and RST to mix SGD algorithm and SAM algorithm would have a scaling effect on this penalty by
a factor of pt. However, when the scheduling probability pt is low, RST may be unable to provide
sufficient equivalent regularization effect on gradient norm. This motivates to expand RST to a
general form (G-RST) which mixes between SGD algorithm and GNR algorithm (Equation 6) such
that G-RST could freely adjust the scaling effect of the penalty degree on gradient norm,

gt = (1−Xt) · g(sgd)t +Xt · g(gnr)t
(8)

In this way, G-RST would be given an extra freedom to control the scaled penalty degree via γ in
GNR, which would be γrst = ptγgnr. It allows training to impose arbitrary regularization on gradient
norm while enjoying a high probability of selecting SGD algorithm.

In our following experiments, we would use the constant scheduling functions because of their
efficiency and simplicity as demonstrated previously. Here, we would consider p(t) = 0.5, so we
need to set γgnr = 2 when mixing, to provide an equivalent regularization as that in SAM scheme.

We would first train models with G-RST on Cifar datasets, which involves both CNN models and
ViT models (Dosovitskiy et al., 2021). For CNN models, we would keep the basic settings the same
as those in the previous section. As for ViT models, we would train each case for 1200 epochs and
adopt some further data augmentation to get the best performance. Note that the base algorithm
switch to Adam in ViT models. All the training details are reported in the Appendix.

Table 3 shows the corresponding results of these models on Cifar datasets. We could observe from
the table that compared to the SAM scheme, G-RST could improve the model performance further
to some extent while saving 50% of the extra computation overhead for all the training cases. This
indicates that adjusting the penalty coefficient in RST can give comparable effect as that in SAM.
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Table 3: Testing error rate of CNN models and ViT models on Cifar10 and Cifar100 datasets when
training with SGD, SAM and the G-RST where p(t) = 0.5.

Learning C-10&100 Cifar10 Cifar100
Methods Time[m] Error[%] Error[%]

VGG16BN
SGD 9.9±0.2 5.74±0.09 25.22±0.31
SAM +8.9±0.3 5.24±0.08 24.23±0.29

G-RST[50%] +4.4±0.5 5.21±0.08 24.37±0.29

ResNet18
SGD 15.6±0.3 4.48±0.10 20.79±0.12
SAM +15.9±0.4 3.81±0.07 19.99±0.13

G-RST[50%] +7.9±0.3 3.65±0.10 19.95±0.18

WRN28-10
SGD 33.5±0.5 3.53±0.10 18.99±0.12
SAM +27.7±0.4 2.78±0.07 16.53±0.13

G-RST[50%] +14.3±0.6 2.68±0.05 16.19±0.15

Pyramid164
SGD 119.7±1.1 3.42±0.09 17.82±0.15
SAM +83.2±0.9 2.61±0.07 14.80±0.18

G-RST[50%] +42.0±1.2 2.50±0.11 14.55±0.21

ViT-Ti16
Adam 189.0±1.8 9.45±0.18 34.79±0.27
SAM +165.2±2.4 8.59±0.16 32.48±0.31

G-RST[50%] +82.9±2.5 8.31±0.18 32.17±0.24

ViT-S16
Adam 247.9±2.9 6.89±0.17 27.48±0.32
SAM +263.1±2.1 5.52±0.20 26.53±0.27

G-RST[50%] +131.9±3.3 5.39±0.14 26.24±0.28

ViT-B16
Adam 407.8±2.9 6.56±0.23 27.95±0.28
SAM +400.2±2.1 5.45±0.17 26.51±0.30

G-RST[50%] +199.6±3.3 5.58±0.20 26.27±0.26

Table 4: Testing error rate of CNN models on ImageNet datasets when training with SGD, SAM
and the G-RST where p(t) = 0.5.

Methods Time[m] Top-1[%] Top-5[%]

ResNet50
SGD 750±9 23.64±0.17 7.01±0.09
SAM +518±5 23.16±0.11 6.72±0.06

G-RST[50%] +259±12 22.82±0.19 6.63±0.11

ResNet101
SGD 1255±11 21.93±0.09 6.11±0.07
SAM +904±8 21.02±0.10 5.31±0.09

G-RST[50%] +451±14 20.78±0.12 5.16±0.10

Following the same setting of pt as that on Cifar datasets, we would train ResNet-{50, 101} models
on ImageNet for 100 epochs to further investigate the effectiveness of G-RST on large-scale dataset.
Table 4 shows the final results, where each case is trained over three random seeds. Likewise, we
can find that G-RST can also give better model performance while being 50% less computational
expensive than SAM scheme, which again confirms the effectiveness of G-RST.

5 CONCLUSION

We propose a simple but efficient training scheme, called Randomized Sharpness-Aware Training
(RST), for reducing the computation overhead in the sharpness-aware training. In RST, optimizers
will be scheduled to randomly select from the base learning algorithm and sharpness-aware learning
training scheme at each training iteration. Such a scheme can be interpreted as regularization on
gradient norm with scaling effect. Then, we theoretically prove RST converges in finite training
iterations. As for the scheduling functions, we empirically show that simple constant scheduling
functions can achieve comparable results with other scheduling functions. Finally, we extend the
RST to a general framework (G-RST), where the regularization effect can be adjusted freely. We
show that G-RST can outperform SAM to some extent while reducing 50% extra computation cost.
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A PROOF OF THEOREM 1 & 2

A.1 PROOF OF THEOREM 1

In randomized sharpness-aware training (RST), weights θt are updated stochastically with a random
variable Xt ∼ B(1, pt),

θt+1 = θt − αt∇L(θt +Xtρt∇L(θt)) (9)

For β-smoothness functions, we have

L(θ1) ≤ L(θ2) +∇L(θ2)T (θ1 − θ2) +
β

2
||θ1 − θ2||2 (10)

Then, we set θ1 = θt+1 and θ2 = θt,

L(θt+1) ≤ L(θt) + 〈∇L(θt),θt+1 − θt〉+
β

2
||θt+1 − θt||2

≤ L(θt)− 〈∇L(θt), αt∇L(θt +Xtρt∇L(θt))〉+
β

2
||αt∇L(θt +Xtρt∇L(θt))||2

≤ L(θt)− αt〈∇L(θt),∇L(θt +Xtρt∇L(θt))〉+
α2
tβ

2
||∇L(θt +Xtρt∇L(θt))||2

(11)

For αt ≤ 1/β,

L(θt+1) ≤ L(θt)− αt〈∇L(θt),∇L(θt +Xtρt∇L(θt))〉+
αt
2
||∇L(θt +Xtρt∇L(θt))||2

(12)

11
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Next, add αt

2 ||∇L(θt)||2 and subtract αt

2 ||∇L(θt)||2,

L(θt+1) ≤ L(θt) +
αt
2
||∇L(θt)||2 − αt〈∇L(θt),∇L(θt +Xtρt∇L(θt))〉

+
αt
2
||∇L(θt +Xtρt∇L(θt))||2 −

αt
2
||∇L(θt)||2

≤ L(θt) +
αt
2
||∇L(θt +Xtρt∇L(θt))−∇L(θt)||2 −

αt
2
||∇L(θt)||2

≤ L(θt) +
αt
2
||βXtρt∇L(θt)||2 −

αt
2
||∇L(θt)||2

≤ L(θt)−
αt
2

(1−X2
t ρ

2
tβ

2)||∇L(θt)||2

(13)

So, ρt ≤ 1/β such that the loss would decrease continuously in training,

L(θt+1) ≤ L(θt) ≤ L(θt−1) · · · ≤ L(θ0) (14)

Rearrange Equation 13,
αt
2

(1−X2
t ρ

2
tβ

2)||∇L(θt)||2 ≤ L(θt)− L(θt+1) (15)

Taking expectation gives,

EX
[αt

2
(1−X2

t ρ
2
tβ

2)||∇L(θt)||2
]
≤ EX [L(θt)]− EX [L(θt+1)]

(1− pt)
αt
2
||∇L(θt)||2 + pt

αt
2

(1− ρ2tβ2)||∇L(θt)||2 ≤ EX [L(θt)]− EX [L(θt+1)]

αt
2

(1− ptρ2tβ2)||∇L(θt)||2 ≤ EX [L(θt)]− EX [L(θt+1)]

(16)

For ρt = ρ/||∇L(θt)|| in SAM optimization, the Equation 16,
αt
2

(1− ptρ2tβ2)||∇L(θt)||2 ≤ EX [L(θt)]− EX [L(θt+1)]

αt
2
||∇L(θt)||2 −

αtptρ
2
tβ

2

2
||∇L(θt)||2 ≤ EX [L(θt)]− EX [L(θt+1)]

αt
2
||∇L(θt)||2 −

αtptρ
2β2

2||∇L(θt)||2
||∇L(θt)||2 ≤ EX [L(θt)]− EX [L(θt+1)]

αt
2
||∇L(θt)||2 ≤ EX [L(θt)]− EX [L(θt+1)] +

αtptρ
2β2

2

(17)

Then, sum over the training steps,∑
t∈{0,1,··· ,T−1}

αt
2
||∇L(θt)||2 ≤ L(θ0)− L∗ +

∑
t∈{0,1,··· ,T−1}

αtptρ
2β2

2 (18)

Here, L(θ0) is the loss of the initialization model and L∗ denotes the optimal point, L∗ = minL(θ).

Since mint∈{0,1,··· ,T−1} ||∇L(θt)||2 ≤ ||L(θ)||2, we have,

min
t∈{0,1,··· ,T−1}

||∇L(θt)||2 ≤
2(L(θ0)− L∗)∑
t∈{0,1,··· ,T−1} αt

+ Ξ (19)

where,

Ξ =

∑
t∈{0,1,··· ,T−1} αtptρ

2β2∑
t∈{0,1,··· ,T−1} αt

(20)

Generally, Equation 19 indicates that for ε-suboptimal termination criteria ||L(θt)|| ≤ ε, hybrid
training would satisfy such convergence condition in finite training steps.
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Further, for constant learning rate schedules αt = C/β or cosine learning rate schedules αt =
2C/β · ( 1

2 + 1
2 cos( tT π)), and constant scheduling functions pt = p, we have

min
t∈{0,1,··· ,T−1}

||∇L(θt)||2 ≤
2β(L(θ0)− L∗)

CT
+ pρ2β2 (21)

Here, we use
∑T
t=0 cos( tT π) = 0, which we would prove in the following lemma. In other words,

the epsilon ε is associated with the O(1/T ).

For decayed learning rate schedule αt = C/t, and constant scheduling functions pt = p, we have

min
t∈{0,1,··· ,T−1}

||∇L(θt)||2 ≤
2(L(θ0)− L∗)

C log T
+ pρ2β2 (22)

In other words, the epsilon ε is associated with the O(1/ log T ).
Lemma 1. For t ∈ {0, 1, 2, · · · , T}, we have

T∑
t=0

cos(
t

T
π) = 0 (23)

Proof For trigonometric functions,
T∑
t=0

g(
t

T
π) (24)

where g ∈ {sin, cos}. We would use the Euler’s identity,

eix = cosx+ i sinx (25)

Therefore, we have cosx = <{eix} and sinx = ={eix}, where <{·} and ={·} denote the real part
and imaginary part.

In this way, for g = cos, Equation 24 would be,

T∑
t=0

cos(
t

T
π) =

T∑
t=0

<{ei t
T π}

= <{
T∑
t=0

ei
t
T π}

= <{e
0(1− eiT+1

T π)

1− ei 1
T π

}

= <{e
iT+1

2T π · (e−iT+1
2T π − eiT+1

2T π)

ei
1

2T π · (e−i 1
2T π − ei 1

2T π)
}

= <{ei T
2T π

sin(T+1
2T π)

sin( 1
2T )π

}

= cos(
T

2T
π)

sin(T+1
2T π)

sin( 1
2T )π

= 0 (cos
π

2
= 0)

(26)

A.2 PROOF OF THEOREM 2

From the Polyak-Lojasiewicz condition,

1

2
||∇L(θt)||2 ≥ %(L(θt)− L∗) (27)
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From the previous Equation 16, we would have,
αt
2

(1− ptρ2tβ2)||∇L(θt)||2 ≤ EX [L(θt)]− EX [L(θt+1)]

αt%(1− ptρ2tβ2)(EX [L(θt)]− L∗) ≤ EX [L(θt)]− EX [L(θt+1)]

αt%(1− ptρ2tβ2)(EX [L(θt)]− L∗) ≤ (EX [L(θt)]− L∗)− (EX [L(θt+1)]− L∗)
EX [L(θt+1)]− L∗
EX [L(θt)]− L∗

≤ 1− αt%(1− ptρ2tβ2)

(28)

Then, performing iterative multiplication over the training steps gives,

EX [L(θt)]− L∗
L(θ0)− L∗

≤
∏

t∈{0,1,··· ,T−1}

(
1− αt%(1− ptρ2tβ2)

)
(29)

End of the proof.

B ADDITIONAL RESULTS

B.1 TRIGONOMETRIC SCHEDULING FUNCTION

We would like to use WideResNet28-10 to further investigate the scheduling functions which are
trigonometric functions ptr(t) in RST. Here, we would confine the trigonometric functions to only
sinusoidal functions and cosine functions. And more specifically, we focus on investigating four
scheduling functions, 

pcos1(t) = 1
2 + 1

2 cos t
T π

pcos2(t) = 1− pcos1(t) = 1
2 −

1
2 cos t

T π

psin1(t) = sin t
T π

psin2(t) = 1− psin1(t) = 1− sin t
T π

(30)

Note that all these functions are in the range between 0 and 1.

0.0

0.5

1.0

 X(t)

 p(t)

P
ro

b
ab

lit
y

update step t

0.0

0.5

1.0

 X(t)

 p(t)

P
ro

b
ab

lit
y

update step t

0.0

0.5

1.0

 X(t)

 p(t)

P
ro

b
ab

lit
y

update step t

0.0

0.5

1.0

 X(t)

 p(t)

P
ro

b
ab

lit
y

update step t

1( )cosp t 2 ( )cosp t 2 ( )sinp t1( )sinp t

Figure 4: Scheduling function plots for the four trigonometric scheduling functions. The blue points
stand for the instance of random variable X .

Table 5: Testing error rate of WideResNet28-10 models on Cifar10 and Cifar100 datasets when
training with the four trigonometric scheduling functions.

Cifar-10&100 Cifar10 Cifar100

WideResNet28-10 Time[m] ∆η̂ Error[%] Error[%]

SGD 33.5±0.5 0 3.53±0.10 18.99±0.12
SAM +27.7±0.4 1 2.78±0.07 16.53±0.13

RST: pcos1(t) +14.7±0.6 0.5 3.16±0.09 17.08±0.12
RST: pcos2(t) +14.9±0.7 0.5 2.86±0.10 16.77±0.18
RST: psin1(t) +17.6±0.4 2/π ≈ 0.63 2.81±0.09 16.69±0.12
RST: psin2(t) +17.9±0.6 2/π 3.21±0.13 17.15±0.10
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Figure 4 shows the training scheme plots of the four functions and Table 5 shows the final results.
From the table, when training with these trigonometric scheduling functions, training will incur
50% extra expected average propagation count for cosine functions and π/2 ≈ 64% for sinusoidal
functions.

For cosine functions, we could find that their pattern of scheduling probability could be quite close to
linear functions. This could lead to that they may yield very similar performances. As for sinusoidal
functions, implementations would present monotonously increasing or decreasing probability for the
first half iterations and then switch to the opposite for the rest. Compared to that of cosine functions,
as SAM would be implemented with more frequency in total, the corresponding results would be
better. Additionally, the results have also confirmed that the performance would be degenerate when
SGD is frequently selected near the end of training. And in summary, training with such complex
trigonometric scheduling functions could not present better results than that with simple constant
scheduling functions. We would still recommend to use simple constant scheduling functions in
practical implementation.

B.2 γrst IN G-RST

Based on the demonstrations on the G-RST, we would know that G-RST could adjust the regular-
ization effect on the gradient norm freely for a given selecting probability. Therefore, we would
perform some more tuning on the γgnr to be mixed in RST to present the relationship between the
model performance and the equivalent regularization degree γrst. Here we would perform a grid
searching over the selecting probability from 0.1 to 0.9 with an interval of 0.2, and then set the γgnr
(Equation 9 in the main paper) in the RST to fix the equivalent regularization effect γrst across 0.5
to 1.5.

Table 5 shows the corresponding 2D plot. From the table, we could find that when the selecting
probability pt is very low, even if we impose a high regularization penalty, models could not be
trained to achieve good performance. This is mainly because that based on γrst = γgnrpt, for these
low pt, we have to mix a very high γgnr to get a fair equivalent effect γrst. When the γgnr is very
high in GNR, according to the paper Zhao et al. (2022), it would cause a lose of precision on
the approximations on the Hessian multiplication. Secondly, we could also find from the figure
that when the equivalent regularization degree γrst is around the range from 0.8 to 1, models could
achieve the better performances than others. Imposing too much regularization on the gradient norm
would instead harm the performance. For the fixed γrst, increasing the selecting probability pt would
somewhat improve the model performance, but not in a significant manner.
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Figure 5: 2D image plot between the selecting probability pt and the equivalent regularization degree
γrst for WideResNet28-10 when training with RST.

In summary, it is recommended to set a moderate selecting probability and combine with a proper
γgnr that could lead to γrst around. In this way, training would enjoy a gain on the computation
efficiency and give satisfactory performance at the same time. And the Table 3 in the main paper
actually follows
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B.3 EXPERIMENT RESULTS WHEN USING CUTOUT REGULARIZATION

In addition to the basic data augmentation strategy used in the previous section, we would also
investigate the effect when using the Cutout Regularization Devries & Taylor (2017). Here, we
would choose WideResNet28-10 as our main experiment target. Also, the training hyperparameters
are the same as them used in the previous sections.

The tables below show the final results, where trainings are going to be separately scheduled by
constant scheduling functions (Table 6), the first group of piecewise scheduling functions (Table 7)
and the first group of linear scheduling functions (Table 8) and trigonometric scheduling functions
(Table 9). From the results, we would come to the same conclusions as those in the summary sec-
tions. In short, constant scheduling functions would be a good choice for practical implementation,
which would be simple to implement and be able to yield at least comparable performance to other
scheduling functions.

Table 6: Testing error rate of WideResNet28-10 models on Cifar10 and Cifar100 datasets with
Cutout regularization when training with constant scheduling functions.

Training Scheme Cifar-10 & 100 Cifar10 Cifar100
∆η̂c Error[%] Error[%]

SGD − 2.81±0.07 16.91±0.10
SAM 1.0 2.43±0.13 14.87±0.16

RST

0.1 2.67±0.05 16.14±0.18
0.2 2.53±0.06 15.97±0.16
0.3 2.46±0.06 15.56±0.14
0.4 2.40±0.06 15.17±0.22
0.5 2.32±0.06 15.10±0.11
0.6 2.31±0.07 14.96±0.08
0.7 2.25±0.08 14.94±0.09
0.8 2.23±0.03 14.81±0.09
0.9 2.31±0.06 14.71±0.03

Table 7: Testing error rate of WideResNet28-10 models on Cifar10 and Cifar100 datasets with
Cutout regularization when training with constant scheduling functions.

Training Scheme Cifar-10 & 100 Cifar10 Cifar100
∆η̂c Error[%] Error[%]

SGD − 2.81±0.07 16.91±0.10
SAM 1.0 2.43±0.13 14.87±0.16

RST

0.1 2.69±0.04 15.70±0.21
0.2 2.51±0.07 15.37±0.18
0.3 2.47±0.05 15.38±0.33
0.4 2.44±0.04 15.24±0.35
0.5 2.46±0.02 15.24±0.22
0.6 2.34±0.02 14.98±0.28
0.7 2.34±0.03 14.99±0.26
0.8 2.30±0.05 14.84±0.09
0.9 2.29±0.05 14.75±0.24
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Table 8: Testing error rate of WideResNet28-10 models on Cifar10 and Cifar100 datasets with
Cutout regularization when training with constant scheduling functions.

Training Scheme Cifar-10 & 100 Cifar10 Cifar100
∆η̂c Error[%] Error[%]

SGD − 2.81±0.07 16.91±0.10
SAM 1.0 2.43±0.13 14.87±0.16

RST

0.1 2.63±0.02 15.83±0.27
0.2 2.58±0.06 15.67±0.16
0.3 2.45±0.05 15.33±0.17
0.4 2.37±0.07 15.30±0.19
0.5 2.38±0.02 15.33±0.11
0.6 2.27±0.10 14.97±0.02
0.7 2.25±0.03 14.95±0.23
0.8 2.22±0.03 14.68±0.14
0.9 2.23±0.10 14.79±0.04

Table 9: Testing error rate of WideResNet28-10 models on Cifar10 and Cifar100 datasets with
Cutout regularization when training with constant scheduling functions.

Training Scheme Cifar-10 & 100 Cifar10 Cifar100
∆η̂c Error[%] Error[%]

SGD − 2.81±0.07 16.91±0.10
SAM 1.0 2.43±0.13 14.87±0.16

pcos2(t) 0.5 2.35±0.03 15.02±0.19
psin1(t) 0.5 2.27±0.04 14.85±0.17

B.4 ADDITIONAL EXPERIMENT RESULTS FOR OTHER MODELS

Other than ResNet18 and WideResNet28-10, we would also investigate another model architec-
ture, including the VGG16 Simonyan & Zisserman (2015) with batch normalization and Vision
Transformer. From the previous results, we could see that the constant scheduling functions would
already provide representative results. So here we would only investigate the results when trained
with constant scheduling functions to make comparisons with the baselines.

Table 10: Testing error rate of VGG16-BN models on Cifar10 and Cifar100 datasets when training
with constant scheduling functions.

Training Scheme Cifar-10 & 100 Cifar10 Cifar100
∆η̂c Error[%] Error[%]

SGD − 5.74±0.09 25.22±0.31
SAM 1.0 5.24±0.08 24.23±0.29

RST

0.1 5.59±0.08 25.10±0.21
0.2 5.45±0.07 24.97±0.17
0.3 5.39±0.07 24.88±0.12
0.4 5.38±0.03 24.73±0.20
0.5 5.35±0.05 24.50±0.17
0.6 5.30±0.07 24.42±0.11
0.7 5.29±0.04 24.31±0.18
0.8 5.14±0.05 24.17±0.14
0.9 5.21±0.06 24.08±0.15
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Table 11: Testing error rate of ViT-S16 models on Cifar10 and Cifar100 datasets when training with
constant scheduling functions. Note that the hyperparameters is different from those in the previous
section. Here we only train for 300 epochs without mixup augmentation.

Training Scheme Cifar-10 & 100 Cifar10 Cifar100
∆η̂c Error[%] Error[%]

SGD − 12.59±0.54 37.82±0.31
SAM 1.0 11.91±0.59 36.40±0.26

RST

0.1 11.94±0.55 37.21±0.25
0.2 11.79±0.47 37.10±0.29
0.3 11.40±0.54 36.64±0.28
0.4 11.17±0.53 36.58±0.17
0.5 11.37±0.24 36.52±0.20
0.6 11.31±0.50 36.10±0.17
0.7 10.85±0.11 36.36±0.07
0.8 11.78±0.79 36.20±0.20
0.9 11.78±0.67 36.38±0.15

We could see in the table that RST again could boost the computational efficiency and in the mean-
time acquire better model generalization compared to that trained using the SAM scheme.

B.5 USING RST SCHEME ON OTHER SAM VARIANTS

In this section, we are going to further show the effectiveness of our RST on SAM variants, where
we would use ASAM (Kwon et al., 2021) and GSAM (Zhuang et al., 2022) as our investigation
target. For both ASAM and GSAM, we would compare them with using our RST and G-RST
schemes. Here, based on the previous demonstrations, the selecting probability in RST and G-RST
is set constantly to 0.5. And for G-RST, since the essence of these SAM variants is regularizing the
gradient norm, we would double the regularization effect in G-RST, the same as the implementations
in previous experiments. Table 12 shows the final results.

As we could see in the table, when using RST on ASAM and GSAM, we could obtain a similar
results as using RST on SAM. Specifically, since RST and G-RST randomly selecting between
sharpness-aware learning algorithm and the base learning algorithm, the computational efficiency
could be largely improved for both ASAM and GSAM. And as previous demonstrations, RST would
weaken the regularization effect, so we could see that the corresponding performance would be
relatively lower than the standard sharpness-aware training. When doubling the regularization effect
in G-RST, we could get comparable results with the standard sharpness-aware training, which again
confirms the effectiveness of our method.

B.6 MIXING RST SCHEME WITH OTHER EFFICIENT SAM TECHNIQUES

In RST, the optimizer would choose to perform the base learning algorithm and the sharpness-aware
algorithm. When selecting sharpness-aware algorithm, we could meanwhile adopt other efficient
techniques to further improve the training efficiency. Here, we would study the mixing effect of
RST with separately LookSAM (Liu et al., 2022) and weight masking techniques (Mi et al., 2022;
Du et al., 2021b). Table 13 shows the corresponding results.

As we could see in the table, for all these efficient techniques, our RST could improve the compu-
tational efficiency further. However, if the selecting probability in RST is relatively low (0.5 in the
table), it may harm the mixing effect. On the other hand, as properly raising the selecting probability
(0.75 in the table), it is possible to acquire comparable results with these efficient techniques.
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Table 12: Testing error rate of CNN models and ViT models on Cifar10 and Cifar100 datasets when
training with SGD, SAM and the G-RST where p(t) = 0.5.

Learning C-10&100 Cifar10 Cifar100
Methods Time[m] Error[%] Error[%]

VGG16BN

ASAM +9.0±0.2 5.28±0.06 24.08±0.14
ASAM & RST +4.4±0.2 5.50±0.10 24.49±0.16

ASAM & G-RST +4.5±0.3 5.32±0.09 24.11±0.25

GSAM +9.8±0.4 5.74±0.09 25.22±0.31
GSAM & RST +4.7±0.3 5.24±0.08 24.23±0.29

GSAM & G-RST +4.8±0.4 5.21±0.08 24.37±0.29

ResNet18

ASAM +15.8±0.3 3.77±0.05 20.02±0.15
ASAM & RST +8.0±0.2 3.91±0.09 20.31±0.11

ASAM & G-RST +7.9±0.3 3.65±0.10 19.95±0.18

GSAM +17.4±0.3 3.81±0.04 19.91±0.13
GSAM & RST +8.9±0.4 3.99±0.03 20.43±0.17

GSAM & G-RST +8.9±0.3 3.70±0.11 20.10±0.18

WRN28-10

ASAM +27.6±0.3 3.53±0.10 16.40±0.16
ASAM & RST +14.4±0.3 2.78±0.07 16.81±0.15

ASAM & G-RST +14.3±0.5 2.68±0.05 16.59±0.19

GSAM +30.6±0.6 2.74±0.04 16.51±0.08
GSAM & RST +15.5±0.5 2.95±0.04 16.95±0.15

GSAM & G-RST +15.7±0.4 2.71±0.07 16.47±0.12
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Table 13: Testing error rate of CNN models and ViT models on Cifar10 and Cifar100 datasets when
training with SGD, SAM and the G-RST where p(t) = 0.5.

Learning C-10&100 Cifar10 Cifar100
Methods Time[m] Error[%] Error[%]

SGD 9.9±0.2 5.74±0.09 25.22±0.31
LookSAM(5)1 +3.0±0.2 5.49±0.06 24.71±0.26

LookSAM(5) & G-RST[50%] +1.6±0.3 5.56±0.09 24.88±0.19
LookSAM(5) & G-RST[75%] +2.4±0.3 5.30±0.11 24.34±0.23

VGG16BN

SGD 16.7±0.5 6.12±0.09 25.56±0.22
ESAM2 +13.5±0.6 5.50±0.07 24.49±0.21

ESAM & G-RST[50%] +6.9±0.4 5.92±0.06 24.91±0.16
ESAM & G-RST[70%] +10.2±0.5 5.38±0.12 24.57±0.18

SGD 16.7±0.5 6.12±0.09 25.56±0.22
SSAM2 +15.5±0.4 5.64±0.09 24.61±0.17

SSAM & G-RST[50%] +8.1±0.5 5.99±0.12 25.03±0.25
SSAM & G-RST[75%] +12.0±0.6 5.59±0.07 24.66±0.21

SGD 15.6±0.3 4.48±0.10 20.79±0.12
LookSAM(5) +5.6±0.4 4.06±0.09 20.30±0.16

LookSAM(5) & G-RST[50%] +3.0±0.2 4.18±0.08 20.44±0.27
LookSAM(5) & G-RST[75%] +4.4±0.3 3.94±0.12 20.11±0.23

ResNet18

SGD 24.4±0.6 4.66±0.05 20.98±0.20
ESAM +18.6±0.4 4.05±0.07 20.28±0.14

ESAM & G-RST[50%] +9.5±0.6 4.41±0.04 20.72±0.12
ESAM & G-RST[75%] +14.0±0.5 4.08±0.08 20.21±0.23

SGD 24.4±0.6 4.66±0.05 20.98±0.20
SSAM +21.0±0.4 3.89±0.04 20.17±0.17

SSAM & G-RST[50%] +10.7±0.3 4.03±0.07 20.41±0.13
SSAM & G-RST[75%] +15.8±0.8 3.83±0.09 20.19±0.22

SGD 33.5±0.5 3.53±0.10 18.99±0.12
LookSAM(5) +9.4±0.6 3.15±0.11 17.47±0.25

LookSAM(5) & G-RST[50%] +4.9±0.4 3.22±0.08 17.55±0.18
LookSAM(5) & G-RST[75%] +7.1±0.5 3.04±0.10 17.09±0.26

WRN28-10

SGD 109.9±1.2 3.97±0.05 19.13±0.18
ESAM +91.4±0.9 2.96±0.06 16.90±0.31

ESAM & G-RST[50%] +45.9±1.4 3.20±0.09 17.58±0.20
ESAM & G-RST[75%] +69.2±1.8 2.99±0.10 16.94±0.22

SGD 109.9±1.2 3.97±0.05 19.13±0.18
SSAM +107.3±1.7 3.10±0.04 16.97±0.15

SSAM & G-RST[50%] +58.3±2.1 3.24±0.06 17.11±0.24
SSAM & G-RST[75%] +81.2±1.9 3.12±0.10 16.56±0.20

1 Following the paper (Liu et al., 2022), LookSAM(5) denotes that update the descent gradient in SAM
algorithm every five implementation iterations.
2 Unlike LookSAM, ESAM and SSAM are both implemented on the git repository https://github.com/Mi-
Peng/Sparse-Sharpness-Aware-Minimization, where one A100 GPU is used. And SGD baseline is also
obtained based on this repository.
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C TRAINING DETAILS

Code is available at github.com/JustNobody0204/Submission-ICLR2023. The basic training hyper-
parameters are deployed as below,

Table 14: The basic hyperparameters for training CNNs on Cifar dataset.

SGD Scheme SAM Scheme RST Scheme

Epoch 200 200 200
Batch size 256 256 256
Base optimizer type SGD SGD SGD
Basic learning rate 0.1 0.1 0.1
Learning rate schedule cosine cosine cosine
Weight decay 0.001 0.001 0.001
Weight decay (PyramidNet) 0.0005 0.0005 0.0005
ρ in SAM - 0.1 0.1

Table 15: The basic hyperparameters for training ViTs.

Adam Scheme SAM Scheme RST Scheme

Data augmentation mixup mixup mixup
Epoch 1200 1200 1200
Warmup epoch 40 40 40
Batch size 256 256 256
Base optimizer type Adam Adam Adam
Basic learning rate 0.0005 0.0005 0.0005
Learning rate schedule cosine cosine cosine
Weight decay 0.03 0.03 0.03
ρ in SAM - 0.1 0.1

Table 16: The basic hyperparameters for training CNNs on ImageNet dataset.

SGD Scheme SAM Scheme RST Scheme

Epoch 100 100 100
Batch size 512 512 512
Base optimizer type SGD SGD SGD
Basic learning rate 0.2 0.2 0.2
Learning rate schedule cosine cosine cosine
Weight decay 0.0001 0.0001 0.0001
ρ in SAM - 0.05 0.05
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