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Abstract

Concavity and its refinements underpin tractability in multiplayer games, where
players independently choose actions to maximize their own payoffs which de-
pend on other players’ actions. In concave games, where players’ strategy sets are
compact and convex, and their payoffs are concave in their own actions, strong
guarantees follow: Nash equilibria always exist and decentralized algorithms con-
verge to equilibria. If the game is furthermore monotone, an even stronger guar-
antee holds: Nash equilibria are unique under strictness assumptions. Unfortu-
nately, we show that certifying concavity or monotonicity is NP-hard, already
for games where utilities are multivariate polynomials and compact, convex ba-
sic semialgebraic strategy sets—an expressive class that captures extensive-form
games with imperfect recall. On the positive side, we develop two hierarchies
of sum-of-squares programs that certify concavity and monotonicity of a given
game, and each level of the hierarchies can be solved in polynomial time. We
show that almost all concave/monotone games are certified at some finite level of
the hierarchies. Subsequently, we introduce the classes of SOS-concave/monotone
games, which globally approximate concave/monotone games, and show that for
any given game we can compute the closest SOS-concave/monotone game in poly-
nomial time. Finally, we apply our techniques to canonical examples of extensive-
form games with imperfect recall.

1 Introduction

Game theory models settings where multiple decision-makers independently maximize personal
objectives that depend on the actions of others. Formally, a game with n players is modeled by
assigning to each player i a strategy set X; C R™¢ and a utility function u;(x;, x_;), where z; € X;
is player 4’s action and z_; denotes the actions of all other players. The interdependence of players’
utilities makes analyzing the collective behavior of such systems both rich and challenging.

The canonical solution concept in game theory is the Nash equilibrium [42]], a product distribu-
tion over strategies in which no player can unilaterally deviate to improve their utility, given the
strategies of the other players. While Nash equilibria are guaranteed to exist in finite normal-form
games, several key questions must be addressed in games with continuous, infinite action spaces: Do
Nash equilibria always exist? If one exists, is it unique (thereby avoiding the equilibrium selection
problem)? And crucially, can it be computed efficiently using distributed algorithms?

Extensive research has identified concavity, and its refinements, as key enablers in addressing these
fundamental questions. In the setting of games, this entails assuming that each strategy set X;
is compact and convex. Furthermore, concavity of players’ utilities can manifest in at least two
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distinct forms. First, we have the class of concave games, where for each player ¢, the function
x; — u;(x;, x_;) is continuous and concave for every fixed x_;. Second, we have the more restric-
tive class of monotone games, where utility functions are smooth and the (negative) concatenated
gradient map

T = (_vmlul (.’1?1, 1‘71); R _vm”un(xna .’I},n))

is a monotone operator. Every monotone game is concave, but the converse does not necessarily
hold. Concave and monotone games were first studied in the seminal work of Rosen [49], who
established that Nash equilibria always exist in these class of games, significantly extending the
guarantees of classical results such as von Neumann’s minimax theorem [62] for two-player zero-
sum (normal-form) games, Nash’s aforementioned result for finite normal-form games, and Sion’s
minimax theorem for two-player convex-concave games [53]. Moreover, Rosen showed that strictly
monotone games have a unique Nash equilibrium. At the same time, concave/monotone games
have been extensively studied due to their inherent expressibility — they have been used to model
various fundamental settings in economics and optimization, including but not limited to resource
allocation [50], Cournot competition [17] and robust power management [67]].

Finally, concave and monotone games have also received considerable attention in the context of
equilibrium computation. A substantial body of work has analyzed decentralized dynamics that
achieve strong performance guarantees in concave games [17,156} 28| 57]. Most recently, [20]] estab-
lished a O(polylog T') regret bound for uncoupled learning dynamics in general convex games, ex-
tending classical results beyond structured settings such as normal-form and extensive-form games.
In monotone games, decentralized dynamics have also been shown to converge in the last-iterate
sense to Nash equilibria 38 (8} |9} 25 [18]]. Moreover, in strictly monotone games, one can guaran-
tee last-iterate convergence to the unique Nash equilibrium [67, [7] 51} 154], further underscoring the
computational tractability of this class.

However, despite their favorable properties, it is not clear how to efficiently verify concavity and
monotonicity. For instance, establishing that u; is concave over X; requires checking that the Hes-
sian V?Euz(ml, x_;) is negative semidefinite for every z; € X; and every x_; € X_;, an infinite
family of conditions. In view of this, a fundamental computational challenge arises:

Is it possible to efficiently verify that a game is concave or monotone?

Our Techniques and Contributions. Our starting point is to demonstrate that deciding whether a
game is concave or monotone is computationally hard, cf. Theorem [3.1] We establish this hardness
result for the class of polynomial games [14} 30, 45] in which each player’s utility is a multivariate
polynomial and players’ strategy sets are compact convex basic semialgebraic sets — that is, sets
defined by polynomial equality and inequality constraints. This class is highly expressive, captur-
ing for instance extensive-form games with imperfect recall [46]. Our hardness result builds on
recent advances in polynomial optimization [4} 2], which show that unless P = NP, there is no
polynomial-time (or even pseudo-polynomial-time) algorithm that can decide whether a multivari-
ate polynomial of degree four (or any higher even degree) is globally convex. This result presents
a challenge for game theorists. On one hand, concave/monotone games are expressive classes of
games that capture many applications and have desirable equilibriation properties. However, veri-
fying their concavity/monotonicity is hard for the class of polynomial games over convex compact
basic semialgebraic sets.

Motivated by this, we next seek to identify tractable sufficient conditions for concavity and mono-
tonicity, as well as special classes of games for which these properties can be efficiently certified.
Our approach is based on the observation that, since polynomial games are smooth, these prop-
erties can be verified via the positive semidefiniteness of the Hessian and the symmetrized Jaco-
bian, respectively. As a concrete example, a polynomial game is concave if, for each player ¢, the
(negative) Hessian of the utility function is positive semidefinite for all z; € X; and x_; € A_;.
By the variational characterization of positive semidefiniteness, this is equivalent to requiring that
pi(z,y) = —y V2 ui(z;,x_;)y > 0,forall z € x_ X; and y € B, where B C R™: is the unit
ball. Since w; is a polynomial and X is a closed basic semialgebraic set, the function p;(x,y) is a
polynomial over a semialgebraic domain.

Although testing nonnegativity of polynomials is, in general, computationally hard [41], a powerful
approach from polynomial optimization, pioneered in [45] [35], is to seek a sum-of-squares (SOS)
decomposition that certifies nonnegativity. This idea has also been recently used to develop certifi-



cates for the global convexity of polynomials [5]. Searching for an SOS decomposition of bounded
degree can be done in polynomial time via semidefinite programming.

In our setting, the application of the SOS framework leads to a hierarchy of increasingly stronger
sufficient conditions for certifying concavity or monotonicity, each of which can be checked in
polynomial time via semidefinite programming. At the ¢-th level of the hierarchy, we check whether
pi(x,y) admits a degree-¢ SOS decomposition over X x B. While the SOS framework does not
eliminate the inherent hardness of the problem, it offers a practical trade-off: by relaxing the problem
into a sequence of SDPs, one obtains a hierarchy of increasingly tight sufficient conditions with
provable convergence in the limit. The main limitation is that the size of the resulting SDPs grows
with the level of the hierarchy.

Leveraging these ideas, our main contributions are summarized below:

* We construct a hierarchy of optimization problems that provide increasingly strong certifi-
cates of monotonicity/concavity for polynomial games over compact, convex basic semial-
gebraic sets (cf. Theorem @ Furthermore, each level of the hierarchy can be solved in
polynomial time via semidefinite programming.

* We show that for every strictly monotone/strictly concave game, a certificate is always
found at a finite level of the hierarchy (cf. Statement ] in Theorem [3.2). More importantly,
we show that for almost all monotone/concave games, such a certificate can be obtained at
some finite level of the hierarchy (cf. Theorem [3.3).

* We define subclasses of monotone/concave polynomial games over compact, convex ba-
sic semialgebraic sets, called /-SOS-monotone (resp. /-SOS-concave) games, for which
monotonicity (resp. concavity) can be certified by the ¢-th level of the hierarchy (cf. Defi-
nition[4.T). We show that this class of games globally approximates the class of monotone
(resp. concave) games, and importantly, given any polynomial game, the closest ¢-SOS-
monotone (resp. -SOS-concave) game can be computed by solving a single SDP (cf. The-

orem [4.3).

* We apply our proposed methods to several canonical and new examples of extensive-form
games with imperfect recall (cf. Section [6). We show examples of how our hierarchies
can be used to verify monotonicity/concavity in these games, as well as to find the closest
£-SOS-monotone (resp. /-SOS-concave) game with respect to an appropriate norm.

2 Preliminaries

2.1 Polynomial Games over Semialgebraic Sets

We consider an n-player continuous game denoted by ¢ = ¢ ([n], X', u). For each player i € [n],
we denote their set of actions by X; C R™¢ and their payoff function by u;: X — R, where

. . . def . .
the set of joint actions X TX X xX,isa compact, convex set. Each player ¢ selects an

action z; € A&;. We denote by = o (ml, oo 7:rn) the joint action profile of all players, and by

x ¥ Xy x -+ x &, € R™ their joint action space, where m o mi + - -+ m,. We also denote by

= (u1,...,uy) the ensemble of the players’ payoff functions.

In this work, we focus on games & where w1, ..., u, are polynomial functions, and X is a basic
semialgebraic set. In particular, we assume that
() >0

X—{xeRm1><~~me" 9i

1
hj(z) M

, JE€ [[mg]],}
0, je[m])
where g1,...,9m,, h1,. .., hm, € R[z].

We refer to d = max{deg(u1),...,deg(uy),deg(g1),...,deg(gm,),deg(h1),...,deg(hy, )} as

the degree of the game. For each n,d € N, we use G, 4) to denote the set of n-player, d-degree
polynomial games over X.

G(n,a) is isomorphic to RM, where M L. (m;d). In particular, we define the isomorphism

G v (vec(u), ..., vec(un))', V4 € Gy, )



where vec(u;) is the coefficient vector of w; for each i € [n]. Throughout the paper, we also
consider the topology on G(,, 4y induced by the norm

19| = max||vec(u;)||oo- 3)
i€n]

When necessary, we use the convention © = (x;, z_;) to distinguish the action x; of player ¢ in a
joint action x € X from the actions of the rest of the players. In a similar vein, we use X_; to denote
the joint action space of all players except player .

A fundamental equilibrium concept in game theory is the Nash equilibrium (NE) [42], which are
strategy profiles from which players have no incentive to unilaterally deviate. Concretely, a joint
action profile z* € X is a NE of a game ¥ if

wi(z*) > ui(xy, xt,), Vo, € X;, i€ [n]. 4)

2.2 Sum-of-Squares Optimization

Given a closed basic semialgebraic set X' as in (I, the quadratic module Q(X) of X is a set of
functions defined as

mp

o Mg 00y -+, 0m, € X[z],
QX)E oo+ Y gjoj+ Y hip; ’ : 5)
; Y ; 7 pise s Pmy, € Rla]

where 3[z] C Rx] is the set of sum-of-squares (SOS) polynomials on variables z, i.e., the set of all
polynomials of the form

K
o(x) = Zq,f(a:), Ve € R™, where q, -, qr € Rlz]. (6)
k=1

Furthermore, for all d > 0, we define Q4(X') as the restriction of Q(X') to Putinar-type decomposi-
tions of degree at most 2d given by deg(cy), . .., deg(om, ), deg(p1), . .., deg(pm, ) < 2d.

As part of the analysis in Section we require that the quadratic module Q(X) is Archimedean,
a property formally given for completeness in the following definition.

Definition 2.1. A quadratic module Q(X) is called Archimedean if there exists N € N such that

N =) a7 € Q). (7)
=1

2.3 Concave & Monotone Games

In this section, we introduce two important subclasses of continuous games, concave games and
monotone games, both defined in [49]]. These classes are particularly significant due to their impli-
cations for the existence and uniqueness of Nash equilibria.

Definition 2.2 (Concave Games). A game ¥ is concave if, for all players ¢ € [n], the function
x; — w;(x;, x_;) is concave for every fixed z_; € X_;. Furthermore, if ¢ is polynomial then it is
concave if and only if the Hessian matrices of the payoff functions uy, ..., u, with respect to x1,
..., Tp, respectively, are negative semidefinite, i.e.,

def

H,,(z) = V2 ui(z) 20, Ve e X, i€ [n]. (8)
Rosen [49] proved that a Nash equilibrium exists in every concave game, thereby extending Nash’s
equilibrium existence result to a broad class of continuous games. He also identified an important
subclass of concave games with additional structural properties, which are now typically referred to
as monotone games [38]].

Definition 2.3 (Monotone Games). A game ¢ is monotone if the negative of its concatenated gra-
dient mapping, referred to by Rosen as the pseudogradient,

v(x) &f (VT up(x),. .. ,V;nun(x))T 9)



is a monotone operator on X, i.e.,
(v(z) —v(z'), z—a") <0, Vo, 2 € X. (10)

Furthermore, if ¢ is polynomial, it is well-known that (cf. [48] Proposition 12.3]) it is monotone if
and only if the symmetrized Jacobian matrix with respect to v(x) is negative semidefinite, i.e.,

o 1
SJ(z) £ 5(J(g;) +J@)") <0, Vzea, (11)
where, for all z € X, J(z) is the Jacobian matrix of v(z) (see Appendixfor a definition of J(z)).
It is easy to verify that if a game ¢ is monotone, then it is also concave; however, the converse does
not hold. We now turn our attention to the strict versions of these definitions.

Definition 2.4 (Strictly Concave/Monotone Games). Consider a polynomial game ¢ over a basic
semialgebraic set X. Then, ¥ is strictly concave over X if

H,, (x) <0, Vee X, i€ [n]. (12)

Furthermore, ¢ is strictly monotone over X if SJ is negative definite on X, i.e.,
SJ(z) <0, Vo € X. (13)
Finally, Rosen [49] also studied the class of diagonally strictly concave games, defined as those for

which equality in (T0) holds if and only if z = 2.

Several important connections and inclusions between the aforementioned game classes we study
are summarized in Figure [l The proofs for these inclusions follow directly from the definitions of
the games and standard results from [48]]. Of particular interest to us is the fact that, if ¢ is strictly
monotone (i.e., it satisfies (I3)), then & is both diagonally strictly concave and strictly concave.
Moreover, [49] also proved that diagonally strictly concave games admit a unique Nash equilibrium.

Concave Games

Strictly
Concave
Games

Strictly
Monotone
Games

Diagonally
Strictly
Concave
Games

Figure 1: Connections and inclusions among the game classes we study.

3 Certifying Concavity and Monotonicity in Polynomial Games

As discussed in the introduction, concave and monotone games are highly expressive and have
strong theoretical properties, including the existence of Nash equilibria, uniqueness under strictness
conditions, and convergence of distributed dynamics to equilibrium. Given these favorable features,
a natural question arises: can concavity/monotonicity be efficiently certified? In this section, we
investigate this question in the setting of polynomial games with semialgebraic strategy sets.

To investigate hardness of deciding concavity/monotonicity, we leverage recent breakthroughs in
polynomial optimization, particularly recent works on the complexity of certifying convexity of
polynomials. Specifically, it has been shown in [4] that deciding whether a quartic (multivariate)
polynomial is globally convex is NP-hard. Subsequently, [2] demonstrated that determining whether
a cubic polynomial is convex over a box is also NP-hard. Building on these results, the starting point
of this work is the observation that verifying whether a polynomial game belongs to the class of
concave or monotone games is also NP-hard. This result is given below, and proven in Appendix[C.1}

Theorem 3.1. Let 4([n], X, u) be a polynomial game over a compact convex basic semialgebraic
set. If for some player i, u; is a polynomial of degree at least 3 with respect to x; € X, verifying
whether ¢ is concave or monotone is strongly NP-hard.



Motivated by the hardness result, it is crucial to identify tractable sufficient conditions for concavity
and monotonicity, which gives rise to non-trivial subclasses of concave and monotone games. This
can be achieved by using the technique of sum-of-squares optimization, together with the positive
semidefiniteness of the Hessian or the symmetrized Jacobian matrix of the game. Throughout the
remainder of the paper, for brevity we focus only on the class of monotone games. Analogous results
hold for concave games with minor modifications, and we describe them in Section E}

3.1 Sum-of-Squares Certificates for Concavity & Monotonicity

We introduce a hierarchy of increasingly strong sufficient conditions for certifying concavity and
monotonicity, based on SOS certificates for the associated quadratic forms defined by the Hessian
and the symmetrized Jacobian matrices of ¢. The starting point for this observation is that, for any
fixed x € X, and considering the symmetrized Jacobian, we have

SJ(x) <0 ifandonly if  Apax (SJ(x)) < 0. (14)
Consequently, using the Rayleigh—Ritz theorem, it follows that ¢ is monotone if and only if
T
= <0.
max Amax (ST (2)) gleagy SJ(z)y <0 (15)
ye

where B = {y € R™ | y"y = 1}. The crucial observation here is that the function (z,y) —
y"SJ(z)y is a polynomial in z,y, since the Jacobian matrix SJ(x) is polynomial in z. Moreover,
X and B are compact basic semialgebraic sets. Therefore, max,c .y Amax (SJ (x)) can be written as
the solution to the following polynomial maximization problem:

max Amax (ST (2)) = maximize y'SI(z)y (16)
Te Ty
subject to re X yeB.

Finally, although polynomial optimization is in general NP-hard, the solution to a polynomial opti-
mization problem, i.e., maxX, ey Amax (SJ (x)) can be approximated via the SOS framework. This is
formally stated in the main theorem of this section, the proof of which is given in Appendix[C.2}
Theorem 3.2. Let 4([n], X, u) be a polynomial game over a compact, convex basic semialgebraic
set X. Assume the quadratic module Q(X) is Archimedean. For any ¢ € N consider the hierarchy
of SOS optimization problems:

SOS/(#4) £ minimize A
AER (17)
subjectto A\ — y"SI(z)y € Qu(X x B),

where Q¢(X x B) denotes the restriction of Q(X x B) to polynomials of degree at most L. Then,
the following statements are true:

1) For all ¢, we have that SOSy(¥) > max,cx )\max(SJ(m)).

2) The sequence (SOS¢(¥)) ., is nonincreasing.

£>0
3) limy_y00 SOS¢(Y) = maxzex Amax (SJ(a:))
4) 9 is strictly monotone if, and only if, there exists some finite level ¢ such that SOS,(¥) < 0.

5) For any level ¢, the program in (T7) can be formulated as an semidefinite program (SDP)
and solved in polynomial time.

Theorem [3.2] shows how a sequence of SDPs, which can be solved efficiently (Statement [3)), can
be used to approximate maxXg;ex Amax (SJ (33)), and therefore certify whether ¢ is monotone. In
particular, Statements [1| to [3| guarantee that SOS,(SJ), for £ > 0, gives progressively tighter up-
per bounds for max,ecx Amax (SJ(:r)) If for any finite ¢ we obtain SOS,(SJ) < 0, it follows
that max, ey Amax (SJ (x)) < 0, and therefore ¢ is monotone. Additionally, if at some ¢ we get
SOS.(SJ) < 0, it follows that max,e ¥ Amax (SJ (x)) < 0, and therefore ¢ is strictly monotone.



Importantly, Statement [3| guarantees that whenever ¢ is monotone, even if no finite ¢ exists such
that SOS¢(SJ) < 0, the sequence (SOS/(SJ)) />0 honetheless converges (asymptotically) to a

non-positive value. Moreover, whenever ¢ is not only monotone but also strictly monotone, by
Statement 4] we are guaranteed the existence of a finite £. In fact, it turns out that generic monotone
polynomial games over compact, convex semialgebraic sets are almost always strictly monotone. In
particular, in the following theorem we show that for all 4 of degree at least 2, the set of polynomial
monotone games that are not strictly monotone form a set with zero Lebesgue measure.

Theorem 3.3. For almost all monotone games, monotonicity can be certified at a finite level { of the
SOS hierarchy ([T]), i.e., SOS¢(¥) < 0. Concretely, for all d > 2, the set of monotone polynomial
games of degree d over a compact basic semialgebraic set X that are not strictly monotone has zero
Lebesgue measure.

The proof of this result is given in Appendix[C.3] At this point, we have shown that the monotonicity
of almost all polynomial monotone games ¢ over a compact, convex semialgebraic set can be certi-
fied by a solution SOS,,, (SJ) at some finite level £y of the SOS hierarchy in (I7). However, for an
arbitrary game ¢, the required level £ may be large. Thus, in practice, certifying the monotonicity
of & via the SOS hierarchy in (I7) may be computationally infeasible. To reflect this limitation, in
the following section, we introduce and study a subclass of monotone games called £-SOS-monotone
games, for which monotonicity can be certified in polynomial time via semidefinite programming.

4 SOS-Concave & SOS-Monotone Games

Motivated by the convergence guarantees of the SOS hierarchy established in Theorem [3.2] in this
section, we define and analyze a subclass of polynomial monotone games over a compact, convex
basic semialgebraic set for which monotonicity can be certified at some fixed level ¢ of the SOS
hierarchy. These are games whose monotonicity can be verified in polynomial time with respect to
the level £. We refer to such games as ¢-SOS-monotone.

Definition 4.1 (/-SOS-Monotone Game). Consider a polynomial game & € G, 4) over a compact,
convex basic semialgebraic set X'. For all £ > 0, we say that ¢ is -SOS-monotone if

—y"SI(z)y € Qu(X x B). (18)

We denote the set of (-SOS-monotone games by Gsosm (n,q4,¢)- Furthermore, we say that ¢ is SOS-
monotone if there exists £ € N such that ¢ is -SOS-monotone.

The following theorem is an immediate consequence of Statement [] in Theorem [3.2] and the
measure-theoretic result in Theorem 3.3t

Theorem 4.2. For all d > 2, the set of monotone polynomial games of degree d over a compact,
convex basic semialgebraic set X that are not SOS-monotone has zero Lebesgue measure.

Next, we show that for every ¢ > 0, the set of /-SOS-monotone games is a global approximator to
the set of monotone games, i.e., SOS-monotone games are dense in monotone games. In particular,
given some polynomial game ¢* over a convex, compact basic semialgebraic set, we can compute
the closest /-SOS-monotone game ¢ in polynomial time. Moreover, since SOS-monotone games
are dense in monotone games, as £ — oo, the projections ¢ of 4™ in the set of /-SOS-monotone
games converge to the closest monotone game to ¢*; not just the closest SOS-monotone game. The
proof of the following theorem can be found in Appendix [C.4]

Theorem 4.3. For all d > 2, the set of SOS-monotone games of degree d over a compact basic
semialgebraic set X is dense in the set of monotone games of degree d over X. Furthermore, given
any polynomial game 4* € G, ) over X, and any fixed { > 0, we can compute the closest {-SOS-
monotone game to 4* by the program

minimize |4 — 9"
GE€G(n,a) (19)
subject 0 4 € Gsosm (n,d,0)»

which can be formulated as an SDP.



In Theorem[4.3]and throughout our experiments, distance between games is measured via the norm
I]l in Eq. (). Beyond the aforementioned norm, the optimization framework in Theorem 4.3 ex-
tends naturally to any function |-|| that measures deviations on G,, 4), whose epigraph is semidefi-
nite representable and for which ||4, — 4| — 0 as k — oo, for all monotone games ¢ and some
sequence of SOS-monotone games.

For example, we give another example of a valid deviation operator. Let 49134 ([n], X', uduad) be

the SOS-monotone game with the payoff functions u3"*® () = —||z;||3, for all i € [n]. The gauge
is given by

Ve (gq[nﬂ? X7U)) déf min{g >0 ‘ G +e- gquad € gsosm(n,d,é)}7 (20)

where for all € > 0, 4 + ¢ - 9992 denotes the polynomial game ¢’ ([n], X', ') with the payoff
functions u}(z) = us(x) + € - ul™*(z). Furthermore, the corresponding SDP is given by the /-th

i

level of the SOS hierarchy in Theorem 3.2}

5 Modifications for the Certification of Concavity

The results in Sections[3.T]and | can be equivalently stated in relation to concave polynomial games
over a compact, convex basic semialgebraic set, subject to minor modifications. By definition, a
polynomial game ¢ over a compact, convex basic semialgebraic set X is concave if and only if
the Hessian matrices H,, () are negative semidefinite, for all z € X and ¢ € [n]. Furthermore,
4 is strictly concave if and only if H,,, (z) are all negative definite. For each i, consider the SOS
hierarchy (SOS; ((¥)),, given in Eq. (T7), where we substitute SJ () with H,, (). Then, the
SOS-based hierarchy

(maxie[[n]] SOSZ"((%))

provides analogous guarantees as in the case of monotone games. In particular, Theorem [3.2] and
Theorem as well as Definition can be written analogously with respect to the SOS-based
hierarchy in Eq. (ZI). Meanwhile, Theorems [3.3] and #.2] can be written for concave games directly
without further modifications. For completeness, we provide the definition of /-SOS-Concave games
here:

50 21

Definition 5.1 (/-SOS-Concave Game). Consider a polynomial game & € G, 4) over a compact,
convex basic semialgebraic set X'. For all / > 0, we say that ¢ is /-SOS-concave if

—y"H,, (2)y € Q(X x B), Vic [n]. (22)

6 Application: Extensive-Form Games with Imperfect Recall

As described concisely in [20], the class of concave games has many modern applications. Similarly,
monotone games have been studied extensively due to their desirable equilibrium properties (see
e.g. [38,119, 9] and references therein). In this section, we highlight extensive-form games (EFGs)
with imperfect recall, leveraging the fact that they can be viewed as polynomial games over compact,
convex basic semialgebraic sets. We also utilize our theoretical results and proposed game classes
to study canonical examples of these games. We will defer further discussion on applications to
economic markets to Appendix [/

The study of extensive-form or sequential games is arguably as classical as that of normal-form
games. The reader is referred to [44} Sections II and IIT] for a review of standard concepts. Moreover,
for the sake of notational brevity and readability, we defer formal definitions of EFGs and related
concepts to Appendix [D| One of the most important results in extensive-form games is Kuhn’s
theorem [33]], which establishes a connection between mixed strategies and behavioral strategies in
EFGs with perfect recall (wherein players effectively never forget the history of information sets
visited and actions played). Relaxing the perfect recall assumption results in games where players
can forget prior information, which introduces additional computational challenges.

The canonical example of an imperfect recall game is that of the absent-minded taxi driver (Fig-
ure [3)), introduced in [46]]. Furthermore, [46] showed that the expected utility of any player in an
EFG with imperfect recall can be written as a polynomial, where each variable is associated with an
information set (i.e., a collection of decision nodes which a player cannot distinguish between). In
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Figure 2: A Game with No Nash Equilibria Figure 3: The Absent-minded Taxi Driver

particular, these utilities define an n-variable polynomial game ¥ ([n], X, u) over the simplex. For
clarity, we derive the corresponding polynomial utility function of the game in Figure[3] Since the
player has imperfect recall and cannot remember if they are in the first or second decision node, they
will select a distribution over {C, E'} to be applied to both decision nodes. If the player selects C
with probability ; and E with probability x5, then their expected payoff is given by 2 + 4z x5.

In general, though, a Nash equilibrium might not exist in EFGs with imperfect recall. For instance,
the game in Figure [2] was introduced by [64] and does nor have a Nash equilibrium. Several recent
works have further established hardness results for deciding the existence of or computing NE in
EFGs with imperfect recall [311 59, 160} 23] Theorem@] additionally guarantees the hardness of
verifying concavity/monotonicity of EFGs with imperfect recall over simplex action sets.

6.1 Experimental Methodology & Results

Our results in Sections [3.1] and [ motivate two lines of investigation: verifying monotonic-
ity/concavity and computing the closest SOS-monotone/concave game.

Examples 1 & 2. First, we use the SDP hierarchy in Eq. to certify SOS-monotonicity of the
absent-minded taxi driver game in Figure |3} Next, we use the program in Eq. to find an SOS-
monotone game ¢ which is closest to the zero-sum game in Figure [2| (which does not have a NE in
behavioral strategies), in the sense of the norm defined in Eq. (3). By further enforcing that the new
game has to be zero-sum and the monomial basis of the game is maintained, we are able to obtain
the closest SOS-monotone game ¢’ given by:

(21, 22,y) = =81y — 8wy — 1621 — 1629 — 12y — 9,

and u, = —u}. The distance between the two games is || — ¢’|| = 10, and since the modified
game is SOS-monotone, it has a NE in behavioral strategies.

The above examples are applied to canonical EFGs with imperfect recall—going forward, we utilize
our framework to study larger EFGs and aim to study the scalability of our approach. For brevity,
full experimental details are deferred to Appendix [E}

Example 3: A degree-4 strictly monotone general-sum game. [4, Theorem 2.3] introduces a
method to construct (strictly) convex polynomials of degree 4. Using this method, we construct
a two-player game with degree-4 polynomial utility functions that is strictly concave. P1 and P2
choose their actions (21, x2) and (y1, y2) from a two-dimensional simplex respectively. By running
our hierarchy of SOS optimization problems in Eq. for monotonicity, we obtain an objective
value —1 at level 4, thus certifying that the game is strictly monotone and also SOS-monotone.

Example 4: A degree-5 zero-sum game. We create a two-player zero-sum EFG with imperfect
recall as shown in Figure [E.4] where the payoffs on each leaf are for P1. In this example, P1 makes
four moves before P2 makes a move, and P1 is absent-minded. By letting = denote the probability
that P1 chooses L and y denote the probability that P2 chooses I, we obtain the payoffs for P1 and
P2 as follows:

up(z,y) = —16zty + 252% + 7423y — 5923 — 892y + 492 + 452y — 192 — Sy + 3,



and ug = —ujy. We run our program in Eq. (T9) to find the closest SOS-monotone game. Two
additional constraints are imposed to retain the properties of the original EFG: The modified game
has to be zero-sum, and the information structure of the original EFG has to be preserved. To
preserve the information structure of the game, we select the monomial basis for the new payoff
functions to be precisely the monomial basis that can appear in the original game. The following
modified payoff functions are found:

uh(z,y) = —5.6xy — 62 + 32.823y — 22.923 — 75.12%y — 4xy — 68z — 5Ty — 46,
and v}, = —u}, with ||¢ — ¢'|| = 49.

Example 5: A degree-8 general-sum game. We construct a two-player EFG with imperfect recall
where P1 makes six moves before P2 makes two moves. There is one information set for P1 and one
information set for P2. P1 has three actions to choose from with probability x1, 2, and 1 —z1 — xo,
respectively. P2 also has three actions to choose from with probability y;, y2, and 1 — y; — yo,
respectively. Hence, the game tree has nine layers, including the root and the leaves, and the payoff
functions are degree-8 polynomials with monomial basis

6 .5 4.2 3.3 2. 4 5 6 5 4 3,..2 2.3 4 5 4 _3 2.2
[xlvxlx%xlx%xlm%xlxga331372733%331’33133271‘13527331332:$1$273727$1a1‘1$2a331332:
3.4 .3 .2 2 .3 2 2 2 2
l"ll‘ga$27$1,$1$27$1$2737273317951332»332;371’732,1}®[y1ay1y27y27y1,y271],

where ® is the tensor product. The size of the monomial basis is 168. We do not restrict the EFG
to be zero-sum, but instead randomly generate the payoff functions for P1 and P2 by independently
sampling the coefficient of each monomial in the basis from a uniform distribution on [—1, 1].

We run our program in Eq. (T9) to find the closest SOS-monotone game with the additional con-
straint that the information structure of the original EFG has to be preserved, i.e. the new payoff
functions have to be polynomials with the same monomial basis. As in Example 3, we defer the full
payoff functions of the game to Appendix [E]

On Scalability. A natural limitation of our framework is scalability—while SDPs can be solved
with arbitrary accuracy in polynomial time using interior point methods, they are among the most
expensive convex relaxations to solve. In practice, “SOS problems involving degree-4 or 6 polyno-
mials are currently limited, roughly speaking, to a handful or a dozen variables” [3]. We compare
the compute times of our proposed hierarchies when applied to the larger-scale examples above. In-
deed, while the SOS hierarchies in Examples 3 and 4 can be solved in ~ 0.052 and ~ 0.009 seconds
respectively, the much larger program for Example 5 took ~ 37.53 seconds to solve using a stan-
dard, off-the-shelf solver. This further motivates future work on scaling our approach using existing
methods in the literature [3} 137, 166, 39, 277]. Our coddﬂ is implemented using the SumOfSquares
package for Julia [36}63] and run on a MacBook Air with 16 GB RAM.

7 Discussion

In this paper, we have shown that verifying concavity and monotonicity in polynomial games is in
general NP-hard. For polynomial games over compact, convex basic semialgebraic sets, we utilize
SOS techniques to construct SDP hierarchies that can certify concavity and monotonicity. Moreover,
we show that almost all concave/monotone games are strict, and thus can be certified at a finite level
of the respective hierarchy. Finally, we introduced ¢-SOS-concave and /-SOS-monotone games,
which are certified at some fixed level £ of the respective SOS hierarchy. This leads to an application
for EFGs of imperfect recall, where we are able to find the closest (in terms of an appropriate norm)
SOS-concave/monotone game to a canonical EFG which has no Nash equilibria. In addition, in light
of the experiments in Section our work motivates the design of application-specific programs
which can find close concave/monotone games while also maintaining structural properties of the
original game.

Broader Impact. While our results are primarily theoretical, we acknowledge that there could be
potential societal consequences of our work, none of which we feel must be specifically highlighted.

'Code used to generate the experiments in Section@can be found in our github repo.
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A Additional Related Work

Polynomial Games and Semidefinite Programming. Initially introduced and studied by [14]],
polynomial games were viewed as a bridge between finite and continuous games. Although [14]
characterized and proved the existence of equilibria in these games, providing computational guar-
antees for general polynomial games has proven to be a challenging task. [45]34] used semidefinite
programming methods to find the value of two-player zero-sum polynomial games, and similar tech-
niques apply to separable games (where utilities take a sum-of-products form) [S5]. Recently, [43]
also used semidefinite programming techniques to solve for Nash equilibria in n-player polynomial
games, or otherwise detect the nonexistence of equilibria. Beyond polynomial games, oracle-based
methods have been used to approximately solve continuous games [1}32].

B Additional Preliminaries

Given a game ¢ with utility functions w;(z), the standard Jacobian is defined as follows:

H,, (z) Vi (Vou)(@) ... Vi (Vaur)(z)
T us)(z w, (T oo VT (Vau)(z
J(CL‘)déf vam(vwz 2)( ) H 2( ) . an(v.z 2)( ) . (A23)
VL (Va, un)(x) Vlz (Ve un)(z) ... H, (z)

C Onmitted Proofs from Main Text

C.1 Proof of Theorem

As mentioned earlier, several works have studied the hardness of verifying convexity in multivariate
polynomials [4} [2]]. We state the main theorem for hardness of verifying convexity over a box here
for completeness:

Theorem C.1 ([2| Theorem 2.3]). Deciding whether a polynomial of degree at least 3 is convex

overabox DL {z e R" | a; <x; < B; i€ [n]}, for o, B € R", is strongly NP-hard.

Using this result, we are able to prove NP-hardness of verifying concavity and monotonicity in
polynomial games.

Theorem 3.1. Let 4([n], X, u) be a polynomial game over a compact convex basic semialgebraic
set. If for some player i, u; is a polynomial of degree at least 3 with respect to x; € X, verifying
whether ¢4 is concave or monotone is strongly NP-hard.

Proof. To prove the statement for concave games, let p: R™ — R be a polynomial of degree 3 or
higher, and let D = {z € R™ | o < x; < B; j € [m]}, for a, B € R™ and a; < §;, be a box
over R™. Consider a two-player polynomial game ¥ ([2], D x D, u), where u;(z) = p(x1), and
us(xz) = 0 for all z € D x D. Then, since uy is concave over D, the game ¢ is concave if and only
if p is concave over D. Thus, from Theorem it follows that verifying whether ¢ is concave is
strongly NP-hard.

To prove the statement for monotone games, let p: R™ — R be a polynomial of degree 3 or higher,

andlet D & {z € R™ | a; <z; < B; je[m]}, fora,B € R” and a; < §;, be a box over R™.

Note that the description of D satisfies Eq. (I)), and hence D is a convex and compact semialgebraic
set. Define X1 £ [y, B1] X -+ X [Cm—1, Bm—1]> and Xo £ [, Bm]. Clearly, Xy x X, = D.
Consider a two-player polynomial game ¥ ([2], X; X Xa,u), where u;(z) = uz(x) = p(x) for all
x € X. Then, the game ¢ is monotone if and only if the operator (—V,, u1(z), —Va,uz(x)) =
—Vp(z) is monotone over X; x Xa, or equivalently p is concave over D. Thus, from Theorem|C.1
it follows that verifying whether ¢ is a monotone game is strongly NP-hard. ]

As a direct consequence of the hardness of verifying the concavity of degree-4 polynomials

over the simplex [26} 4], we can obtain the following NP-hardness result for verifying concav-
ity/monotonicity in polynomial games with simplex action sets.
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Theorem C.2. Ler 9([n], X,u) be a polynomial game where X; € A™:i. If for some player
i, u; is a polynomial of degree at least 4 with respect to x; € X;, then verifying whether ¢4 is
concave/monotone is strongly NP-hard.

Proof. We provide a similar construction to the proof of Theorem 3.1} Here we show hardness for

verifying concavity — the proof for hardness of verifying monotonicity is similar. Let p: R™ — R
def

be a polynomial of degree 4 or higher, and let A = {x € R™ | Zie[[m]] z; = 1,m; > 0fori =
1,...,m} be the m-dimensional simplex. Consider a two-player polynomial game ¢ ([2], A x
A, u), where uy () = p(z1), and ug(z) = 0 for all z € A x A. ug is concave over A, so the game
4 is concave if and only if p is concave over A. Thus, from [4] Theorem 2.1] (and as indirectly
argued in [26]] utilizing [40, Theorem 1]), it follows that verifying whether ¢ is concave is strongly
NP-hard. O

C.2 Proof of Theorem

Theorem 3.2. Let 4 ([n], X, u) be a polynomial game over a compact, convex basic semialgebraic
set X. Assume the quadratic module Q(X) is Archimedean. For any ¢ € N consider the hierarchy
of SOS optimization problems:

SOS¢(¥) Y minimize A
AER (17)
subjectto A — "SI (z)y € Qu(X x B),

where Qo(X x B) denotes the restriction of Q(X x B) to polynomials of degree at most L. Then,
the following statements are true:

1) For all £, we have that SOSy(¥) > max,cx )\max(SJ(J;)).

2) The sequence (SOS¢(¥)) ., is nonincreasing.

£>0
3) limy_,00 SOS¢(Y) = maxzex Amax (SJ(Z‘))
4) 9 is strictly monotone if, and only if, there exists some finite level £ such that SOS,(4) < 0.

5) For any level ¢, the program in (I7) can be formulated as an SDP and solved in polynomial
time.

Proof. To prove Statement [I} we start by considering some arbitrary ¢/ > 0. Observe that, if the
program in is infeasible, then SOS,(SJ) = oo, and therefore SOS;(SJ) > Amax (SJ(2)) for all

x € X. On the other hand, if the program in is feasible, SOS,(SJ) —y"SJI(z)y € Qo (X x B),
i.e., there exist 07, ...,07, € X[z]and pg,...,p;,, € R[z]such that

’ mg

My mp

j=1 j=1

(A24)
In particular, since hy(z) = -++ = hy,, (z) = 0forallz € X;and 1 —y'y = 0 forall y € B, by
the above we also have that

SOS,(SJ) — y'SI(x)y = of(x,y) + Zgj(a:)a;‘(@y) >0, Ve e X,y € B, (A25)
j=1

where the last inequality follows because g;(z) > 0 for all z € &, and 0y, ...,0m, € X[z,y].
Furthermore, since SJ is symmetric, the maximum eigenvalue of SJ(x) is given by

Amax (S3(z)) = max y'SI(z)y 4%1) SOS(SJ), Vi e X. (A26)

Alas, we have established that, SOS;(SJ) > Apax (SJ(J’J)) forallz € X and £ > 0.

To prove Statement [2] observe that as ¢ increases, the feasible set of the minimization program in

is expanding, and therefore (SOSZ(SJ )) >0 1S nonincreasing.
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To prove Statement we, first, prove that limg_, . SOS,(SJ) exists, i.e., the sequence
(SOS¢(ST)) >0 converges. In particular, observe that, since the quadratic module Q(X) is

Archimedean, the set X is compact, and thus, the maximum max;e x Amax (SJ (:r)) exists. Then, by
Statement [T} it follows that

max Amax (ST (2)) < SOS¢(SJ), Ve > 0. (A27)
zTE

Consequently, the sequence (SOS ¢(SJ )) />0 18 nonincreasing (Statement and bounded from be-
low by (Equation (A27)), and therefore it converges.

Now, recall that limg_, o, SOS,(SJ) = max,ecx Amax (SI()) if for every € > 0, there exists £y > 0

such that [SOS¢(SJ) — max,ecx Amax (SJ(2))| < € for all £ > £y. We are going to use Putinar’s
Positivstellensatz to show that for every ¢ > 0 such an ¢ exists.

First, observe that X x B is a basic semialgebraic set. In particular, we have that

gi(x,y) E gi(x) > 0, j € [my],

XxB=<(z,y) ER" xR™ | b (z,9) E1—yTy =0, : (A28)
h;(l’,y) = hj = Oa j € [mh]
Furthermore, it is not difficult to show that the quadratic module Q (X’ x B) is Archimedean.
Indeed, since Q(X') is Archimedean, there exists N € N such that N — 7" 2? € Q(X). There-

fore, there exist og, ..., 04, € X[z], and p1,...,pm, € R[z] such that
m Mg mp
N — Z x? = oo(r) + Zgj (x)oj(z) + Z hj(x)p;(z), VYo € R™. (A29)
i=1 j=1 j=1
Define the polynomial functions oy, . . ., a,’ng, POy -+ Py, R X R™ — R given by
a;(x,y):(jj(x) Jj=0,...,my
po(@,y) =1 Yo,y € R™, (A30)
and observe that, since oo, ...,0,, € X[z], it follows that o9,...,07, € X[z,y]. Moreover,

observe that
Mh

m m Mg
N+1- fo - ny =o,(z) + Zgé(x)a;(x) + Z n; (x)pf (), Vz,y € R™, (A31)
i=1 i j=1 =0

and therefore, N +1 — > 27 — > y? € Q(X x B). Thus, we conclude that Q(X x B) is
Archimedean.

Next, observe that, by definition, max, ¢ ¥ Amax (SJ (x)) = maxzex y' SI(x)y, which also implies
B

ye
that
max Amax (SJ(m)) — TSJ(x)y >0, Vre X, yebB. (A32)
Therefore, the polynomial
Ge(2,y) = max Amax (83 (2)) — y"SI(2)y + € (A33)

is positive over X x B for all € > 0. Thus, by Putinar’s Positivstellensatz, it follows that ¢.(z,y) €
Q(X x B), i.e., there exist 0g, ..., 0y, € X[x,y], and po, ..., pm, € R[z,y] such that

(r;leag Amax (ST (2)) + 6) —y'SI(2)y = qc(x,y)

200(907y)+29j(37)0j($7y) Vo y cR™
j=1 ’ '
mp
+ (1 =y y)po(,y) + > hj(x)p;(x,y)

Jj=1

(A34)
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Let Lo > 0 be the smallest number such that 200 >
max{deg (o), ..., deg(om,),deg(po), - . ., deg(pm,)}- Then, it  follows  that

(maxme;( Amax (ST (2)) + e,o,p) is a solution to the SOS program in (T7), where ¢ = /.

Thus, by the optimality of SOS, (SJ), and since the sequence (SOS;(SJ))
(Statement [T)), it follows that

SOS,(SJT) < SOS,, (ST) < max Amax (ST (2)) + €, Ve > fp. (A35)

>0 1S nonincreasing

Alas, by (A27), we conclude that
[SOS,(SJT) — max )\max(SJ(a:))| = SOS,(SJT) — max Amax (SJ(x)) <, V0> 4y, (A36)

To prove Statement ] recall that a polynomial game is strictly monotone if, and only if,

Iwnea%c Amax (SJ (x)) < 0. (A37)

First, suppose that & is not strictly monotone.  Then, by the above, we have that
MaXgzex Amax (SJ (x)) > 0. Thus, by Statement it follows that

S0S¢(SJ) = max Anax (S3(1)) 20, VL2 0. (A38)

Next, suppose instead that ¢ is strictly monotone. Then, max;e x Amax (SJ (x)) < 0, and therefore,
it exists € > 0 such that max,cx Amax (SJ (x)) + € < 0. Moreover, by Statement we also have
that
li SJ) = Amax (SJ . A3
Jim SOS.(SJ) MAX A (SJ(z)) (A39)

Therefore, by definition, there exists £y > 0 such that |[SOSy, (SJ) — maxye ¥ Amax (SJ (x))| <,
and thus

S0S¢, (SJ) < max Amax (ST (2)) + € < 0. (A40)
StatementE]follows from standard results in semidefinite programming. O

C.3 Proof of Theorem (3.3

Theorem 3.3. For almost all monotone games, monotonicity can be certified at a finite level { of the
SOS hierarchy ([T7), i.e., SOS¢(¥) < 0. Concretely, for all d > 2, the set of monotone polynomial
games of degree d over a compact basic semialgebraic set X that are not strictly monotone has zero
Lebesgue measure.

Proof. Let Gm(p,q) and Gsm (y,q) denote the sets of n-player, d-degree polynomial monotone and
strictly monotone games, respectively. We are going to show that given a compact, convex ba-
sic semialgebraic set X' of joint actions, the set G (n,a) \ Gsm(n,4) has zero Lebesgue mea-
sure. In particular, define y as the canonical dim(Gu,(n,q))-dimensional Lebesgue measure on
aff (G (n,a))- i.€., the affine hull of Gy, (,, 4. First, we show that Gy, (;,.q) is pi-measurable and there-
fore the restriction of p to G (p,q) (denoted by p | ) is well-defined. Then, we show that
M rgm(n,d) (gm(n,d) \gSm(n,d)) =0.
To begin with, observe that by definition:

Gmnday = {9 € Gna) | STw(2) = 0, Vo € X}, (A41)

where for each ¢ € Gy, (,,4)» SJ« is the symmetrized Jacobian matrix of the pseudo-gradient vy
of 4. Next, observe that the map (¢4, x) — SJ»(x) is polynomial in ¢ and z. Moreover, the
determinant A +— det(A) is also polynomial in A. Therefore, for all ¢ € gm(nyd) and x € X, the
principal minors f7: (¢,z) — det(SJg z(z)), T € 2I™l, of STy (z) are polynomial in & and z.
Thus, by Sylvester’s Criterion:

gm(n,d) = {g € g(n,d) | fI(%aI) >0, VI e 2Hm]]a T E X} (A42)

Gm (n,d)
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It follows by the Tarski-Seidenberg theorem [38,152] that Gy, (5, 4) is a basic semialgebraic set, and
therefore a Borel set. Thus, Gy, (,,,q) i p1-measurable.

Next, observe that G, (,,,q) is convex. Indeed, for all x € X, define

S: Z{Y € Ginay | STy (x) = 0}. (A43)

Observe that the map J,.: & — SJ(x) linear. Since Gy, q) is a vector space, S, = Jz(Gn,a)) is a
vector subspace, and therefore convex. Thus,

Gy = [ ] Se (A44)
zeX
is the (uncountable) intersection of convex sets, and therefore it is convex. Note that since the empty
set is convex, the statement in Eq. (A44) remains valid even if the intersection is empty.

Let us now consider the set
Gemn,a) = {9 € Gna) | Jw () = 0, Vo € X} (A45)
Observe that for all d > 0, Gsm(,,,4) is non-empty as the game ¢’ with payoff functions u;: = +

% |23 ]|?, for all i € [n], is strictly monotone. We show that G (5,,q) 2 int(Gum (s,4)) With respect to
the relative topology.

Let % € int(gm(n’d)), and suppose ¥ ¢ Gsm(n,4)- Then, by definition, there exists z9 € X
such that SJy, (z) # 0, i.e., it exists a vector u € R™ \ {0} such that u"SJg, (z9)u = 0. Define
L: 9+ u'SJy(xo)u. Since J,, is a linear map, it follows that L a linear functional. In particular,
we have that L(%) = 0. Moreover, since by definition SJ(z) = 0 for all ¥ € Gy, q) and
x € X, we also have that L(gm(n’d)) > 0. Finally, since gsm(n’d) is non-empty, by definition
we have that L(Qsm(n,d)) > 0, and therefore L is non-trivial, i.e., L # 0. Thus, L describes a
non-trivial supporting hyperplane to Gy, (,, 4y containing {¢ }. Then, by a version of the Separating
Hyperplane theorem [47, Theorem 11.6, p. 100], we may conclude that % ¢ int(Gu,,q)), Which
is a contradiction. Thus, ¢, € gsm(nd), and therefore it follows that gsm(n,d) ) int(gm(md)).

Using O to denote the boundary of a set, we conclude that, Giy(n.ay \ Gsm(n,g) € N Gm(n,a))-
Moreover as established before, gr,l(md) is a basic semialgebraic set. Thus, by [61, Theorem 1.8,
p. 67], it follows that

dim/(Grm .4y \ Gom (n,a)) < dim(0(Grn (n,a))) < AM(Gin () (A46)
which, since Gy () is pi-measurable, allows us to conclude that 1 [g,,, . o (Gm(n,a) \Gsm(n,a)) = 0
[

C.4 Proof of Theorem 4.3

Theorem 4.3. For all d > 2, the set of SOS-monotone games of degree d over a compact basic
semialgebraic set X is dense in the set of monotone games of degree d over X. Furthermore, given
any polynomial game G* € G, ) over X, and any fixed { > 0, we can compute the closest {-SOS-
monotone game to 4* by the program

minimize ||¥ — 4"
geg(n,d) (19)

subjectto ¥ € Qsosm(md’g),
which can be formulated as an SDP.

Proof. Let Gy, q) denote the set of n-player, d-degree polynomial monotone games. First, we
show that gsosm(md) is dense in gm(n,d), ie.,

Clgm(md) gsosm(n,d) = gm(n,d)' (A47)
Let Y € Gu(n,q)- Furthermore, for each k € N, define %, as the n-player, d-degree polynomial
game over X with utility functions w1, ..., ug,: X — R given by
1
ug,i(r) = wi(z) — ﬁH%HQ, Yz € X, i€ [n]. (A48)
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Then, the pseudo-gradient vy of ¥ is given by

Vo Uk, 1(x) Ve ui () — - 21
vg(z) = : = : , Ve e X, (A49)
vxnuk,n(x) Ve, tn(x) — % * Ty
and the symmetrized Jacobian matrix SJj, of vy, is given by

SJi(z) =SJ(x) — 1

oL vrex (A50)

Moreover, since ¢ is monotone, it follows
1 1 1
max /\maX(SJk(x)) = max Amax (SJ(m) % ~I) = max Amax (SJ(w)) % < ~Z <0, (A51)

and therefore ¥, is strictly monotone. Subsequently, it follows that ¥ is SOS-monotone, i.e.,
4, € gsosm(n,d)'

Now, consider the sequence (¥)52 ; of SOS-monotone games. Observe that

1
klgl(f)loﬂg -9l = klgrolo irél[%ﬁﬂvec(ui) —u(k, )]0 = klgrgo %= 0. (A52)
In other words, (¥)%2, converges to ¢. Thus, by definition, clg, (nay Fsosm(n,d) = Gm(n,d)s 1€

Gsosm (n,d) 18 dense in Gy, )

Next, we show that the program in (T9) may be formulated as a SDP and solved in O(log(%) .
Poly(éQ)), where 4*([n], X, u*) € G(s.q), and £ > 0.

First, by Definition .1} the program in (I9) is equivalent to

minimize ||¥ — 97|
GG (A53)
subjectto  — 4" SI(z)y € Qu(X x B),

where SJ(x) is the (symmetrized) Jacobian matrix of the pseudo-gradient of ¥¢([n], X, u).

Define the map f: (vec(uy),...,vec(u,),z,y) — —y'SI(z)y. Now, observe that
(vec(wr),...,vec(u,)) +~ SJ(x) is an affine map, and therefore f is affine in
(vec(us), ..., vec(uy)), and polynomial in (z, y).

Next, by the definition of ||-||, we have that

1% =471l = max|lvec(us) — vec(ui)llee, (A54)
1€n

Thus, the program (A53) is equivalent to

minimize A
A,vee(uy),...,vec(uy)
subject to A > m[[a)iHvec(ui) — vee(u) | oo, (A55)
i€n

f(vec(uy), ..., vec(uy),z,y) € Qu(X x B)

Moreover, the condition A > max;e ) |[vec(u;) — vec(u; )|l is equivalent to

A > vec(u;); — vec(u]);, Vie[n], je [szj d)ﬂ, (A56a)
A > vec(u]); — vec(u;), Vie[n], je H(mzj d)ﬂ (A56b)
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Thus, the program in (A53) is also equivalent to

minimize A
Avec(u),...,vec(un)
i+d
subject to A > vec(u;); — vec(uy);, Vie[n], je |[(m ;_ )]],
(A57)
i+d
A > vec(u]); —vec(u;);, Vie([n], je |[<m ;— )]]
f(vec(wr), ..., vec(un),z,y) € Qe(X x B)
Finally, observe that, as f is affine in vec(u1), ..., vec(uy), all the constraints of the program in
are affine in A, vec(uy), ..., vec(uy,). Then, by definition, the program in is a SOS
minimization program, and therefore it may be reformulated as a SDP. O

D Extensive-Form Games with Imperfect Recall

D.1 EFG Preliminaries

For completeness, we provide the necessary notation for EFGs with imperfect recall and their con-
nection to polynomial optimization. First, we note that in standard game theory, strategies for EFGs
lie in the simplex.

Definition D.1. An n-player extensive form game I'is a tuple I' := (H, A, Z, u,Z) where:

* The set ‘H denotes the states of the game which are decision points for the players. The
states h € ‘H form a tree rooted at an initial state r € H.

* Each state h € H is associated with a set of available actions A(h).

» Theset AV := {1,...,n,c} denotes the set of players of the game. Each state 1 € H admits
a label Label(h) € N which denotes the acting player at state h. The letter ¢ denotes a
special player called a chance player. Each state h € H with Label(h) = ¢ is additionally
associated with a function oy, : A(h) — [0, 1] where o, (a) denotes the probability that the
chance player selects action a € A(h) at state , 3, 45y on(a) = 1.

* Next(a, h) denotes the state ' := Next(a, h) which is reached when player i := Label(h)
takes action a € A(h) at state h. H; C H denotes the states h € H with Label(h) = i.

* Z denotes the terminal states of the game corresponding to the leafs of the tree. At each
z € Z no further action can be chosen, so A(z) = @ for all z € Z. Each terminal state
z € Z is associated with value u(z), where u : Z — R is called the utility function of the
game.

* The game states H are further partitioned into information sets ascribed to each player,
namely Z; € (Zy,...,Z,). Each information set I € Z; encodes groups of nodes that
the acting player ¢ cannot distinguish between, and thus the available actions within each
infoset must be the same. Moreover, the player must play the same strategy in all nodes of
the infoset. Formally, if hy, ho € I, then A(hy) = A(hs). With slight abuse of notation,
we can consider A(I) to be the set of shared available actions for the player in infoset I.

* For notational convenience, we ascribe a singleton information set to each chance node and
define Z. as the collection of these chance node information sets. For each non-terminal
node h € H ¢ Z, we thus define Ij, € (Zy,...,Z,) UZ. to be its infoset.

The standard assumption in the literature is that of perfect recall, wherein no player ever forgets
their past history (i.e. their past information sets and actions taken in those information sets) or
any information acquired. Formally, for any infoset / € Z; and for any two nodes hi, hy € I,
the sequence of Player i’s actions from r to h; and from r to sy must coincide, otherwise they
would be able to distinguish between the nodes. Finally, the game is called perfect recall if all
players have perfect recall. Otherwise, the game is said to have the imperfect recall property. The
notion of perfect recall has been crucial to establishing convergence results to pure Nash equilibria
in extensive-form games, primarily via the concept of behavioral strategies:
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Definition D.2 (Behavioral Strategy). Consider the infosets belonging to player 7, denoted I € Z;.
Let A(A(I)) denote the set of probability distributions on the simplex over actions in A(I). The set
of behavioral strategies of a player is denoted by o; : Z; — Urez, A(A(I)). In particular, at each of
their infosets I, player ¢ selects a probability distribution over their available actions at the infoset,
o;(-|I) € A(A(I)). Finally, the joint behavioral strategy for all players is denoted o := (0;)ienr-

Similarly, mixed strategies can be defined in the following way:

Definition D.3 (Mixed Strategy in Extensive-Form Games). Denote by S; the set of all possible
actions across all game states # for player ¢ in I'. Then, for all pure actions in the game s € 5,
Player i’s mixed strategy (; is given by the probability distribution defined by the probabilities y; ()
of playing strategy s.

Intuitively, one can view behavioral strategies as players randomizing between their possible actions
between each information set, and mixed strategies as players randomizing over their strategy se-
quences prior to playing the game (i.e. ex ante). Kuhn’s theorem provides a meaningful connection
between behavioral strategies and mixed strategies in EFGs with perfect recall:

Theorem D.4 (Kuhn’s Theorem [33]])). If player i in an extensive form game has perfect recall, then
for any mixed strategy | of player i there exists an equivalent behavioral strategy o of player i.

Moreover, computing behavioral strategies in two-player zero-sum games of perfect recall is possi-
ble in polynomial time [31]. However, once the assumption of perfect recall is relaxed (i.e. when
players have imperfect recall), Kuhn’s theorem no longer holds and finding a solution even in the
two-player zero-sum case becomes NP-complete [31].

D.2 Imperfect Recall Games

[64] introduced an example of a game with no Nash equilibria in behavioral strategies (Figure [2).
Subsequently, a variation of the original game called the forgetful penalty shoot-out game was intro-
duced in [60] and proceeds as follows: Player 1 decides whether to kick a ball Left or Right before
the whistle is blown, then decides again right before kicking the ball. At the second decision node,
the player has forgotten their previous decision. If the decisions at the two nodes match, Player 1
manages to aim at the goal, during which Player 2 has to decide to dive Left or Right to stop the
ball. Otherwise, the shot goes wide. This game also has no Nash equilibria in behavioral strategies.

When studying imperfect recall games, a key question to ask is whether one should consider mixed
strategies or behavioral strategies. In particular, Kuhn’s Theorem no longer holds and the conve-
nient sequence form representation is not well-defined. Indeed, mixed strategies require players to
select actions according to a distribution over all possible strategy sequences. For instance, a mixed
strategy for Player 1 in the forgetful penalty shoot-out game (Figure [2) could look something like:
Kick Left twice in a row with probability 0.5, and kick Right twice in a row with probability 0.5.
However, this requires the players to have some memory of their previous actions. In contrast, be-
havioral strategies are more natural in imperfect recall games as they do not necessitate a memory
requirement, a point which is argued for in Kuhn’s original treatment of perfect recall games [33]].

Following the work of [46 59], we show a construction from imperfect recall EFGs to polynomial
utilities via behavioral strategies. First, let P(h'|o, h) denote the realization probability of reaching
I’ given that players using strategy o are at state h. Note that if b ¢ hist(h') (i.e., if b’ is not
reachable from %) then the probability is 0. Intuitively, the realization probability given a behav-
ioral strategy is just the product of choice probabilities along the path from h to h’. In order to
formally define P(h/|o, h), we will need some additional notation. First, any node h € # uniquely
corresponds to a history hist(h) from root r to h.

* Function é(h) : H — N denotes the depth of the game tree starting from node h € H.

* Function v(h,d) : H x N — H identifies the node ancestor at depth d < § from node h.

* Function a(h, d) : H x N = Upey A(h) identifies the action ancestor at depth d < ¢ from
node h.

Together, the sequence (v(h,0),v(h,1),...,v(h,8(h))) uniquely identifies the history of nodes
from r to h. Likewise, the sequence (a(h,0),a(h,1),...,a(h,d(h) — 1)) uniquely identifies the
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history of actions taken from 7 to h. Then, the realization probability of node 4’ from h if the players
use joint strategy profile o is given by:

Definition D.5 (Realization Probability).
s(h)—1
P(Woh) = [] o, i)lla.;) if b€ hist(h),
g=8(h’)
Definition D.6 (Expected Utility for Player 7). For player i at node h € H \ Z, if strategy profile
o is played, their expected utility is given by U;(c|h) :== > __ - (P(z|o, h) - u;(2)). In its complete

2€EZ
form, we can write the expected utility for each player as foll%ws:
6(z)—1
Ui(o) = Z H ooz, ) (zj)) - wil2)
z€Z \ j=0

With some abuse of notation, we can write P(h|o) := P(h|o,r) where r is the root node, and simi-
larly U; (o) := U;(o|r). Notice that by definition, the expected utility of each player is a polynomial
function. In particular, P(z|o, h) - u;(2) is a monomial in o multiplied by a scalar.

Going forward, we establish several results connecting EFGs with imperfect recall and polynomial
games, utilizing some additional notation.

¢ ¢; denotes the number of infosets of player 4, i.e. ¢; := |Z;|. Moreover, fix an ordering
(Iil, . ,If’i) of infosets in Z;.

« m? denotes the number of actions in a given infoset I € Z; of player i, i.e. m] == | A(I7)].

Moreover, fix an ordering (a%, ce afi) of actions in A(I7).

* The strategy set of a player in information set I is defined on the simplex A=l where
Art={z e R": 2, > 0Vk,> ,_, z = 1}.

» Subsequently, the strategy set of player ¢ over all of their infosets can be written as a Carte-
sian product of simplices: S; = in:l A™-L Moreover, the strategy set over all players

: N\ £ m?—1
isS=X,_, ijl AT
* A joint strategy 0 € S for the players can hence be uniquely written as a vector 0 =
j n 4; J_ n 4 J
(azj'k)ijk € ><¢=1 Xj:l A™ilC Xi:l ><j=1 R™:.

Firstly, note that each infoset belonging to a player of an EFG with imperfect recall induces an
additional variable in the expected utility function. Clearly, the resultant polynomial utilities can
themselves be viewed as a polynomial game in the sense of [14} 45, [55] (and also falling in our
definition of polynomial games ¥¢), with the following definition of Nash equilibrium in behavioral
strategies:

Definition D.7 (Nash Equilibrium in Behavioral Strategies). A joint behavioral strategy o* €
X, Xﬁ;l A™i~1 s called a Nash equilibrium if for all players i € \:

Ui(c*) > Ui(os,0%;), Vo, €S;

i.e. no player has incentive to deviate from the behavioral strategy ¢* in any of their information
sets.

Remark D.8. The definition of Nash equilibria in our setting directly implies that any solution of
the corresponding polynomial game defined using the polynomial utility functions is also a solution
to the original EFG. In particular, the constructed polynomial utilities can be viewed as a generic
polynomial game with utilities u;(x). Here, z denotes the joint action profile of all players (see
Section E]) Here, the number of variables in x is equal to the total number of infosets over all
players, > ©, -\ £i. A joint state z* is called a Nash equilibrium if the following holds for all players
i € N uy(x*) > wi(zy, 2* ;)Vr; € S;. AtaNash equilibrium in the polynomial game, no player has
incentive to unilaterally deviate in any of the variables they control. This is precisely the definition
of Nash equilibrium in behavioral strategies for the original EFG.
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E Additional Experimental Details

Example 1: The absent-minded taxi driver in Figure[3] In the case of the game in Figure[3] we
let x denote the probability of choosing C' and 1 — = be the probability of choosing £. We use the
SDP hierarchy in Eq. to certify SOS-monotonicity of the polynomial u(x) = —322 + 4x. We
select £ = 2 and obtain SOS,(¥) ~ —6 < 0. Then, by Statementof Theorem the game is
strictly monotone. This additionally guarantees that the solution of the game is unique [49]].

Example 2: A game with no Nash equilibria in Figure[2] Next, it follows as a consequence of
Theorem that we can use the program in Eq. (I9) to find an SOS-monotone game ¢ which is
closest to the zero-sum game in Figure 2] in the sense of the norm defined in Eq. (3). By letting x;
denote the probability that P1 selects L at information set {a; }, z2 denote the probability that P1
selects L at information set {as, a3}, and y denote the probability that P2 selects r, we obtain the
payoff functions for P1 and P2 as follows:

up(z1,22,y) = 10x129 4+ 221y + 222y — 621 — 622 — 2y + 1,

and us = —uyq, respectively. Recall from [64] that this two-player zero-sum EFG does not have a NE
and that the game is neither concave nor monotone. We first run our hierarchy of SOS optimization
problems in Eq. at level 2, and we attain an objective value of SOS3(¥4) =~ 10 > 0. Then,
we run our program in Eq. (I9) with additional constraints that ¢ has to be zero-sum and that the
information structure of the EFG has to be preserved. To preserve the information structure of the
game, we select the monomial basis for the new payoff functions to be precisely the monomial basis
that can appear in the original game. We obtain the closest SOS-monotone game ¢’ given by:

) (21, 22,y) = =81y — 8wy — 1627 — 1629 — 12y — 9,

and v, = —u). The distance between the two games, | — ¢’||, which is defined in Eq. (3), is
in this case simply ||vec(u;) — vec(u})||oo and equals 10. On the other hand, the payoff function
of this game is multilinear and indeed the zero-sum game is monotone if and only if the term z; 22
has coefficient 0. This is in line with the experimental results. The modified game ¥’ has zero
symmetrized Jacobian matrix and is, thus, negative semidefinite. Moreover, since the modified
game is SOS-monotone, it has a NE in behavioral strategies.

Example 3. We generate a two-player polynomial game with the following payoff functions:

ui (21, T2, y1,92) = — 0.5y2 — 0.5y — 0.5z — 0.52% — 9.365y5 — 9.365y3y2 — 9.365y]
— 11712292 + 0.0879822y1y2 — 0.938522y2 — 9.36542% + 0.782521 7292
+ 0.5177z122y1y2 — 0.546521 2217 — 0.131022y2 — 0.163023y1 9>
—0.1308z2y? — 9.365z222 — 9.36527,
and
us (21, T2, y1,92) = — 0.5y5 — 0.5y — 0.523 — 0.52% — 6.828y5 — 6.828y3ys — 6.828y]
— 0.8535x3y5 — 0.863123y1y2 — 0.5324z3y% — 6.828z5 — 1.091x1w9y3
— 1.699z1 291 Y2 — 0.4118z1x0y7 — 0.388623y2 — 0.9771x3y 1
—0.61412%y? — 6.828x%x3 — 6.828x7.

P1 and P2 choose their actions (z1,x2) and (y1,y2) from a two-dimensional simplex respectively.
This game is certified strictly monotone and SOS-monotone, as we run our hierarchy of SOS opti-
mization problems in Eq. and obtain an objective value —1 at level 4.

Example 4. The game which was constructed is given in Figure [E.4
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P1 P1 P1 P1

O o O O O O O o O o O O O o O o O O O O O O O O O O O O O O O O

5-1-52 3241 -3-2-12 1-32-2-2-441 2 5-5-1-244-551-53

Figure E.4: Another Zero-sum Game with No Nash Equilibria

Example 5. We construct a two-player EFG with imperfect recall where P1 makes six moves
before P2 makes two moves. The utility functions for both players are degree-8 polynomials with
4 variables, and we do not restrict the game to be zero-sum. The size of the monomial basis is
168, and we randomly generate the payoff functions for P1 and P2 by independently sampling the
coefficient of each monomial in the basis from a uniform distribution on [—1, 1]. After rounding the
coefficients to 2 s.f. for brevity, the payoff function for P1 is:

up(z,y) = —0.42—0.46y2 —0.98y; +0.93x2 —0.11xz —0.78y§ —0.85y11y2 —0.21y% +0.92z0y2 +
0.48x2%y1 4 0.2922 — 0.3721y2 — 0.97x1y1 + 0.6521 25 — 0.4422 — 0.8622y5 — 0.3522y112 —
0.0322y7+0.0223y5 —0.4623y; +0.7825 —0.87x1 Y3 —0.5921 y1 Y2 +0.4621 Y7 +0.1221 2010+
0.372129y1 —0.3121 22 40.8923 Y2 +0.8 127y —0.2207 5 +0.9225 +0.8523y5+0.3423y, y2 —
0.2023y? + 0.5323y2 — 0.97x3y; + 0.08x3 + 0.98x122y2 + 0.032129y1y2 — 0.072120Y7 +
0.10z1 23y — 0.04x1 23y1 — 0.33z1 25 +0.4123y3 4+ 0.6127y 2 — 0.39239% — 0.710 320y +
0.8427oy1+0.6923 25 +0.4427y2+0.132}y1 +0.0527 22 +0.9221 —0.1025y3 —0.5525y1 y2 —
0.6123y? + 0.7425y2 — 0.65x5y1 — 0.74x5 — 0.14x125y3 + 0.772125y1y2 — 0.3021 2597 +
0.41z1x3ys + 0.66x1 25y — 0.62x125 — 0.3927x2y2 + 0.112220y1y2 — 0.712220y% —
0.1422 23y +0.562223y1 +0.60275 +0.2623y3 4 0.3425y 0 — 0.4T23 9% 4+ 0.87x 3 w0yy0 +
0.292F 2oy1 +0.9423 22 —0.4227y2+0.3527 y1 —0.1227 25— 0.4327 +0.0425y5+0. 1525y, y2 —
0.9323y% + 0.5825y2 — 0.1225y; — 0.71x5 + 0.93x123y2 + 0.812123y1y2 + 0.572 2597 +
0.32961333342 — 0.16x1x3y1 — O.46m1xg + O.SBx%x%yg — 0.83xfa:§y1y2 + 0.07x%x§y§ —
0.60x2x3ys + 0.07x223y; + 0.44x225 — 0.14x520y3 — 0.9123 20y Y2 — 0.8225 2037 +
0.5223x3y2 +0.7923 23y, +0.3923 23 — 0.042 y3 — 0.61xTy1y2 — 0.37x7y? +0.312 2012 —
0.8521 xoy1 +0.90x 1 2240.4925 Y5 —0.2425 1y, —0.6623 22 +0.5828 —0.5725y2+0.7225y1 Y2 —
0.3525y7 +0.5025 1o +0.7725y; —0.0621 25y5 +0.8921 w5y1y2 —0.4821 2595 —0.6921 5y +
0.61z125y1 + 0.43z3x3ys + 0.1623 23y y2 — 0.58z x5y + 0.402325ys — 0.342325y; +
0.502323y2 + 0.20x3 22y y2 — 0.772323y? + 0.012323ys 4+ 0.0525 23y, — 0.802 20y3 —
0.04z1 oy 2 + 0.262 2017 — 0.98x 1 22ys + 0.91x 22y, — 0.7723y2 — 0.8923y12 —
0.7223y3 + 017z w2y2 + 0.7023z0y1 + 0.8125ys — 0.5728y; + 0.3125y3 + 0.8225y192 —
0.5925y7 — 0.82z125y3 — 0.722125y1y2 + 0.93z125y7 — 0.542325y5 + 0.660725y1y2 +
0.692725y% +0.97x3x5y3 + 0.2823 23y 1y2 + 0.322325y? + 0.34a 23y2 — 0.822 23y 190 +
0.4921 23y +0.602 22y3 —0.9525 2oy1 Yo +0.1425 2oy +0.962y3 —0.3928 y1 y2 —0.282 0 y7.

Similarly, the payoff function for P2 is:
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uz(z,y) = —0.99+0.85y2 +0.77y; —0.6225 — 0.8821 —0.06y2 —0.32y1y2 — 0.57y% — 0.94z9ys —
0.76x2y1 +0.66235 —0.1121y2 — 0.3221y; — 0.5311 29 4+ 0.472% 4 0.7812y3 +0.7922y1y2 —
0.9822y7+0.65231y2—0.5823y1 +0.0123 —0.6521y2 —0.3521 11 Y2 +0.9521 Y7 —0.86 21 2oy —
0.5721 2y +0.762125+0.6427y2+0.2822y; +0.8627 w9 —0.7425+0.5123y5 —0.7205y1 yo—
0.4122y% + 0.3925y, — 0.70x3y; + 0.37x5 + 0.17z 2915 — 0.122129y1y2 — 0.4321 2217 +
0.801 3y +0.34x1 23y1 +0.9121 25 +0.7723y3 4+ 0.6922y1 2 +0.6423y7 +0.8422 2970 —
0.4123 29y —0.012302 —0.4623y2+0.9423y; —0.3323 25 4+0.6527 +0.0625y3 —0.5323y1 y2 —
0.8123y? + 0.4425ys + 0.3225y1 + 0.74x5 + 0.63x125y3 + 0.962125y1y2 — 0.2121 2597 +
0.84x1x5ys + 0.13x125y; — 0.13x125 4+ 0.152722y5 — 0.462320y1y2 — 0.9023 20y7 —
0.40z323y2 — 0.07x3 x5y, +0.932325 +0.0727 Y3 — 0.5625y1y2 +0.3325y7 4+ 0.082  20y2 +
0.97232oy1 +0.8625 12 —0.502 ] y2—0.44x 7y +0.592 £2+0.9827 +0.3225y5 —0.27x5y1 Y2 +
0.81z5y7 — 0.3925y2 — 0.47x5y; — 0.2325 4+ 0.51z125y3 + 0.6421 5y1y2 + 0.252125y7 +
0.44x1x5ys + 0.89x125y1 — 0.992125 — 0.112323y5 + 0.1423 23y Yo + 0.9823x3y? —
0.9423x5ys + 0.53zTx5y; + 0.82x7x5 + 0.2923 2015 — 0.682529y1y2 + 0283 w0y7 +
0.692° 22y +0.08z3 22y, — 0.1625 25 — 0.202 Y2 — 0.27x Y192 — 0.2327y? +0.62x 2070 —
0.982 zoy1 —0.352 232 +0.3925 5 +0.3323y1 —0.592° 25 —0.232540.4925y2 —0.6 925y yo -+
0.9325y7 +0.5425ys +0.3825y; —0.2821 2512 —0.6921 w5y1y2 —0.2221 2595 —0.3221 25y +
0.58z125y1 + 0.60z3z5ys — 0.9922 23y 92 + 0.64xx3y? 4+ 0.692725ys + 0.792325y1 +
0.4523x2y2 — 0.58z3x2y1y2 + 0.592323y? + 0.392525ys — 0.9525x3y; + 0.68z 1 x0y3 —
0.50z 1 Tay1y2 — 0.022722y7 + 0.60x123ys — 0.54x 23y — 0.8023y3 — 0.2225y1y2 +
1.00x5yF 4+ 0.9925 29y + 0.822529y; — 0.1728ys + 03225y, — 0.5625y3 + 0.61x5y1y2 +
0.9825y? + 0.76x15y2 + 0.382125y1y2 — 0.16x125y7 — 0.162725y3 — 0.2323x5y1y2 —
0.192725y? + 0.432325y3 + 0.8823 23y 1y + 0.332325y? + 0.092 22y2 — 0.462 23y 192 +
0.60 23y +0.1723 2oy2 +0.8125 2oy1 4o —0.2425 2oy? +0.0525y3 —0.7228 y1 42 +0.3125y7.

We run our program in Eq. (T9) at level 8 of the hierarchy to find the closest SOS-monotone game
with an additional constraint that the information structure of the original EFG (i.e., the monomial
basis) has to be preserved. This results in a modified game with the following payoff functions:

) (2,) = —0.92—0.96y, — 1.49y; +0.4225 — 0.6121 — 1.28y2 —1.35y1 9o —0.72y7 +1.03x2y +
0.76z2y; —0.2123 +0.0721y2 — 0.7021y1 + 0.3221 25 — 0.942% — 0.4129y2 — 0.3322y172 +
0.3822y% —0.47235y2—0.8623y1 +0.2925 —0.3921 y3 —0.2921 31 y2+0.2721 y3 —0.3421 To 1o+
0.0521 x9y1 —0.8121 254-0.4027y2+0.3527y; —0.6027 22 +0.4323 4-0.3523y5+0.1925y1 Y2 —
0.5323y% + 0.0823y2 — 0.58x3y; — 0.39x3 + 0.512122y5 — 0.0221 291 Y2 + 0.212 1 20yF —
0.122123y2 — 0.44x1 23y, — 0.142 25 — 0.0823y2 +0.2422y 5 — 0.7822y7 — 0.672320y2 +
0.4422 011 +0.1922 22 —0.0223 15 —0.3023y, +0. 1423 29 +0.422F —0.4625y2 —0.4923y1 Yo —
0.2925y7 + 0.30z5y2 — 0.46x5y; — 0.5625 — 0.43z1 25y + 0.5021 25y1y2 — 04021 23yF +
0.17m1x§y2 + 0.41x1x§y1 — 0.20x1x3 — 0.11x%x2y§ + 0.26x%x2y1y2 — 0.393:?x2y% —
0.4922 22y +0.1022 22y, +0.14z225 — 0.0723y2 4+ 0.3023y1 92 — 0.1825y? + 0.48x3 2070 —
0.07x5oy1 +0.4423 23 —0.8127y2—0.0227y1 +0.332 72— 0.8225 —0.2325y5 —0. 17251 Y2 —
0.60x5y7 + 0.2125ys — 0.0225y; — 0.3525 + 0.55x125y3 + 0.47x15y192 + 0.2221 597 +
0.142125y2 — 0.18z 25y — 0.03z125 + 0.41x3xiys — 0.57x3 3y 1y — 0.320302y? —
0.5922x3ys — 0.222225y; — 0.01x225 — 0.3325x2y2 — 0.53z520y112 — 0.51a5x0y? +
0.1023 23y +0.3323 23y — 0.07x3 x5 — 0.4327y5 — 0.222Ty1y2 +0.0027y7 +0.08x 2932 —
0.62272oy1 +0.4027 23 40.0227y2+0.0225 y; —0.1725 25 +0.1125 —0.1725y35+0.3425y1 yo —
0.1225y% +0.0925y2 +0.3325y; +0.0121 £33 +0.5021 25y1 Y2 —0.2121 25y5 —0.2521 250 +
0.22z125y1 + 0.05225y3 + 0.0522 23y 1y — 0.43z2a5y? 4 0.052225ys — 0.222323y; +
0.07x3x2y2 — 0.0223 22y Y2 — 0.612523y? — 0.24a3 x5y, — 0.072 xSy, — 0.432 w0y3 +
0.04z z2y192 + 0.06x w2y} — 0.622723ys + 0.44x w3y — 0.4725y3 — 0.4323y1y2 —
0.2825y7 — 0.0125 2y + 0.3227x2y; 4+ 0.3520ys — 0.1225y; + 0.0425y5 + 0.4125y1y2 —
0.1625y7 — 0.43z125y5 — 0.30z125y1y2 + 0.51z125y7 — 0.152323y5 + 0.27005y192 +
0.28235y; + 0.5225x5y35 — 0.0825x3y1y0 + 0.152525y7 + 0.062125y5 — 0.402 w3y 1y9 +
0.1221 2392 4+0.2625 29y2 —0.5325 w211 y2 +0.0925 £2y7 +0.4625y2 4+0.0228 y1 Y2 +0.1025y2,
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and

uh(z,y) = —1.54+0.34y, +0.26y; — 1.1225 — 1.3821 — 0.55y2 — 0.15y1y2 — 1.06y% — 0.83z2y2 —
0.48x2y1 +0.1625 4+ 0.3221y2 — 0.0621y; — 1.0321 29 — 0.042% 4 0.3022y3 + 0.6522y1 Y2 —
0.9429y3+0.3723y5—0.2323y1 —0.4923 —0.4021 Y2 —0.0521 31 Y2 +0.4621 Y7 —0.90x1 20y —
0.602122y1 +0.2521 22 40.4623y+0.220 3y, +0.3507 15— 1.2423 4+0.0323y3 —0.4523y1 y2 —
0.68x§y% + O.le%yg — 0.413333/1 — O.li’)x;1 — 0.21x1x2y§ — 0.08x122y1Yy2 — 0.14x1x2yf +
0.70z1 23y +0.342 23y1 +0.4121 25 +0.322393 +0.5022y1y2 +0.1723y7 +0.5722 2070 —
0.382329y1 —0.512702 —0.3025y2 +0.8223y; —0.8323 25 +0.1527 —0.4125y3 —0.2323y1 yo —
0.9523y% + 0.3123y2 + 0.49x5y; + 0.24x5 + 0.272x125y3 + 0.682125y1y2 — 0. 11212597 +
0.58x1x5ys — 0.06x125y; — 0.637125 — 0.1527x0y5 — 0.282329y1y2 — 0.562500yF —
0.3422x2ys —0.012223y; +0.422225 — 0.3023y2 — 0.4025y1 2 — 0.1323y% —0.27x3 2010 +
0.8525 w2y +0.362F 25 —0.1827y2 —0.33x1y; +0.092 1 29+0.482F —0.12x5y5 —0.0625y1 Y2+
0.43z5y% — 0.3625y2 — 0.22x5y; — 0.7325 4+ 0.11z125y2 + 0.34z 1 25y1y2 + 0.092123y? +
0.26x1 x5y + 0.73x125y1 — 1.50x125 — 0.332323y5 + 0.1823 23y Y2 + 0.88x323y7 —
0.84x3x5ys + 0.43x3x3y; + 0.320325 — 0.01zd w0y — 0.4423 20y Y2 + 0.522 3 w0y7 +
0.462323y2 — 0.0023 3y, —0.6623 23 4-0.002 Y2 +0.012Ty1y2 — 0692797 +0.282 2012 —
0.78x xoy1 —0.862 23 +0.6425 Yo +0.1623y; —1.092° 25 —0.732540.0525y2 —0.3925y1 yo +
0.52x5y7 +0.2225y5 +0.1925y; —0.472125y5 —0.8521 w5y1y2 —0.0621 2595 —0.3421 25y +
0.262125y1 + 0.30z3z3ys — 0.8222 3y 92 + 0.56zx5y? + 0.59x325ys + 0.672325y; +
0.18x3x2y3 — 0.5123 23y 10 + 0.512323y? + 0.24x3 25y, — 0.77x3 25y, + 0.38x‘11x2y§ —
0.31z 1 oy1ya + 0.232722y7 + 0.60x 23ys — 0.472 23y — 0.3423y3 + 0.1225y1y2 +
0.5223y% + 0.58z7woy2 + 0.5125w0y1 + 0.1125ys + 0.1625y; — 0.3425y3 + 0.1925y1 92 +
0.5625y? + 0.41z125y2 + 0.102125y192 — 0.38x125y7 — 0.132325y3 — 0.212205y1y2 —
0.04z3x5y? + 0.042325y3 + 0.552325y1 Y2 + 0.052525y? + 0.082 23y2 — 0.182 23y 192 +
0.23z 23y} —0.1523 22y3 +0.6025 2oy1 1o —0.0325 2oy —0.0425y3 —0.2928 Y1 yo —0.1425y7.

F Application: Economic Markets

Fisher markets are a special case of Arrow-Debreu markets [6] where competitive equilibria can
be efficiently computed for specific classes of utility functions. In particular, Fisher markets are
markets with n buyers and m divisible goods, and a certain amount of each good j in the market,
denoted ¢; > 0. Each buyer 7 comes to the market with a budget w; > 0, and their objective is to
obtain a bundle of goods b; € R’ that maximizes their utility function u; : RY* — R.

Computing competitive equilibria in Fisher markets is known to be PPAD-complete [10], but the
works of Eisenberg and Gale [15}|16] showed that equilibrium computation is efficient if the buyers’
utilities are continuous, concave and homogeneous. In recent years, many works have also lever-
aged techniques from algorithmic game theory to design algorithms that can compute competitive
equilibria in Fisher markets in a decentralized fashion [12| 29} 13} 121} 24]. A majority of these prior
works focus on Fisher markets where buyers’ utilities are linear, quasilinear or Leontief.

In an effort to model more complex utility structures in markets, [22] initiated the first study on
linear Fisher markets with a continuum of items. Subsequently, [65] introduced a variant of Fisher
markets which captures the impact of social influence on buyers’ utilities, showing that these markets
can be viewed as pseudo-games, a construction from [6] which led directly to Rosen’s definition
of concave games. [11]] also utilized a variational inequality approach to study monotone variants
of these games, and presented decentralized algorithms that converge to equilibria. Indeed, SOS-
concave and SOS-monotone games allow the study of Fisher markets with social influence for which
concavity/monotonicity is verifiable. In particular, an economist who is constructing a model for a
market can use our proposed methods in two ways. First, they can use the hierarchy in Eq.
to verify whether a game is concave or monotone. They can also use the hierarchy in Eq. to
search within the class of SOS-concave/monotone games in order to ensure that their market model
satisfies equilibrium existence and even uniqueness.
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Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our claims are proven rigorously, and all assumptions are clearly provided.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide a discussion section that outlines the limitations of the proposed
techniques, particularly scalability.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Each theoretical result has a corresponding proof, either in the main text or in
the appendix. Where appropriate, we have also included high-level proof sketches.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4) Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the full code used to obtain our experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5) Open access to data and code
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7

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Yes, the code utilizes standard packages and is provided fully.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are given in the main paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:
Justification: The experiments are deterministic.
Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The code can be run with minimal compute, and details are given in the main
text.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work is primarily theoretical and the experiments do not have a human
element.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The work is primarily theoretical, but we mention potential broader impacts
of our work in the discussion section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The results and code in the paper have almost no potential risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The SumOfSquares package used for our experiments are appropriately cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Justification: Our codebase is documented and provided alongside the relevant scripts.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not utilize any crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

¢ Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-

tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: The paper is theoretical in nature and thus has no human subjects involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16) Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development (i.e. theoretical results/proofs and experi-
ments) of this work did not involve LLMs.

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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