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ABSTRACT

While open-source multi-modal language models perform well on simple question
answering tasks, they often fail on complex questions that require multiple capa-
bilities, such as fine-grained recognition, visual grounding, and reasoning, and
that demand multi-step solutions. We present TACO, a family of multi-modal
large action models designed to improve performance on such complex, multi-
step and multi-modal tasks. During inference, TACO produces chains-of-thought-
and–action (CoTA), executes intermediate steps by invoking external tools such as
OCR, depth estimation and calculator, then integrates both the thoughts and action
outputs to produce coherent responses. To train TACO, we create a large dataset
of 1M+ synthetic CoTA traces generated with GPT-4o and Python programs. We
then experiment with various data filtering and mixing techniques and obtain a
final subset of 293K high-quality CoTA examples. This dataset enables TACO to
learn complex reasoning and action paths, surpassing existing models trained on
instruct tuning data with only direct answers. Our model TACO outperforms the
instruction-tuned baseline across 8 benchmarks, achieving a 3.9% improvement
on average, with gains up to 20% in MMVet tasks involving OCR, mathematical
reasoning and spatial reasoning.

 TACO

LLaVA-OV: Sample B has higher temperature.

Mantis-LLaVA: Sample B.Mantis-LLaVA: 3.6

LLaVA-OV: 5.2

Q: How many gallons of supreme gasoline can I 
get with $50?

A: 13.7

t0: I need to extract the price of supreme gasoline from the image.

a0: OCR(image-0)


t1: The price of supreme gasoline is $3.65 per gallon...I need to 
divide $50 by $3.65.

a1: Calculate(“50 / 3.65”)


t2: The calculation shows that you can get approximately 13.7 
gallons of supreme gasoline with $50.

a2: Terminate(“13.7”)

o0: “Gasoline - Self Serve - Regular - 3.49 9/10 - Plus - 3.55 9/10 - 
Supreme - 3.65 9/10 - Diesel No. 2 - 3.60 9/10”



o1: 13.6986



 TACO
t0: To determine which sample has a higher temperature, I need to compare the average 
kinetic energies of the particles in each sample using the formula: KE = 0.5 * m * v^2...

a0: Calculate(“0.5 * 44 * 830**2”)


t1: Now, I need to calculate the average kinetic energy for Sample B to compare.

a1: Calculate(“0.5 * 36 * 690**2”)


t2: The average kinetic energy for Sample A is 15,155,800, and for Sample B is 
8,569,800. Since Sample A has a higher average kinetic energy, it has the higher 
temperature.

a2: Terminate(“Sample A”)

o0: 15155800.0



o1: 8569800.0



Q: Compare the average kinetic energies of the 
particles in each sample. Which sample has the higher 
temperature? Sample A or sample B?

Figure 1: Example outputs of TACO vs. other multi-modal large language models. Our TACO
model is able to output a Chain-of-Thought-and-Action (CoTA) and answer challenging questions
based on the thoughts and action outputs, whereas existing multi-modal large language models fail.

1 INTRODUCTION

The space of real-world multi-modal problems is enormous, ranging from simple question answer-
ing Antol et al. (2015) to difficult multi-step mathematical reasoning Hu et al. (2024a). For example,
an user can take a photo of a panel with different gasoline prices and ask an agent how much gaso-
line they can buy with a certain budget (Figure 1). While existing multi-modal language models
excel at answering straightforward questions, they still struggle at ones like this, which requires lo-
calization and OCR to find gasoline types and prices, and multi-step reasoning and calculation to
respond. When models fail, it is hard to diagnose which implicit step caused the error. Worse, all
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t1: Then, I can extract the 

numbers on the motorcycles.

a1: OCR(image-1)


t2: The motorcyclist wearing a yellow suit is the 
middle one with 16 on the motorcycle.

a2: Terminate(“16”)

o1: “17, 9, 16, 2, 23”



Model-based generation

Programmatic generation

Parse

Direct Answer (Direct) 
t0: After inspecting the image closely, I can 
conclude that the answer is 16.

a0: Terminate(“16”)

Q: Between {obj1.name} and {obj2.name}, which is 
closer to the camera?  

A. {obj1.name}  B. {obj2.name}

A: B

t0: I need to first get the depth of {obj1.name}.

a0: EstimateObjectDepth(image-0, {obj1.name})

o0: depth: {obj1.depth}



t1: Then, I need to estimate the depth of {obj2.name}.

a1: EstimateObjectDepth(image-0, {obj2.name})

o1: depth: {obj2.depth}



t2: I’ve gather enough information to answer...

a2: Terminate(“B”)

t0: I need to first get the depth of the ...

a0: EstimateObjectDepth(image-0, )

o0: depth: 

t1: Then, I need to estimate the depth of the .

a1: EstimateObjectDepth(image-0, )

o1: depth:

t2: I’ve gather enough information to answer...

a2: Terminate(“B”)

motorcyclist
“motorcyclist...”

5.91



grass
“grass”

 5.44



Generate

Generate

Q: What is the number on the 
motorcycle of the motorcyclist 
wearing a yellow suit?

A: 16

Annotate

Q: Between the  
and the , which is closer to the camera?  

A.    B. 
A: B

 motorcyclist wearing a yellow suit

motorcyclist
grass

grass


obj1
 name: 

 depth: 
obj2:

 name: 
 depth: 

motorcyclist 
wearing a yellow sui

5.91


gras
5.44


t0: I need to first identify the motorcyclist wearing 
a yellow suit. 

a0: LocalizeObjects(image-0, “motorcyclist 
wearing a yellow suit”)

o0: image-1

Verify

Chain-of-Thought-and-Action (CoTA) 

Templates Generated QA and CoTA

MLM

t0: There are two motorcyclists in yellowish suits, 
but one is more neon-green than yellow. The other 
motorcyclist has number 16 on their motorcycle. 

a0: Terminate(“16”)

Chain-of-Thought (CoT) 

OR

Figure 2: Data generation. We illustrate our model-based data generation (top) and programmatic
generation (bottom) pipelines.

open-source multi-modal models struggle to outline the steps to solve complex problems because
their instruction-tuning datasets are dominated with single-step solutions and brief direct answers.

However, there is a promising and efficient alternative: multi-modal large action models Hu et al.
(2024a); Gupta & Kembhavi (2022); Surı́s et al. (2023); Hu et al. (2024b). Multi-modal action
models can, at inference time, perform actions by invoking external tools, which can be specialized
vision models (e.g., object detection and OCR), API calls (e.g., web search), or any other Python
functions (e.g., sorting) Hu et al. (2024a); Surı́s et al. (2023). They explicitly reason and execute
actions, generating a chain-of-thought-and-action (CoTA) needed to produce the final answer. It has
been shown that even proprietary frontier models, such as GPT-4o, improve on mathematical and
vision-centric tasks when augmented with CoTA Hu et al. (2024a). Unlike GPT-4o, open-source
multi-modal models fail at action calling without finetuning Hu et al. (2024b); Liu et al. (2023c);
Qi et al. (2024); Shao et al. (2024). This direction is still in its infancy; existing methods have not
introduced large-scale or high-quality CoTA data Liu et al. (2023c), or experimented with more than
half-a-dozen tools Qi et al. (2024). To train effective multi-modal action models, we need high-
quality instruction-tuning data in the CoTA format to help models learn to call diverse actions and
perform complex reasoning, which are expensive to obtain at scale with human annotators.

To achieve this goal with a reasonable budget, we turn to synthetic data generation instead. We
leverage both GPT-4o and Python programs to generate large-scale synthetic CoTA data across
diverse image sources, which we filter and mix aggressively using various techniques. In total, we
have generated 815K CoTA traces with GPT-4o across 31 datasets and 1M+ traces with handcrafted
programs. With these data, we compose 9 different recipes and perform extensive experiments with
3 open-source multi-modal models of different language models (i.e. Qwen2 and LLaMA3) and
vision encoders (i.e. CLIP and SigLIP). Finally, we identify the optimal recipe and obtain a final
subset of 293K high-quality CoTA data, which we then use to train and release a family of multi-
modal action models named TACO.

We evaluate our models on 8 benchmarks covering diverse capabilities including general visual
question answering, finegrained object and optical character recognition, math and multi-step rea-
soning, as well as multi-image understanding. Our best TACO performs on average 3.9% better
across all benchmarks than the baseline trained with instruction-tuning data with only direct an-
swers. Notably, we observe a staggering 10− 20% improvement on MMVet, which tests for diverse
capabilities with a focus on OCR and mathematical reasoning. Training on high-quality CoTA
traces sets a new standard for complex multi-modal reasoning, highlighting the need for structured,
multi-step instruction tuning in advancing open-source mutli-modal models’ capabilities.

2 CHAIN-OF-THOUGHT-AND-ACTION (COTA)

Our goal is to generate synthetic chains-of-thought-and-action and use them to train multi-modal
action models. We define a chain-of-thought-and-action C as a sequence of steps Si, where each
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Figure 3: Data distribution. We visualize the frequency of the final data format (i.e. CoTA, CoT,
or Direct) in each dataset across all data sources. We also highlight the Action-useless (i.e. % of
CoT-pos − CoTA-pos > 10 or % of CoTA-neg − CoTA-pos > 10) vs. Action-useful datasets.

step consists of thought ti, action ai and observation oi:

C = (S0, S1, ..., Sn) = (Si)
n
i=0 (1)

Si = (ti, ai, oi), ti ∈ L, ai ∈ A (2)

where L represents the space of language, and A is the action space as described next. Note that
the model only generates ti and ai, where the training loss is applied on, whereas oi is obtained by
executing ai in Python code.

2.1 DATA GENERATION

Due to the prohibitive cost of obtaining manually constructing CoTA traces at scale, we generate
synthetic CoTA traces with two automatic approaches: Model-based and programmatic generation.

Model-based generation. Inspired by prior work that demonstrates the utility of model-generated
data Hu et al. (2023), we design a model-based data generation pipeline (Figure 2 top):

1. GENERATE. First, we leverage images and QA examples in existing visual instruction tuning
datasets and generate chain-of-thought-and-action traces to solve the questions with GPT-4o. We
include diverse questions on both single-image and multi-image examples from two large-scale
instruction tuning datasets Cauldron and Mantis-Instruct Jiang et al. (2024); Laurençon et al. (2024).
We feed the images and questions to GPT-4o and prompt it to answer the questions by outputting a
CoTA or just a CoT without actions when actions are not necessary or helpful (Figure 2).

2. VERIFY. Second, we verify GPT-4o’s generated answers against the groundtruth in the instruc-
tion tuning datasets. We force GPT-4o to always end with TERMINATE(answer) and compare its
predicted answer to the groundtruth. If the final answer is incorrect, we convert this CoTA-neg
example into the direct answer (Direct) format with the correct answer (Figure 2).

3. PARSE. Finally, we run json.loads(Si) on each step of the CoTA traces with correct final
answers. Similar to the previous stage, we again keep the CoTA examples that are parsed success-
fully and turn the failed examples into the Direct format with groundtruth answers.

Programmatic data generation. We also explore a more cost-efficient and controllable method:
programmatic data generation (Figure 2 bottom). This pipeline involves two main steps:

1. ANNOTATE. First, we gather existing dense annotations of images. To this end, we leverage
Visual Genome (VG) as it contains rich human annotations of objects, attributes, and relationships
in the images. In addition, we also obtain depth maps of the VG images with Depth-Anything-v2
Yang et al. (2024) as depths are useful for many visual tasks but hard to manually annotate.

2. GENERATE. Next, based on the dense annotations of images, we programmatically generate
both the QA pairs and the corresponding CoTA traces with manually written templates. We reuse
the pipeline from Zhang et al. (2024b;c) for generating diverse QA pairs that cover various vision
capabilities such as counting and spatial understanding (See Appendix for more details).

In total, we generate 815K CoTA traces with GPT-4o, and 1M+ QA pairs and corresponding CoTA
data with programs. We then develop 9 different data recipes with 3 filtering/mixing techniques,
where we vary the distribution of (1) data formats (Figure 3), (2) data sources (Figure 3), and (3)
model-generated vs. program-generated data.

3



Published as a conference paper at ICLR 2025

3 EXPERIMENTS
We perform extensive experiments with 3 open-source multi-modal models and 9 data recipes on 8
benchmarks to study the effectiveness of CoTA data compared to instruction-tuning data with only
direct answers and investigate whether filtering and programmatic data can lead to further gains.
Table 1: CoTA inference before vs. after fine-tuning. We show that fine-tuning with CoTA data
elicits their reasoning and action calling abilities and significantly boosts their performance.

Model Language / Vision backbone Train data / Inference format A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg

GPT-4o (2024-08-06)
—

— / Direct 88.4 64.7 60.5 67.6 64.5 70.0 84.7 72.0 71.5
— / CoTA 89.9 63.2 59.0 64.6 64.3 67.2 83.0 69.9 70.1

GPT-4o (language-only) — / CoTA 74.8 45.6 44.5 54.1 55.3 45.2 58.0 50.2 53.5

Mantis-instruction-tuned
LLaMA3-8B / SigLIP

— / Direct 81.2 46.4 34.4 40.1 40.1 36.9 69.0 51.0 49.9
— / CoTA 0.5 0.0 20.0 1.5 1.7 0.0 0.0 0.0 3.0

TACO CoTA 293K / CoTA 81.8 47.6 36.3 40.9 42.5 45.7 65.3 56.5 52.1

LLaVA-OV-Stage1.5
Qwen2-7B / SigLIP

— / Direct 76.1 34.8 35.9 36.1 39.1 32.3 63.7 54.1 46.5
— / CoTA 25.7 8.8 21.5 21.2 26.7 7.2 40.5 37.5 23.6

TACO CoTA 293K / CoTA 86.1 52.6 46.9 44.0 50.8 51.2 73.7 61.1 58.3

Table 2: Best CoTA data recipe. CoTA data improves models’ average performance across 8
multi-modal benchmarks by 1-4%. We highlight whether CoTA data increases or decreases per-
formance on a particular benchmark compared to the baseline.

Model Language / Vision backbone Start checkpoint / Seen data Train data / Inference format A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg Delta

Mantis LLaMA3-8B / CLIP Pretrained / 558K Direct 293K / Direct 80.7 45.8 33.1 42.2 36.7 28.9 62.7 52.3 47.8
TACO CoTA 293K / CoTA 81.1 49.6 36.6 42.8 40.8 45.2 63.3 51.1 51.3 +3.5

Mantis

LLaMA3-8B / SigLIP
Pretrained / 558K Direct 293K / Direct 80.3 43.7 31.1 40.4 40.5 33.0 63.3 51.8 48.0

TACO CoTA 293K / CoTA 82.4 47.8 34.9 40.3 44.6 45.2 64.0 53.7 51.6 +3.6

Mantis Instruction tuned / 1.2M Direct 293K / Direct 81.1 46.7 36.2 40.7 40.7 29.7 68.3 54.8 49.8
TACO CoTA 293K / CoTA 82.8 47.3 38.9 41.9 45.1 50.0 67.7 56.1 53.7 +3.9

LLaVA-OV

Qwen2-7B / SigLIP
Stage 1 / 558K Direct 293K / Direct 83.1 49.5 38.4 45.6 42.3 33.0 69.7 55.3 52.1

TACO CoTA 293K / CoTA 84.5 49.6 41.8 45.3 44.5 48.9 66.7 53.6 54.4 +2.3

LLaVA-OV Stage 1.5 / 4.5M Direct 293K / Direct 85.5 50.3 42.4 46.1 50.1 39.3 73.6 57.8 55.6
TACO CoTA 293K / CoTA 86.1 52.6 46.9 44.0 50.8 51.2 73.7 61.1 58.3 +2.5

Models and baselines. We experiment with three models with different language models and vision
encoders: Mantis-8B-SigLIP (based on LLaMA3-8B and SigLIP), Mantis-8B-CLIP (LLaMA3-8B
and CLIP), and LLaVA-OneVision-7B (Qwen2-7B and SigLIP). We train our baselines with the
same hyperparameters and the same examples in the Direct instead of the CoTA format.

Evaluation setup. We select 8 multi-modal benchmarks covering diverse capabilities, with a focus
on vision-centric question answering benchmarks, including MMVet, MMVP, RealWorldQA, A-
OKVQA, and BLINK Yu et al. (2024); Tong et al. (2024); Schwenk et al. (2022); Fu et al. (2024);
Li et al. (2023b). Additionally, we have also included one visual mathematical reasoning benchmark
MathVista and two general multi-modal benchmarks MMMU and MMStar Lu et al. (2024a); Chen
et al. (2024a); Yue et al. (2024). We adapt VLMEvalKit Duan et al. (2024) for our evaluation.
Additional evaluation details can be found in the Appendix.

3.1 MAIN RESULTS

Fine-tuning open-source multi-modal models with CoTA data elicits their reasoning and action
calling abilities. As in Hu et al. (2024a), we observe that open-source multi-modal models fail to
call external actions with few-shot prompting, even though proprietary model GPT-4o does it well
(Table 1). However, fine-tuning them with our CoTA data effectively elicits their abilities to produce
chains of thoughts and actions at inference time (Table 1).

Our best CoTA data recipe results in a strong multi-modal action model TACO that consis-
tently beats instruction-tuned baselines by 1-4% on average across 8 benchmarks, with signifi-
cant gains on MMVet. We have fine-tuned 3 different multi-modal models with our best data recipe
CoTA 293K starting from different checkpoints. We observe that our CoTA data leads to consis-
tent gains in the model’s average accuracy across 8 benchmarks compared to the instruction-tuned
baselines trained with the same examples in the Direct format (Table 2). Our CoTA data results in
larger gains on some benchmarks than others: we see 10-20% gains on MMVet and 1-3% increases
on other benchmarks except for MMMU and MMVP, which can experience up to 2-3% drops. We
perform qualitative analysis on the greatest gains and drops and present examples in Section B.3.
Additional results from ablation experiments can be found in Section B.1.

4 CONCLUSION
We generate large-scale synthetic Chain-of-Thought-and-Action data and perform extensive experi-
ments with 9 data recipes and 3 open-source multi-modal models across 8 benchmarks. We demon-
strate quantitatively and qualitatively, enhanced capabilities of our multi-modal large action model
TACO compared to baselines instruction-tuned with only direct answers.
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A RELATED WORK

We contexualize our work in tool use and multi-modal language models.

Language-only tool use. Augmenting LLMs with external tools and APIs can significantly en-
hance their problem-solving capabilities, especially for tasks that require specialized knowledge or
interaction with external resources Qu et al. (2024). Examples include web searching Nakano et al.
(2021); Yao et al. (2022), mathematical calculations He-Yueya et al. (2023); Cobbe et al. (2021),
code interpretation Gao et al. (2023); Zhang et al. (2024d), and other domain-specific operations
that are challenging for LLMs to accomplish solely with their intrinsic knowledge.

Researchers have mainly explored two approaches to enable LLMs to effectively leverage external
tools. The first approach is through in-context learning, where instructions on tool usage and
contextually relevant examples are provided directly in the prompt Gou et al. (2023); Shen et al.
(2024); Yao et al. (2023); Chen et al. (2023f); Lu et al. (2024b); Paranjape et al. (2023). The second
approach involves training models to specialize in calling external functions Schick et al. (2023);
Qin et al. (2023); Patil et al. (2023); Chen et al. (2023a); Zhang et al. (2024a); Tang et al. (2023a).
For instance, Toolformer Schick et al. (2023) proposed training LLMs to call APIs precisely to
solve complex tasks in a self-supervised manner. More recently, xLAM unified data formats across
various environments, and achieved more powerful LLMs specialized in function calling that
are also referred to as large action models Zhang et al. (2024a). These works demonstrated the
effectiveness of fine-tuning LLMs to execel at calling tools, which inspired our work on tuning
multi-modal language models to be multi-modal action models.

Multi-modal tool-use. Unlike language-only tool use, most works in the multi-modal space have
only explored training-free methods, which adapt existing LLMs to use multi-modal tools via zero-
shot/few-shot prompting Gupta & Kembhavi (2022); Surı́s et al. (2023); Yang et al. (2023). Visprog
first demonstrates the potential of leveraging LLMs for visual question answering by prompting
them to generate programs of predefined modules for image understanding and manipulation Gupta
& Kembhavi (2022). Simlarly, ViperGPT defines a comprehensive list of APIs and prompts code
LLMs to generate Python programs for solving visual queries Surı́s et al. (2023). In addition to
question answering, m&ms further investigated LLMs’ abilities in planning and executing open-
ended multi-modal tasks with external tools Ma et al. (2024). Beyond LLMs, more recent efforts
such as VisualSketchPad also augmented multi-modal models with external tools and showcased
success Hu et al. (2024a). However, in-context tool use only works well with powerful proprietary
multi-modal models such as GPT-4o; all open-source multi-modal models fail to perform tool use
well without fine-tuning.

There are only a few works on training multi-modal models to be better at tool use. LLaVa-Plus
was the first work that shows the possibility of training a multi-modal model to use vision special-
ists Liu et al. (2023c). However, it exhibits poor performance due to the weakness of the model
backbone and the small scale and suboptimal quality of the data Liu et al. (2023c). Visual Program
Distillation distills tool-use and reasoning abilities into a multi-modal model with chain-of-thought
(CoT) data obtained from programs Hu et al. (2023). Nonetheless, this model is unable to use tools
at inference and is limited to simple question answering tasks Hu et al. (2023). Similarly, the more
recent work Visual CoT introduces a new synthetic CoT dataset for training multi-modal models
for enhanced reasoning Shao et al. (2024). The closest work to ours is CogCoM, which identifies
6 useful manipulations and trains multi-modal models with synthetic chain-of-manipulation (CoM)
data Qi et al. (2024). Nonetheless, the manipulations are limited and useful for only detailed visual
question answering and visual grounding, and the authors have only experimented with adding 70K
CoM data to 500K QA examples. None of these works studied or improved the quantity and quality
of these chains to enhance multi-modal models’ performance across diverse complex multi-modal
tasks, which our work focuses on.

Multi-modal language models. Most recently, there have been many advances made on open-
source multi-modal models Wang et al. (2024); Huang et al. (2023); Chen et al. (2023b); Wang
et al. (2023b); Sun et al. (2023); Lyu et al. (2023); Tang et al. (2023b); Wang et al. (2023a); Lin
et al. (2023); Bi et al. (2023); Chen et al. (2023c); Liu et al. (2024b); Peng et al. (2023); Chen et al.
(2023d); Shukor et al. (2023); Lin et al. (2023); Lu et al. (2023); Li et al. (2023a); Sun et al. (2024b);
Moor et al. (2023); Awadalla et al. (2023); Sun et al. (2024a); Chen et al. (2023e; 2024b); Liu et al.
(2023b;a; 2024a); Dai et al. (2024); Li et al. (2022; 2023c); Panagopoulou et al. (2023); Xue et al.
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Q: Is the trash can empty or full?

A: Empty 

Q: Given the following images of art paintings, use the first image as the reference image, and 
determine which one of the second or the third image shares the same style as the reference image? 
Select from the following choices. 
A. the second image 
B. the third image

Q: You are a judge in a photography competition, and now you are given the four images. Please 
examine the details and tell which one of them is most likely to be a real photograph. 
Select from the following choices. 

B. the second image, C. the third imageA. the first image, 

t0: The image shows a trash bin with a hand placing a bag inside. I need to determine if the trash bin is 
empty or full.

a0: GetObjects(image-0)


t1: The observation indicates the presence of a bag and a bin, but it doesn't specify the contents of the 
bin. Based on the image, the trash bin appears to be empty as there is no visible trash inside.

a1: Terminate(“ ”)

o0: ['bag', 'bin', 'box', 'container', 'dish washer', 'drawer', 'food', 'home appliance', 'person', 'kitchen', 
'kitchen counter', 'kitchen sink', 'lid', 'package', 'plastic', 'sink', 'stand', 'woman']


empty

t0: To determine which image shares the same style as the reference image, I need to analyze the 
styles of the images.

a0: GetImageToImagesSimilarity("image-0", ["image-1", "image-2"])


t1: The similarity scores indicate that image-2 is more similar to the reference image than image-1. 
Therefore, the third image shares the same style as the reference image.

a1: Terminate(“ ”)

o0: {'best_image': 'image-2', 'best_image_index': 1, 'similarity': [0.49, 0.65]}


B

image-0 image-1

image-0 image-1

image-2 image-3

image-2

Q: Compare the average kinetic energies of the particles in each sample. Which sample has the 
higher temperature? Sample A or sample B? 
A: Sample A

t0: To determine which sample has a higher temperature, I need to compare the average kinetic 
energies of the particles in each sample using the formula: KE = 0.5 * m * v^2, where m is the mass 
and v is the velocity. Since both samples have the same number of particles, the sample with the 
higher average kinetic energy will have the higher temperature.

a0: Calculate(“0.5 * 44 * 830**2”)


t1: Now, I need to calculate the average kinetic energy for Sample B to compare.

a1: Calculate(“0.5 * 36 * 690**2”)


t2: The average kinetic energy for Sample A is 15,155,800, and for Sample B is 8,569,800. Since 
Sample A has a higher average kinetic energy, it has the higher temperature.

a2: Terminate(“ ”)

o0: 15155800.0


o1: 8569800.0


Sample A

t0: To determine which image is most likely a real photograph, I need to analyze the content and 
context of each image.

a0: GetObjects(“image-0”)


t1: The first image shows a person playing a game, likely a sport, on a field. This suggests it is a real 
photograph. I will now check the other images.

a1: GetObjects(“image-1”)


t2: The second image shows a person playing in water, likely at a beach or lake, which is also a real 
photograph. I will now check the third image.

a2: GetObjects(“image-2”)


t3: The third image shows a person swimming in water, which is also a real photograph. I will now 
check the fourth image.

a3: GetObjects(“image-3”)


t4: All four images depict real-life scenes with people engaging in activities like playing sports or 
swimming. However, the first image shows a person playing a sport on a field, which is a more typical 
setting for a real photograph compared to the others.

a4: Terminate(“ ”)

o0: ['baseball hat', 'CD', 'dive', 'field', 'floor', 'frisbee', 'game', 'grass', 'person', 'lush', 'man', 'play', 'rugby 
player', 'tackle']


o1: ['ball', 'beach ball', 'frisbee', 'girl', 'jump', 'lake', 'sea', 'play', 'splash', 'throw', 'water', 'woman', 'yellow']


o2: ['swimwear', 'bikini', 'bikini top', 'blue', 'girl', 'jump', 'sea', 'water', 'woman']


o3:['swimwear', 'catch', 'CD', 'frisbee', 'girl', 'jump', 'lake', 'pink', 'play', 'throw', 'water', 'woman']


A

t0: The image shows a pie, likely a strawberry pie. I need to provide a general recipe for cooking a pie.

a0: QueryLanguageModel(“How to cook a strawberry pie?”)


t1: I have enough information to provide a general recipe for cooking a strawberry pie.

a1: Terminate(“

”)

o0: Cooking a strawberry pie is a delightful process, and here's a simple recipe to guide you: 
Ingredients: For the Pie Crust:\n- 2 ½ cups all-purpose flour\n- 1 cup (2 sticks) unsalted butter, ... ¼ 
teaspoon salt\n- 2 tablespoons unsalted butter, cut into small pieces...


Cooking a strawberry pie involves making a pie crust and filling with strawberries and 
sugar. Ingredients: For the Pie Crust:\n- 2 ½ cups all-purpose flour\n- 1 cup (2 sticks) unsalted 
butter, cold and cut into small pieces...For the Filling:- 5 cups fresh strawberries, hulled and 
halved\n- ¾ cup granulated sugar\n-...9. **Fill the Pie:** Pour the filling into the pie crust

Q: How to cook this dish?

A: This dish is called "Strawberry Rhubarb Pie". This strawberry rhubarb pie is a favorite springtime 
dessert in our house...Ingredients: 1 cup white sugar, ½ cup all-purpose flour...2 tablespoons white 
sugar...Step 1: Preheat oven to 400 degrees F (200 degrees C)...Step 8: Bake at 400 degrees F (200 
degrees C), for 35 to 40 minutes, or until bubbly and brown. Cool on rack.     

Figure 4: We present additional successful examples of TACO.

(2024). These efforts include training multi-modal models to take in multiple images, engage in
multi-turn conversations, and even understand videos Liu et al. (2024a); Jiang et al. (2024); Li
et al. (2024). For example, LLaVA-Next achieves strong multi-image understanding through large-
scale interleaved visual instruction tuning with M4-Instruct Liu et al. (2024a). Similarly, Mantis
introduces a new large-scale multi-image instruction tuning dataset Mantis-Instruct for multi-image
training Jiang et al. (2024). These efforts pave the foundation for our work on training multi-modal
models to learn from multi-image interleaved chains-of-thought-and-action data.
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Q: How many yellow stars are on a colorful bridge?

A. 4, B. 3, D. 1C. 2, 

Q: What are all the Chinese scene text in the image?

A: 马曳<AND>著<AND>每个人都有自己的困境<AND>但总会被光亮吸引<AND>身不由己地慢慢靠近

t0: To determine the number of yellow stars on the bridge, I need to analyze the image for stars.

a0: GetObjects(image-0)


t1: The object detection did not identify yellow stars specifically. I need to visually inspect the image 
to count the yellow stars on the bridge.

a1: N/A


t2: I need to visually inspect the image to count the yellow stars on the bridge.

a2: LocalizeObjects(image-0, “star”)


t3: The image shows two stars detected on the bridge. This matches option C.

a3: Terminate(“ ”)

o0: ['building', 'car', 'christmas light', 'city', 'city street', 'light', 'night', 'night view', 'tower', 'road', 'street 
scene']


o1: N/A


o2: [{'label': 'star', 'bbox': [0.84, 0.56, 0.87, 0.6], 'score': 0.56}, 

{'label': 'star-2', 'bbox': [0.53, 0.63, 0.56, 0.66], 'score': 0.5}]}


C

Q: Can you give a short introduction to this painting? 
A: The Arnolfini Portrait (or The Arnolfini Wedding, The Arnolfini Marriage, the Portrait of Giovanni 
Arnolfini and his Wife, or other titles) is a 1434 oil painting on oak panel by the Early Netherlandish 
painter Jan van Eyck. It forms a full-length double portrait, believed to depict the Italian merchant 
Giovanni di Nicolao Arnolfini and his wife, presumably in their residence at the Flemish city of Bruges.

t0: I can provide information about the painting based on general knowledge.

a0: QueryKnowledgeBase(“The Arnolfini Portrait”)

o0: 

t1: I have enough information to provide a short introduction to the painting.

a1: Terminate(“

”)

“The Arnolfini Portrait (or The Arnolfini Wedding) is an oil painting on oak panel by the Early 
Netherlandish painter Jan van Eyck, dated 1434 and now in the National Gallery, London. It is a full-
length double portrait, believed to depict the Italian merchant Giovanni di Nicolao Arnolfini and his 
wife, presumably in their residence at the Flemish city of Bruges. (url: https://en.wikipedia.org/wiki/
Arnolfini_Portrait)


The Arnolfini Portrait is a full-length double portrait by Jan van Eyck, depicting 
Giovanni di Nicolao Arnolfini and his wife in their residence at Bruges. It is an oil painting on oak 
panel, dated 1434, and is now in the National Gallery, London

Q: I am getting two margherita pizza and one calzone. How much should I pay in total? 
A: 25.80

t0: I need to extract the prices of the margherita pizza and calzone from the image to calculate the 
total cost.

a0: OCR(image-0)


t1: The price of a margherita pizza is 5.90€, and the price of a calzone is 14.00€. I need to calculate 
the total cost for two margherita pizzas and one calzone.

a1: Calculate(“2 * 5.90 + 14.00”)


t2: The total cost for two margherita pizzas and one calzone is 25.80€.

a2: Terminate(“ ”)

o0: The text on the blackboard reads:\n\n**PIZZA**\n\n- Margherita 5.90€\n- Capricciosa 
8.50€...Funghi 6.90€\n\n**Calzone 14,00**\n\n**WI-FI FREE inside**'


o1: 25.8


25.80€

t0: I need to extract the text from the image to identify the Chinese scene text.

a0: OCR(image-0)


t1: The extracted text provides the Chinese scene text from the image.

a1: Terminate(“ ”)

o0: The text in the image is:\n\n马叙 —— 著  \n细细密密的光  \n\n每个人都有自己的困境，  \n却总会被光亮
吸引，身不由己地慢慢靠近


细细密密的光\n每个人都有自己的困境，\n却总会被光亮吸引，身不由己地慢慢靠近。

t0: To determine if the boy can reach the highest book, I need to analyze the image for the boy's 
height and the height of the bookshelf.

a0: LocalizeObjects(image-0, ["boy", "bookshelf"])


t1: The boy's height is below the bookshelf, indicating he cannot 

reach the highest book.

a1: Terminate(“ ”)

o0: [{'label': 'boy', 'bbox': [0.07, 0.48, 0.18, 0.95], 'score': 0.89}, 

{'label': 'bookshelf', 'bbox': [0.13, 0.01, 0.32, 0.72], 'score': 0.72}]


B

Q: Can the boy reach the highest book?

(A) Yes, (B) No    

t0: I need to extract the prices of the Merlot and Cabernet from the image to calculate the total price.

a0: OCR(image-0)


t1: The prices for the Merlot and Cabernet are $139.99 and $109.99, respectively. I can now calculate 
the total price.

a1: Calculate(“139.99 + 109.99”)


t2: The total price for a bottle of Merlot and a bottle of Cabernet is $249.98.

a2: Terminate(“ ”)

o0: Here are the texts from the image: NORTHSTAR MERLOT  COLUMBIA VALLEY 3.0 L  
**139.99**...CHATEAU ST MICHELLE COLD CREEK CABERNET COLUMBIA VALLEY 3.0 L **109.99** ...


o1: 249.98


$249.98

Q: What is the total price for a bottle of Merlot and a bottle of Cabernet shown in the image?

A: $249.98     

Figure 5: We present additional successful examples of TACO.

B ADDITIONAL RESULTS

B.1 QUALITATIVE EXAMPLES

We present additional successful outputs of TACO across both single-image and multi-image ex-
amples in Figures 4 and 5 as well as failure cases in Figure 6.

B.2 QUANTITATIVE RESULTS

Quality matters more than quantity: our best data recipe is the smallest and yet leads to
better performance than other recipes of larger scales. We explore two data filtering techniques
to adjust the distribution of (1) data formats and (2) data sources (Table 3). We find that 293K CoTA
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Q: Who created this image?

 B. EDVARD MUNCH, C. EDGAR DEGAS, D. ANDY WARHOLA. PAUL CÉZANN,

Q: Which type of eggs are in the corner of the picture?

A. Quail eggs, B. Chicken eggs

t0: To determine the creator of the artwork in image-0, I need to analyze its style and characteristics.

a0: QueryLanguageModel("Who created the painting with a dark, expressive style often associated 
with emotional intensity?")


t1: Based on the description of a dark, expressive style often associated with emotional intensity, 
Edvard Munch is the most likely creator.

a1: Terminate(“ ”)

o0: The painting style you're describing sounds like it could be associated with several artists, but 
one of the most prominent figures known for a dark, expressive style and emotional intensity is 
Edvard Munch. His famous painting "The Scream" epitomizes such characteristics...'}


B

Q: The picture shows the microscopy of Mr Tan's gastric tumour. Which of the following statements is 
CORRECT? 

A. The findings show an adenoma

B. The findings show a squamous cell carcinoma


D. The findings show diffuse signet ring cell adenocarcinoma the Flemish city of Bruges.
C. The findings show intestinal type adenocarcinoma


Q: Is the wind blowing the flag?

A. Yes, B. No

t0: To determine if the wind is blowing the flag, I need to analyze the image for signs of movement or 
distortion in the flag.

a0: GetObjects(image-0)


t1: The presence of 'wind' and 'wave' in the detected objects suggests that the flag is indeed being 
blown by the wind.

a1: Terminate(“ ”)

o0: ['blue', 'flag', 'flag pole', 'fly', 'mast', 'pole', 'sky', 'wave', 'wind']}


A

t0: To determine the type of eggs in the corner of the image, I need to analyze the visual characteristics 
of the eggs.

a0: GetObjects(image-0)


t1: The object detection did not identify the eggs specifically. However, based on the visual 
characteristics of the eggs in the image, they appear to be quail eggs due to their small size.

a1: Terminate(“ ”)

o0: ['bakery', 'bread', 'butter', 'table', 'dip', 'dough', 'flour', 'food', 'hummus', 'pastry', 'platter', 'tray', 'type']


A

t0: To determine the angle of the image, I need to analyze the perspective and orientation of the snake.

a0: GetObjects(image-0)


t1: The image shows a snake from a side view, as the snake's body is visible from the side rather than 
directly facing the camera.

a1: Terminate(“ ”)

o0: ['branch', 'green', 'log', 'reptile', 'sit', 'snake', 'stool', 'tail', 'tree', 'tree branch', 'tree trunk', 'twig']


B

Q: From which angle is this image taken?

, B. Side    A. Front

t0: To determine the correct statement, I need to analyze the microscopic features in the image.

a0: QueryLanguageModel(“What are the microscopic features of adenoma, squamous cell 
carcinoma, intestinal type adenocarcinoma, and diffuse signet ring cell adenocarcinoma?”)

o0: 

t1: The image shows a gastric tumour with specific architectural and cellular features. Based on the 
options, diffuse signet ring cell adenocarcinoma is known for its distinct signet ring cells, which may 
be present in the image.

a1: Terminate(“ ”)

“The microscopic features of the mentioned conditions are distinct and reflective of their 
pathological origins: 1. **Adenoma**:   - **Architectural Features**: Typically show glandular 
structures with some degree of dysplasia...3. **Intestinal Type Adenocarcinoma**:   - **Architectural 
Features**: Gland-forming neoplasm with varying degrees of differentiation...'})


D

t0:To determine the type and size of the image formed, we need to analyze the position of the object 
relative to the focal length.", "actions": [{"name": "", "arguments": {"query": ""}}]}

a0: QueryLanguageModel(“What type of image is formed when an object is placed at a distance of 
1.5f from a converging lens of focal length f?”)


t1: The image is real and inverted, and the magnification indicates that the image size is larger than 
the object.

a1: Terminate(“ ”)


o0: When an object is placed at a distance of 1.5 times the focal length (1.5f) from a converging lens, 
the lens forms a real, inverted, and magnified image...Additionally, to find the magnification \\( m \\), 
we use:\n\n\\[\nm = \\frac{v}{u} = \\frac{\\frac{3f}{5}}{1.'}


A

Q: An object is placed at a distance of 1.5f from a converging lens of focal length f, as shown. What 
type of image is formed and what is its size relative to the object? Type/Size 

A. Virtual/Larger 
B. Virtual/Same size 
C. Real/Smaller 
D. Real/Larger    

Figure 6: We present additional failure cases of TACO.

examples result in the best absolute performance and the biggest gains of 3.6% over the baseline
(Table 3). Adding CoT examples results in a smaller gain of 1.7%, even though the training data
size almost doubles (Table 3). On the other hand, combining CoTA and Direct examples hurts the
model’s performance, likely because mixing in the Direct examples weakens the model’s reasoning
and and action calling abilities compared to CoTA only data.

Data sources matter too: including all datasets hurts performance whereas including only
Action-useful datasets brings performance gains. Similarly, we see that including only the
Action-useful datasets – where GPT-4o frequently chooses to call actions and reach correct final
answers – improves the model’s average performance compared to the baseline, while including all
data sources does not (Table 3). Again, we see that a smaller set of 566K CoTA traces can lead to
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Table 3: Model-generated data ablations. Data quality matters more than quantity. We find that
(1) the smallest dataset with only CoTA examples results in better average performance and higher
gains compared to other larger datasets with a mix of CoTA and Direct examples; (2) filtering out
Action-useless datasets leads to performance gains.

Data source Final data format Size Model A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg Delta

All datasets

Direct 293K Mantis-SigLIP 80.3 43.7 31.1 40.4 40.5 33.0 63.3 51.8 48.0
CoTA TACO 82.4 47.8 34.9 40.3 44.6 45.2 64.0 53.7 51.6 +3.6

Direct 580K Mantis-SigLIP 82.3 45.2 34.2 42.6 39.5 31.9 67.7 52.6 49.5
CoTA+ CoT TACO 84.0 46.4 36.3 40.3 40.6 43.7 66.7 51.6 51.2 +1.7

Direct 528K Mantis-SigLIP 79.7 46.7 34.0 39.4 40.7 28.3 65.0 52.2 48.2
CoTA+ Direct TACO 79.1 45.3 34.0 40.1 38.0 33.3 61.0 50.5 47.7 -0.6

Direct 815K Mantis-SigLIP 81.0 46.9 35.0 39.9 39.7 29.5 66.7 54.5 49.1
CoTA+ CoT+ Direct TACO 81.4 45.2 33.8 39.7 38.3 33.1 64.7 50.1 48.3 -0.9

Action-useful datasets Direct 566K Mantis-SigLIP 81.6 42.4 32.8 42.2 40.3 26.8 67.0 50.2 47.9
CoTA+ CoT+ Direct TACO 82.4 43.3 31.9 38.1 39.5 35.6 67.0 50.3 48.5 +0.6

Table 4: Model-generated and program-generated data mixtures. Adding programmatically
generated CoTA data can increase the model’s performance on some benchmarks such as A-
OKVQA, MathVista, MMMU, and MMVP. However, it doesn’t further improve model’s average
performance across all benchmarks. Additionally, more programmatic CoTA can even hurt the
model’s performance.
M:P = Model-generated CoTA (M-CoTA): Program-generated CoTA (P-CoTA).

Model Train data Total size A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg Delta

Mantis-SigLIP Direct 293K 293K 80.3 43.7 31.1 40.4 40.5 33.0 63.3 51.8 48.0

M:P M-CoTA / P-CoTA

TACO

0:1 0 / 293K
293K

34.3 37.4 17.3 31.9 30.4 0.0 48.3 40.7 30.0 —
1:0 293 / 0K 82.4 47.8 34.9 40.3 44.6 45.2 64.0 53.7 51.6 +3.6

1:0.1 293 / 29K 322K 82.6 47.5 33.9 40.3 44.2 42.3 64.3 49.8 50.6 +2.6
1:0.25 293 / 73K 366K 82.1 44.2 38.3 40.2 42.9 45.1 64.7 51.2 51.1 +3.1
1:0.5 293 / 147K 440K 81.9 46.0 36.7 41.4 41.4 40.9 62.3 50.3 50.1 +2.1
1:1 293 / 293K 586K 81.1 47.7 31.0 39.3 41.4 36.2 63.0 50.7 48.8 +0.8

better performance than a much larger dataset (815K), implying that data quality matters more than
quantity.

Adding programmatically generated data can lead to further gains on some benchmarks but
brings no additional gains to the average performance. We have also trained TACO with dif-
ferent mixtures of model-generated and program-generated data, where we vary their relative ratios
from 1:0.1 to 1:1. We learn that additional programmatic data can bring gains on some benchmarks
such as A-OKVQA, MathVista, MMMU and MMVP (Table 4). However, none of the data mixtures
results in better average performance than the best model-generated data. We present a qualitative
analysis of these findings in Section B.3.

Additional gains can be achieved by tuning the vision encoder, training with a smaller learning
rate or for more epochs. Last but not least, our hyperparameter tuning experiments with LLaVa-
OV-Stage1.5 suggest that we can further improve the model’s absolute performance by tuning the
vision encoder, training with a smaller learning rate and/or for longer epochs (Figure 7).

Table 5: Additional Results on Model-generated data ablations with Mantis-CLIP. We observe
similar results of data ablations on Mantis-CLIP as on Mantis-SigLIP.

Data source Final data format Size Model A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg Delta

All datasets

Direct 293K Mantis-CLIP 80.7 45.8 33.1 42.2 36.7 28.9 62.7 52.3 47.8
CoTA TACO 81.1 49.6 36.6 42.8 40.8 45.2 63.3 51.1 51.3 3.5

Direct 580K Mantis-CLIP 82.0 47.2 31.5 40.6 38.3 31.4 63.3 49.0 47.9
CoTA+ CoT TACO 82.6 47.7 35.9 38.3 39.6 43.4 61.0 51.1 49.9 2.0

Direct 815K Mantis-CLIP 81.0 47.3 32.9 47.3 38.1 29.1 63.0 51.0 48.7
CoTA+ CoT+ Direct TACO 81.3 43.1 32.7 48.0 37.7 31.0 58.7 47.6 47.5 -1.2

Action-useful datasets Direct 566K Mantis-CLIP 79.1 44.1 30.9 39.4 35.5 30.1 62.7 49.8 46.5
CoTA+ CoT+ Direct TACO 80.7 41.6 31.5 41.0 38.2 36.1 59.0 48.2 47.0 0.6

We report additional quantitative results of data ablatins on Mantis-CLIP in Table 5, where we see
the same trends we observe with Mantis-SigLIP: the smallest dataset of 293K CoTA examples leads
to the highest absolute performance and gain compared to other datasets with a mix of CoTA, CoT,
and/or Direct examples at larger scales.
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Figure 7: Hyperparameter ablations. Additional gains can be achieved with a smaller learning
rate for the language model, tuning the vision encoder, and training for more epochs.

t0: To find the difference...I need to extract the relevant data from the image.

a0: OCR(image-0)


t1: The total plastic produced is 407 million metric tonnes, and the total plastic discarded is 302 million metric 
tonnes. I can now calculate the difference.

a1: Calculate(“407 - 302”)


t2: The difference between the amount of plastic produced and discarded is 105 million metric tonnes.

a2: Terminate( )

o0: “**Plastic Waste is Out of Control**...**Plastic made (metric tonnes)**...Total - 407M...**Plastic thrown out 
(metric tonnes)**...Total - 302M... it's just sitting in a dump or the ocean somewhere.”


o1: 105


“105”

t0: To determine the orientation of the child, I need to analyze the image.

a0: GetObjects(image-0)


t1: 
a1: Terminate( )

o0: ['adult', 'bend', 'boy', 'child', 'father', 'floor', 'grass', 'help', 'land', 'lush', 'man', 'park', 'plant', 'play', 'squat', 'teach', 
'tree', 'weed']


The image shows a child facing forward while planting a tree.

“A”

t0: To determine the movement of art, I need to analyze the style and characteristics of the painting in image-0.

a0: GetObjects(image-0)


t1: 

a1: Terminate( )

o0: ['artist', 'builder', 'canvas', 'pillar', 'cross', 'deity', 'drawing', 'person', 'man', 'painter', 'religious', 'staff', 'sword']

The painting in image-0 features dramatic poses, strong contrasts, and a focus on human figures, which are 

characteristic of the Baroque style.

“B”

Q: Is the child in the picture facing forward or in profile? 
A. Facing forward; B. In profile

Q: What movement of art would you consider the image to be? 
; B. Baroque; C. Renaissance; D. RococoA. Neoclassical

MMVet

MMVP

MMMU

Q: What is the difference in metric tonnes between the amount of plastic produced and the amount discarded?

A: 105 

Figure 8: We present representative examples of TACO successes on MMVet, where our model
achieves consistent large gains, and failures on MMVP and MMMU, where our data sometimes
results in small drops.

B.3 QUALITATIVE ANALYSIS

Why does CoTA data help MMVet a lot but can harm performance on MMVP / MMMU? We
find that CoTA brings huge gains on MMVet, which includes many questions involving OCR and
math that our model is able to answer correctly much more often by calling OCR and CALCULATE
(Figure 8). By contrast, we learn that CoTA sometimes decreases model’s performance on MMVP
and MMMU, because our action space doesn’t cover tools that would be directly helpful for many
questions in these datasets (e.g. orientation questions in MMVP, and domain-specific questions in
MMMU) (Figure 8). In these cases, if the model called actions, the action outputs would be useless
or even misleading (Figure 8).
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t0: To determine the answer, I need to identify the number of 
dirtbikes and small green metallic cars in the image.

a0: 

t1: 

a1: Terminate( )

Localize(image-0, ["dirtbike", "small green metallic car"])


There are three dirtbikes and one small green metallic car. 
Therefore, the number of dirtbikes is not less than the number 
of small green metallic cars.


“B”

o0: [{'label': 'dirtbike', 'bbox': [0.53, 0.2, 0.72, 0.47], 'score': 0.66}, 

{'label': 'dirtbike-2', 'bbox': [0.41, 0.24, 0.47, 0.36], 'score': 0.44}, 

{'label': 'dirtbike-3', 'bbox': [0.52, 0.45, 0.67, 0.6], 'score': 0.5}, 

{'label': 'small green metallic car', 'bbox': [0.5, 0.25, 0.56, 0.34], 
'score': 0.61}]


t0: I need to extract the text from the image to find the last equation.

a0: OCR(image-0)

o0: The texts in the image are: 1. 5 + a = 7...10. 34 + y = 39

t1: The last equation in the image is 34 + y = 39. 

a1: Terminate( )
Therefore, y is 39.


“39”

t1: The last equation is '34 + y = 39'. To find 
the value of y, I need to solve this equation.

a1: Calculate(“39 - 34”)

o1: 5

t0: To determine the number of dirtbikes 
and small green metallic cars, I need to 
analyze the image.

a0: GetObjects(image-0)

o0: ['ambulance', 'bicycle', 'bus', 'car', 'table', 
'floor', 'lego', 'miniature', 'motorbike', 
'motorcycle', 'toy', 'toy car']

TACO trained with M-CoTA + P-CoTA 

Q: Is the number of dirtbikes 
less than the number of 
small green metallic cars? 
A. Yes; B. No

Q: What is y in the last 
equation? A: 5

MathVista

MMVet

t1: The observation doesn't clearly specify 
the number of dirtbikes and small green 
metallic cars. I need to visually inspect the 
image to count them.

a1: Terminate(“A”)

Figure 9: We present examples of TACO success and failure after adding programmatic data to the
fine-tuning dataset.

Why does adding programmatic CoTA help on MathVista but hurt MMVet performance? We
observe that adding programmatic CoTA can result in up to 3% gain on MathVista and 9% drop on
MMVet (Table 4). Upon analysis, we discover that programmatic CoTA improves the general VQA
split in MathVista the most by almost 9%. This is because LOCALIZE is helpful for these questions,
and our programmatic data includes many LOCALIZE instances that allow TACO to learn to use
it effectively (Figure 9). Conversely, programmatic data hurts TACO’s performance on MMVet
most likely due to the model’s worse reasoning ability as a result of the simple and rigid thoughts
generated with templates in our programmatic data (Figure 9). See the Appendix for more qualitative
examples.

Taken together, these findings suggest that the quality of the thoughts and diversity of actions are
both crucial to the model’s performance.

C ADDITIONAL METHOD DETAILS

C.1 ACTION SPACE

We define the action space A of our multi-modal action model as the set of atomic tools use-
ful for multi-step multi-modal tasks. We choose the tools from prior work on multi-modal tool
use Hu et al. (2024a); Surı́s et al. (2023); Gupta & Kembhavi (2022); Liu et al. (2023c); Ma
et al. (2024), combining all commonly used tools, standardizing their names and adapting them
to work with flexible input and output formats. Our final set of 15 tools includes OCR, GETOB-
JECTS, LOCALIZEOBJECTS, ESTIMATEOBJECTDEPTH, ESTIMATEREGIONDEPTH, GETIMAGE-
TOTEXTSSIMILARITY, GETIMAGETOIMAGESSIMILARITY, GETTEXTTOIMAGESSIMILARITY,
DETECTFACES, CROP, ZOOMIN, QUERYLANGUAGEMODEL, QUERYKNOWLEDGEBASE, CAL-
CULATE, and SOLVEMATHEQUATION. Note that most tools in this list are vision-centric or visual-
linguistic tools; the last four tools are language and math tools useful for general reasoning or in-
formation retrieval, which are also often involved in multi-modal tasks. We also include the TER-
MINATE tool for the model to output a final answer in the same action format. See implementation
details in the Appendix.

C.2 ACTION IMPLEMENTATION

Our Python implementation of all actions can be found in Listing 1.

C.3 DATA FILTERING AND MIXING.

In total, we generate 815K data with GPT-4o for both single-image and multi-image questions across
31 data sources from Cauldron and Mantis-Instruct Laurençon et al. (2024); Jiang et al. (2024). We
also programmatically generate 1M+ QA pairs and corresponding CoTA data with VG images and
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annotations Krishna et al. (2016), which we randomly sample from to augment model-generated
data. We then develop 9 different data recipes with 3 filtering/mixing techniques, where we vary the
distribution of (1) data formats, (2) data sources, and (3) model-generated vs. program-generated
data.

Data format. As mentioned in the data generation pipeline, model-generated data can be catego-
rized into two formats: Chain-of-Thought-and-Action (CoTA) or Chain-of-Thought (CoT) examples
(Figure 2). Additionally, they can be further grouped into CoTA/CoT-pos and CoTA/CoT-neg ex-
amples where the final answers are correct and wrong respectively (Figure 3). Note that we convert
both CoTA-neg and CoT-neg examples into the direct answer (Direct) format with groundtruth an-
swers (Figure 2) so the final data format is one of CoTA, CoT, and Direct. We experiment with data
consisting of only CoTA, CoTA and CoT, CoTA and Direct, and all three formats (Figure 3).

Data source. We also perform filtering based on data sources as Cauldron and Mantis-Instruct cover
a wide range of tasks, some of which benefit more from our defined actions than others. To this end,
we define Action-useless datasets as the ones where GPT-4o either decides to output only thoughts
much more often than both thoughts and actions (i.e. % of CoT-pos − CoTA-pos > 10), or reaches
wrong answers much more frequently than correct ones when calling actions (i.e. % CoTA-neg −
CoTA-pos > 10) (Figure 3). The remaining datasets are considered Action-useful datasets, and we
experiment with including all datasets vs. only the Action-useful datasets (Figure 3).

Model-generated vs. program-generated data. Due to the lack of controllability, the distribution
of actions in model-generated data is highly imbalanced, with a couple of actions such as GETOB-
JECTS and OCR dominating the dataset. Therefore, we also try increasing action diversity by adding
programmatic data involving underrepresented actions such as LOCALIZEOBJECTS, ESTIMATEOB-
JECTDEPTH and ESTIMATEREGIONDEPTH. We experiment with data mixtures with different ratios
of model-generated vs. program-generated data, ranging from 1:1 to 1:0.1.

While the best data recipe varies with the benchmark, one recipe stands out, resulting in consistent
gains in the average performance across 8 benchmarks for all 3 models. This dataset consists of
293K CoTA examples generated by GPT-4o across all 31 data sources.

C.4 MODEL-BASED DATA GENERATION

C.4.1 GENERATION PROMPT

We present the full data generation prompt used in our model-based data generation pipeline in
Listing 2.

C.4.2 DATASET STATISTICS

We present a table with detailed statistics of the CoTA 293K dataset in Table 6.

C.5 PROGRAMMATIC DATA GENERATION

C.5.1 ADDITIONAL DETAILS

To generate CoTA data, we define templates for thoughts, actions, and observations across all steps.
In particular, we manually design five thought templates for each action and randomly sample one
during generation. As for the actions, we manually select the tools for each type of questions
(e.g. ESTIMATEOBJECTDEPTH for questions on objects’ relative depths, and LOCALIZE for ob-
ject counting questions etc.) and compose templates with them. We fill in the actions’ inputs in
the templates with annotations obtained from the previous step. Similarly, we define observation
templates based on the action outputs’ formats, and fill them in with dense annotations.

C.5.2 QA AND ACTION TEMPLATES

We present the question-answer and corresponding action templates used in our programatic data
generation in Table 9. We design 16 different question templates for both single-image and multi-
image examples that cover 5 capabilities: attribute recognition, counting, 2D and 3D spatial under-
standing, and multi-image understanding.
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Table 6: Detailed statistics of the CoTA 293K dataset.
Original Dataset Subset Instance # Max Image # Avg Image # Max Turn # Avg Turn #

Cauldron

ai2d 694 2 1 6 2
aokvqa 6322 5 1.1 7 2.1
chartqa 4726 2 1 10 2.1
cocoqa 13289 3 1.1 4 2
dvqa 2158 2 1 7 2.5
iconqa 3791 3 1.1 5 2.2
infographic vqa 3822 3 1 9 2.3
mimic cgd 6899 6 2.1 7 2.8
nlvr2 9716 4 2.1 6 2.5
ocrvqa 22991 2 1 7 2
scienceqa 850 2 1 6 2.3
st vqa 11322 3 1 8 2
tabmwp 14548 1 1 10 2.5
tallyqa 16171 3 1.4 5 2.1
textvqa 15475 5 1 6 2.1
visual7w 4773 3 1.1 5 2.1
vqarad 115 2 1 4 2.2
vqav2 13394 5 1.2 6 2.1
vsr 1864 2 1.2 4 2.1

Mantis

birds-to-words 742 4 2 5 2.7
coinstruct 31773 8 2.3 8 2.2
contrastive caption 4296 8 3.6 6 2
dreamsim 1738 3 3 3 2
iconqa 6660 7 2.6 6 2.2
imagecode 559 18 10.1 10 3.1
lrv multi 3401 9 3.3 6 2.2
multi vqa 2089 7 3.8 8 2.6
nlvr2 5436 4 2 5 2.5
spot-the-diff 2591 5 2.8 8 3
nextqa 3057 15 8.2 9 2.3
llava 665k multi 77843 11 2.2 10 2.1

Total 293105 18 2.2 10 2.3

C.5.3 THOUGHT TEMPLATES

We also present the five thought templates in Listing 3 we define for each action, where one of them
is randomly sampled and used during generation.

C.5.4 EXAMPLE ACTION DISTRIBUTION

We plot example distributions of all actions before and after adding programmatic CoTA 73K data
in Figure 10.

D ADDITIONAL TRAINING DETAILS

We fine-tune models starting from checkpoints at different stages – pretrained and instruction tuned
for Mantis-8B-SigLIP-LLaMA-3, and stage 1 and stage 1.5 for LLaVA-OneVision-7B – to inves-
tigate where CoTA data brings the largest gains. We adopt the hyperparameters from Liu et al.
(2024a); Jiang et al. (2024) and fine-tune both the language model and the projector with learning
rate = 1e − 5 for 1 epoch with either NVIDIA A100s 40GB or H100s 80GB. We perform hyper-
parameter tuning with LLaVA-OneVision-7B as its codebase supports flexible fine-tuning, and we
vary tuning vision encoder vs. not, the language models’ learning rate, and number of epochs.

We report additional training hyperparameters for Mantis models and LLaVA-OV in Table 7 and 8
respectively.

9



Published as a conference paper at ICLR 2025

Table 7: Additional training hyperparameters for Mantis-SigLIP and Mantis-CLIP.
Name Value

bf16 TRUE
tf32 True
per device train batch size 1
per device eval batch size 1
gradient accumulation steps 16
weight decay 0
warmup ratio 0.03
lr scheduler type cosine
lora enabled FALSE
qlora enabled FALSE
max seq len 8192

Table 8: Additional training hyperparameters for LLaVA-OV.
Name Value

bf16 TRUE
tf32 True
mm vision tower lr 2.00E-06
mm projector type mlp2x gelu
mm vision select layer -2
image aspect ratio anyres max 9
image grid pinpoints ”(1x1),...,(6x6)”
mm patch merge type spatial unpad
per device train batch size 1
per device eval batch size 1
gradient accumulation steps 16
weight decay 0
warmup ratio 0.03
lr scheduler type cosine
model max length 8192

E ADDITIONAL EVALUATION DETAILS

On multiple-choice questions, our evaluation uses chatgpt-0125 for answer extraction. On free-
form questions, we use an LLM judge (i.e. GPT-4-turbo) to score predicted answers between 0 and
1 compared to the groundtruth answers.

We present additional inference and evaluation details in Table 10 and the LLM judge prompts used
for MMVet and MathVista from VLMEvalKit Duan et al. (2024) in Listings 4 and 5.

F LIMITATIONS AND FUTURE WORK

While there are many benefits of multi-modal action models, there are also limitations: they require
customized action implementations and more inference compute and time. We have augmented our
model mainly with tools useful for vision-centric QA and general reasoning. Due to the diversity of
visual world, researchers might need to train new models with different actions for other applications
such as web navigation or for other domains such as medical question answering. There are also
limitations in our programmatic data, especially on the thoughts’ quality. We encourage future work
to further improve the quality of CoTA data.

10



Published as a conference paper at ICLR 2025

Table 9: Templates for programmatic data generation.
# of input images Capabilities Question Template Action Template

1

Counting
How many {object} are there?

LocalizeObjects

Among {objects}, which is the most frequent object?
Among {objects}, which object appears the least?

Counting, Attribute recognition How many {attribute} {object} are there?

2D spatial reasoning

Among {objects}, which is on the most left side?
Among {objects}, which is on the most right side?
Among {objects}, which is on the most top side?
Among {objects}, which is on the most bottom side?

3D spatial reasoning Which of {objects} is closer? LocalizeObjects, EstimateRegionDepth x2
OR, EstimateObjectDepth x2Which of {objects} is farther?

2-3

Multi-image understanding Which image has {object}?

LocalizeObjects x N
Multi-image understanding, Counting How many {object} are in in these images?
Multi-image understanding, Counting Which image has most {object}?
Multi-image understanding, Counting Which image has least {object}?
Multi-image understanding, Attribute recognition Which image has {attribute} {object}?
Multi-image understanding, Attribute recognition, Counting How many {attribute} {object} in these images?

Figure 10: Action distribution of model-generated data vs. model and program data mixtures.

Table 10: Additional inference and evaluation details.
Stage Name Value

Inference

do sample FALSE
temperature 0
max new tokens 2000
max consecutive auto reply 10

Evaluation

llm judge for multiple choice & yes/no questions gpt-3.5-turbo-0125
llm judge for short answer questions (i.e. MMVet, MathVista) gpt-4-1106-preview
llm judge max new tokens 2048
llm judge retry 5
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1 class BaseAction:
2 """
3 This is the Action class for agent to use.
4 Using this Action class to wrap APIs, tools, models as an Action of

an agent
5 """
6

7 def __init__(
8 self,
9 id: int,

10 description: str = "",
11 args_spec: dict = {},
12 rets_spec: dict = {},
13 examples: List = []
14 ) -> None:
15 """
16 the agent action should be connected with data and env
17 Args:
18 id: the id of the action
19 description: the description of the action
20 args_spec: the specification of the arguments
21 rets_spec: the specification of the returns
22 examples: a list of examples of the action
23 """
24 self.name = self.__class__.__name__
25 self.id = id
26 self.description = description
27 self.args_spec = args_spec
28 self.rets_spec = rets_spec
29 self.examples = examples
30 self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
31

32 def __call__(self, **kwargs) -> str:
33 """
34 implement the Action as
35 """
36 raise NotImplementedError
37

38

39 class OCR(BaseAction):
40 def __init__(self, id) -> None:
41 description = "Extract texts from an image or return an empty

string if no text is in the image. Note that the texts extracted may
be incorrect or in the wrong order. It should be used as a reference
only."

42 args_spec = {"image": "the image to extract texts from."}
43 rets_spec = {"text": "the texts extracted from the image."}
44 examples = [{"name": "OCR", "arguments": {"image": "image-0"}}]
45

46 super().__init__(
47 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
48 )
49

50 def __call__(self, image, tool_version=LATEST_GPT_MODEL_ID):
51 if tool_version == "easyocr":
52 import easyocr
53 import io
54 reader = easyocr.Reader(["en"]) # Load the OCR model into

memory
55 image = image_processing(image)
56 if isinstance(image, str):
57 # If image is a path, use it directly
58 image_path_or_bytes = (
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59 image if os.path.exists(image) else
get_full_path_data(image)

60 )
61 else:
62 # If image is an Image object, convert it to a bytes

stream
63 buffer = io.BytesIO()
64 image.save(buffer, format="JPEG")
65 buffer.seek(0)
66 image_path_or_bytes = buffer
67

68 result = reader.readtext(image_path_or_bytes)
69 result_text = [text for _, text, _ in result]
70 result_formatted = {"text": ", ".join(result_text)}
71 else:
72 from openai import OpenAI
73 import base64
74 client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
75

76 def encode_image(image_path):
77 with open(image_path, "rb") as image_file:
78 return base64.b64encode(image_file.read()).decode(’

utf-8’)
79

80 image_path = image_processing(image, return_path=True)
81 base64_image = encode_image(image_path)
82

83 response = client.chat.completions.create(
84 model=tool_version,
85 messages=[
86 {
87 "role" : "user",
88 "content": [
89 {"type": "text", "text": f"What are the texts

in the image?"},
90 {
91 "type" : "image_url",
92 "image_url": {
93 "url": f"data:image/jpeg;base64,{

base64_image}",
94 },
95 },
96 ],
97 }
98 ],
99 max_tokens=300,

100 )
101 result_formatted = {"text": response.choices[0].message.

content}
102

103 return result_formatted
104

105

106 class GetObjects(BaseAction):
107 def __init__(self, id) -> None:
108 description = "Using this function to get objects in an image."
109 args_spec = {"image": "the image to get objects from."}
110 rets_spec = {"objects": "the objects detected in the image."}
111 examples = [{"name": "GetObjects", "arguments": {"image": "image

-0"}}]
112

113 super().__init__(
114 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
115 )
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116

117 def __call__(self, image, tool_version="https://huggingface.co/
xinyu1205/recognize-anything-plus-model/resolve/main/
ram_plus_swin_large_14m.pth?download=true"):

118 from ram.models import ram_plus
119 from ram import get_transform, inference_ram_openset as inference
120

121 model_path_or_url = tool_version
122 image_size = 384
123 transform = get_transform(image_size=image_size)
124

125 vit_size = "swin_l"
126 # load model
127 model = ram_plus(pretrained=model_path_or_url,
128 image_size=image_size,
129 vit=vit_size)
130 model.eval()
131 model = model.to(self.device)
132 image = image_processing(image)
133 image = transform(image).unsqueeze(0).to(self.device)
134 tags = inference(image, model)
135 objs = tags.split(" | ")
136 return {"objects": objs}
137

138

139 class VisualizeRegionsOnImage(BaseAction):
140 def __init__(self, id) -> None:
141 description = "Using this function to label regions on an image."
142 args_spec = {"image": "the image to label.",
143 "regions": "the regions to label on the image, where

each region is represented by a dictionary with the region’s
bounding box and label text (can be empty string).",

144 "color": "an optional argument that specifies the
color of the bounding box."

145 }
146 rets_spec = {"image": "the image with regions labeled."}
147 examples = [
148 {"name": "VisualizeRegionsOnImage", "arguments": {"image": "

image-0", "regions": [{"label": "", "bbox": [0.3, 0.2, 0.5, 0.4]}]}},
149 {"name": "VisualizeRegionsOnImage", "arguments": {"image": "

image-0", "regions": [{"label": "cat", "bbox": [0.3, 0.2, 0.5,
0.4]}], "color": "red"}}

150 ]
151

152 super().__init__(
153 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
154 )
155

156 def __call__(self, image, regions: List[Region], color=’yellow’,
width=4):

157 image = image_processing(image)
158 text_color = ’black’
159 W,H = image.size
160 img1 = image.copy()
161 draw = ImageDraw.Draw(img1)
162 font = ImageFont.truetype(’/usr/share/fonts/truetype/dejavu/

DejaVuSansMono-Bold.ttf’, 16)
163 for i, obj in enumerate(regions):
164 bbox = obj[’bbox’]
165 bbox = bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H
166 draw.rectangle(bbox, outline=color, width=width)
167 x1, y1, x2, y2 = bbox
168 label = obj[’label’] if "label" in obj else ""
169 w,h = font.getsize(label)
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170 if x1 + w > W or y2 +h > H:
171 draw.rectangle((x1, y2 - h, x1 + w, y2), fill=color)
172 draw.text((x1, y2-h),label,fill=text_color,font=font)
173 else:
174 draw.rectangle((x1, y2, x1 + w, y2 + h), fill=color)
175 draw.text((x1, y2),label,fill=text_color,font=font)
176 return {"image": img1}
177

178

179 class LocalizeObjects(BaseAction):
180 def __init__(self, id) -> None:
181 description = "Localize one or multiple objects/regions with

bounding boxes. This tool may output objects that don’t exist or miss
objects that do. You should use the output only as weak evidence for
reference. When answering questions about the image, you should

double-check the detected objects. You should be especially cautious
about the total number of regions detected, which can be more or less
than the actual number."

182 args_spec = {
183 "image": "the image to localize objects/regions in.",
184 "objects": "a list of object names to localize. e.g. [’dog’,

’cat’, ’person’]. the model might not be able to detect rare objects
or objects with complex descriptionriptions."

185 }
186 rets_spec = {"image": "the image with objects localized and

visualized on it.", "regions": "the regions of interests localized in
the image, where each region is represented by a dictionary with the
region’s label text, bounding box and confidence score. The

confidence score is between 0 and 1, where 1 means the model is very
confident. Note that both the bounding boxes and confidence scores
can be unreliable and should only be used as reference."}

187 examples = [{"name": "LocalizeObjects", "arguments": {"image": "
image-0", "objects": ["dog", "cat"]}}]

188

189 super().__init__(
190 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
191 )
192

193 def __call__(self, image, objects: List[str]):
194 from groundingdino.util.inference import load_model, load_image,

predict, annotate
195 import cv2
196 text = ". ".join(objects)
197 model = load_model("/user/mma/mma/GroundingDINO/groundingdino/

config/GroundingDINO_SwinT_OGC.py",
198 "/user/mma/mma/GroundingDINO/weights/

groundingdino_swint_ogc.pth",
199 device=self.device)
200 BOX_TRESHOLD = 0.35
201 TEXT_TRESHOLD = 0.25
202 image_path = image_processing(image, return_path=True)
203 original_image = image_processing(image)
204 image_source, image = load_image(image_path)
205

206 boxes, logits, phrases = predict(
207 model=model,
208 image=image,
209 caption=text,
210 box_threshold=BOX_TRESHOLD,
211 text_threshold=TEXT_TRESHOLD
212 )
213

214 objects = []
215 obj_cnt = {}
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216 for i in range(len(boxes)):
217 xyxy = box_convert(boxes=boxes[i], in_fmt="cxcywh", out_fmt="

xyxy").numpy()
218 bbox = [round(val, 2) for val in list(xyxy)]
219 score = round(logits[i].item(), 2)
220 phrase = phrases[i]
221 obj_cnt[phrase] = obj_cnt.get(phrase, 0) + 1
222 phrase = f"{phrase}-{obj_cnt[phrase]}" if obj_cnt[phrase] > 1

else phrase
223 objects.append({"label": phrase, "bbox": bbox, "score": score

})
224 visualize = VisualizeRegionsOnImage(0)
225 results = visualize(image=original_image, regions=objects)
226 tagged_image = results["image"]
227 results_formatted = {"regions": objects, "image": tagged_image}
228 return results_formatted
229

230

231 class Crop(BaseAction):
232 def __init__(self, id) -> None:
233 description = "Crop an image with the bounding box. It labels the

cropped region with a bounding box and crops the region with some
margins around the bounding box to help with contextual understanding
of the region."

234 args_spec = {
235 "image": "the image to crop.",
236 "bbox": "the bbox to crop. It should be a list of [left, top,

right, bottom], where each value is a float between 0 and 1 to
represent the percentage of the image width/height and how far it is
from the top left corner at [0, 0].",

237 }
238 rets_spec = {"image": "the cropped image."}
239 examples = [{"name": "Crop", "arguments": {"image": "image-0", "

bbox": [0.33, 0.21, 0.58, 0.46]}}]
240

241 super().__init__(
242 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
243 )
244

245 def __call__(self, image, bbox):
246 image = image_processing(image)
247

248 if isinstance(bbox, str):
249 try:
250 bbox = ast.literal_eval(bbox)
251 except:
252 bbox = []
253

254 use_percent = (all(x <= 1.0 for x in bbox))
255 if not use_percent:
256 raise ValueError("Bounding box coordinates must be between 0

and 1.")
257

258 visualize = VisualizeRegionsOnImage(0)
259 results = visualize(image=image, regions=[{"label": "", "bbox":

bbox}])
260 image = results["image"]
261

262 W, H = image.size
263 bbox = [bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]
264 bbox = expand_bbox(bbox, image.size)
265 out_img = image.crop(bbox)
266 return {"image": out_img}
267
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268

269 class ZoomIn(BaseAction):
270 def __init__(self, id) -> None:
271 description = "Zoom in on a region of the input image. This tool

first crops the specified region from the image with the bounding box
and then resizes the cropped region to create the zoom effect. It

also adds some margins around the cropped region to help with
contextual understanding of the region."

272 args_spec = {
273 "image": "the image to zoom in on.",
274 "bbox": "The bbox should be a list of [left, top, right,

bottom], where each value is a float between 0 and 1 to represent the
percentage of the image width/height and how far it is from the top

left corner at [0, 0].",
275 "zoom_factor": "the factor to zoom in by. It should be

greater than 1.",
276 }
277 rets_spec = {"image": "the zoomed in image."}
278 examples = [
279 {"name": "ZoomIn", "arguments": {"image": "image-0", "bbox":

[0.4, 0.3, 0.5, 0.4], "zoom_factor": 2}},
280 ]
281

282 super().__init__(
283 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
284 )
285

286 def __call__(self, image, bbox, zoom_factor):
287 if zoom_factor <= 1:
288 raise ValueError("Zoom factor must be greater than 1 to zoom

in")
289

290 image = image_processing(image)
291 use_percent = (all(x <= 1.0 for x in bbox))
292 if not use_percent:
293 raise ValueError("Bounding box coordinates must be between 0

and 1.")
294

295 crop = Crop(0)
296 cropped_image = crop(image, bbox)["image"]
297

298 W, H = cropped_image.size
299

300 # Calculate the size of the zoomed image
301 new_width = int(W * zoom_factor)
302 new_height = int(H * zoom_factor)
303

304 # Resize the cropped image to create the zoom effect
305 zoomed_image = cropped_image.resize((new_width, new_height),

Image.LANCZOS)
306 return {’image’: zoomed_image}
307

308

309 class GetImageToImagesSimilarity(BaseAction):
310 def __init__(self, id) -> None:
311 description = "Get the similarity between one image and a list of

other images. Note that this similarity score may not be accurate
and should be used as a reference only."

312 args_spec = {
313 "image": "the reference image.",
314 "other_images": "the other images to compare to the reference

image.",
315 }
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316 rets_spec = {"similarity": "the CLIP similarity scores between
the reference image and the other images.", "best_image_index": "the
index of the most similar image."}

317 examples = [
318 {"name": "GetImageToImagesSimilarity", "arguments": {"image":

"image-0", "other_images": ["image-1", "image-2"]}}
319 ]
320

321 super().__init__(
322 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
323 )
324

325 def __call__(self, image, other_images, tool_version=’ViT-H-14-378-
quickgelu’, other_images_raw=None):

326 import torch
327 import open_clip
328 original_images = other_images_raw
329 model, _, preprocess = open_clip.create_model_and_transforms(

tool_version, pretrained=’dfn5b’)
330 model.eval()
331 image = image_processing(image)
332 images = [image_processing(image) for image in other_images]
333

334 image = preprocess(image).unsqueeze(0)
335 images = torch.stack([preprocess(image) for image in images])
336

337 with torch.no_grad(), torch.cuda.amp.autocast():
338 image1_features = model.encode_image(image)
339 image2_features = model.encode_image(images)
340

341 image1_features /= image1_features.norm(dim=-1, keepdim=True)
342 image2_features /= image2_features.norm(dim=-1, keepdim=True)
343

344 probs = image1_features @ image2_features.T
345 sim_scores = [round(sim_score, 2) for sim_score in probs[0].

tolist()]
346 best_image_match = torch.argmax(probs).item()
347 return {’similarity’: sim_scores, "best_image_index":

best_image_match, "best_image": original_images[best_image_match]}
348

349

350 class GetImageToTextsSimilarity(BaseAction):
351 def __init__(self, id) -> None:
352 description = "Get the similarity between one image and a list of

texts. Note that this similarity score may not be accurate and
should be used as a reference only."

353 args_spec = {
354 "image": "the reference image.",
355 "texts": "a list of texts to compare to the reference image."

,
356 }
357 rets_spec = {"similarity": "the CLIP similarity between the image

and the texts.", "best_text_index": "the index of the most similar
text.", "best_text": "the most similar text."}

358 examples = [
359 {"name": "GetImageToTextsSimilarity", "arguments": {"image":

"image-0", "texts": ["a cat", "a dog"]}}
360 ]
361

362 super().__init__(
363 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
364 )
365
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366 def __call__(self, image, texts, tool_version=’ViT-H-14-378-quickgelu
’):

367 import torch
368 import open_clip
369

370 model, _, preprocess = open_clip.create_model_and_transforms(
tool_version, pretrained=’dfn5b’)

371 model.eval() # model in train mode by default, impacts some
models with BatchNorm or stochastic depth active

372 tokenizer = open_clip.get_tokenizer(tool_version)
373

374 image = preprocess(image_processing(image)).unsqueeze(0)
375 text = tokenizer(texts)
376

377 with torch.no_grad(), torch.cuda.amp.autocast():
378 image_features = model.encode_image(image)
379 text_features = model.encode_text(text)
380 image_features /= image_features.norm(dim=-1, keepdim=True)
381 text_features /= text_features.norm(dim=-1, keepdim=True)
382

383 probs = image_features @ text_features.T
384 sim_scores = [round(sim_score, 2) for sim_score in probs[0].

tolist()]
385 best_text_match = torch.argmax(probs).item()
386 return {’similarity’: sim_scores, "best_text_index":

best_text_match, "best_text": texts[best_text_match]}
387

388

389 class GetTextToImagesSimilarity(BaseAction):
390 def __init__(self, id) -> None:
391 description = "Get the similarity between one text and a list of

images. Note that this similarity score may not be accurate and
should be used as a reference only."

392 args_spec = {
393 "text": "the reference text.",
394 "images": "a list of images to compare to the reference text.

",
395 }
396 rets_spec = {"similarity": "the CLIP similarity between the image

and the texts.", "best_image_index": "the index of the most similar
image."}

397 examples = [
398 {"name": "GetTextToImagesSimilarity", "arguments": {"text": "

a black and white cat", "images": ["image-0", "image-1"]}}
399 ]
400

401 super().__init__(
402 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
403 )
404

405 def __call__(self, text, images, tool_version=’ViT-H-14-378-quickgelu
’):

406 import torch
407 import open_clip
408 original_images = images
409 model, _, preprocess = open_clip.create_model_and_transforms(

tool_version, pretrained=’dfn5b’)
410 model.eval() # model in train mode by default, impacts some

models with BatchNorm or stochastic depth active
411 tokenizer = open_clip.get_tokenizer(tool_version)
412

413 text = tokenizer([text])
414 images = [image_processing(image) for image in images]
415 images = torch.stack([preprocess(image) for image in images])
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416

417 with torch.no_grad(), torch.cuda.amp.autocast():
418 image_features = model.encode_image(images)
419 text_features = model.encode_text(text)
420 image_features /= image_features.norm(dim=-1, keepdim=True)
421 text_features /= text_features.norm(dim=-1, keepdim=True)
422

423 probs = text_features @ image_features.T
424 sim_scores = [round(sim_score, 2) for sim_score in probs[0].

tolist()]
425 best_image_match = torch.argmax(probs).item()
426 return {’similarity’: sim_scores, "best_image_index":

best_image_match, "best_image": original_images[best_image_match]}
427

428

429 class EstimateObjectDepth(BaseAction):
430 def __init__(self, id) -> None:
431 description = "Estimate the depth of an object in an image using

DepthAnything model. It returns an estimated depth value of the
object specified by the a brief text description. The smaller the
value is, the closer the object is to the camera, and the larger the
farther. This tool may help you to better reason about the spatial
relationship, like which object is closer to the camera."

432 args_spec = {
433 "image": "the image to get the depth from.",
434 "object": "a short description of the object to get the depth

from.",
435 }
436 rets_spec = {"depth": "the estimated depth of the object."}
437 examples = [
438 {"name": "EstimateObjectDepth", "arguments": {"image": "image

-0", "object": "a black cat"}},
439 ]
440

441 super().__init__(
442 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
443 )
444

445 def __call__(self, image, object, mode="mean"):
446 action = LocalizeObjects(0)
447 results = action(image=image, objects=[object])
448 if len(results["regions"]) == 0:
449 return {"depth": "Object not found."}
450 else:
451 # use the best match object’s bbox
452 best_match = np.argmax([region["score"] for region in results

["regions"]])
453 bbox = results["regions"][best_match]["bbox"]
454 depth_estimator = EstimateRegionDepth(0)
455 return depth_estimator(image=image, bbox=bbox, mode=mode)
456

457

458 class EstimateRegionDepth(BaseAction):
459 def __init__(self, id) -> None:
460 description = "Estimate the depth of a region in an image using

DepthAnything model. It returns an estimated depth value of the
region specified by the input bounding box. The smaller the value is,
the closer the region is to the camera, and the larger the farther.

This tool may help you to better reason about the spatial
relationship, like which object is closer to the camera. "

461 args_spec = {
462 "image": "the image to get the depth from.",
463 "bbox": "the bbox of the region to get the depth from. It

should be a list of [left, top, right, bottom], where each value is a
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float between 0 and 1 to represent the percentage of the image width
/height and how far it is from the top left corner at [0, 0].",

464 # "mode": "the mode to get the depth. It should be one of ’
center’ or ’average’. ’center’ returns the depth of the center of the
region. ’average’ returns the average depth of the region.",

465 }
466 rets_spec = {"depth": "the estimated depth of the region."}
467 examples = [
468 {"name": "EstimateRegionDepth", "arguments": {"image": "image

-0", "bbox": [0.3, 0.2, 0.5, 0.4]}},
469 ]
470 super().__init__(
471 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
472 )
473

474 def __call__(self, image, bbox: List[str], mode="mean"):
475 import numpy as np
476 from scipy import stats
477 image = image_processing(image)
478 depth_model = pipeline(task="depth-estimation", model="depth-

anything/Depth-Anything-V2-Small-hf", device=self.device)
479 result = depth_model(image)
480 depth = result["predicted_depth"][0].numpy()
481 depth = depth.max() - depth # smaller values in depth map are

farther from the camera so reversing the values
482 H, W = depth.shape
483

484 use_percent = all(x <= 1.0 for x in bbox)
485 if not use_percent:
486 raise ValueError("Bounding box coordinates must be between 0

and 1.")
487 bbox = [bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]
488 if mode == "center":
489 x, y = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
490 x, y = int(x), int(y)
491 depth_value = depth[y, x]
492 elif mode == "mean":
493 x1, y1, x2, y2 = bbox
494 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
495 depth_value = np.mean(depth[y1:y2, x1:x2])
496 elif mode == "mode":
497 x1, y1, x2, y2 = bbox
498 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
499 mode_result = stats.mode(depth[y1:y2, x1:x2])
500 depth_value = mode_result.mode[0]
501 else:
502 raise NotImplementedError(f"Depth mode {mode} is not

supported.")
503 return {"depth": round(depth_value, 2)}
504

505

506 class Calculate(BaseAction):
507 def __init__(self, id) -> None:
508 description = "Calculate a math expression."
509 args_spec = {"expression": "the math expression to calculate."}
510 rets_spec = {"result": "the result of the math expression."}
511 examples = [
512 {"name": "Calculate", "arguments": {"expression": "2 + 2"}},
513 {"name": "Calculate", "arguments": {"expression": "4*9*84"}},
514 {"name": "Calculate", "arguments": {"expression": "5-4/2"}},
515 ]
516

517 super().__init__(
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518 id=id, description=description, args_spec=args_spec,
rets_spec=rets_spec, examples=examples

519 )
520

521 def __call__(self, expression):
522 result = eval(expression)
523 return {"result": result}
524

525

526 class SolveMathEquation(BaseAction):
527 def __init__(self, id) -> None:
528 description = "Using this action to solve a math problem with

WolframAlpha."
529 args_spec = {"query": "a question that involves a math equation

to be solved."}
530 rets_spec = {"result": "the result of the query."}
531 examples = [
532 {"name": "SolveMathEquation", "arguments": {"query": "2 + 2=?

"}},
533 {"name": "SolveMathEquation", "arguments": {"query": "xˆ2 + 2

x + 1 = 0, what is x?"}},
534 ]
535

536 self.client = wolframalpha.Client(os.getenv("
WOLFRAM_ALPHA_API_KEY"))

537 super().__init__(
538 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
539 )
540

541 def __call__(self, query):
542 from urllib.error import HTTPError
543

544 is_success = False
545

546 res = self.client.query(query)
547

548 if not res["@success"]:
549 return (
550 "Your Wolfram query is invalid. Please try a new query

for wolfram.",
551 is_success,
552 )
553 assumption = next(res.pods).text
554 answer = ""
555 for result in res["pod"]:
556 if result["@title"] == "Solution":
557 answer = result["subpod"]["plaintext"]
558 if result["@title"] == "Results" or result["@title"] == "

Solutions":
559 for i, sub in enumerate(result["subpod"]):
560 answer += f"ans {i}: " + sub["plaintext"] + "\n"
561 break
562 if answer == "":
563 answer = next(res.results).text
564

565 if answer is None or answer == "":
566 return {"result": "No good Wolfram Alpha Result was found"}
567 else:
568 return {"result": answer}
569

570

571 class DetectFaces(BaseAction):
572 def __init__(self, id) -> None:
573 description = "Using this function to detect faces in an image."
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574 args_spec = {"image": "the image to detect faces from."}
575 rets_spec = {"image": "the image with objects localized and

visualized on it.", "regions": "the regions of the faces detected,
where each regin is represented by a dictionary with the region’s
label text and bounding box."}

576 examples = [
577 {"name": "DetectFaces", "arguments": {"image": "image-0"}}
578 ]
579 import face_detection
580 ckpt_path = f"/root/.cache/torch/hub/checkpoints/

WIDERFace_DSFD_RES152.pth"
581 if not os.path.exists(ckpt_path):
582 from huggingface_hub import hf_hub_download
583 hf_hub_download(repo_id="user/mma", filename="

WIDERFace_DSFD_RES152.pth", local_dir="/root/.cache/torch/hub/
checkpoints/")

584

585 self.model = face_detection.build_detector(
586 "DSFDDetector", confidence_threshold=.5, nms_iou_threshold

=.3)
587 super().__init__(
588 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
589 )
590

591 def enlarge_face(self,box,W,H,f=1.5):
592 x1,y1,x2,y2 = box
593 w = int((f-1)*(x2-x1)/2)
594 h = int((f-1)*(y2-y1)/2)
595 x1 = max(0,x1-w)
596 y1 = max(0,y1-h)
597 x2 = min(W,x2+w)
598 y2 = min(H,y2+h)
599 return [x1,y1,x2,y2]
600

601 def __call__(self, image):
602 import numpy as np
603 image = image_processing(image)
604

605 with torch.no_grad():
606 faces = self.model.detect(np.array(image))
607

608 W,H = image.size
609 objs = []
610 for i,box in enumerate(faces):
611 x1,y1,x2,y2,c = [int(v) for v in box.tolist()]
612 normalized_bbox = [x1/W, y1/H, x2/W, y2/H]
613 objs.append(dict(
614 bbox=[round(num, 2) for num in normalized_bbox],
615 label=f’face {i+1}’ if i > 0 else ’face’,
616 ))
617 visualize = VisualizeRegionsOnImage(0)
618 results = visualize(image=image, regions=objs)
619 tagged_image = results["image"]
620 results_formatted = {"regions": objs, "image": tagged_image}
621 return results_formatted
622

623

624 class QueryLanguageModel(BaseAction):
625 def __init__(self, id) -> None:
626 description = "Using this function to ask a language model a

question."
627 args_spec = {"query": "the question to ask the language model."}
628 rets_spec = {"result": "the response from the language model."}
629 examples = [
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630 {"name": "QueryLanguageModel", "arguments": {"query": "What
is the capital of France?"}},

631 ]
632 super().__init__(
633 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
634 )
635

636 def __call__(self, query):
637 from openai import OpenAI
638 client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
639

640 response = client.chat.completions.create(
641 model=LATEST_GPT_MODEL_ID,
642 messages=[
643 {
644 "role" : "user",
645 "content": [
646 {"type": "text", "text": f"{query}"},
647 ],
648 }
649 ],
650 max_tokens=300,
651 )
652

653 return {’result’: response.choices[0].message.content}
654

655

656 class QueryKnowledgeBase(BaseAction):
657 def __init__(self, id) -> None:
658 description = "Using this function to query a knowledge base."
659 args_spec = {"query": "the query to search in a knowledge base

such as wikipedia."}
660 rets_spec = {"result": "the answer from the knowledge base."}
661 examples = [
662 {"name": "QueryKnowledgeBase", "arguments": {"query": "Paris"

}},
663 ]
664

665 super().__init__(
666 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
667 )
668

669 def __call__(self, query, lang="en", sentences=2, knowledge_base="
wikipedia"):

670 if knowledge_base == "wikipedia":
671 # Set the language for Wikipedia (default is ’en’ for English

)
672 wikipedia.set_lang(lang)
673

674 # Search Wikipedia for pages related to the query
675 search_results = wikipedia.search(query)
676 if not search_results:
677 return {"No results found."}
678

679 # Get the summary of the first search result
680 page = wikipedia.page(search_results[0])
681 summary = wikipedia.summary(page.title, sentences=sentences)
682 result = {
683 "title": page.title,
684 "url": page.url,
685 "summary": summary
686 }
687 return result
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688 else:
689 raise NotImplementedError(f"Knowledge base {knowledge_base}

is not supported.")
690

691

692 class Terminate(BaseAction):
693 def __init__(self, id) -> None:
694 description = "Using this function to finish the task."
695 args_spec = {"answer": "the final answer."}
696 rets_spec = {"answer": "the final answer."}
697 examples = [{"name": "Terminate", "arguments": {"answer": "yes"

}}]
698

699 super().__init__(
700 id=id, description=description, args_spec=args_spec,

rets_spec=rets_spec, examples=examples
701 )
702

703 def __call__(self, answer):
704 return {"answer": answer}

Listing 1: Python implementation of all actions
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1 [BEGIN OF GOAL]
2 You are a helpful assistant, and your goal is to solve the # USER REQUEST

#. You can either rely on your own capabilities or perform actions
with external tools to help you. A list of all available actions are
provided to you in the below.

3 [END OF GOAL]
4

5 [BEGIN OF ACTIONS]
6 Name: OCR
7 Description: Extract texts from an image or return an empty string if no

text is in the image. Note that the texts extracted may be incorrect
or in the wrong order. It should be used as a reference only.

8 Arguments: {’image’: ’the image to extract texts from.’}
9 Returns: {’text’: ’the texts extracted from the image.’}

10 Examples:
11 {"name": "OCR", "arguments": {"image": "image-0"}}
12

13 Name: LocalizeObjects
14 Description: Localize one or multiple objects/regions with bounding boxes

. This tool may output objects that don’t exist or miss objects that
do. You should use the output only as weak evidence for reference.
When answering questions about the image, you should double-check the
detected objects. You should be especially cautious about the total

number of regions detected, which can be more or less than the actual
number.

15 Arguments: {’image’: ’the image to localize objects/regions in.’, ’
objects’: "a list of object names to localize. e.g. [’dog’, ’cat’, ’
person’]. the model might not be able to detect rare objects or
objects with complex descriptionriptions."}

16 Returns: {’image’: ’the image with objects localized and visualized on it
.’, ’regions’: "the regions of interests localized in the image,
where each region is represented by a dictionary with the region’s
label text, bounding box and confidence score. The confidence score
is between 0 and 1, where 1 means the model is very confident. Note
that both the bounding boxes and confidence scores can be unreliable
and should only be used as reference."}

17 Examples:
18 {"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects":

["dog", "cat"]}}
19

20 Name: GetObjects
21 Description: Using this function to get objects in an image.
22 Arguments: {’image’: ’the image to get objects from.’}
23 Returns: {’objects’: ’the objects detected in the image.’}
24 Examples:
25 {"name": "GetObjects", "arguments": {"image": "image-0"}}
26

27 Name: EstimateRegionDepth
28 Description: Estimate the depth of a region in an image using

DepthAnything model. It returns an estimated depth value of the
region specified by the input bounding box. The smaller the value is,
the closer the region is to the camera, and the larger the farther.

This tool may help you to better reason about the spatial
relationship, like which object is closer to the camera.

29 Arguments: {’image’: ’the image to get the depth from.’, ’bbox’: ’the
bbox of the region to get the depth from. It should be a list of [
left, top, right, bottom], where each value is a float between 0 and
1 to represent the percentage of the image width/height and how far
it is from the top left corner at [0, 0].’}

30 Returns: {’depth’: ’the estimated depth of the region.’}
31 Examples:
32 {"name": "EstimateRegionDepth", "arguments": {"image": "image-0", "bbox":

[0.3, 0.2, 0.5, 0.4]}}
33

34 Name: EstimateObjectDepth
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35 Description: Estimate the depth of an object in an image using
DepthAnything model. It returns an estimated depth value of the
object specified by the a brief text description. The smaller the
value is, the closer the object is to the camera, and the larger the
farther. This tool may help you to better reason about the spatial
relationship, like which object is closer to the camera.

36 Arguments: {’image’: ’the image to get the depth from.’, ’object’: ’a
short description of the object to get the depth from.’}

37 Returns: {’depth’: ’the estimated depth of the object.’}
38 Examples:
39 {"name": "EstimateObjectDepth", "arguments": {"image": "image-0", "object

": "a black cat"}}
40

41 Name: Crop
42 Description: Crop an image with the bounding box. It labels the cropped

region with a bounding box and crops the region with some margins
around the bounding box to help with contextual understanding of the
region.

43 Arguments: {’image’: ’the image to crop.’, ’bbox’: ’the bbox to crop. It
should be a list of [left, top, right, bottom], where each value is a
float between 0 and 1 to represent the percentage of the image width

/height and how far it is from the top left corner at [0, 0].’}
44 Returns: {’image’: ’the cropped image.’}
45 Examples:
46 {"name": "Crop", "arguments": {"image": "image-0", "bbox": [0.33, 0.21,

0.58, 0.46]}}
47

48 Name: ZoomIn
49 Description: Zoom in on a region of the input image. This tool first

crops the specified region from the image with the bounding box and
then resizes the cropped region to create the zoom effect. It also
adds some margins around the cropped region to help with contextual
understanding of the region.

50 Arguments: {’image’: ’the image to zoom in on.’, ’bbox’: ’The bbox should
be a list of [left, top, right, bottom], where each value is a float
between 0 and 1 to represent the percentage of the image width/

height and how far it is from the top left corner at [0, 0].’, ’
zoom_factor’: ’the factor to zoom in by. It should be greater than
1.’}

51 Returns: {’image’: ’the zoomed in image.’}
52 Examples:
53 {"name": "ZoomIn", "arguments": {"image": "image-0", "bbox": [0.4, 0.3,

0.5, 0.4], "zoom_factor": 2}}
54

55 Name: QueryLanguageModel
56 Description: Using this function to ask a language model a question.
57 Arguments: {’query’: ’the question to ask the language model.’}
58 Returns: {’result’: ’the response from the language model.’}
59 Examples:
60 {"name": "QueryLanguageModel", "arguments": {"query": "What is the

capital of France?"}}
61

62 Name: GetImageToImagesSimilarity
63 Description: Get the similarity between one image and a list of other

images. Note that this similarity score may not be accurate and
should be used as a reference only.

64 Arguments: {’image’: ’the reference image.’, ’other_images’: ’the other
images to compare to the reference image.’}

65 Returns: {’similarity’: ’the CLIP similarity scores between the reference
image and the other images.’, ’best_image_index’: ’the index of the

most similar image.’}
66 Examples:
67 {"name": "GetImageToImagesSimilarity", "arguments": {"image": "image-0",

"other_images": ["image-1", "image-2"]}}
68
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69 Name: GetImageToTextsSimilarity
70 Description: Get the similarity between one image and a list of texts.

Note that this similarity score may not be accurate and should be
used as a reference only.

71 Arguments: {’image’: ’the reference image.’, ’texts’: ’a list of texts to
compare to the reference image.’}

72 Returns: {’similarity’: ’the CLIP similarity between the image and the
texts.’, ’best_text_index’: ’the index of the most similar text.’, ’
best_text’: ’the most similar text.’}

73 Examples:
74 {"name": "GetImageToTextsSimilarity", "arguments": {"image": "image-0", "

texts": ["a cat", "a dog"]}}
75

76 Name: GetTextToImagesSimilarity
77 Description: Get the similarity between one text and a list of images.

Note that this similarity score may not be accurate and should be
used as a reference only.

78 Arguments: {’text’: ’the reference text.’, ’images’: ’a list of images to
compare to the reference text.’}

79 Returns: {’similarity’: ’the CLIP similarity between the image and the
texts.’, ’best_image_index’: ’the index of the most similar image.’}

80 Examples:
81 {"name": "GetTextToImagesSimilarity", "arguments": {"text": "a black and

white cat", "images": ["image-0", "image-1"]}}
82

83 Name: DetectFaces
84 Description: Using this function to detect faces in an image.
85 Arguments: {’image’: ’the image to detect faces from.’}
86 Returns: {’image’: ’the image with objects localized and visualized on it

.’, ’regions’: "the regions of the faces detected, where each regin
is represented by a dictionary with the region’s label text and
bounding box."}

87 Examples:
88 {"name": "DetectFaces", "arguments": {"image": "image-0"}}
89

90 Name: QueryKnowledgeBase
91 Description: Using this function to query a knowledge base.
92 Arguments: {’query’: ’the query to search in a knowledge base such as

wikipedia.’}
93 Returns: {’result’: ’the answer from the knowledge base.’}
94 Examples:
95 {"name": "QueryKnowledgeBase", "arguments": {"query": "Paris"}}
96

97 Name: Calculate
98 Description: Calculate a math expression.
99 Arguments: {’expression’: ’the math expression to calculate.’}

100 Returns: {’result’: ’the result of the math expression.’}
101 Examples:
102 {"name": "Calculate", "arguments": {"expression": "2 + 2"}}
103 {"name": "Calculate", "arguments": {"expression": "4*9*84"}}
104 {"name": "Calculate", "arguments": {"expression": "5-4/2"}}
105

106 Name: SolveMathEquation
107 Description: Using this action to solve a math problem with WolframAlpha.
108 Arguments: {’query’: ’a question that involves a math equation to be

solved.’}
109 Returns: {’result’: ’the result of the query.’}
110 Examples:
111 {"name": "SolveMathEquation", "arguments": {"query": "2 + 2=?"}}
112 {"name": "SolveMathEquation", "arguments": {"query": "xˆ2 + 2x + 1 = 0,

what is x?"}}
113

114 Name: Terminate
115 Description: Using this function to finish the task.
116 Arguments: {’answer’: ’the final answer.’}
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117 Returns: {’answer’: ’the final answer.’}
118 Examples:
119 {"name": "Terminate", "arguments": {"answer": "yes"}}
120

121 [END OF ACTIONS]
122

123 [BEGIN OF TASK INSTRUCTIONS]
124 1. You must only select actions from # ACTIONS #.
125 2. You can only call one action at a time.
126 3. If no action is needed, please make actions an empty list (i.e. ’’

actions’’: []).
127 4. You must always call Terminate with your final answer at the end.
128 [END OF TASK INSTRUCTIONS]
129

130 [BEGIN OF FORMAT INSTRUCTIONS]
131 Your output should be in a strict JSON format as follows:
132 {"thought": "the thought process, or an empty string", "actions": [{"name

": "action1", "arguments": {"argument1": "value1", "argument2": "
value2"}}]}

133 [END OF FORMAT INSTRUCTIONS]
134

135 [BEGIN OF EXAMPLES]:
136 # USER REQUEST #:
137 In image-0, Which of the two objects on the plate is the biggest?
138 A. The pile of scrambled eggs is the biggest.
139 B. The strawberries are the biggest object.
140 Please answer directly with only the letter of the correct option and

nothing else.
141 # RESPONSE #:
142 {"thought": "To determine which of the two objects on the plate is larger

, I need to analyze the size of the scrambled eggs, and the
strawberries", "actions": [{"name": "LocalizeObjects", "arguments":
{"image": "image-0", "objects": ["scrambled eggs", "strawberries
"]}}]}

143 OBSERVATION:
144 {"image": "image-1", "regions": [{"label": "eggs", "bbox": [0.5, 0.6,

0.6, 0.8], "score": 0.85}, {"label": "strawberries", "bbox": [0.4,
0.5, 0.45, 0.7], "score": 0.54}]}

145 {"thought": "To calculate the area of a bounding box, we can use the
formula: area = (x_max - x_min) * (y_max - y_min). We first get the
area of the scrambled eggs.", "actions": [{"name": "Calculate", "
arguments": {"expression": "(0.6-0.5) * (0.8-0.6)"}}]}

146 OBSERVATION:
147 {"result": "0.02"}
148 {"thought": "Then, we also calculate the area of the strawberries.", "

actions": [{"name": "Calculate", "arguments": {"expression":
"(0.45-0.4) * (0.7-0.5)"}}]}

149 OBSERVATION:
150 {"result": "0.01"}
151 {"thought": "Since 0.02 > 0.01, it is apparent that the eggs cover a

larger area within their bounding box.", "actions": [{"name": "
Terminate", "arguments": {"answer": "A"}}]}

152

153 # USER REQUEST #:
154 Given the input image image-0, How many pedestrians are there in the

image? Please answer directly with a single word or number.
155 # RESPONSE #:
156 {"thought": "To determine the number of pedestrians, I need to first

localize them on the image.", "actions": [{"name": "LocalizeObjects",
"arguments": {"image": "image-0", "objects": ["person"]}}]}

157 OBSERVATION:
158 {"image": "image-1", "regions": [{"label": "person", "bbox": [0.77, 0.47,

0.79, 0.54], "score": 0.83}, {"label": "person-2", "bbox": [0.69,
0.49, 0.7, 0.52], "score": 0.43}]}
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159 {"thought": "The LocalizeObjects action returns two regions for \"person
\", but one of the regions has a lower confidence score. Upon a
closer look at the output image image-1, we can see that there is
actually only one pedestrian in the image.", "actions": [{"name": "
Terminate", "arguments": {"answer": "1"}}]}

160

161 # USER REQUEST #:
162 Based on image-0, is the object on top bigger than the object below?
163 A. The object on the bottom is bigger.
164 B. The object on top is bigger.
165 C. Both objects are the same size.
166 Please answer directly with only the letter of the correct option and

nothing else.
167 # RESPONSE #:
168 {"thought": "By looking at the image, we can see that both objects are

game consoles of the same brand and size.", "actions": [{"name": "
Terminate", "arguments": {"answer": "C"}}]}

169

170 # USER REQUEST #:
171 What is x in the image?
172 # RESPONSE #:
173 {"thought": "To get the result of the equation, I need to first extract

the equation from the image.", "actions": [{"name": "OCR", "arguments
": {"image": "image-0"}}]}

174 OBSERVATION:
175 {"text": "x-2ˆ3=0"}
176 {"thought": "The math equation is ’x-2ˆ3=0’, and I need to find x. I can

solve it with a math-related tool.", "actions": [{"name": "
SolveMathEquation", "arguments": {"query": "x-2ˆ3=0, what is x?"}}]}

177 OBSERVATION:
178 {"result": "x = 8"}
179 {"thought": "As suggested in the last observation, the answer is 8.", "

actions": [{"name": "Terminate", "arguments": {"answer": "8"}}]}
180

181 [END OF EXAMPLES]

Listing 2: Model-based data generation system prompt
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1 def GetObjects_template():
2 thought_templates = ["I need to check what objects are present in the

{image_kw}.",
3 "I need to analyze the {image_kw} for context."
4 "I need to identify the objects in the {image_kw

}.",
5 "To answer the question, let’s first analyze the

{image_kw}.",
6 "To answer the question, analyzing the objects in

the {image_kw} is necessary."]
7 return thought_templates
8

9 def LocalizeObjects_template():
10 thought_templates = ["I need to analyze the positions of {objects} in

the {image_kw}.",
11 "I need to analyze the locations of {objects} in

the {image_kw}.",
12 "I need to localize the {objects} based on the {

image_kw}.",
13 "I’ll identify the positions of {objects} in the

{image_kw}.",
14 "I need to determine the positions of {objects}

by analyzing the {image_kw}."]
15 return thought_templates
16

17 def EstimateObjectDepth_template():
18 thought_templates = ["I should estimate the depth of {object} to

determine whether it is closer or farther.",
19 "I will estimate the depth of {object}.",
20 "I need to estimate the depth for {object} to

make a comparison.",
21 "To determine how far {object} is, I need to

evaluate the distance to it.",
22 "I now need to estimate the depth for {object}."

]
23 return thought_templates
24

25

26 def EstimateRegionDepth_template():
27 thought_templates = ["I should estimate the objects’ depths to

determine which one is closer.",
28 "I need to estimate the region’s depth in the

image.",
29 "I need to determine the depths of the detected

objects based on their positions.",
30 "I need to estimate the depth of the objects to

make a comparison.",
31 "To determine the relative proximity of the

objects in the image, I need to estimate the depth of each object."]
32 return thought_templates
33

34 def Terminate_template():
35 thought_templates = ["Based on the information above, I can conclude

that the answer is {answer}",
36 "Based on a close analysis of the {image_kw} and

additional information above, I believe the answer is {answer}.",
37 "I have analyzed the {image_kw} and the

information above, and I believe the answer is {answer}.",
38 "The {image_kw} and the information above

suggest that the answer is {answer}.",
39 "According to the content of the {image_kw} and

the observations, I can conclude that the answer is {answer}."]
40 return thought_templates

Listing 3: Thought templates for each action
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1 Compare the ground truth and prediction from AI models, to give a
correctness score for the prediction. <AND> in the ground truth means
it is totally right only when all elements in the ground truth are

present in the prediction, and <OR> means it is totally right when
any one element in the ground truth is present in the prediction. The
correctness score is 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Just complete the last
space of the correctness score.

2 Question | Ground truth | Prediction | Correctness
3 --- | --- | --- | ---
4 What is x in the equation? | -1 <AND> -5 | x = 3 | 0.0
5 What is x in the equation? | -1 <AND> -5 | x = -1 | 0.5
6 What is x in the equation? | -1 <AND> -5 | x = -5 | 0.5
7 What is x in the equation? | -1 <AND> -5 | x = -5 or 5 | 0.5
8 What is x in the equation? | -1 <AND> -5 | x = -1 or x = -5 | 1.0
9 Can you explain this meme? | This meme is poking fun at the fact that the

names of the countries Iceland and Greenland are misleading. Despite
its name, Iceland is known for its beautiful green landscapes, while
Greenland is mostly covered in ice and snow. The meme is saying that
the person has trust issues because the names of these countries do

not accurately represent their landscapes. | The meme talks about
Iceland and Greenland. It’s pointing out that despite their names,
Iceland is not very icy and Greenland isn’t very green. | 0.4

10 Can you explain this meme? | This meme is poking fun at the fact that the
names of the countries Iceland and Greenland are misleading. Despite
its name, Iceland is known for its beautiful green landscapes, while
Greenland is mostly covered in ice and snow. The meme is saying that
the person has trust issues because the names of these countries do

not accurately represent their landscapes. | The meme is using humor
to point out the misleading nature of Iceland’s and Greenland’s names
.

11 Iceland, despite its name, has lush green landscapes while Greenland is
mostly covered in ice and snow. The text ’This is why I have trust
issues’ is a playful way to suggest that these contradictions can
lead to distrust or confusion. The humor in this meme is derived from
the unexpected contrast between the names of the countries and their
actual physical characteristics. | 1.0

Listing 4: LLM judge prompt for MMVet

1 Please read the following example. Then extract the answer from the model
response and type it at the end of the prompt.

2

3 Hint: Please answer the question requiring an integer answer and provide
the final value, e.g., 1, 2, 3, at the end.

4 Question: Which number is missing?
5 Model response: The number missing in the sequence is 14.
6 Extracted answer: 14
7

8 Hint: Please answer the question requiring a floating-point number with
one decimal place and provide the final value, e.g., 1.2, 1.3, 1.4,
at the end.

9 Question: What is the fraction of females facing the camera?
10 Model response: The fraction of females facing the camera is 0.6,
11 which means that six out of ten females in the group are facing the

camera.
12 Extracted answer: 0.6
13

14 Hint: Please answer the question requiring a floating-point number with
two decimal places and provide the final value, e.g., 1.23, 1.34,
1.45, at the end.

15 Question: How much money does Luca need to buy a sour apple candy and a
butter-scotch candy? (Unit: $)

16 Model response: Luca needs $1.45 to buy a sour apple candy and a
butterscotch candy.
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17 Extracted answer: 1.45
18

19 Hint: Please answer the question requiring a Python list as an answer and
provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end

.
20 Question: Between which two years does the line graph saw its maximum

peak?
21 Model response: The line graph saw its maximum peak between 2007 and

2008.
22 Extracted answer: [2007, 2008]
23

24 Hint: Please answer the question and provide the correct option letter, e
.g., A, B, C, D, at the end.

25 Question: What fraction of the shape is blue?
26 Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5
27 Model response: The correct answer is (B) 8/11.
28 Extracted answer: B

Listing 5: LLM judge prompt for MathVista
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