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Hierarchical Position Embedding of Graphs with Landmarks and
Clustering for Link Prediction

Anonymous Author(s)

ABSTRACT
Learning positional information of nodes in a graph is important

for link prediction tasks. We propose a representation of positional

information using representative nodes called landmarks. A small

number of nodes with high degree centrality are selected as land-

marks, which serve as reference points for the nodes’ positions.

We justify this selection strategy for well-known random graph

models, and derive closed-form bounds on the average path lengths

involving landmarks. In a model for scale-free networks, we prove

that landmarks provide asymptotically exact information on inter-

node distances. We apply theoretical insights to practical networks,

and propose Hierarchical Position embedding with Landmarks and

Clustering (HPLC). HPLC combines landmark selection and graph

clustering, where the graph is partitioned into densely connected

clusters in which nodes with the highest degree are selected as

landmarks. HPLC leverages the positional information of nodes

based on landmarks at various levels of hierarchy such as nodes’

distances to landmarks, inter-landmark distances and hierarchical

grouping of clusters. Experiments show that HPLC achieves state-

of-the-art performances of link prediction on various datasets in

terms of HIT@K, MRR, and AUC.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions.
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1 INTRODUCTION
GraphNeural Networks are foundational methods for various graph

related tasks such as node classification [18, 23, 27, 44], link predic-

tion [2, 26, 50], graph classification [47], and graph clustering [35].

In this paper, we focus on the task of link prediction using GNNs.
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Message passing GNNs (MPGNNs) [18, 23, 27, 44] have been suc-

cessful in learning structural node representations through neigh-

borhood aggregation. However, MPGNNs achieved subpar perfor-

mances on link prediction tasks due to their inability to distinguish

isomorphic nodes. Subgraph-based methods [34, 50] were proposed

for link prediction based on dynamic node embeddings from enclos-

ing subgraphs to tackle isomorphism. Labeling methods [31, 51]

assigns node labels to identify each node via hashing or aggrega-

tion functions. Meanwhile, position-based methods [15, 30, 45, 49]

have been proposed to represent the positions of nodes in a graph,

which enables differentiating isomorphic nodes according to their

positions and enhances the expressive power of GNNs [41, 49].

The position of a node can be defined using its distances to other

nodes. Position-based methods are beneficial to link prediction

tasks thanks to several properties e.g., the connectivity of a node

pair may be closely related to their relative distances, and isomor-

phic nodes can be differentiated by their positions. Bourgain [9]

showed that inter-node distance information can be encoded into

low-dimensional embeddings. Linial [32] constructed Bourgain’s

embeddings based on nodes’ distances to randomnode sets to obtain

𝑂 (log
2 𝑁 )-dimensional embeddings. P-GNN [49] realized Linial’s

method by computing and aggregating messages from random sets.

However, its performance falls short of state-of-the-art and does

not scale well [45]. Another line of positional encoding used the

eigenvectors of graph Laplacian [14, 30]. However, Laplacian meth-

ods have stability issues [45] and may not outperform methods

based on structural features [50]. Thus, there is significant room

for improving both performance and scalability of positional node

embedding for link prediction.

In this paper, we propose an effective and efficient representation

of the nodes’ positional information. We select a small number of

representative nodes called landmarks and impose hierarchy on

the graph by associating each node with a landmark. Each node

computes distances to the landmarks, and each landmark computes

distances to other landmarks. Such distance information is com-

bined so as to represent nodes’ positional information. Importantly,

we select landmarks and organize the graph in a principled way,

unlike previous methods using random selection, e.g., [9, 32, 49].

The key question is how to select landmarks. Our choice is to

select nodes with high degree where the degree of a node is often
used as a measure of its importance or centrality. The choice is

motivated from the theory of network science. In network models

with preferential attachment (PA) [5], nodes with high degrees,

called hubs, play a central role in characterizing the network. PA is

a process such that, if a new node joins the graph, it is more likely to

connect to nodes with higher degrees. Node degrees follow power-

law distribution, and the network exhibits scale-free property [5].

Hubs are abundant in social/citation networks andWorldWideWeb.

Real-world networks may not be exactly scale-free; however, the

analysis of network models gives insights into design of algorithms

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, SINGAPORE Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

that work quite well in practice. A similar approach, i.e., the analysis

of tractablemodels applied to design of practical algorithms, is taken

for shortest path problems in road networks [1].

We provide a theoretical justification of landmark selection based

on degree centrality for a well-known class of random graphs [5, 16].

We show that the inter-node distances are well-represented by the

detour via landmarks. In networks with preferential attachment, we

show that the strategy of choosing high-degree nodes as landmarks

is asymptotically optimal in the following sense. The minimum

distance among the detours via landmarks is asymptotically equal

to the shortest path distance. We show even a small number of land-

marks relative to network size, e.g., 𝑂 (log𝑁 ), suffice to achieve

optimality. This proves that the hub-type landmarks offer short

paths to nodes, manifesting small-world phenomenon [5, 46]. In addi-
tion, we show that in models where hubs are absent, one can reduce

the detour distance by selecting a higher number of landmarks.

Motivated by the theory, we propose Hierarchical Position em-

bedding with Landmarks and Clustering (HPLC). HPLC partitions

graph into 𝑂 (log𝑁 ) clusters which are locally dense and appoints

the node with the highest degree in the cluster as the landmark.

Our intention is to bridge gap between theory and practice: hubs

may not be present in practical networks. Thus it is important to

distribute the landmarks evenly over the network so that nodes

can access nearby/local landmarks, instead of merely choosing the

highest-degree landmarks. Next, we form a graph of higher hi-

erarchy, i.e., the graph of landmarks, and compute its Laplacian

encoding based on the inter-landmark distances. The encoding is

assigned as a membership to the nodes belonging to the cluster, so

as to learn positional features at the cluster level. We further opti-

mize our model using the encoding based on hierarchical grouping

of clusters. The computation of HPLC can be mainly done dur-

ing preprocessing, incurring low computational costs. We perform

experiments on 7 datasets, comparing HPLC with 16 baseline meth-

ods. We show that HPLC achieves state-of-the-art performances in

most cases, demonstrating effectiveness and robustness over prior

position-/distance-based methods.

Our contributions are summarized as: 1) we propose HPLC, a

novel algorithm for link prediction using hierarchical position em-

bedding based on landmarks combined with graph clustering; 2)

building upon network science, we derive closed-form bounds on

average path lengths via detours for well-known random graphs

which, to our belief, are important theoretical findings; 3) we con-

duct extensive experiments to show that HPLC achieves state-of-

the-art performances in most cases.

2 RANDOM GRAPHS WITH LANDMARKS
2.1 Notation
We consider undirected graph 𝐺 = (𝑉 , 𝐸) where 𝑉 and 𝐸 ⊆ 𝑉 ×𝑉
denote the set of vertices and edges, respectively. Let 𝑁 denote the

number of nodes in the graph, or 𝑁 = |𝑉 |. A ∈ R𝑁×𝑁
denotes

the adjacency matrix of 𝐺 . 𝑑 (𝑣,𝑢) denotes the geodesic (shortest-
path) distance between 𝑣 and 𝑢. Node attributes are defined as

𝑋 = {𝑥1, ..., 𝑥𝑁 } where 𝑥𝑖 ∈ R𝑛 denotes the feature vector of

node 𝑖 . We consider methods of embedding 𝑋 into latent space

𝑍 = {𝑧1, ..., 𝑧𝑁 }, 𝑧𝑖 ∈ R𝑚 . We study the node-pair-level task of

predicting the link probability between node embedding 𝑧𝑢 and 𝑧𝑣 .

2.2 Representation of Positions using
Landmarks

The distances between nodes provide rich information on the graph

structures. For example, a connected and undirected graph can be

represented by a finite metric space with its vertex set and the inter-

node geodesic distances. However, computing and storing shortest

paths for all pairs of nodes incur high complexity. We select a small

number of representative nodes called landmarks, and hierarchically
organize the graph based on the nodes’ distances to landmarks. The

landmark selection and hierarchical organization are done in a

principled way, which is in contrast to previous methods [9, 32, 49]

which utilizes distances to random subset of nodes.

The landmarks are denoted by 𝜆1, · · · , 𝜆𝐾 ∈ 𝑉 where 𝐾 denotes

the number of landmarks. For node 𝑣 , we define 𝐾-dimensional

vector of distances to landmarks:

𝐷 (𝑣) := (𝑑 (𝑣, 𝜆1), 𝑑 (𝑣, 𝜆2), · · · , 𝑑 (𝑣, 𝜆𝐾 ))

An overview of our method is as follows. Each node is assigned to a

landmark. To represent the position of node 𝑣 assigned to landmark

𝜆, we will use the vector of distances 𝐷 (𝑣) as well as the position
information of 𝜆 relative to other landmarks. We explore various

levels of hierarchy induced by landmarks in the graph, which we

explain in detail in Sec. 3. The central element in our approach is

the vector of distances to landmarks, 𝐷 (·).
The key question is, how much information 𝐷 (·) has on the

inter-node distances within the graph. From triangle inequality, the

distance between nodes 𝑢 and 𝑣 are bounded as

𝑑 (𝑢, 𝑣) ≤ min

𝑖=1,...,𝐾
[𝑑 (𝑢, 𝜆𝑖 ) + 𝑑 (𝜆𝑖 , 𝑣)]

which states that the detour via landmarks, i.e., from 𝑢 to 𝜆𝑖 to

𝑣 , is longer than 𝑑 (𝑢, 𝑣), but the shortest detour, or the minimum

component of 𝐷 (𝑢) +𝐷 (𝑣), may provide a good estimate of 𝑑 (𝑢, 𝑣).
The key design questions are: how to select good landmarks, and

howmany of them? Drawing upon the theory of network science, we
analyze a well-known class of random graphs, derive the average

path lengths associated with landmarks, and glean design insights

from the analysis.

2.3 Path lengths via Landmarks in random
networks

The framework by [17] provides a useful tool for analyzing path

lengths for a wide range of classes of random networks. Following

the framework, the probability of the existence of an edge for node

𝑖 and 𝑗 denoted by 𝑞𝑖 𝑗 is given by

𝑞𝑖 𝑗 =
ℎ𝑖ℎ 𝑗

𝛽
(3)

where 𝛽 is a parameter depending on the network model. ℎ𝑖 is tag
information of node 𝑖 , and is related to the connectivity or degree

of the node.

From the continuum approximation [4], tag information ℎ is

regarded as a continuous random variable (RV) with distribution

𝜌 (·). For some function 𝑓 , ⟨𝑓 (ℎ)⟩ denotes the expectation of 𝑓 (ℎ)
of a node chosen at random. ⟨𝑓 (ℎ)⟩𝑄 denotes the expectation of

𝑓 (ℎ) of landmarks chosen under some distribution 𝑄 .

2
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𝑃 (𝐿𝑖 𝑗 > 𝑠) = exp

[
−

ℎ𝑖ℎ 𝑗

𝛽𝑁 ⟨ℎ2⟩
· ⟨ℎ2⟩𝑄𝐾 (𝑁 ) · (𝑠 − 1)

(
⟨ℎ2⟩𝑁
𝛽

)𝑠−1
]
, 𝑠 = 1, 2, · · · (1)

¯𝑙 ≤
−2⟨logℎ⟩ − log

(
⟨ℎ2⟩𝑄𝐾 (𝑁 )

)
+ log(𝑁𝛽 ⟨ℎ2⟩) + log log

(
𝑁 ⟨ℎ2 ⟩
𝛽

)
− 𝛾

log𝑁 + log⟨ℎ2⟩ − log 𝛽
+ 1

2

(2)

Theorem 1. Let 𝐿𝑖 𝑗 denote the random variable representing the
minimum path length from node 𝑖 to 𝑗 among the detours via 𝐾 (𝑁 )
landmarks. The landmarks are chosen i.i.d. according to distribution
𝑄 . Asymptotically in 𝑁 , 𝑃 (𝐿𝑖 𝑗 > 𝑠) is given by (1).

The proof of Theorem 1 is in Appendix A.1. In (1), the design

parameters are ⟨ℎ2⟩𝑄 and 𝐾 (𝑁 ) which are related to what kind of

landmarks are chosen, and how many of them, respectively. Next,

we bound the average of the minimum path length among the

detours via landmarks.

Theorem 2. Assume 𝐾 (𝑁 ) = 𝑜 (𝑁 ) and 𝐾 (𝑁 ) → ∞ as 𝑁 →
∞. The mean of the minimum path length among the detours via
landmarks, denoted by ¯𝑙 , is bounded above as (2) where 𝛾 ≈ 0.5772 is
the Euler’s constant.

The proof of Theorem 2 is in Appendix A.2. The assumption

𝐾 (𝑁 ) = 𝑜 (𝑁 ) implies that the number of landmarks is chosen

to be not too large compared to 𝑁 . We apply the results to some

well-known random graph models.

2.4 Erdős-Rényi Model
The Erdős-Rényi (ER) model [16] is a classical random graph in

which every node pair is connected with a common probability.

For ER graphs, model parameters 𝛽 and ℎ can be set as 𝛽 = ⟨𝑘⟩𝑁
and ℎ ≡ ⟨𝑘⟩ respectively, where ⟨𝑘⟩ denotes the mean degree of

nodes [8]. From (3), we have 𝑞𝑖 𝑗 = ⟨𝑘⟩/𝑁 , i.e., the probability

of edge formation between any node pair is constant. Thus, the

node degree follows the Poisson distribution with mean ⟨𝑘⟩ for
large 𝑁 . Assume ⟨𝑘⟩ is a finite constant. From (2), The mean of the

minimum of path length via landmarks in ER network, denoted by

¯𝑙ER, is bounded above as

¯𝑙ER ≤ 2 log𝑁 − log𝐾 (𝑁 )
log⟨𝑘⟩ (6)

asymptotically in 𝑁 . The average length of the shortest paths in

ER graphs without landmarks, denoted by
¯𝑙∗
ER
, is given by [8, 17]

¯𝑙∗
ER

=
log𝑁

log⟨𝑘⟩ (7)

By comparing (6) and (7), we observe that the detour via landmarks

incurs the overhead of at most factor 2. This is because nodes in ER

graphs appear homogeneous, and thus the path length to and from

landmarks are on average similar to the inter-node distance. Thus

the average distance of a detour will be twice the direct distance.

However, (6) implies that the minimum detour distance can be

reduced by using multiple (𝐾 (𝑁 ) > 1) landmarks. The reduction

can be substantial, e.g., if 𝐾 (𝑁 ) = 𝑁 1−𝜀
for some 𝜀 ∈ (0, 1), we

have, from (6),

¯𝑙𝐸𝑅 ≤ (1 + 𝜀) · ¯𝑙∗
ER

For example, selecting

√
𝑁 landmarks guarantees a 1.5-factor ap-

proximation of the shortest path distance. By making 𝜀 close to 0,

we get arbitrarily close to the shortest path distance.

Discussion. Due to having Poisson distribution, the degrees in

ER graphs are highly concentrated on mean ⟨𝑘⟩. There seldom are

nodes with very large degrees, i.e., most nodes look alike. Thus, the

design question should be on how many rather than on what kind of
landmarks. We benefit from choosing a large number of landmarks,

e.g.,𝐾 (𝑁 ) = 𝑁 1−𝜀
. However, there is a trade-off: the computational

overhead of managing 𝐾 (𝑁 )-dimensional vector 𝐷 (𝑣) will be high.

2.5 Barabási-Albert Model
The Barabási-Albert (BA) model [5] generates random graphs with

preferential attachment. BA networks are characterized by contin-

uous growth over time: initially there are𝑚 nodes, and new nodes

arrive to the network over time. Due to preferential attachment,

the probability of the connection of the existing node to the newly

arriving node is proportional to its degree. The probability of an

edge in BA networks is shown to be [8]

𝑞𝑖 𝑗 =
𝑚

2

1

√
𝑡𝑖𝑡 𝑗

with ℎ𝑖 = 1/
√
𝑡𝑖 and 𝛽 = 𝑚

2
, where 𝑡𝑖 is the time of arrival of node 𝑖 .

Since the probability of a newly arriving node connecting to node 𝑖

is proportional to ℎ𝑖 , the degree of nodes with large ℎ𝑖 is likely to

be high. For large 𝑁 , the distribution of ℎ is derived as [17]

𝜌 (ℎ) = 2

𝑁
ℎ−3, ℎ ∈

[
1

√
𝑁
, 1

]
. (8)

By applying 𝜌 (·) to (2), we bound the average path length with

landmarks denoted by
¯𝑙BA as (4).

Selecting Landmarkswith Largeℎ is Optimal. Unlike ER graphs,

there exists a landmark selection strategywhich achieves the asymp-

totically optimal distance, despite using a small number of land-

marks relative to the network size. Specifically, selecting landmarks

from a pool of nodes with large ℎ values is optimal.

Theorem 3. Suppose𝐾 (𝑁 ) landmarks are randomly selected from
top-(log𝑁 ) · 𝐾 (𝑁 ) nodes with the largest values of ℎ, assuming
𝐾 (𝑁 ) satisfies the condition in Theorem 2. Assuming𝑚 = 𝑂 (1), the
average path length via landmarks, or ¯𝑙BA, is bounded above by (5)

asymptotically in 𝑁 .

¯𝑙BA ≤
log𝑁 − log(

〈
ℎ2⟩𝑄𝐾 (𝑁 )

)
+ log log𝑁 + log log log𝑁 + log [2 log(𝑚/2)/𝑚]
log log𝑁 + log(𝑚/2) + 1

2

. (4)

¯𝑙BA ≤ log𝑁 − log log𝐾 (𝑁 ) + 2 log log𝑁

log log𝑁
(5)

3
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Figure 1: Overview of HPLC. 1○ Partition the graph into 𝐾 clusters using FluidC, select landmarks based on degrees, and
compute distance vectors of nodes. 2○ Construct a landmark graph to compute membership vectors based on eigenvectors
of graph Laplacian. 3○ Compute positional embeddings by combining membership and distance vectors and passing them
through an encoder. 4○ Concatenate positional embeddings and node features, and project them onto cluster-group embedding
spaces. 5○ Neighborhood aggregation using GNNs. ⊕ denotes concatenation.

The proof of Theorem 3 is in Appendix A.3. We claim the opti-

mality of the strategy in Theorem 3 in the following sense. Since

Theorem 2 states that 𝐾 (𝑁 ) is slowly increasing in 𝑁 , e.g., 𝐾 (𝑁 ) =
𝑂 (log𝑁 ), a feasible strategy for Theorem 3 is to choose 𝑂 (log𝑁 )
landmarks from top–𝑂 (log

2 𝑁 ) degree nodes. For such 𝐾 (𝑁 ), the
numerator of the RHS of (5) is ≈ log𝑁 for large 𝑁 . Meanwhile, the

average length of shortest paths in BA networks is given by [12]

¯𝑙∗
BA

=
log𝑁

log log𝑁

From (5), we conclude that
¯𝑙BA is asymptotically equal to ¯𝑙∗BA. This

implies that the shortest detour via landmarks under our strat-

egy has the same length as the shortest path on average in the

asymptotic sense.

Discussion. The node degree in BA networks is known to fol-

low power-law distribution, which predicts the emergence of hubs.

Inter-node distances can be drastically reduced due to the pres-

ence of hubs, known as small-world phenomenon [5]. Our analysis

shows that, the shortest path between two nodes are indeed well-

approximated by the detour via landmarks chosen from high-degree

nodes. Importantly, this is achieved even without large number of

landmarks, say we let 𝐾 (𝑁 ) = 𝑂 (log𝑁 ) in (5).

Summary of Analysis. ER and BA models represent two con-

trasting cases of degree distributions. The degree distribution of

ER graph is highly concentrated, i.e., the variation of node degrees

is small, or hubs are absent. By contrast, the degree of BA graphs

follows power-law distribution, i.e., the variation of node degree is

large, and hubs are present. Our analysis shows that (1 + 𝜖)-factor
approximation (ER) and asymptotic optimality (BA) are achiev-

able by detour via landmarks. The derived bounds are numerically

verified via simulation in Appendix B.

2.6 Design Insights from Theory
The key design parameters in our analysis are ⟨ℎ2⟩𝑄 and 𝐾 (𝑁 ) in
(2).

Landmark Selection and Graph Clustering. In order to make

⟨ℎ2⟩𝑄 large, one may choose landmarks with sufficiently large ℎ,

e.g., high-degree nodes. In practice, however, such high-degree

nodes may not always provide short paths, unlike scale-free net-

works. For example, suppose all the hubs are located at one end of

the network. The nodes at the other end of the network have to

make a long detour via landmarks, even in order to reach nodes in

local neighborhoods.

Thus, in order to better capture local graph structures, we pro-

pose to partition the graph into clusters such that the nodes within

a cluster tend to be densely connected, i.e., close to one another.

Then we pick the node with the highest degree within each clus-

ter as the landmark, as suggested by the analysis. Each landmark

represents the associated cluster, and the distance between nodes

can be captured by distance information associated with the cluster

landmarks. We empirically find that such combination of clustering

and landmark selection yields improved results.

Number of Landmarks. Although large number of landmarks

𝐾 (𝑁 ) appears preferable, our analysis show that 𝐾 (𝑁 ) does not
drastically reduce distances, unless 𝐾 (𝑁 ) is very large, e.g., 𝑁 1−𝜖

.

A large number of landmarks can hamper scalability. Thus, we use

only a moderate number of landmarks, and empirically find that

setting 𝐾 (𝑁 ) = 𝑂 (log𝑁 ) suffices to yield good results.

3 PROPOSED METHOD
In this section, Hierarchical Position embedding with Landmarks

and Clustering (HPLC) is described. The main method combin-

ing landmarks and clustering is explained in Sec. 3.1. Additional
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optimization methods leveraging landmarks and clusters are intro-

duced, which are membership encoding (Sec. 3.2) and cluster-group

encoding (Sec. 3.3). An overview of HPLC is depicted in Fig. 1.

3.1 Graph Clustering and Landmark Selection
Graph clustering is a task of partitioning the vertex set into disjoint

subsets called clusters, where the nodes within a cluster tend to be

densely connected relative to those between clusters [40]. We will

use FluidC graph clustering algorithm proposed in [35] as follows.

Suppose we want to partition𝐺 to𝐾 clusters. FluidC initially selects

𝐾 random central nodes, assigns each node to clusters 𝐶1, · · · ,𝐶𝐾 ,
and iteratively assigns nodes to clusters according to the following

rule. Node 𝑢 is assigned to cluster 𝑃𝑘∗ (𝑢 ) such that

𝑘∗ (𝑢) = argmax

𝑘=1,...,𝐾

|{𝑢,N(𝑢)} ∩𝐶𝑘 |
|𝐶𝑘 |

(9)

where N(𝑢) denotes the neighbors of 𝑢. This assignment rule

prefers community candidates of small sizes (denominator), which

results in well-balanced cluster sizes. The rule also prefers commu-

nities already containing many neighbors of 𝑢 (numerator), which

makes clusters locally dense. As a result, FluidC generates densely-

connected cohesive clusters of relatively even sizes.

In addition, FluidC has complexity 𝑂 ( |𝐸 |), and thus is highly

scalable [35]. Importantly, the number of clusters𝐾 can be specified

beforehand, which is crucial because 𝐾 is a hyperparameter in our

method. By contrast, in widely-used Louvain’s algorithm [7], it is

difficult to control 𝐾 , and a comparison is provided in Appendix F.

For each cluster, we select the node with the highest degree as the

landmark, where 𝜆𝑘 denotes the landmark of cluster 𝐶𝑘 . For each

node, we compute the distances to landmarks 𝜆1, · · · , 𝜆𝐾 to yield

𝐾-dimensional vector of distances. Since𝐺 may not be a connected

graph, we define the following:

ˆ𝑑 (𝑣, 𝜆𝑘 ) =
{
𝑑 (𝑣, 𝜆𝑘 ), if a path exists from 𝑣 to 𝜆𝑘 ,

𝑑max + 1, otherwise.

(10)

where 𝑑max is defined as follows. For each node 𝑣 , we compute

the distances to the landmarks within the connected component

containing 𝑣 and set 𝑑max to the maximum among all the computed

distances. The distance vector (DV) of node 𝑣 , denoted by �̂� (𝑣),
is given by �̂� (𝑣) = ( ˆ𝑑 (𝑣, 𝜆1), ˆ𝑑 (𝑣, 𝜆2), . . . , ˆ𝑑 (𝑣, 𝜆𝐾 )). As mentioned

earlier, we set number of clusters 𝐾 = 𝜂 log𝑁 where integer 𝜂 is a

hyperparameter. Experiments on the values of 𝜂 is in Appendix D.

Effect of Clustering on Landmarks. The proposed method first

performs clustering, and then selects landmarks based on degree

centrality. The analysis in Sec. 2 showed that the nodes with suffi-

ciently high degree centrality should be chosen as landmarks. The

question is whether the landmarks chosen after clustering will have

sufficiently high degrees.

A supporting argument for incorporating clustering into analy-

sis can be made for BA networks. Theorem 3 states that, choosing

𝐾 (𝑁 ) = 𝑂 (log𝑁 ) landmarks from top-(log𝑁 ) ·𝐾 (𝑁 ) = 𝑂 (log
2 𝑁 )

nodes in degrees is optimal. We show that, log𝑁 landmarks chosen

after FluidC clustering are indeed within top-(log𝑁 )2
degree cen-

trality through simulation. Table 1 compares the rank of degrees

of landmarks selected through FluidC clustering versus the rank

of top-(log𝑁 )2
degree nodes in BA networks. We observe that the

Network size 𝑁 rank:

cluster landmarks

rank:

top-(log𝑁 )2

Fraction of landmarks

within rank top-(log𝑁 )2

500 5.02% 6.38% 100%

1000 3.02% 4.37% 100%

2000 1.76% 2.85% 100%

5000 0.90% 1.48% 100%

Table 1: Rank of degrees of landmark nodes in BA networks.
For example, if 𝑁 = 500, all the landmarks selected from
clustering are within the top 5.02%-degree nodes.

landmarks selected after clustering have sufficiently large degrees

for optimality, i.e., all of their degrees are within top-(log𝑁 )2
.

The result can be explained as follows. Since the number of

clusters is relatively small (𝑂 (log𝑁 )) in our method, each cluster

contains a relatively large number of nodes. Scale-free networks

are known to havemodules which are densely connected subgraphs

and are sparsely connected to each other [19]. A proper clustering

algorithm is expected to detect modules. Due to scale-free property,

such modules are likely to be connected to larger modules. Thus,

each cluster is likely to contain nodes with sufficiently high degrees

which are, according to Theorem 3, good candidates for landmarks.

In practical networks, one can expect similar effects from FluidC

clustering. Given the small number of clusters as input, the algo-

rithmwill detect locally dense clusters resulting in landmarks which

have high degrees and are evenly distributed over the network.

Thus, landmark selection after clustering can be a good heuristic

motivated by the theory.

3.2 Membership Encoding with Graph
Laplacian

For the nodes within the same cluster, we augment the nodes’ em-

beddings with information identifying that they are members to

the same community, which we call membership. The membership

is extracted from landmarks, and is based on the relative positional

information among landmarks. Thus, not only the nodes within

the same cluster have the same membership, but also the nodes

of neighboring clusters have “similar” membership. The member-

ship of a node is encoded into a membership vector (MV) which is

combined with DV in computing the node embeddings.

We consider the graph consisting only of landmark nodes, and

use graph Laplacian [6] to encode their relative positions. A com-

plete graph of landmarks is constructed where the edge weight

between landmarks 𝑢 and 𝑣 is set to 𝑒𝑢𝑣 = exp(− ˆ𝑑 (𝑢, 𝑣)2/𝑇 ) where
𝑇 denotes normalizing parameter of heat kernel. Let 𝐴 ∈ R𝐾×𝐾

denote the weighted adjacency matrix. The normalized graph Lapla-

cian is given by 𝐿 = 𝐼 − Δ− 1

2𝐴Δ− 1

2 where degree matrix Δ is given

by Δ𝑖𝑖 =
∑
𝑗 𝐴𝑖 𝑗 . The eigenvectors of 𝐿 are used as MVs, i.e., for

node 𝑣 ∈ 𝐶𝑘 , the MV of node 𝑣 , denoted by𝑀 (𝑣), is the eigenvector
of 𝐿 associated with landmark 𝜆𝑘 .

MV provides positional information in addition to DV, using the

graph of upper hierarchy, i.e., landmarks. We use a random flipping

of the signs of eigenvectors to resolve ambiguity [15]. A problem

with Laplacian encoding is the time complexity, of which the eigen-

decomposition is cubic in network size. Previous approaches used a

subset of eigenspectrum [15, 30]. However, the landmark graph has
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small size, i.e., 𝐾 = 𝑂 (log𝑁 ). Thus, our model can exploit the full
spectrum, enabling accurate representation of landmark graphs.

3.3 Cluster-group Encoding
We propose cluster-group encoding as an additional model opti-

mization. Several neighboring clusters are further grouped into a

macro-cluster, i.e., a cluster of clusters. The embeddings of nodes in

a macro-cluster use an encoder specific to that macro-cluster. The

motivation is that, using a separate encoder per local region may

facilitate capturing attributes specific to local structures or latent

features of the community, which is important for link prediction.

For cluster𝐶𝑘 , let Φ𝑖 (𝑘 ) denote the macro-cluster which contains

𝐶𝑘 where 𝑖 (𝑘) denote the index of the macro-cluster. The node

embedding 𝑧𝑣 for node 𝑣 is computed as

𝑧𝑣 = 𝑓𝑖 (𝑘 )
(
𝑥𝑣 ⊕ 𝜙

(
𝑀 (𝑣) ⊕ �̂� (𝑣)

))
, 𝑣 ∈ 𝐶𝑘 ⊂ Φ𝑖 (𝑘 ) ,

where 𝑥𝑣 is the input node feature,𝑀 (𝑣) and �̂� (𝑣) are MV and DV,

𝜙 is membership/distance encoder, and ⊕ denotes concatenation.

𝑓𝑖 ( ·) denotes the encoder specific to macro-cluster Φ𝑖 ( ·) . We set the

number of macro-cluster denoted by 𝑅 such that 𝐾 is a multiple

of 𝑅, and each macro-cluster contains 𝐾/𝑅 clusters. Cluster-group

encoding requires 𝑅 encoders, one per macro-cluster. To limit the

model size, we empirically set 𝑅 = min(15, ⌊𝐾/𝜂⌋).
Finally, output embedding 𝑧𝑣 is input to GNN layers given by

ℎ𝑙𝑣 = GNN(ℎ𝑙−1

𝑣 ,A), for 𝑙 = 1, 2, · · ·
where ℎ0

𝑣 = 𝑧𝑣 . HPLC can be combined with different types of

GNNs, and the related study is provided in Sec. 7.2.

4 PROPERTY OF HPLC AS NODE EMBEDDING
In [41], the (positional) node embeddings are formally defined as:

Definition 4. The node embeddings of a graph with adjacency

matrix A and input attributes 𝑋 are defined as joint samples of

random variables (𝑍𝑖 )𝑖∈𝑉 |A, 𝑋 ∼ 𝑝 (·|A, 𝑋 ), 𝑍𝑖 ∈ R𝑑 , 𝑑 ≥ 1, where

𝑝 (·|A, 𝑋 ) is a G-equivariant probability distribution on A and 𝑋 ,

that is, 𝜋 (𝑝 (·|A, 𝑋 )) = 𝑝 (·|𝜋 (A), 𝜋 (𝑋 )) for any permutation 𝜋 (·).

It is argued in [41] that positional node embeddings are good

at link prediction tasks. The postional embeddings preserve the

relative positions of nodes, thus can differentiate isomorphic nodes

according to their positions and identify the closeness between

nodes. We claim that HPLC qualifies as positional node embeddings

according to Definition 4 as follows.

In HPLC, landmark-based distance function, eigenvectors of

graph Laplacian with random flipping, and graph clustering method

are G-equivariant functions of A ignoring the node features 𝑋 . The

eigenvectors of graph Laplacian are permutationally equivariant

under the node permutation, i.e., switching of corresponding rows/-

columns of adjacency matrix. Also, the Laplacian eigenmap can be

regarded as a G-equivariant function in the sense of expectation, if

it is combined with random sign flipping of eigenvectors [41]. In

case of multiplicity of eigenvalues, we can slightly perturb the edge

weights of landmark graphs to obtain simple eigenvalues [36]. The

graph clustering in HPLC is a randomized method, because initially

𝐾 central nodes are selected at random. Thus, embedding output 𝑍

is a function of A, 𝑋 , and random noise, which proves our claim.

Also, HPLC has higher expressive power than traditionalmessage-

passing GNNs. HPLC is trained to predict the link between a node

pair based on their positional embeddings. The embeddings are

learned over the joint distribution of distances from node pairs to

common landmarks which are spread out globally over the graph.

By contrast, traditional GNNs learn the embeddings based on the

marginal distributions of local neighborhoods of node pairs. By a

similar argument to Sec. 5.2 of [49] based on mutual information,

we conclude that HPLC is more expressive than traditional GNNs.

5 COMPLEXITY ANALYSIS
5.1 Time Complexity
We first consider the time complexity of computing �̂� (𝑣) for all
𝑣 ∈ 𝑉 . There are 𝜂 log𝑁 landmarks, and for each landmark, com-

puting the distances from all 𝑣 ∈ 𝑉 to the landmark requires

𝑂 ( |𝐸 | +𝑁 log𝑁 ) using Fibonacci heap. Thus, the overall complexity

is𝑂 ( |𝐸 | log𝑁 +𝑁 (log𝑁 )2). Next, we compute Laplacian eigenvec-

tors of landmark graph, where its time complexity is 𝑂 (𝐾3) =

𝑂 ((log𝑁 )3). The computation of �̂� (𝑣) and 𝑀 (𝑣) are done once,

and thus can be considered as a preprocessing step. Overall, the

time complexity of HPLC is low, and our experiments shows that

HPLC handles large or dense graphs well.

5.2 Space Complexity
The space complexity of HPLC is mainly from the GNN models

for computing the node embeddings. Additional space complexity

of HPLC is from the membership/distance encoder 𝜙 (·) which is

𝑂 ((𝐹 + 𝑅)𝐻in), and cluster-group encoding which is𝑂 (𝐻in𝐻out𝑅)
respectively, where 𝐹 denotes the node feature dimension, 𝑅 =

min(15, ⌊𝐾/𝜂⌋) denotes the number of macro-clusters, 𝐻in denotes

the hidden dimension of 𝜙 (·), and 𝐻out denotes the hidden dimen-

sion of cluster-group encoders.

Overall, the time and space complexity of HPLC is quite reason-

able. We show this by comparing the actual resource usage between

vanilla GCN and HPLC in Appendix C.

6 EXPERIMENTS
6.1 Experimental setting
Datasets. Experiments were conducted on 7 datasets widely used

for evaluating link prediction. For experiments on small graphs, we

used PubMed, Cora, Citeseer, and Facebook. For experiments on

dense or large graphs, we chose DDI, COLLAB, and CITATION2

provided by OGB [24]. Detailed statistics and evaluation metrics

associated with the datasets are provided in Table 10 in Appendix G.

Baseline models.We compared HPLC with Adamic Adar (AA) [2],

Matrix Factorization (MF) [29], Node2Vec [21], GCN [27], Graph-

SAGE [23], GAT [44], P-GNN [49], NBF-net [54], and plug-in type

approaches like JKNet [48], SEAL [50], GCN+DE [31], GCN+LPE [15],

GCN+LRGA [38], Graph Transformer+LPE [14], and PEG-DW+ [45].

All methods except for AA and GAE are computed by the same

decoder, which is a 2-layer MLP. For a fair comparison, we use GCN

in most plug-in type approaches: SEAL, GCN+DE, GAE, JKNet,

GCN+LRGA, GCN+LPE, and HPLC.

Evaluation metrics. Link prediction was evaluated based on the

ranking performance of positive edges in the test data over negative
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Baselines Avg. (H.M.) CITATION2 COLLAB DDI PubMed Cora Citeseer Facebook

Adamic Adar 65.74 (50.65) 76.12 ± 0.00 53.00 ± 0.00 18.61 ± 0.00 66.89 ± 0.00 77.22 ± 0.00 68.94 ± 0.00 99.41 ± 0.00

MF 54.06 (42.65) 53.08 ± 4.19 38.74 ± 0.30 17.92 ± 3.57 58.18 ± 0.01 51.14 ± 0.01 50.54 ± 0.01 98.80 ± 0.00

Node2Vec 64.01 (51.17) 53.47 ± 0.12 41.36 ± 0.69 21.95 ± 1.58 80.32 ± 0.29 84.49 ± 0.49 80.00 ± 0.68 86.49 ± 4.32

GCN (GAE) 76.35 (66.67) 84.74 ± 0.21 44.14 ± 1.45 37.07 ± 5.07 95.80 ± 0.13 88.68 ± 0.40 85.35 ± 0.60 98.66 ± 0.04

GCN (MLP) 76.48 (67.53) 84.79 ± 0.24 44.29 ± 1.88 39.31 ± 4.87 95.83 ± 0.80 90.25 ± 0.53 81.47 ± 1.40 99.43 ± 0.02

GraphSAGE 78.51 (71.48) 82.64 ± 0.01 48.62 ± 0.87 44.82 ± 7.32 96.58 ± 0.11 90.24 ± 0.34 87.37 ± 1.39 99.29 ± 0.01

GAT - - 44.14 ± 5.95 29.53 ± 5.58 85.55 ± 0.23 82.59 ± 0.14 87.29 ± 0.11 99.37 ± 0.00

JKNet - - 48.84 ± 0.83 57.98 ± 7.68 96.58 ± 0.23 89.05 ± 0.67 88.58 ± 1.78 99.43 ± 0.02

P-GNN - - - 1.14 ± 0.25 87.22 ± 0.51 85.92 ± 0.33 90.25 ± 0.42 93.13 ± 0.21

GTrans+LPE - - 11.19 ± 0.42 9.22 ± 0.20 81.15 ± 0.12 79.31 ± 0.09 77.49 ± 0.02 99.27 ± 0.00

GCN+LPE 74.60 (67.00) 84.85 ± 0.35 49.75 ± 1.35 38.18 ± 7.62 95.50 ± 0.13 76.46 ± 0.15 78.29 ± 0.21 99.17 ± 0.00

GCN+DE 72.48 (60.04) 60.30 ± 0.61 53.44 ± 0.29 26.63 ± 6.82 95.42 ± 0.08 89.51 ± 0.12 86.49 ± 0.11 99.38 ± 0.02

GCN+LRGA 78.42 (74.47) 65.05 ± 0.22 52.21 ± 0.72 62.30 ± 9.12 93.53 ± 0.25 88.83 ± 0.01 87.59 ± 0.03 99.42 ± 0.05

SEAL 77.08 (62.88) 85.26 ± 0.98 53.72 ± 0.95 26.25 ± 8.00 95.86 ± 0.28 92.55 ± 0.50 85.82 ± 0.44 99.60 ± 0.02
NBF-net - - - 4.03 ± 1.32 97.30 ± 0.45 94.12 ± 0.17 92.30 ± 0.23 99.42 ± 0.04

PEG-DW+ 81.67 (75.42) 86.03 ± 0.53 53.70 ± 1.18 47.88 ± 4.56 97.21 ± 0.18 93.12 ± 0.12 94.18 ± 0.18 99.57 ± 0.05

HPLC 85.77 (82.39) 86.15 ± 0.48 56.04 ± 0.28 70.03 ± 7.02 97.38 ± 0.34 94.95 ± 0.18 96.15 ± 0.19 99.69 ± 0.00
Table 2: Link prediction results on various datasets. All baselines and ourmethod were evaluated for 10 repetitions. Bold denotes
the best performance, and Italic indicates the second best performance. We used a single NVIDIA RTX 3090 with 24GB memory
on all datasets except CITATION2 and A100 GPU with 40GB memory on CITATION2. - indicates ‘out-of-memory’ (OOM). Some
baselines suffered from OOM on large graphs due to the high memory usage from storing a large number of shortest paths,
attention weights, or aggregation of hidden embedding vectors, etc. Similar OOM results as well as poor performance of those
baselines were reported in [45] and [52]. For SEAL and GCN+DE, we trained 2% of training data and evaluated 1% of both
validation and test set respectively on CITATION2. We trained 15% of training data but evaluated all of the validation and test
sets on COLLAB. Both implementations followed the guideline on the official GitHub of SEAL-OGB. ‘Avg.’ denotes the average
of performance metrics, and ‘H.M’ indicates their harmonic mean. (-) means that we do not report the average and harmonic
mean due to OOM.

ones. For COLLAB and DDI, we ranked all positive and negative

edges in the test data, and computed the ratio of positive edges

which are ranked in top-𝑘 . We did not utilize validation edges for

computing node embeddings when we predicted test edges on COL-

LAB. In CITATION2, we computed all positive and negative edges,

and calculated the reverse of the mean rank of positive edges. Due

to high complexity when evaluating SEAL, we only trained 2% of

training set edges and evaluated 1% of validation and test set edges

respectively, as recommended in the official GitHub of SEAL. For

Cora, Citeseer, PubMed, and Facebook, we utilized Area Under ROC

Curve (AUC). If applicable, we calculated the average and harmonic

mean (HM) of the measurements. HM penalizes the model for very

low scores, thus is a useful indicator of robustness.

Hyperparameters.Weused GCN as our base GNN encoder. MLP is

used in decoders, except GAE. All baselines do not use edge weights.

The details of hyperparameters are provided in Appendix H.

6.2 Results
Experimental results are summarized in Table 2. HPLC outper-

formed the baselines on most datasets. HPLC achieved large perfor-

mance gains over GAE combined with GCN on all datasets, which

are 88.9% on DDI, 27.0% on COLLAB, 12.7% on Citeseer, 7.1% on

Cora, and 1.4% on CITATION2. HPLC showed superior performance

over SEAL, achieving gains of 167% on DDI, and 12.0% on Citeseer.

We compare HPLC with other distance-based methods. Compared

to GCN+DE which encodes distances from a target node set whose

representations are to be learned, or to P-GNNwhich uses distances

to random anchor sets, HPLC achieved higher performance gains

by a large margin. Compared to other positional encoding meth-

ods such as GCN+LPE, Graph Transformer+LPE, and PEG-DW+,

HPLC also achieved performance gains from all datasets. The re-

sults show that approximate inter-node distances via landmarks

can be effective for representing positional information of nodes.

SEAL and NBF-net performed poorly on DDI which is a highly

dense graph. Since the nodes of DDI have a large number of neigh-

bors, the enclosing subgraphs are both very dense and large, and

the model struggles with learning the representations of local struc-

tures or paths between nodes. By contrast, HPLC achieved the best

performance on DDI, demonstrating its effectiveness on densely

connected graphs.

Finally, we computed the average and harmonic means of perfor-

mance measurements except for the methods with OOM problems.

Although the averages are taken over heterogeneous metrics and

thus do not represent specific performance metrics, they are pre-

sented for comparison purposes. In summary, HPLC achieved the

best average and harmonic mean of performance measurements,

demonstrating both its effectiveness and robustness.

7 ABLATION STUDY
In this section, we provide ablation study. Additional studies on

different types of node centrality and clustering algorithms are

relegated to Appendix E and F, respectively, due to limited space.
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DV CE MV COLLAB DDI PubMed Cora Citeseer
✔ ✗ ✗ 53.31 ± 0.62 46.86 ± 9.91 95.37 ± 0.13 92.32 ± 0.25 95.13 ± 0.18

✔ ✔ ✗ 55.56 ± 0.37 68.75 ± 7.43 96.67 ± 0.18 93.94 ± 0.21 95.83 ± 0.15

✔ ✔ ✔ 56.04 ± 0.28 70.03 ± 7.02 97.38 ± 0.34 94.95 ± 0.18 96.15 ± 0.19

Table 3: Ablation study of each component.

Dataset w/ GraphSAGE w/ GAT w/ GCN
PubMed 96.63 (+0.05) 93.18 (+7.63) 97.38 (+1.55)

Cora 96.18 (+5.94) 91.93 (+9.34) 94.95 (+4.0)

Citeseer 94.97 (+7.60) 94.60 (+7.31) 96.15 (+14.68)

Facebook 99.48 (+0.19) 99.40 (+0.03) 99.69 (+0.26)

Table 4: Ablation study on GNN types for HPLC. + denotes
the performance gain over the default encoder for each GNN,
i.e., without HPLC.

7.1 Model Components
Table 3 shows the performances in the ablation analysis for the

model components. The components denoted by“DV”, “CE” and

“MV” columns in Table 3 indicate the usage of distance vector, cluster-
group encoding and membership vector, respectively. “DV” is the
default component of HPLC. We observe that the performance is

indeed improved by adding components “CE” and “MV” to HPLC.

This shows that all the hierarchical components of HPLC contribute

to the performance improvement.

7.2 Combination with various GNNs
HPLC can be combined with different GNN encoders. We experi-

mented the combination with three GNN encoders. Table 4 shows

that, HPLC enhances the performance of various types of GNNs.

8 RELATEDWORK
Link Prediction. Earlier methods for link prediction used heuris-

tics [2, 53] based on manually designed formulas. GNNs were

subsequently applied to the task, e.g., GAE [26] is a graph auto-

encoder which reconstructs adjacency matrices combined with

GNNs, but cannot distinguish isomorphic nodes. SEAL [50] is pro-

posed as structural link representation by extracting enclosing

subgraphs and learning structural patterns of those subgraphs. The

authors demonstrated that higher-order heuristics can be approxi-

mately represented by lower-order enclosing subgraphs thanks to

𝛾-decaying heuristic. Multi-scale link learning [10] was proposed

to learn enclosing subgraphs at various scales. LGLP [11] used

the graph transformation prior to GNN layers for link prediction,

and Walk Pooling [34] proposed to learn subgraph structure based

on random walks. However, the aforementioned methods need

to extract enclosing subgraphs of edges and compute their node

embeddings on the fly. CFLP [52] is a counterfactual learning frame-

work for link prediction to learn causal relationships between nodes.

However, its time complexity is 𝑂 (𝑁 2) for finding counterfactual
links with nearest neighbors.

Distance- and Position-based Methods. P-GNN [49] proposed

position-aware GNN based on distances for injecting positional

information into node embeddings. P-GNN focuses on realizing

Bourgain’s embedding [9] guided by Linial’s method [32] and per-

forms message computation and aggregation based on distances

to random subset of nodes. By contrast, we judiciously select rep-

resentative nodes in combination with graph clustering and use

the associated distances. Laplacian positional encodings [6, 15] use

eigenvectors of graph Laplacian as positional embeddings in which

positional features of nearby nodes are encoded to be similar to one

another. Graph transformer was combined with positional encoding

learned from Laplacian spectrum [14, 30]. However, transformers

with full attention have high computational complexity and do not

scale well for link predictions in large graphs. Distance encoding

(DE) as node labels was proposed and its expressive power was

analyzed in [31]. In [51], the authors analyzed the effects of various

node labeling tricks using distances. However, these two methods

do not utilize distances as positional information.

Networks with landmarks. Algorithms augmented with land-

marks have actively been explored for large networks, where the

focus is mainly on estimating the inter-node distances [13, 33, 42] or

computing shortest paths [3, 20, 39, 43]. An approximation theory

on inter-node distances using embeddings derived from landmarks

is proposed in [28] which, however, based on randomly selected

landmarks, whereas we analyze detour distances under a judicious

selection strategy. Landmarks were used for efficient heuristics for

finding shortest paths, e.g., the ALT algorithm [20] which exploits

preprocessed distances to landmarks to derive lower bounds. No-

tably in [37], vectors of distances to landmarks are used to estimate

inter-node distances, and landmark selection strategies based on

various node centralities are proposed. However, the work did not

provide theoretical analysis on the distances achievable under de-

tours via landmarks. The aforementioned works do not consider

landmark algorithms in relation to link prediction tasks.

9 CONCLUSION
We proposed a hierarchical positional embedding method using

landmarks and graph clustering for link prediction. We provided

a theoretical analysis of the average distances of detours via land-

marks forwell-known randomgraphs. From the analysis, we gleaned

design insights on the type and number of landmarks to be selected

and proposed HPLC which effectively infuses positional informa-

tion using𝑂 (log𝑁 )-landmarks for the link prediction on real-world

graphs. Experiments demonstrated that HPLC achieves state-of-the-

art performance and has better scalability as compared to existing

methods on various graph datasets of diverse sizes and densities. In

the future, we plan to analyze the landmark strategies for various

types of random networks and extend HPLC to other graph-related

tasks such as graph classification, generation, etc.

8
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𝑝𝜆𝑖 𝑗 (𝑠) = 1 − exp

−

𝑁∑︁
𝑣1=1

· · ·
𝑁∑︁

𝑣𝑠−1=1

𝑞𝑖𝑣1
𝑞𝑣1𝑣2

· · ·𝑞𝑣𝑠−1 𝑗 −
𝑁∑︁
𝑣1=1

𝑣1≠𝜆

· · ·
𝑁∑︁

𝑣𝑠−1=1

𝑣𝑠−1≠𝜆

𝑞𝑖𝑣1
𝑞𝑣1𝑣2

· · ·𝑞𝑣𝑠−1 𝑗


 (11)

A PROOFS
A.1 Proof of Theorem 1.
The framework from [17] is used for the proof, and their technique

is briefly described as follows. We first state a key lemma from [17]:

Lemma 1. If𝐴1, · · · , 𝐴𝑛 are mutually independent events and their
probabilities fulfill relations ∀𝑖𝑃 (𝐴𝑖 ) ≤ 𝜀,

𝑃

(
𝑛⋃
𝑘=1

𝐴𝑘

)
= 1 − exp

(
−

𝑛∑︁
𝑘=1

𝑃 (𝐴𝑘 )
)
− 𝑅

where 0 ≤ 𝑅 <
∑𝑛+1

𝑗=0
(𝑛𝜀) 𝑗 / 𝑗 ! − (1 + 𝜀)𝑛 .

It can be shown that 𝑅 vanishes in the limit 𝑛 → ∞.

Consider node 𝑖, 𝑗 ∈ 𝑉 and landmark 𝜆 ∈ 𝑉 . Let 𝑝𝜆
𝑖 𝑗
(𝑠) denote

the probability that the length of paths between 𝑖 and 𝑗 via 𝜆 is at

most 𝑠 for 𝑠 = 1, 2, · · · . 𝑝𝜆
𝑖 𝑗
(𝑠) is equivalent to the probability that

there exists at least one walk (i.e., revisiting a node is allowed) of

length 𝑠 from 𝑖 to 𝑗 via 𝜆. The probability of the existence of a walk

of length 𝑠 in a specific node sequence 𝑖 → 𝑣1 → . . . → 𝑣𝑠−1 → 𝑗

is given by

𝑞𝑖𝑣1
𝑞𝑣1𝑣2

· · ·𝑞𝑣𝑠−1 𝑗

where 𝑞𝑖 𝑗 is the edge probability as defined in (3). We claim that

𝑝𝜆
𝑖 𝑗
(𝑠) can be expressed as (11). The first summation in the bracket

of (11) counts all possible walks of length 𝑠 from 𝑖 to 𝑗 and sums

up their probabilities. The second summation in the bracket of (11)

counts all possible walks from 𝑖 to 𝑗 but never visits 𝜆. Thus the

subtraction in the bracket counts all the walks from 𝑖 to 𝑗 visiting

𝜆 at least once. Thus, expression (11) is the probability of the ex-

istence of walks of length 𝑠 from 𝑖 to 𝑗 via 𝜆 from Lemma 1, e.g.,

𝐴𝑘 in Lemma 1 corresponds to an event of a walk. The expression

is asymptotically accurate in 𝑁 , i.e., although Lemma 1 requires

events 𝐴𝑘 be independent, and the same edge may participate be-

tween different 𝐴𝑘 ’s and induce correlation, the fraction of such

correlations becomes negligible when 𝑠 ≪ 𝑁 , as argued in [17].

Let us evaluate the summations in the bracket of (11). We have

𝑁∑︁
𝑣1=1

· · ·
𝑁∑︁

𝑣𝑠−1=1

𝑞𝑖𝑣1
𝑞𝑣1𝑣2

· · ·𝑞𝑣𝑠−1 𝑗 = ℎ𝑖ℎ 𝑗

(
𝑁 ⟨ℎ2⟩

)𝑠−1

𝛽𝑠

whereas

𝑁∑︁
𝑣1=1

𝑣1≠𝜆

· · ·
𝑁∑︁

𝑣𝑠−1=1

𝑣𝑠−1≠𝜆

𝑞𝑖𝑣1
𝑞𝑣1𝑣2

· · ·𝑞𝑣𝑠−1 𝑗 = ℎ𝑖ℎ 𝑗

(
𝑁 ⟨ℎ2⟩ − ℎ2

𝜆

)𝑠−1

𝛽𝑠

Thus the subtraction in the bracket of (11) is given by

ℎ𝑖ℎ 𝑗

𝛽𝑠

[(
𝑁 ⟨ℎ2⟩

)𝑠−1

−
(
𝑁 ⟨ℎ2⟩ − ℎ2

𝜆

)𝑠−1

]
=
ℎ𝑖ℎ 𝑗

𝛽𝑠

(
𝑁 ⟨ℎ2⟩

)𝑠−1

1 −
(
1 −

ℎ2

𝜆

𝑁 ⟨ℎ2⟩

)𝑠−1 (12)

≈
ℎ𝑖ℎ 𝑗

𝛽𝑠

(
𝑁 ⟨ℎ2⟩

)𝑠−1

(𝑠 − 1)
ℎ2

𝜆

𝑁 ⟨ℎ2⟩

=
ℎ𝑖ℎ 𝑗ℎ

2

𝜆

𝛽𝑁 ⟨ℎ2⟩
(𝑠 − 1)

(
𝑁 ⟨ℎ2⟩
𝛽

)𝑠−1

(13)

Let random variable 𝐿𝑖 𝑗 (𝜆) denote the path length from node 𝑖

to 𝑗 with visiting landmark 𝜆. Then we have 𝑝𝜆
𝑖 𝑗
(𝑠) = 𝑃 (𝐿𝑖 𝑗 (𝜆) ≤ 𝑠).

Let

𝐹𝜆 (𝑠) := 𝑃 (𝐿𝑖 𝑗 (𝜆) > 𝑠).
We have that

𝐹𝜆 (𝑠) = 1 − 𝑝𝜆𝑖 𝑗 (𝑠) = exp

[
−
ℎ𝑖ℎ 𝑗ℎ

2

𝜆

𝛽𝑁 ⟨ℎ2⟩
(𝑠 − 1)

(
⟨ℎ2⟩𝑁
𝛽

)𝑠−1

]
for 𝑠 = 1, 2, · · · .

Consider the minimum distance among the routes via landmarks

𝜆𝑘 , 𝑘 = 1, · · · , 𝐾 (𝑁 ) where the landmarks are chosen i.i.d. from

distribution ∼ 𝑄 . Let 𝐿𝑖 𝑗 denote the minimum distance among the

routes from 𝑖 to 𝑗 via the landmarks. Then

𝐿𝑖 𝑗 = min[𝐿𝑖 𝑗 (𝜆1), 𝐿𝑖 𝑗 (𝜆2), · · · , 𝐿𝑖 𝑗 (𝜆𝐾 (𝑁 ) )] .
We have that

𝑃 (𝐿𝑖 𝑗 > 𝑠)
= 𝑃 (min[𝐿𝑖 𝑗 (𝜆1), 𝐿𝑖 𝑗 (𝜆2), · · · , 𝐿𝑖 𝑗 (𝜆𝐾 (𝑁 ) )] > 𝑠)
= 𝑃 (𝐿𝑖 𝑗 (𝜆1) > 𝑠, 𝐿𝑖 𝑗 (𝜆2) > 𝑠, · · · , 𝐿𝑖 𝑗 (𝜆𝐾 (𝑁 ) ) > 𝑠)

=

𝐾 (𝑁 )∏
𝑘=1

𝑃 (𝐿𝑖 𝑗 (𝜆𝑘 ) > 𝑠)

= exp

−
ℎ𝑖ℎ 𝑗

𝛽𝑁 ⟨ℎ2⟩
©«
𝐾 (𝑁 )∑︁
𝑘=1

ℎ2

𝜆𝑘

ª®¬ (𝑠 − 1)
(
⟨ℎ2⟩𝑁
𝛽

)𝑠−1


= exp

[
−

ℎ𝑖ℎ 𝑗

𝛽𝑁 ⟨ℎ2⟩
𝐾 (𝑁 ) · ⟨ℎ2⟩𝑄 · (𝑠 − 1)

(
⟨ℎ2⟩𝑁
𝛽

)𝑠−1

]
which proves (1), where we have used

©«
𝐾 (𝑁 )∑︁
𝑘=1

ℎ2

𝜆𝑘

ª®¬ = 𝐾 (𝑁 ) · 1

𝐾 (𝑁 )
©«
𝐾 (𝑁 )∑︁
𝑘=1

ℎ2

𝜆𝑘

ª®¬
= 𝐾 (𝑁 ) · ⟨ℎ2⟩𝑄

in the last equation, and ⟨·⟩𝑄 denotes the expectation of the hidden

variables of landmarks chosen according to ∼ 𝑄 assuming 𝐾 (𝑁 ) is
sufficiently large.
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−
Ei

(
− 𝑎

log𝑏

)
log𝑏

=
−𝛾 − log𝑎 + log log𝑏

log𝑏
(14)

=

− log(ℎ𝑖ℎ 𝑗 ) − log

(
⟨ℎ2⟩𝑄𝐾 (𝑁 )

)
+ log(𝑁𝛽 ⟨ℎ2⟩) + log log

(
𝑁 ⟨ℎ2 ⟩
𝛽

)
− 𝛾

log𝑁 + log⟨ℎ2⟩ − log 𝛽
(15)

A.2 Proof of Theorem 2.
Let 𝑙𝑖 𝑗 denote the mean length of the shortest detour via landmarks

from 𝑖 to 𝑗 . We have that

𝑙𝑖 𝑗 =

∞∑︁
𝑠=1

𝑃 (𝐿𝑖 𝑗 > 𝑠)

=

∞∑︁
𝑠=0

exp

[
−

ℎ𝑖ℎ 𝑗

𝛽𝑁 ⟨ℎ2⟩
· ⟨ℎ2⟩𝑄𝐾 (𝑁 ) · 𝑠

(
⟨ℎ2⟩𝑁
𝛽

)𝑠 ]
We utilize the Poisson summation formula [22]:

𝑙𝑖 𝑗 =
1

2

𝑓 (0) +
∫ ∞

0

𝑓 (𝑡) 𝑑𝑡 + 2

∞∑︁
𝑛=1

∫ ∞

0

𝑓 (𝑡) cos(2𝜋𝑛𝑡) 𝑑𝑡 (16)

where

𝑓 (𝑡) = exp

[
−𝑎𝑡𝑏𝑡

]
, (17)

𝑎 := ⟨ℎ2⟩𝑄𝐾 (𝑁 ) ·
ℎ𝑖ℎ 𝑗

𝛽𝑁 ⟨ℎ2⟩
, (18)

𝑏 :=
⟨ℎ2⟩𝑁
𝛽

(19)

Firstly we have 𝑓 (0) = 1. Next, we evaluate the second term of (16):∫ ∞

0

exp

(
−𝑎𝑡𝑏𝑡

)
𝑑𝑡 =

∫ ∞

0

exp

(
−𝑎𝑡𝑒𝑡 log𝑏

)
𝑑𝑡

= (log𝑏)−1

∫ ∞

0

exp

(
− 𝑎

log𝑏
𝑡𝑒𝑡

)
𝑑𝑡 (20)

Let 𝑢 = 𝑡𝑒𝑡 , then we have

𝑑𝑡 =
𝑑𝑢

𝑢 + 𝑒𝑊 (𝑢 )

where 𝑊 (·) is the Lambert 𝑊 function which is the inverse of

function 𝑡𝑒𝑡 for 𝑡 ≥ 0. Thus (20) is equal to

(log𝑏)−1

∫ ∞

0

exp

(
− 𝑎

log𝑏
𝑢

)
𝑢 + 𝑒𝑊 (𝑢 ) 𝑑𝑢

Since𝑊 (𝑢) ≥ 0 for 𝑢 ≥ 0, (20) is bounded above by

(log𝑏)−1

∫ ∞

0

exp

(
− 𝑎

log𝑏
𝑢

)
𝑢 + 1

𝑑𝑢

= (log𝑏)−1
exp

(
𝑎

log𝑏

) ∫ ∞

1

exp

(
− 𝑎

log𝑏
𝑢

)
𝑢

𝑑𝑢

= − exp

(
𝑎

log𝑏

)
Ei

(
− 𝑎

log𝑏

)
log𝑏

(21)

where Ei(·) denotes the exponential integral. Consider the assump-

tion 𝐾 (𝑁 ) = 𝑜 (𝑁 ), i.e., the number of landmarks is not too large

compared to 𝑁 . Under this assumption, one can verify that 𝑎/log𝑏

is at most 𝑜 (𝑁 )/𝑁 which tends to 0 as 𝑁 → ∞. Thus the exponen-

tial term of (21) can be approximated to 1. Thus, (21) reduces to

(15). In (14), we used

−Ei

(
− 𝑎

log𝑏

)
≈ −𝛾 − log

(
𝑎

log𝑏

)
where the error term associated with exponential integral vanishes

because 𝑎/log𝑏 is small, and 𝛾 ≈ 0.5772 is the Euler’s constant.

Finally, one can show that the last term of (16) vanishes, by using

generalized mean value theorem [17]. By averaging (15) over all

𝑖, 𝑗 ∈ 𝑉 , we obtain (2) from (16).

A.3 Proof of Theorem 3
Let𝑀 (𝑁 ) := (log𝑁 ) ·𝐾 (𝑁 ). The landmarks are selected at random

from 𝑀 (𝑁 ) nodes with highest values of ℎ. This implies that the

distribution𝑄 (·) of ℎ values of landmarks is given by the following

conditional distribution:

𝑄 (𝑡) = 𝜌 (𝑡 |ℎ ≥ 1√︁
𝑀 (𝑁 )

)

= 𝜌 (𝑡) · 1
(
𝑡 ∈

[
1√︁

𝑀 (𝑁 )
, 1

] )/
𝑃

(
ℎ ∈

[
1√︁

𝑀 (𝑁 )
, 1

] )
(22)

where 𝜌 (·) is the distribution of ℎ given by (8). From (22), we have

that

⟨ℎ2⟩𝑄 =

〈
ℎ21

(
ℎ ∈

[
1√

𝑀 (𝑁 )
, 1

] )〉
𝑃

(
ℎ ∈

[
1√

𝑀 (𝑁 )
, 1

] )
We have

𝑃

(
ℎ ∈

[
1√︁

𝑀 (𝑁 )
, 1

])
=

∫
1

1√
𝑀 (𝑁 )

𝜌 (ℎ) 𝑑ℎ

=
2

𝑁

∫
1

ℎ= 1√
𝑀 (𝑁 )

ℎ−3 𝑑ℎ

≈ 𝑀 (𝑁 )
𝑁

and 〈
ℎ21

(
ℎ ∈

[
1√︁

𝑀 (𝑁 )
, 1

])〉
=

∫
1

ℎ= 1√
𝑀 (𝑁 )

ℎ2𝜌 (ℎ) 𝑑ℎ

=
2

𝑁

∫
1

ℎ= 1√
𝑀 (𝑁 )

ℎ−1 𝑑ℎ

≈ log𝑀 (𝑁 )
𝑁

Thus, we have

⟨ℎ2⟩𝑄 =
log𝑀 (𝑁 )
𝑀 (𝑁 )
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Applying the result to (4), and using 𝑀 (𝑁 ) = (log𝑁 ) · 𝐾 (𝑁 ), we
obtain (5).

B NUMERICAL VERIFICATION OF
THEORETICAL RESULTS

B.1 Detour distances in ER networks
We verify the derived upper bounds on detour distances in ER

networks given by (6) using simulation. Fig. 2 shows the comparison

between the simulated detour distances and theoretical bounds in

(6) in ER networks for varying number of landmarks 𝐾 (𝑁 ). We

evaluated the cases where 𝐾 (𝑁 ) = log𝑁 , 𝑁 0.5
and 𝑁 0.9

. In all

cases, we observe that the derived upper bound provides very good

estimates on the actual detour distances.

Figure 2: Comparison of inter-node distances, landmark de-
tour distances, and upper bound for 𝐾 (𝑁 ) = log𝑁, 𝑁 0.5, 𝑁 0.9

in ER networks.

B.2 Detour distances in BA networks
We verify the derived upper bounds on detour distances in BA

networks given by (4). Fig. 3 shows a comparison between the

derived upper bounds and the simulated detour distances in BA

networks. We observe that the theoretical bound is an excellent

match with the simulated distances. In addition, the inter-node

distances in BA network are shown in Fig. 3. Indeed, the simulated

detour distances and the theoretical bounds are quite close to the

shortest path distances, which verifies our theoretical results.

C ACTUAL TRAINING TIME AND GPU
MEMORY USAGE

Table 5 and 6 show the comparison and actual training time and

GPU memory usage between vanilla GCN with HPLC. Note that

HPLC already contains vanilla GCN as a component. Thus, one
should attend to the additional resource usage incurred by HPLC

in Table 5 and 6. Experiments are conducted with NVIDIA A100

with 40GB memory. We observe that, the additional space and

Figure 3: Comparison of inter-node distances, landmark de-
tour distances, and theoretical upper bounds in BA networks.

time complexity incurred by HPLC relative to vanilla GCN is quite

reasonable, demonstrating the scalability of our framework.

Dataset vanilla GCN HPLC
CITATION2 282856 (ms) 352670 (ms)

COLLAB 1719 (ms) 2736 (ms)

DDI 3246 (ms) 3312 (ms)

PubMed 8859 (ms) 8961 (ms)

Cora 982 (ms) 1022 (ms)

Facebook 1107 (ms) 1243 (ms)

Table 5: Comparison of training time for 1 epoch between
vanilla GCN and HPLC.

Dataset vanilla GCN HPLC
CITATION2 29562 (MB) 36344 (MB)

COLLAB 4988 (MB) 7788 (MB)

DDI 2512 (MB) 2630 (MB)

PubMed 2166 (MB) 3036 (MB)

Cora 1458 (MB) 6160 (MB)

Facebook 2274 (MB) 2796 (MB)

Table 6: Comparison of GPU memory usage during training
between vanilla GCN and HPLC.

D NUMBER OF CLUSTERS
Table 7 shows the performance with varying number of clusters.

Specifically, 𝐾 = 𝜂 log𝑁 where we vary hyperparameter 𝜂. The

results show that performance can be improved by adjusting the

number of clusters.

E NODE CENTRALITY
For each cluster, the most “central” node should be selected as the

landmark. We have used Degree centrality in this paper; however,
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𝜂 COLLAB DDI PubMed Cora Citeseer Facebook
1 55.42 ± 0.51 68.27 ± 6.47 96.41 ± 0.13 94.34 ± 0.16 94.70 ± 0.31 99.53 ± 0.00

2 55.44 ± 0.80 68.95 ± 7.30 96.42 ± 0.17 94.51 ± 0.18 94.73 ± 0.12 99.48 ± 0.00

3 55.76 ± 0.48 69.34 ± 7.03 96.38 ± 0.22 94.61 ± 0.11 94.85 ± 0.14 99.69 ± 0.00
4 59.95 ± 0.54 69.95 ± 8.23 96.89 ± 0.19 94.68 ± 0.12 95.14 ± 0.11 99.63 ± 0.00

5 56.04 ± 0.28 70.03 ± 7.02 97.32 ± 0.17 94.74 ± 0.12 95.34 ± 0.18 99.60 ± 0.00

6 - - 97.31 ± 0.24 94.81 ± 0.19 95.87 ± 0.13 99.64 ± 0.00

7 - - 97.38 ± 0.34 94.95 ± 0.18 96.15 ± 0.19 99.65 ± 0.00

Table 7: Ablation study with hierarchical graph clustering in terms of hyperparameter 𝜂.

Centrality DDI PubMed Cora Citeseer Facebook

Degree 70.03 ± 7.02 97.38 ± 0.34 94.95 ± 0.18 96.15 ± 0.19 99.69 ± 0.00
Betweeness 69.71 ± 6.87 97.16 ± 0.19 94.69 ± 0.12 95.84 ± 0.08 99.52 ± 0.00

Closeness 69.56 ± 5.65 96.92 ± 0.20 94.43 ± 0.10 95.65 ± 0.12 99.45 ± 0.00

Table 8: Link prediction results from landmark selection with different centrality.

Dataset FluidC Louvain
COLLAB 56.04 ± 0.28 -

DDI 70.03 ± 7.02 60.79 ± 8.89

Pubmed 97.38 ± 0.34 95.83 ± 0.23

Cora 94.95 ± 0.18 93.78 ± 0.15

Citeseer 96.15 ± 0.19 94.98 ± 0.12

Facebook 99.69 ± 0.00 99.30 ± 0.00

Table 9: Comparison of graph clustering algorithms.

there are other types of centrality such as Betweenness and Close-

ness. Betweenness centrality is a measure of how often a given

node is included in the shortest paths between node pairs. Close-

ness centrality is the reciprocal of the sum-length of shortest paths

to the other nodes.

Table 8 shows the experimental results comparing Degree, Be-

tweenness and Closeness centralities. The results show that the

performances are similar among the centralities. Thus, all the cen-

tralities are effective measures for identifying “important” nodes.

Degree centrality, however, was better than the other choices.

More importantly, Betweenness and Closeness centralities re-

quire full information on inter-node distances, which incurs high

computational overhead. In Table 8, we excluded datasets CITA-

TION2 and COLLAB which are too large graphs to compute Be-

tweenness and Closeness centralities. Scalability is crucial for link

prediction methods. Thus we conclude that, from the perspective

of scalability and performance, Degree centrality is the best choice.

F GRAPH CLUSTERING ALGORITHM
We conducted ablation study such that FluidC is replaced by Lou-

vain algorithm [7] which is widely used for graph clustering and

community detection. Table 9 shows that our model performs bet-

ter with FluidC than with Louvain algorithm in all datasets. The

proposed hierarchical clustering using FluidC can control the num-

ber of clusters to achieve a good trade-off between complexity

and performance. However, Louvain algorithm automatically sets

the number of clusters, and the number varied significantly over

datasets. Moreover, for COLLAB dataset, Louvain algorithm could

not be used due to resource issues. Thus, we conclude that FluidC

is the better choice in our framework. We show the performance

with varying number of clusters of FluidC in Appendix D.

G DATASETS
Dataset statistics is shown in Table 10.

H HYPERPARAMETERS
The hyperparameters for experiments are shown in Table 11.
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Dataset # Nodes # Edges
#Edges

#Nodes
Avg. node deg Density Split ratio Metric

Cora 2,708 7,986 2.95 5.9 0.0021% 70/10/20 AUC

Citeseer 3,327 7,879 2.36 4.7 0.0014% 70/10/20 AUC

PubMed 19,717 64,041 3.25 6.5 0.00033% 70/10/20 AUC

Facebook 4,039 88,234 21.85 43.7 0.0108% 70/10/20 AUC

OGB-DDI 4,267 1,334,889 312.84 500.5 14.67% 80/10/10 Hits@20

OGB-CITATION2 2,927,963 30,561,187 10.81 20.7 0.00036% 98/1/1 MRR

OGB-COLLAB 235,868 1,285,465 5.41 8.2 0.0046% 92/4/4 Hits@50

Table 10: Dataset statistics.

Hyperparameter Value
Encoder of all plug-in methods GCN

Learning rate 0.001, 0.0005

Hidden dimension 256

Number of GNN layers 2, 3

Number of Decoder layers 2, 3

Negative sampling Uniformly Random sampling

Dropout 0.2, 0.5

Negative sample rate 1

Activation function ReLU (GNNs), LeakyReLU (𝑓𝑖 (𝑘 ) )
Loss function BCE Loss

Use edge weights False (only binary edge weights)

The number of landmarks 𝑂 (log𝑁 )
Optimizer Adam [25]

Table 11: Detailed hyperparameters.
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