
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRECOGUI: PROACTIVE GUI AGENTS VIA PRE-
COGNITIVE SIMULATION AND EXPERIENCE RE-
TRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing reactive Graphical User Interface (GUI) agents often fail in long-horizon,
dynamic scenarios, where unexpected disturbances trigger attention-diverting and
cascading failures. To address this, we propose PrecogUI, a pre-cognitive archi-
tecture that shifts the paradigm from reactive execution to proactive decision-
making. Specifically, we first design a Proactive Experience Pool (PEP) which
caches frequently occurring anomaly and success patterns as "state-action-result"
tuples in a graph structure, forming a composable prior memory. Furthermore,
we introduce a Proactive Simulation Executor (PSE) that learns to forecast the
next symbolic UI layout given a candidate action, enabling early anomaly avoid-
ance and estimating action success probabilities. Finally, a Pre-cognitive Execu-
tion Controller (PEC) fuses these priors and predictions, prioritizes handling of
foreseen anomalies, and ensures execution robustness through a closed-loop er-
ror correction mechanism. For robust evaluation, we develop AutoTraj, an auto-
matic data-generation engine, to construct InterfereBench, a benchmark for long-
horizon tasks with strong disturbances. Experiments demonstrate that PrecogUI
surpasses existing state-of-the-art methods on InterfereBench while maintaining
competitive performance on public benchmarks. The code and models will be
publicly available.

1 INTRODUCTION

Graphical User Interface (GUI) Agents (Cheng et al., 2024; Lin et al., 2025; Gou et al., 2025a;
Hong et al., 2024) are built on Multi-modal Large Language Models (MLLMs) to comprehend
user queries, interpret context, and perform actions like clicks and swipes for accomplishing GUI
tasks. The advancement of MLLMs (Li et al., 2023; Alayrac et al., 2022; Dai et al., 2023a) has
notably enhanced agents’ interface perception and decision-making precision. Nevertheless, disrup-
tive anomalies such as pop-ups and black screens in dynamic settings persist as a significant hurdle,
diverting attention and leading to cascading errors with prolonged consequences.

Prior research (Hong et al., 2024; Huang et al., 2025; Chen et al., 2025) has significantly ad-
vanced the perception-action loop. However, the prevailing approach remains reactive, relying on
current observations for decision-making. While effective in short-horizon, disturbance-free set-
tings (Rawles et al., 2025; Deng et al., 2023), these reactive methods may struggle in long-horizon
tasks and dynamic environments. Recent efforts have attempted to address this challenge through
online exploration (Sun et al., 2025; Fan et al., 2025) and improved visual-layout alignment ro-
bustness (Wen et al., 2024b; Kong et al., 2025). Nevertheless, the reactive nature still leaves agents
vulnerable to distractions from non-goal cues such as pop-ups and loading delays.

Key Observations. To investigate the robustness, we evaluate representative reactive agents (Liu
et al., 2025a; Qin et al., 2025; Zhang et al., 2025b) on AndroidControl (Li et al., 2024) under injected
disturbances at both the overlay level (e.g., pop-ups, notifications) and environment level (e.g., black
screens, freezing). Performance is assessed by success rate (SR), stratified by disturbance type and
task horizon. Specifically, as shown in Figure 1(b), the overlay-level disturbances induce the most
significant degradation, reducing SR by over 20% on average, compared to a milder 10% drop
under environment-level perturbations. Besides, the performance degradation scales monotonically

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

 Explorer

 Parser

 Sucess Ms

 Injector

Perturb Ma

Per. Handing

Pop-up

……

Action

Pre-State

Next-State

Pop-up
Freeze
·····

 UI Content

prediction

 UI Structure

Exception
Command

Index /87%

Relative/79%

Absolute/67%

Probability

Types

Command select

ind.
abl.

rel.

Known Anomly
(Ma)

Unknown Anomly
(Think&decison)

Callback

Next
step

 （c) Long-Horizon Disturbance Impact

 （b) Effects of Different Disturbance Types

Su
cc

es
s

R
at

e
Su

cc
es

s
R

at
e

（a) PrecogUI

Figure 1: (a) PrecogUI: a pre-cognitive architecture integrating prior experience with look-ahead
simulation; AutoTraj provides perturbed trajectories. (b) Disturbance-type sensitivity on Inter-
fereBench. (c) Disturbance effects amplify with task horizon.

with horizon length, as shown in Figure 1(c). On short-horizon tasks (< 5 steps), all models maintain
high robustness (SR≥ 91%). However, for medium-length tasks (6–15 steps), reactive agents exhibit
relative SR drops of about 10–14%. In long-horizon tasks (>15 steps), reactive agents SR declines
to about 40%.

Given the above results, we can observe that the reactive agents are prone to distraction by non-goal-
related stimuli, leading to potential cascading failures as errors accumulate over trajectories. This
observation prompts a crucial question: how can we empower agents with pre-cognitive planning
and explicit exception handling to ensure the robustness in long-horizon, dynamic environments?

Our Solution. In this study, we propose PrecogUI, a framework that integrates experience retrieval
with online look-ahead simulation to improve the robustness of GUI agents in long-horizon and
disturbance-prone settings. The conceptual architecture is illustrated in Figure 1(a).

Specifically, PrecogUI introduces the Proactive Experience Pool (PEP), a graph-structured repos-
itory that stores and retrieves recurring interaction patterns from both successful and anomalous
executions, enabling knowledge reuse via historical pattern matching. Then, the Proactive Simu-
lation Executor (PSE) employs a conditional diffusion model (Rombach et al., 2022) to simulate
the symbolic UI layout resulting from candidate actions, providing lookahead forecasts for early
anomaly detection and action success estimation. Finally, these are integrated by the Pre-cognitive
Execution Controller (PEC), which prioritizes anomaly handling, selects high-utility actions, and
ensures robustness through state monitoring and hierarchical rollback/retry.

To the best of our knowledge, no existing benchmark evaluates long-horizon robustness under real-
istic perturbations. We thus introduce InterfereBench, a new benchmark consisting of 1,160 long-
horizon trajectories (27k screenshots) across 34 diverse applications. These trajectories incorporate
prolonged task horizons and intense, dynamic interferences, and AutoTraj, an automated engine for
generating diverse, perturbation-rich interaction trajectories at scale. Experiments on InterfereBench
and generic benchmarks like AndroidControl and GUI-Odyssey show that PrecogUI significantly
outperforms the baseline by 22.1% in success rate under strong perturbations, improving robustness
without sacrificing overall performance. To summarize, our contributions are as follows:

• We propose PrecogUI, a unified framework that combines offline experience reuse, proactive lay-
out prediction, and exception-aware execution recovery to enhance robustness in long-horizon
GUI interactions.

• We present InterfereBench, a new benchmark designed to evaluate robustness under strong, sus-
tained perturbations in long-horizon tasks, along with AutoTraj, an automated pipeline for scal-
able, realistic trajectory generation.

• Extensive experiments on InterfereBench and the public benchmarks (AndroidControl (Li et al.,
2024) and GUI-Odyssey (Lu et al., 2024)) demonstrating that PrecogUI effectively improves long-
horizon reliability and anomaly resilience, while still maintaining the general capabilities.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Stage1: Autonomous Explorer Stage2: Trajectory Filter & Parser Stage3: Interference Injecter

Click: {"position": 16},

Click: {"position": 14},

······

UI Trajectories

Pop-up1 2 3

1 2

1 2 2

2

Injector

1 3

Each trajectory injects disturbances
(injection position and number decided by MLLM).

Freeze

Delay

UI View

UI Traversal

Interactive
Elements Candidate

Set

Action Command
Execution

min <step_
nums <max

Redundancy
(Self-loops,
No-loops)

 Structural
Pruning

MLLM Evaluation
(Topic, Causality,

Complexity)

Select Top-K
Trajacteries

Detailed Label
(Goal, Actions
step, ······)

 Structured
json output

· Goal
· Actions
· bbox
 · · · · · ·

 · · · · · ·

Parser

Explorer

Figure 2: Data Construction. Stage 1 discovers clickable elements via view hierarchy and vision,
executes basic actions, and logs replayable UI trajectories. Stage 2 prunes redundant steps, ranks
trajectories with an MLLM, and outputs structured annotations. Stage 3 injects realistic disturbances
to create cleanperturbed pairs for robustness evaluation.

2 METHOD

2.1 OVERVIEW

Toward robust long-horizon execution under perturbations, we propose PrecogUI, which closes the
loop between experience, foresight, and feedback via four modules: (i) PEP forms a graph-structured
memory of anomaly/success patterns via layout hashing and nearest-neighbor retrieval; (ii) PSE pre-
dicts the next symbolic UI layout, estimates anomaly risk, and ranks candidate actions (index/rel-
ative/absolute); (iii) PEC fuses PEP and PSE with online monitoring and rollback/retry to deliver
robust, closed-loop control; and (iv) AutoTraj builds InterfereBench, a long-horizon benchmark with
controlled perturbations. The discussion of related work is in the Appendix 11 due to the page limit.

2.2 DATA CONSTRUCTION

The capabilities of GUI agents are fundamentally constrained by data scale, diversity, and quality. To
address this, we present AutoTraj, an automated pipeline that generates high-quality GUI interaction
trajectories with explicit disturbance awareness. AutoTraj comprises three core components:

Autonomous Explorer. The Explorer efficiently discovers diverse, high-value interaction trajecto-
ries using a hybrid perception strategy: it prefers UI view hierarchy to find actionable elements, when
structured signals are missing or incomplete, it falls back to a vision pipeline that combines object
detection and optical character recognition (OCR), producing a unified candidate set of controls.

Exploration is driven by a pre-trained agent (Ye et al., 2025) that sequentially tries atomic actions
(click, scroll) and logs pre- and post-screenshots, as well as action metadata, to produce replayable
trajectories. To guide informative exploration, we define the exploration value at state st as:

V (st) = α ·
∣∣Et \

(⋃
i<t Ei

) ∣∣
|Et|+ ε

+ (1− α) · 1√
n(st) + 1

, (1)

where Et denotes the control set at st,
⋃

i<t Ei is the union of controls seen so far, and n(st) counts
visits to st. The first term promotes the discovery of unseen controls/layouts, while the second
enforces novelty to favour coverage and rarely visited states. α ∈ [0, 1] balances layout discovery
and rare-state exploration; hyperparameter analysis appears in Appendix 11.

Trajectory Parser. To ensure semantic and structural quality, the raw trajectories undergo a two-
stage filtering and parsing process. Stage-1 removes traces with excessive length and redundancy,
we formalise ρloop and ρnoop as follows:

ρloop =
1

T

T∑
t=1

1[at = self-loop] , ρnoop =
1

T

T∑
t=1

1[Dlayout(Lt, Lt+1) < τc] . (2)

where, T is the number of steps, at is the action at step t, Lt is the UI layout at step t, 1[·] denotes the
indicator function, Dlayout is the layout-difference measure, and τc is the no-op threshold. If either

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Proactive Experience Pool (b) Proactive Simulation Executor

MLLM

Import_contents: " The ‘Moments’ button at
the top of the current screen showing index
13 “,
Think: “The previous action successfully
navigated to the ‘Discover’ screen…..The
'Moments' button is clearly visible at the top
of the screen, labeled with index 13.
Action: "click": {“Index"}/{"Relative}
/{“Absolute”}

Deep Think & Decision

(c) Pre-cognitive Execution Controller

Cur state ks + Action ai-->
Sucess State ks’r

Success Experience Pool

Ms

Cur state ks + a1--> Anomaly
State ks’+ a2-->recover state ks’’r

Anomaly Experience Pool

Ma

Command & Anomaly Analysis

{"Index":
13}Current UI

state ks

{"Relative":
{n,(x,y)}}

{"Absolute":
{x,y}}

87% 76% 64%

Current
UI

state ks

Current UI
state ks

Execute
Action

Priority Exception
Handing

PEP Anomaly
Memory（Ma)

Known Anomaly?

Task Continus/Success

Add to Tobu list

 Wait
Close

······

Execute Preset Fix

Success-Oriented
Decision

ind.
abl.

rel.

Select best Action a*
based on P(success)

a*

State Monitoring &
Recovery

failure

PSE
Prediction Report

High Anomaly
Risk?

Autonomous
Analysis(MLLM)

Generate Fix Candidates

 Refry Callback

failure

Sucess

Action & Exception Handling

P(success)

Figure 3: Illustration of PrecogUI. (a) PEP builds a graph memory of anomaly/success patterns; (b)
PSE forecasts the next symbolic UI layout and estimates anomaly risk for candidate actions; (c)
PEC fuses priors and predictions to prioritize exception handling, select the highest-utility action,
and enforce closed-loop monitoring with rollback/retry.

ratio exceeds its preset threshold, the trajectory is pruned as structurally low-quality. Further details
are provided in Appendix 11

In Stage-2, we further filter trajectories using a high-capacity MLLM (Comanici et al., 2025b) that
evaluates topic consistency, causal soundness, and task complexity, selecting the top-K rated trajec-
tories for detailed labelling. For each trajectory, the parser yields a high-level task goal and stepwise
descriptions, and exports structured JSON containing goals, step descriptions, action types (nor-
malised coords), UI boxes, screen deltas, and execution outcomes for training and evaluation.

Perturbation Injector. To study robustness, we develop a Perturbation Injector that creates paired
samples for comparative evaluation. For each clean trajectory, we randomly inject real-world pertur-
bations covering: (1) overlay interference (simulating system notifications, pop-up dialogues, etc.);
(2) environmental perturbations (black or repeated frames for loading/lag, layout changes). This
process yields paired samples for each trajectory: a clean baseline and perturbed variants, enabling
comparative evaluation in both normal and perturbed modes.

Following this pipeline, AutoTraj produces the InterfereBench benchmark covering over 34 appli-
cation scenarios, with 1,160 long-horizon trajectories (14–37 steps each) and around 27k annotated
screenshots. Each trajectory includes one clean baseline and two perturbed variants of different
types, providing a solid foundation for a comprehensive evaluation of GUI agents’ robustness in
long-horizon, dynamic environments.

To faithfully capture and replay complex interactions beyond single-tap actions, we additionally em-
ploy PolyTouch (Sec. 11), a multi-gesture and macro execution layer that synthesizes deterministic
multi-pointer gestures (e.g., three/four-finger chords, pinch/zoom/rotation) and declarative macros
with explicit timing, guards, retries, and rollback.

2.3 PROACTIVE EXPERIENCE POOL

We observe that failure-inducing anomaly patterns (e.g., permission pop-ups, network delays) and
success-inducing patterns (e.g., app navigation) repeat widely across tasks and applications. There-
fore, we propose the Proactive Experience Pool (PEP), which converts costly trial-and-error into
efficient experience retrieval. By caching and indexing critical stateactionoutcome patterns, the ex-
ecutor can leverage priors rather than plan in isolation. PEP maintains two parallel memories:

(1) Anomaly Memory (Ma): Ma records two classes of failures: (i) stateaction mappings (ks, ka) 7→
ℓanom when an action in a state yields a specific anomaly; (ii) ks 7→ ℓanom for states that inherently
denote failure (e.g., network outage).

(2) Success Memory (Ms): Ms maintains high-confidence transitions as successful transitions
(ks, ka) 7→ ks′ , denoting that action a in state s reliably reaches a successful successor state s′.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

State Representation and Retrieval Mechanism. To enable robust and efficient retrieval, we
represent each UI state s by a canonical layout hash ks = hs(Lt) (hash-based). This key is computed
from a deterministically sorted list of interactive elements, where each element is abstracted as (type,
bbox). Similarly, actions a are canonicalized to a key ka based on their type and the target element’s
normalized coordinates.

Crucially, PEP is a dynamic, online-updated memory. Upon encountering new anomalies or discov-
ering successful cases via exploration, the agent extracts the associated state-action-result tuple in
real time and asynchronously appends it to the memory pool.

2.4 PROACTIVE SIMULATION EXECUTOR

The mainstream GUI agents are fundamentally reactive, lacking foresight into post-action effects.
With abrupt transitions in dynamic UIs, reactive policies without anticipation of anomalies tend to
fall into irrecoverable failures. Accordingly, we propose the Proactive Simulation Executor (PSE),
which forecasts the next symbolic UI layout before acting, and evaluates anomaly risk and candidate
action’s success probability, shifting the paradigm from observe–act to observe–predict–act.

Conditional Future Layout Generation. To capture the inherent uncertainty of UI state transi-
tions, we model the next-step layout distribution P (L̂t+1|Lt, at, g) using a conditional latent dif-
fusion model (Rombach et al., 2022), which is fine-tuned on a comprehensive dataset comprising
InterfereBench and several public GUI datasets (Li et al., 2024; Lu et al., 2024). For computational
efficiency, we abandon pixel-space generation and predict a symbolic layout Lt+1, represented as
an ordered set of (type, bbox). It is conditioned on a joint embedding C of the current layout
Lt, the candidate action at and the task goal g.

li−1 =
1
√
αi

(
li −

1− αi√
1− ᾱi

ϵθ(li, i,C)

)
+ σiϵ (3)

where αi, ᾱi, and σi are the pre-specified noise-schedule parameters. Finally, the denoised latent
l̂t+1 is decoded into a discrete symbolic layout, yielding the predicted future layout L̂t+1.

Reliability Forecasting. Subsequently, we apply a set of efficient rules to the predicted layout L̂t+1

for anomaly recognition. For example, if a bounding box significantly occludes multiple interactive
controls in Lt, it is flagged as a pop-up Anomaly; if interactive elements are nearly absent, a Blank-
Screen Anomaly; if L̂t+1 remains largely unchanged from Lt, the action is likely ineffective or
causes freezing.

Our premise is that success correlates with salient layout shifts. To quantify this, for each candidate
action at, we introduce the Layout Dissimilarity Score, formalized as:

Dlayout(Lt, L̂t+1) = 1− 2|M|
|Lt|+ |L̂t+1|

(4)

whereM is the set of matched pairs between the Lt and L̂t+1. This score is naturally normalized:
it is 0 for identical layouts and approaches 1 for completely dissimilar ones. We then directly use
this dissimilarity score as the success probability, as it reflects the magnitude of the predicted UI
transformation:

P (success | at, type) = Dlayout(Lt, L̂t+1) (5)

Finally, PSE returns a comprehensive reliability report for each candidate action, including anomaly
probabilities and type-specific success probabilities, to the downstream decision-making module.

2.5 PRE-COGNITIVE EXECUTION CONTROLLER

While PSE offers look-ahead predictions, robustness remains uncertain in the absence of a deci-
sion framework that converts them into concrete actions. We design the Pre-cognitive Execution
Controller (PEC), a closed-loop controller that fuses PEP priors, PSE predictions, and execution
feedback, converting open-ended trial-and-error into guided, self-correcting policy control.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Pre-cognitive Execution Controller

Require: Goal g, current state st, anomaly memory Ma

Ensure: A single successful action-type pair (a, type) or a fallback diagnosis action
// – Stage 1: Pre-cognitive Anomaly Checks –

1: ks ← Hash(Layout(st))
2: if Ma.Query(ks) returns a remedy ahandle then
3: return ahandle

4: if PSE.ForecastRisk(st) > τrisk then
5: return πLLM(st, Tanomaly) ▷ Autonomous diagnosis for novel anomaly

// – Stage 2: Iterative Execution and Recovery Loop –
6: A ← MLLM.GenerateCandidates(st, g)
7: Ft ← ∅ ▷ Initialize temporary taboo list
8: while A is not empty do
9: (a∗, type∗)← argmaxP (success | ai, typej)

10: execute (a∗, type∗); observe new state st+1

11: if MLLM.VerifySuccess(st, (a∗, type∗), st+1) then
12: return (a∗, type∗) ▷ Success: terminate step
13: Ft ← Ft ∪ {(a∗, type∗)}
14: if Dlayout(Layout(st),Layout(st+1)) < τc then ▷ Stagnation
15: continue
16: else ▷ Unexpected Transition
17: ROLLBACK
18: if all types for a∗ are in Ft then
19: A ← A \ {a∗}
20: return πLLM(st, Tanomaly) ▷ Final diagnosis if all candidates fail

Deep Think & Decision. The cycle begins by generating a set of semantically grounded candi-
date actions A. We steer a base MLLM’s reasoning by prompting it to populate a structured JSON
schema. This schema mandates a chain of thought that includes: (i)Historical Validation, verify-
ing the outcome of the previous step; (ii)Content Grounding, ensuring that critical UI elements for
the current instruction are present; (iii)Think, a step for rationale articulation and failure attribution
analysis; and finally (iv)Action, which outputs a ranked set of candidate actions, each with index,
relative, and absolute coordinate formats, further details are provided in Appendix 11.

Pre-cognitive Decision and Execution. Prior to execution, PEC performs a pre-execution anomaly
check on st. It first queries the anomaly memory Ma with the layout hash ks, if it matches a known
anomaly, the controller triggers the preset remedy ahandle; If the lookup fails and PSE indicates
elevated risk, PEC activates autonomous diagnosis and uses a foundation model with a structured
anomaly prompt (details in Appendix 11) to synthesize an immediate handling action ahandle.

When the state is judged as normal, PEC proceeds with a success-oriented decision. It takes the
candidate actions A from the previous stage and requests reliability reports from PSE. Finally, it
selects and executes the action-type pair (a∗, type∗) according to:

(a∗, type∗) = argmax
ai∈A

(
P (success | ai, typej)

)
(6)

The selection is constrained to actions that are not flagged as high-risk by PSE.

State Monitoring & Adaptive Recovery After executing the action (a∗, type∗), PEC captures the
new state st+1 and verifies the outcome via both the layout change Dlayout(Lt, Lt+1) and a semantic
validation from its MLLM, as part of the subsequent step’s Historical Validation. If the execution is
judged a failure, PEC triggers recovery according to the failure type:

• Stagnation: For minimal layout change (Dlayout(Lt, Lt+1) < τc), PEC treats the instruction as
invalid and retries the action using PSEs next-best instruction type.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on InterfereBench under two instruction settings (Low/High), TM n and SRn

denote type-matching and success rate on the normal (non-perturbed) subset; and TM a and SRa

denote the corresponding metrics on the perturbed subset.

Method InterfereBench-Low InterfereBench-High

TMn SRn TMa SRa TMn SRn TMa SRa

GPT-4o 76.7 22.1 69.0 9.3 73.4 3.9 65.0 1.2
Gemini-2.5 87.1 28.4 80.0 12.5 83.8 17.7 76.0 7.5
Qwen-2.5-VL 90.6 33.7 82.5 18.9 71.7 36.5 64.0 18.0

OmniParser 84.1 70.9 76.0 41.5 (↓ 29.4) 70.6 27.3 63.0 12.8 (↓ 14.5)
InfiGUI-R1 88.9 73.6 81.5 45.8 (↓ 27.8) 77.4 37.3 68.0 19.5 (↓ 17.8)
OS-Atlas 88.4 72.1 80.8 43.3 (↓ 28.8) 72.8 30.4 63.5 14.7 (↓ 15.7)
AgentCPM 90.0 75.7 82.1 46.0 (↓ 29.7) 78.9 35.7 66.8 18.4 (↓ 17.3)
UI-TARS-1.5 90.8 74.5 82.6 45.0 (↓ 29.5) 76.9 36.6 66.0 19.2 (↓ 17.4)

PrecogUI 92.9 79.2 90.0 68.4 (↓ 10.8) 80.0 52.7 74.5 41.6 (↓ 11.1)

Table 2: Grounding Performance Comparison on the ScreenSpot Benchmark.

Method Mobile Desktop Web Avg

Text Icon Text Icon Text Icon

GPT-4o 30.5 23.2 20.6 19.4 11.1 7.8 18.8
Gemini2.0 – – – – – – 84.0
Qwen-2.5-VL – – – – – – 84.7

CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.5 30.0 55.7 32.5 53.4
ShowUI 92.3 75.5 76.3 61.1 81.7 63.6 75.1
OmniParser 93.9 57.0 91.3 63.6 81.3 51.0 75.1
UI-Tars-1.5 93.0 75.5 90.7 68.6 84.3 74.8 82.3
InfiGUI-R1 97.1 81.2 94.3 77.1 91.7 77.6 87.5

PrecogUI 96.5 87.8 97.5 82.2 94.6 91.7 91.2

• Unexpected Transition: If the layout changes significantly (Dlayout(Lt, Lt+1) ≥ τc) but the
MLLM’s semantic validation deems the new state an incorrect outcome, PEC performs a roll-
back and adds the failed pair to a temporary taboo list Ft to block immediate reuse.

Overall, PEC not only executes optimally in normal settings but also adapts to failures, boosting
robustness and recovery in uncertain environments.

3 EXPERIMENTS

We implement PrecogUI on a smartphone UI-automation stack, using Gemini-2.5-Pro as the rea-
soning backend (Comanici et al., 2025a). The system is zero-training end-to-end: all modules are
non-learned except the PSEs next-step layout predictor, which is lightly fine-tuned on InterfereBench
and public datasets to model action-conditioned UI transitions. More implementation details are in
Appendix 11.

To evaluate model performance, we use two types of datasets: (1) Self-constructed InterfereBench,
designed to test agent robustness in long-horizon and disturbance tasks. It includes two settings: (i)
normal, a clean environment; (ii) perturbation, with dynamic perturbations like overlays and layout
changes. (2) Public benchmarks, split into (a) ScreenSpot (Cheng et al., 2024), which measures
UI element grounding (text/icon) to assess localization capability, and (b) navigation-centric suites
AndroidControl (Li et al., 2024) and GUI-Odyssey (Lu et al., 2024), which evaluate end-to-end task
completion and generalization under Low/High instruction settings. Evaluation follows standard
GUI agent metrics: success rate (SR) and type matching (TM).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison on AndroidControl and GUI-Odyssey benchmarks

Method AndroidControl-Low AndroidControl-High GUI-Odyssey Avg

TM SR TM SR TM SR

GPT-4o 74.3 19.4 63.1 21.2 37.5 5.4 36.8
Qwen-2.5-VL 94.1 85.0 75.1 62.9 59.5 46.3 70.5
UI-Tars-1.5 98.0 91.3 83.7 72.5 94.6 87.0 87.4

SeeClick 93.0 75.0 82.9 59.1 71.0 53.9 72.5
Aria-UI – 67.3 – 10.2 – 36.5 –
OS-Atlas 91.9 80.6 84.7 67.5 83.5 56.4 77.4
InfiGUI-R1 96.0 92.1 82.7 74.4 – – –
AgentCPM-GUI 94.4 90.2 77.7 69.2 90.9 75.0 82.9

PrecogUI 94.9 88.7 86.8 76.4 91.3 89.1 87.7

（a) PrecogUI Component Ablation （b) Failure correction for actions command
Figure 4: Ablation and reliability analysis of PrecogUI.

3.1 MAIN RESULTS

Perturbation Handling. We evaluate PrecogUI on InterfereBench to assess long-horizon and
dynamic-UI robustness. We compare against: 1) General base models, GPT-4o (OpenAI et al.,
2024), Gemini-2.5 (Comanici et al., 2025b), and Qwen-2.5-VL (Bai et al., 2025); 2) Specialized
GUI agents: OmniParser (Wan et al., 2024), InfiGUI-R1 (Liu et al., 2025b), AgentCPM, OS-Atlas
(Wu et al., 2024), and UI-TARS. As shown in Table 1, on the normal subset, PrecogUI reaches an SR
of 79.2% (Low) and 52.7% (High), outperforming the best reactive GUI agent by 3.5% and 15.4%,
respectively. Crucially, on the perturbation subset, PrecogUI shows much less degradation by only
10.8% / 11.1% (Low/High), and surpasses previous SOTA by 23.4% (Low) and 22.4% (High).

Grounding Capability. Table 2 reports ScreenSpot grounding accuracy across mobile/desk-
top/web. PrecogUI consistently outperforms prior methods across device subsets (mobile, desktop,
web), achieving 91.2% average grounding accuracy, surpassing all open-source models and outper-
forming the previous SOTA (InfiGUI-R1) GUI framework by 3.7%.

Navigation Capability. To validate generalization, PrecogUI is evaluated on mainstream public
benchmarks, including AndroidControl and GUI-Odyssey. As shown in Table 3, on AndroidCon-
trol, PrecogUI achieves success rates of 88.7% (Low) and 76.4% (High), and reaches 89.1% on
GUI-Odyssey. PrecogUI surpasses a base model by 8.2% and exceeds an instruction-tuned, GUI-
specialised agent by an average of 4.5%. The findings support that PrecogUI is a general, efficient
decision paradigm rather than a solution limited to particular disturbances.

3.2 ABLATION STUDY

Effectiveness of the Experience Pool (PEP). To assess the contributions of PrecogUI components,
we conduct ablations on the InterfereBench strong-perturbation subset. As shown in Figure 4(a) A
purely reactive baseline achieves 41.5% SR that relies only on the base model. With PEP integrated,
SR improves by 14.6%, showing the benefit of layout-based hashing to reuse success/anomaly pat-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

For various anomalies such as system notifications, pop-ups, black screens, and white screens, the
controller executes type-specific handling instructions, including close, wait, and retry.

Game event popup White screen anomaly

Landscape ModeVersion update pop-up Black screen anomaly

App notification Store promotion popup Loading delay Portrait Mode System warning dialog

App Pop-up Game Pop-up Environmental
Perturbation Layout Transition System Pop-up

wait

wait

retry

Figure 5: Case Visualization of PrecogUI in Various Anomalous Scenarios

terns for trap avoidance. When used without PEP, PSE increases SR by 11.3%, demonstrating the
utility of forecasting the next layout to preempt unseen disturbances. With all components enabled,
PrecogUI reaches 68.4% SR. On the clean long-horizon subset, components also provide gains, with
SR rising from 70.9% to 79.2%. These results demonstrate the robustness of PrecogUIs components
on long-horizon, strongly perturbed tasks.

Analysis of Proactive Reliability Forecasting. PSE is designed to forecast the next-frame layout
transition for index, relative, and absolute instructions individually, providing an estimate of their
expected return. We compare two strategies: (i) a fixed policy that always uses a single instruction
type (e.g., index only); (ii) a dynamic policy that executes the instruction with the highest expected
return predicted by PSE. As shown in Figure 4(b), the fixed index policy is fragile in dynamic UIs,
where pop-ups or layout shifts reduce its SR to only 74.8%. Under the normal mode, the dynamic
strategy recovered 40 failed trajectories and improved step-wise SR to 79.2%. This gain confirms
that in dynamic GUIs, no single instruction type remains optimal across contexts.

3.3 CASE VISUALIZATION

As illustrated in Figure 5, PrecogUI demonstrates strong anomaly-handling capabilities across cross-
application, strong-perturbation, and dynamic GUI tasks. Whether facing common application or in-
game pop-ups, extreme disturbances such as black or white screens, or drastic layout changes with
high-priority system-level pop-ups, PrecogUI consistently shows distinct advantages. In addition to
dealing with expected pop-ups, PrecogUI relies on predictive modeling to foresee layout shifts and
latent abnormal states. For example, under loading delays, the model anticipates the disruption and
chooses to wait, avoiding erroneous interactions with empty or unresponsive screens. This foresight-
driven anomaly-avoidance mechanism ensures robust execution in complex task flows, a capability
absent in reactive agents.

4 CONCLUDING REMARKS

In this work, we address the core challenge that reactive policies in long-horizon, disturbance-rich
GUI tasks are easily diverted by anomalies and lead to cascading failures by introducing PrecogUI, a
pre-cognitive framework that shifts decision-making from reactive control to anticipatory reasoning.
PrecogUI follows an experienceforesightfeedback loop: PEP encodes anomaly and success patterns
into retrievable priors via layout hashing; PSE forecasts the next symbolic layout and evaluates
risks and success likelihood; PEC fuses these priors and predictions with runtime monitoring and
rollback/retry, delivering anomaly-first yet success-driven closed-loop control. Finally, we validate
PrecogUI on both our constructed InterfereBench and public benchmarks, demonstrating significant
performance gains and robust execution in complex, dynamic environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS CHECKLIST

1. Code of Ethics Acknowledgement

1.1. All authors have read and will adhere to the ICLR Code of Ethics; acknowledgement was made
during submission (yes/no) yes

1.2. This paper includes an Ethics Statement at the end of the main text, before references (if appli-
cable) (yes/no) yes

2. Human Subjects and IRB/Consent

2.1. Research involves human subjects or user studies (yes/no) NA

If yes, address the following:

2.2. IRB/ethics board approval (or equivalent) is obtained and documented (yes/NA) NA

2.3. Informed consent procedures are described; compensation and inclusion of minors are
disclosed (yes/NA) NA

3. Data, Privacy, and Security

3.1. All datasets used are cited with licenses and access conditions; non-public data are described
with justification (yes/partial/no) yes

3.2. Personally identifiable information (PII) was removed, anonymized, or processed under com-
pliant safeguards (yes/NA) yes

3.3. Data collection respects terms of service and legal/compliance requirements (e.g., copyright,
web scraping policies) (yes/partial/no) yes

3.4. Security-sensitive artifacts or vulnerabilities are responsibly handled (e.g., redactions, coordi-
nated disclosure) (yes/NA) NA

4. Bias, Fairness, and Potential Harm

4.1. Known risks of harmful or dual-use applications are discussed with mitigation strategies (yes/-
partial/no) yes

4.2. Bias/fairness concerns (subgroup performance, demographic or domain skews) are analyzed or
acknowledged (yes/partial/no) partial

4.3. Limitations, open risks, and appropriate use/disallowed use are stated (yes/no) yes

5. Conflicts of Interest and Sponsorship

5.1. All funding sources, compute donations, and in-kind support are disclosed (yes/no) yes

5.2. Potential conflicts of interest (employment, consulting, equity) are disclosed (yes/NA) NA

6. Research Integrity

6.1. All results are reported faithfully; negative findings or failure cases are included when relevant
(yes/partial/no) yes

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6.2. Figures/tables are accurately labeled; data provenance and documentation are maintained (yes/-
partial/no) yes

Note: The Ethics Statement is optional but recommended; it does not count toward the page limit and should
not exceed one page.

REPRODUCIBILITY CHECKLIST

7. Overall Documentation

7.1. High-level method overview and/or pseudocode provided (yes/partial/no) yes

7.2. Clear separation of claims vs. evidence; notation and assumptions are stated (yes/partial/no)
yes

7.3. Pointers to background/pedagogical resources for replication (yes/no) yes

8. Code, Artifacts, and Environment

8.1. Anonymous, downloadable code provided as supplementary material or link (yes/partial/no)
yes

8.2. Exact commit/version, dependency list (e.g., environment.yml/requirements.txt),
and OS details (yes/partial/no) yes

8.3. Hardware details (GPU/CPU models, RAM), framework/library versions, and runtime esti-
mates (yes/partial/no) yes

8.4. Randomness handling documented (seeds, nondeterministic ops, determinism limits) (yes/par-
tial/no/NA) yes

9. Data and Preprocessing

9.1. All datasets cited with URLs/licensing; custom splits or filtering rules documented (yes/par-
tial/no) yes

10. Training and Hyperparameters

10.1. Search spaces and selection criteria reported; final hyperparameters listed per model (yes/par-
tial/no) yes

10.2. Training schedules, batch sizes, losses, and early-stopping criteria documented (yes/partial/no)
yes

11. Evaluation and Reporting

11.1. Metrics are formally defined and motivated; evaluation scripts included (yes/partial/no) yes

11.2. Number of runs, variance (e.g., std/CI), and significance tests reported where appropriate (yes/-
partial/no) partial

11.3. Ablations/diagnostics provided to support claims and clarify failure modes (yes/partial/no) yes

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, and Hasson et al.
Flamingo: a visual language model for few-shot learning. In Advances in Neural Information
Processing Systems, volume 35, pp. 23716–23736, 2022.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, and et al.
Qwen2.5-vl technical report, 2025.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Guicourse:
From general vision language model to versatile gui agent. In Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 21936–
21959, July 2025.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Chen, and et al. Internvl: Scaling up vision foun-
dation models and aligning for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24185–24198, June 2024.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 9313–9332, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025a.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, and et al.
Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next
generation agentic capabilities, 2025b.

Wenliang Dai, Junnan Li, DONGXU LI, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
with instruction tuning. In Advances in Neural Information Processing Systems, volume 36, pp.
49250–49267, 2023a.

Wenliang Dai, Junnan Li, DONGXU LI, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
with instruction tuning. In Advances in Neural Information Processing Systems, volume 36, pp.
49250–49267, 2023b.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. In Advances in Neural Information Processing
Systems, volume 36, pp. 28091–28114. Curran Associates, Inc., 2023.

Yue Fan, Handong Zhao, Ruiyi Zhang, Yu Shen, Xin Eric Wang, and Gang Wu. Gui-bee: Align gui
action grounding to novel environments via autonomous exploration, 2025.

Longxi Gao, Li Zhang, Shihe Wang, Shangguang Wang, Yuanchun Li, and Mengwei Xu. Mobile-
views: A large-scale mobile gui dataset, 2024.

Xinzge Gao, Chuanrui Hu, Bin Chen, and Teng Li. Chain-of-memory: Enhancing GUI agents for
cross-application navigation. arXiv preprint arXiv:2506.18158, June 2025.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, and et al. Navigating the
digital world as humans do: Universal visual grounding for gui agents. In Proceedings of the
International Conference on Learning Representations (ICLR), April 2025a.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents. In
The Thirteenth International Conference on Learning Representations, 2025b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for gui
agents. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 14281–14290, June 2024.

Zhiyuan Huang, Ziming Cheng, Junting Pan, Zhaohui Hou, and Mingjie Zhan. Spiritsight agent: Ad-
vanced gui agent with one look. In Proceedings of the Computer Vision and Pattern Recognition
Conference (CVPR), pp. 29490–29500, June 2025.

Yi Kong, Dianxi Shi, Guoli Yang, Zhang ke di, Chenlin Huang, Xiaopeng Li, and Songchang
Jin. Mapagent: Trajectory-constructed memory-augmented planning for mobile task automation,
2025.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
soning segmentation via large language model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9579–9589, June 2024.

Weixian Lei, Difei Gao, and Mike Zheng Shou. Grounding multimodal large language model in
GUI world. In The Thirteenth International Conference on Learning Representations, 2025.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In Proceedings of the 40th
International Conference on Machine Learning, volume 202, pp. 19730–19742, 2023.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents, 2024.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Stan Weix-
ian Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for
gui visual agent. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 19498–19508, June 2025.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 26296–26306, June 2024.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners, 2025a.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners, 2025b.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices, 2024.

Yaxi Lu, Shenzhi Yang, Cheng Qian, Guirong Chen, Qinyu Luo, and et al. Proactive agent: Shift-
ing llm agents from reactive responses to active assistance. In Proceedings of the International
Conference on Learning Representations (ICLR), pp. 1–27, April 2025.

Jie Ma, Pinghui Wang, Dechen Kong, Zewei Wang, Jun Liu, Hongbin Pei, and Junzhou Zhao. Ro-
bust visual question answering: Datasets, methods, and future challenges. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 46(8):5575–5594, 2024.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, and et al.
Gpt-4o system card, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, and Shihao Liang et al. Ui-tars: Pioneering
automated gui interaction with native agents, 2025.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, and Gabrielle Lau et al.
Androidworld: A dynamic benchmarking environment for autonomous agents, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Yuchen Sun, Shanhui Zhao, Tao Yu, Hao Wen, Samith Va, Mengwei Xu, Yuanchun Li, and
Chongyang Zhang. Gui-xplore: Empowering generalizable gui agents with one exploration. In
Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), pp. 19477–
19486, June 2025.

Jianqiang Wan, Sibo Song, Wenwen Yu, Yuliang Liu, Wenqing Cheng, Fei Huang, Xiang Bai, Cong
Yao, and Zhibo Yang. Omniparser: A unified framework for text spotting key information extrac-
tion and table recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 15641–15653, June 2024.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. In Advances in Neural Information Processing Systems, volume 37,
pp. 2686–2710, 2024a.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, and et al. Cogvlm: Visual expert for
pretrained language models. In Advances in Neural Information Processing Systems, volume 37,
pp. 121475–121499, 2024b.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
pp. 543557, 2024a.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
pp. 543557, 2024b.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents. CoRR, abs/2410.23218, 2024.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. In The
Thirteenth International Conference on Learning Representations, 2025a.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous GUI interaction. In
Forty-second International Conference on Machine Learning, 2025b.

Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu,
Mu Cai, Seonghyeon Ye, Joel Jang, Yuquan Deng, and Jianfeng Gao. Magma: A foundation
model for multimodal ai agents. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 14203–14214, June 2025.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, Jitong Liao, Qi Zheng, Fei Huang, Jingren Zhou, and Ming Yan.
Mobile-agent-v3: Fundamental agents for gui automation, 2025.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, and et al. Mmmu: A massive multi-
discipline multimodal understanding and reasoning benchmark for expert agi. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9556–9567,
June 2024.

Zeyu Zhang, Quanyu Dai, Xiaohe Bo, Chen Ma, Rui Li, and et al. A survey on the memory mech-
anism of LLM-based agents. ACM Transactions on Information Systems (TOIS), 43(6):155:1–
155:47, September 2025a.

Zhong Zhang, Yaxi Lu, Yikun Fu, Yupeng Huo, Shenzhi Yang, and Yesai Wu et al. Agentcpm-gui:
Building mobile-use agents with reinforcement fine-tuning, 2025b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

This is the supplementary file for our submission titled PrecogUI: Proactive GUI agents via Pre-
cognitive Simulation and Experience Retrieval. This material supplements the main paper with the
following content:

• (11) The use of large language models

• (11) Motivation of PrecogUI

• (11) Related work

• (11) PolyTouch: A Multi-Gesture and Macro Execution Layer

• (11) Additional Experiments

– (11) Implementation Detail

– (11) Benchmarks

– (11) Hyperparameter analysis of the exploration value.

– (11) Hyperparameter analysis of parser thresholds.

• (11) Prompts in Automated Pipeline

– (11) Output Format Structure Template

– (11) Action Selection Template

– (11) Role and Context Template

– (11) Anomaly handling Template

– (11) OS-Specific Hints

– (11) General Instructions.

• (11) Qualitative Analysis

• (11) Additional Discussions

THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) are used exclusively for polishing the writing and
checking grammar. They are not involved in research ideation, experimental design, data analysis,
or the formulation of conclusions. The authors make all substantive intellectual contributions.

MOTIVATION OF PRECOGUI

Figure 6 reveals two critical patterns. First, the success rate (SR) declines sharply with an increas-
ing number of injected disturbances. Reactive baselines plummet from nearly 100% SR to below
20% with zero to six injections, showing a performance gap of at least 10% by just two injections
(left panel). This highlights the inherent brittleness of purely reactive policies under sustained in-
terference. Second, disturbance timing significantly impacts performance (right panel). Shifting a
single injection later in the trajectory yields greater SR losses across all baselines. For instance, UI-
TARS exhibits an SR drop escalating from 3.0% (steps 0–5) to 16.4% (> 20 steps). In contrast,
PRECOGUI demonstrates consistent resilience, increasing only from 1.6% to 7.1%—approximately
2.3× less degradation than UI-TARS in the long-horizon tail—while maintaining higher nominal

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(b) Injection step window(a) Number of Injection Disturbances
Figure 6: Impact of disturbance count and timing on policy success rates. The left panel shows SR
degradation with increasing disturbance count. The right panel illustrates the greater sensitivity of
reactive policies to later disturbance injections, in contrast to PRECOGUI’s robustness.

SR. These trends suggest that coupling experience priors with look-ahead simulation is crucial for
mitigating late-stage error cascades.

ANALYSIS OF LONG-HORIZON EVALUATION

RELATED WORK

Multimodal Large Language Models. MLLMs (Li et al., 2023; Liu et al., 2024; Yue et al., 2024)
have emerged as a central enabler for GUI automation, boosting both perceptual and reasoning capa-
bilities of agents. By parsing complex screen structures and grounding natural language instructions
in UI elements, MLLMs serve as the perception backbone for many mainstream agents (Wang et al.,
2024a; Yang et al., 2025). However, existing MLLMs (Wang et al., 2024b; Chen et al., 2024; Lai
et al., 2024) are primarily pre-trained or fine-tuned on static, single-turn perception tasks such as vi-
sual question answering (Ma et al., 2024) or image captioning (Dai et al., 2023b). Consequently, in
dynamic UI scenarios, they tend to be stateless and myopic, producing immediate responses without
sequential modeling or anticipatory reasoning.

GUI agents. Research on GUI agents (Gou et al., 2025b; Liu et al., 2025a; Xu et al., 2025a) has
also explored diverse strategies for policy learning and grounding. A common paradigm (Lu et al.,
2025; Lin et al., 2025) is to fine-tune multimodal models, mapping instruction and screenshot inputs
into sequential action predictions. For example, UGround (Gou et al., 2025a) trains a purely visual
grounding model on millions of UI elements, enabling click and operation solely through visual
localisation. Recent efforts (Gao et al., 2025; Zhang et al., 2025a) have added structure and memory,
with AutoDroid (Wen et al., 2024a) handling anomalies by learning corrective scripts and MapAgent
retrieving layout traces during planning. While effective on short, static benchmarks (Gao et al.,
2024), these methods (Lei et al., 2025; Xu et al., 2025b) remain confined to a reactive framework,
in which agents make decisions based solely on the current observation, leaving them vulnerable to
unforeseen perturbations. An unexpected pop-up can easily hijack the agents attention, while even
minor loading delays may be misinterpreted as failed actions.

POLYTOUCH: A MULTI-GESTURE AND MACRO EXECUTION LAYER

Real-world mobile applications often require multi-pointer and multi-step interactions, such as
three- or four-finger system shortcuts, pinch/zoom and rotation in media and map viewers, or co-
ordinated sequences in creative tools. Existing GUI agents generally assume single-touch atomic
operations and one-shot execution, which makes them fragile when facing complex gestures, long
interaction flows, or OS-level controls that demand precise synchronization. To address this gap, we
introduce PolyTouch, an execution layer that extends the action space to multi-finger gestures and
macro-level commands with explicit timing, guards, and rollback mechanisms.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: The illustration of PolyTouch, a multi-gesture and macro execution layer for GUI agents.
It depicts multi-finger gestures and macro-level commands, highlighting their role in robust, long-
horizon task execution.

PolyTouch supports a wide range of interaction patterns rarely considered in prior work: (i) Multi-
finger chords for dialogs, split-screen, or editing shortcuts; (ii) Continuous gestures such as pinch,
zoom, and rotation; (iii) Multi-step flows with explicit waiting, retries, and overlay dismissal; (iv)
Recovery sequences (e.g., back, home, or targeted close) that must be executed atomically to exit
unexpected states. These abstractions allow agents to operate robustly in long-horizon tasks where
traditional atomic actions fail.

PolyTouch builds on Appiums W3C Actions API for deterministic multi-pointer synthesis and it
falls back to ADB when accessibility channels are blocked. Its design centers on: (1) determin-
istic timing through tick-based scheduling; (2) unified coordinate formats (index, relative-in-box,
absolute) with boundary-safe mapping; (3) a declarative macro interface that bundles taps, swipes,
multi-swipes, key events, and waits into atomic, retryable units; (4) graceful degradation to equiva-
lent ADB commands while preserving ordering and timing.

PolyTouch exposes two main capabilities: (a) Multi-gesture execution. Three- and four-finger
gestures are represented as synchronized pointer streams (pointerDown → pointerMove →
pointerUp), while pinch/zoom and rotation are parameterized around target boxes and derived
from relative coordinates. (b) Macro execution. JSON-defined macros encapsulate an ordered list
of primitives with explicit guard, retry, and rollback semantics, supporting flexible coordinate spec-
ifications.

PolyTouch integrates into the agent control loop by providing reliability-aware plans and structured
execution reports (success flags, layout changes, anomaly tags). These outputs feed the Proactive
Experience Pool to accumulate reusable patterns and guide the Pre-cognitive Execution Controller
in anticipating failures and triggering recovery. In this way, PolyTouch transforms low-level taps
into a closed-loop, macro-level control primitive that is both expressive and robust.

ADDITIONAL EXPERIMENTS

IMPLEMENTATION DETAILS

Hardware & Devices. All experiments were conducted on a single training node with 8×NVIDIA
H20 (96 GB) GPUs. For on-device evaluation, we used a pool of mainstream Android phones cov-
ering Huawei/Honor, Xiaomi/Redmi, and OPPO/realme, spanning Android 10–14 and common
resolutions (720p–1440p). Devices were connected over USB with ADB (USB debugging enabled)
for reliable screenshot capture and input dispatch; Wi-Fi ADB was used only for long-duration soak
tests.

Data Collection & Real-World Tests. We employ Appium 2.x (Android driver:
uiautomator2) together with ADB to (i) scrape view hierarchies and screenshots, (ii) exe-
cute action sequences in real apps, and (iii) log pre/post frames, timing, and outcomes for replayable

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Alpha Final Coverage Mean Novelty Mean Revisit

=0.00 327 0.39 1.00

=0.25 709 0.76 1.00

=0.50 722 0.77 1.00

=0.75 746 0.76 1.00

=1.00 736 0.77 1.00

0 10 20 30 40
Exploration Steps

0

100

200

300

400

500

600

700

Cu
m

ul
at

iv
e

Co
ve

ra
ge

 (u
ni

qu
e

co
nt

ro
ls

di
sc

ov
er

ed
)

=0.00 =0.25 =0.50 =0.75 =1.00
0.00
0.25
0.50
0.75
1.00
1.25

Avg revisit depth

 trade-off
=0.00
=0.25
=0.50
=0.75
=1.00

0.0

0.2

0.4

0.6

0.8

1.0

M
ov

in
g-

av
er

ag
e

No
ve

lty
 R

at
e

Figure 8: Effect of α in the exploration value over a 50-step horizon. The main curves show cumula-
tive coverage of unique controls for different α; dashed traces (right axis) depict the moving-average
novelty, and the inset summarizes average revisit depth and final/mean statistics. Larger α prioritizes
discovery and accelerates coverage, while smaller α favors rare-state revisits at the cost of slower
expansion.

trajectories. For latency-critical fallback (e.g., when Appium is blocked by transient overlays),
we issue low-level commands via adb shell input (tap/swipe/keyevent) and re-sync with
Appium on the next stable frame. All experiments use fixed random seeds and identical capture
settings across devices; screen coordinates are normalized to [0, 1] and mapped to device pixels at
runtime.

BENCHMARKS

Grounding-Centric Benchmarks: ScreenSpot Series. Accurate element localization is the foun-
dation of GUI automation. ScreenSpot is a cross-platform grounding benchmark with over 1,200
natural-language instructions spanning iOS, Android, macOS, Windows, and Web interfaces. Each
instruction is paired with pixel-level bounding boxes and element-type labels (text, icon, or widget)
and covers challenging scenarios such as icon-text composites and occluded controls.

Navigation-Centric Benchmarks: AndroidControl & GUI Odyssey. Once elements can be re-
liably located, agents must navigate within and across apps. AndroidControl(Li et al., 2024), the
largest public mobile navigation corpus, contains 15,283 human demonstrations divided into low-
difficulty single-app workflows (< 10 steps) and high-difficulty cross-app tasks with real-time inter-
ruptions (e.g., Select photo from Gallery Upload via Email). It evaluates agents comprehension of
both high-level goals (Book a ride) and low-level operations (Tap Search). GUI Odyssey (Lu et al.,
2024) extends this to long-horizon, cross-app navigation with 7,735 mission-based episodes across
201 apps and 1,400+ app combinations. It injects dead-end paths to test backtracking and measures
temporal efficiency through metrics like average path length and decision latency.

Disturbance-Aware Benchmark: InterfereBench. InterfereBench covers 34 applicationscom-
plex games, enterprise tools, and general appswith bilingual (Zh/En) UIs recorded on diverse phone
models. It contains 1,160 long-horizon trajectories (1437 steps) and 27,124 screenshots; we cap-
tured 574 real abnormal screens and curated 217 synthetic disturbances (pop-ups, notifications, black
screens, layout shifts). Each task is paired with a clean baseline and perturbed variant(s) to enable
controlled normal vs perturbed comparisons. Annotations include high-level goals and step-level
structures (action type, normalized coordinates, UI boxes, screen deltas, outcomes).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Policy *
c Acc. SR(norm) Eff.(norm)

Strict 0.05 0.22 1.00 0.23

Moderate 0.05 0.51 1.00 0.61

Lenient 0.05 0.84 0.88 1.00

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
No-op threshold c

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

te

Pruning regime
Strict
Moderate
Lenient

0.0

0.2

0.4

0.6

0.8

1.0

SR
 p

ro
xy

 (n
or

m
al

ize
d)

Figure 9: Parser-threshold analysis. The figure summarizes Stage-1 pruning versus τc: acceptance
monotonically decreases as τc grows; the Moderate regime offers the best acceptancesuccesseffi-
ciency trade-off near τc ∈ [0.25, 0.35].

HYPERPARAMETER ANALYSIS OF THE EXPLORATION VALUE.

We study the single coefficient α that balances novel-control discovery against rare-state probing
during exploration. As illustrated in Figure 9 On a 50-step horizon, larger settings (e.g., α≥0.5) con-
sistently deliver higher cumulative coverage and higher moving-average novelty, indicating faster
expansion of the actionable UI space. Very small α emphasizes repeatedly visiting under-explored
screens; while this can stabilize early behavior, it sacrifices coverage and slows progress. We observe
no significant increase in redundancy within 50 steps, suggesting that short-horizon exploration ben-
efits most from prioritizing discovery. In practice, α ∈ [0.5, 0.75] is a strong operating region that
front-loads novel controls without noticeable revisit overhead. For longer horizons or highly volatile
apps, an adaptive schedule is preferable: start near α ≈ 0.5 to stabilize initial navigation, then in-
crease toward 0.75–1.0 as the uncovered-control ratio declines. Overall, α provides an interpretable
knob for exploration granularity; tuning (or scheduling) it materially impacts coverage speed and
downstream success rates.

HYPERPARAMETER ANALYSIS OF PARSER THRESHOLDS.

We examine how the Stage-1 pruning thresholds (self-loop ratio and no-op ratio) interact with the
no-op cutoff and impact downstream quality, as shown in Figure. 9. As the cutoff increases, the
acceptance rate drops monotonically across all regimes (e.g., from ∼0.60–0.65 at a low cutoff of
0.05 to ∼0.20 at 0.45), indicating that more micro-changes are filtered as no-ops. Strict pruning
rapidly depresses acceptance (often <0.25 once the cutoff exceeds ≈0.20), and downstream quality
declines as data volume becomes the bottleneck. Lenient pruning maintains high acceptance (>0.55
across most cutoffs) but retains many low-signal segments; the success proxy plateaus or degrades
when the cutoff is high (e.g., normalized success ≲0.55 once the cutoff ≥0.35). By contrast, the
Moderate regime achieves the best balance in a mid-range cutoff of 0.25–0.35: acceptance stays
around 0.35–0.50 while the normalized success proxy peaks around 0.75–0.85, yielding the highest
harmonic mean of acceptance and success.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

 Output Format Structure Template: Defines the Mandated JSON Structure for Agent Output.

{" Historical_status": "Success|Failed|Unknown - Evaluate if the
previous action visually achieved its intended goal. Base this ONLY on
the screen image. Ignore the execution result status provided in the
input.",
 "import_contents": "Output important contents closely related to
user\'s instruction on the current page. If there is, please output the
contents. If not, please output empty string ''.",
 “think”: “Provide a step-by-step thinking process. Analyze the
current screen, relate it to the overall task and the visual outcome of the
previous step (‘Historical_status'). Decide the next best *single* action.
Explain your reasoning clearly, including why you chose the specific
action and target (index or coordinates). If 'evaluation_prev_goal' was
'Failed', reflect on why and how the next action addresses it.",
 "progress": "Assess the overall progress. List the sub-tasks from the
main `task` or `task_steps` that have been verifiably completed up to
the current step. This judgment must be based on the *actual visual
evidence* on the screen, not merely on the sequence of actions planned
or executed, as actions can fail or produce unexpected results.",
 "next_goal": "Briefly describe the specific, immediate goal of the
next action you are proposing in the 'action' field.",
 "action": {
 "action_name": { /* dictionary of parameters for the action */ } } }

{" Historical_status ": "Failed - The
previous action (open settings) was
blocked by a pop-up overlay.",
"import_contents": "Popup dialog is
visible with title '活动提醒'; two buttons:
'立即前往' (index 15) and '稍后再说'
(index 9). A close icon 'X' at top-right
(index 5). Underlying Honor of Kings lobby
is dimmed and not interactable.",
"think": "A blocking popup covers the
lobby. The overall task is to continue
interacting with the lobby. The safest way
to resume is to dismiss the popup without
navigating elsewhere. The close icon at
index 5 is visible and should remove the
overlay without side effects. I will use the
'click' action with this index.",
"progress": ["1. Reached the main lobby
(visible in background)."],
"next_goal": "Dismiss the popup to
restore interaction with the lobby.",
"action": {"click": {"position": 5} }}

Figure 10: Mandated JSON Schema for Agent Reasoning. The figure shows the output template
(left) and an in-context example of handling a pop-up overlay (right).

PROMPTS IN AUTOMATED PIPELINE

OUTPUT FORMAT STRUCTURE TEMPLATE

As illustrated in Figure 10, our Deep Think & Decision mechanism is governed by a man-
dated JSON schema that structures the agent’s output. This schema enforces a rigorous, multi-
stage reasoning process through several key fields: Historical_status for visual verifi-
cation of the previous action’s outcome, severing reliance on potentially noisy execution logs;
import_contents for grounding the agent’s awareness in the current UI context; think for
articulating a step-by-step causal rationale; progress and next_goal for explicit task decom-
position and forward planning; and finally action, which specifies the precise, parameterized com-
mand for environmental actuation (e.g., via index-based coordinates). Crucially, the schema’s em-
phasis on populating fields like Historical_status based solely on visual evidence establishes
a tight closed-loop verification system. This structured output thereby functions as a transparent and
auditable interface between the agent’s cognitive deliberation and its concrete actions within the
GUI environment.

ACTION SELECTION TEMPLATE

To ensure robust action grounding, we define a hierarchical, three-tiered schema for specifying target
coordinates, enforcing a graceful degradation from semantic to pixel-level references. The primary
and most preferred format is (1) Highlight Index, which targets an element via a unique semantic
identifier, providing high resilience to minor layout shifts. The secondary format, (2) Relative-in-
Box, is used for sub-point targeting within an indexed element, thus combining a semantic anchor
with fine-grained precision. The final fallback, (3) Absolute Coordinates, is used only when se-
mantic indexing is infeasible, targeting a point in a normalized coordinate space. This strict priority
order ‘(1) > (2) > (3)‘ ensures that the agent always defaults to the most robust targeting method
available.

ANOMALY HANDLING TEMPLATE

As shown in Figure 12, we frame anomaly handling as a concise, cross-task routine over
prediction and verification. Given the current layout Lt and the forecast L̂t+1, the agent
applies fast rules to classify and mitigate: (i) Pop-up/Overlaydismiss via safe affordances

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Action Position Selection: Standardize the three mutually exclusive ways to
target UI and set a priority order.

When specifying the target for an action, choose EXACTLY ONE 'position' form:

1) Highlight Index: "position": <int>
 - Preferred when the target reliably maps to a single highlighted box.

2) Relative-in-Box: "position": [<int>, <float>, <float>]
 - Use when the target is INSIDE the highlighted box but needs a precise sub-point
 (e.g., a small icon inside a large button).
 - Floats are relative coordinates within that box in [0.0, 1.0]:
 (0,0)=top-left, (1,1)=bottom-right.

3) Absolute Center Coordinates: "position": [<int>, <int>]
 - Fallback when no reliable highlight exists, the index is unreadable, or the box is
inaccurate/too large.
 - Coordinates are normalized pixels in [0,1000] for (x,y); values must not exceed
bounds.

Priority: (1) > (2) > (3). If you use (2) or (3), briefly justify why in your reasoning.

"click": {"position": 12}

"click": {"position": [7, 0.85, 0.25] }

"click": {"position": [642, 318] }

Figure 11: Action command selection adopts a three-tiered, prioritized format (Index → Relative-
in-Box→ Absolute), with in-context examples: (1) semantic targeting via a unique index; (2) fine-
grained targeting using relative coordinates within an indexed element; and (3) a robust fallback to
normalized absolute coordinates.

Anomaly Handling: Cross-task discipline for reasoning, decomposition, verification, and termination.

A) Inputs:
- Lt: current symbolic layout inferred from the current screen.
- Lt+1: predicted next-step layout given (L_t, candidate action, goal).
B) Fast anomaly rules (apply to either the current screen or \hat{L}_{t+1} when available):
1) Pop-up/Overlay Anomaly:
- Signs: High-z modal panel covering main content; overlaps multiple interactive controls; typical dismiss
affordances (“X/Close/Cancel/Not now/Later”), dimmed background.
- Mitigation: Click a safe dismiss (X/Close/Cancel/Later) → if none, try back once → short wait and re-check.
Avoid “Go now/Claim/Start trial” unless explicitly required.Blank-Screen Anomaly:
2) Blank Screen
- Signs: Almost no interactive elements or very low saliency; prediction also “blank”.
- Mitigation: Short wait → if persistent, back once or refresh per platform → optionally return to a known stable
page (menu/home).
3) Freeze / Ineffective Action
- Signs: Layout nearly unchanged and intended state not updated; animation halts without transition.
- Mitigation: Retry once with improved targeting (Relative-in-Box or safer index) → if still unchanged, back or wait
then retry → if recurrent, re-plan (alternate path/control).
4) Off-Goal / Misdirection
- Signs: Next screen diverges from goal (e.g., store/ads), goal elements vanish.
- Mitigation: Abort the risky path; dismiss/ back to restore context; choose a safer, on-goal alternative.
C) Post-Mitigation Re-check: After handling any anomaly, re-check: target page/controls are visible and no overlay
remains; then continue the main task.

Figure 12: Mandated JSON Schema for Agent Reasoning. The figure shows the output template
(left) and an in-context example of handling a pop-up overlay (right).

(X/Close/Cancel/Later); (ii) Blank Screen short wait, then Back/refresh or return to a stable
hub; (iii) Freeze/Ineffective Actionsingle retry with safer targeting (Relative-in-Box or safer index),
else Back/re-plan; (iv) Off-Goal/Misdirectionabort the path and restore on-goal context. A compul-
sory post-mitigation re-check gates progress: continue only when target controls are visible and no
overlay persists.

ROLE AND CONTEXT TEMPLATE

To structure the agent’s operational context, we define a clear set of responsibilities and a standard-
ized input format for each reasoning step. As illustrated in Figure 13, the agent is prompted with
persona as an expert GUI automation agent. For each step, it receives a tripartite input: (1) the cur-
rent screenshot augmented with indexed, highlighted bounding boxes over interactable elements;
(2) feedback on the execution status (e.g., success or failure) of the prior action; and (3) the current
temporal step index. Crucially, the agent is explicitly instructed to ground its reasoning solely on
visual evidence, judging task progression based on observable changes in the UI state rather than

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Role & Context: Define the agent’s responsibilities and the I/O context
(screenshots with highlighted regions, prior execution result, step number).

You are an expert GUI automation agent. Your job is to complete the user’s task by
interacting with PC/mobile GUIs using screenshots.

For each step, you receive:
1) The current screenshot with highlighted UI regions (each region has a top-left
index).
2) The previous action’s execution result (success/failed/unknown).
3) The current step number.

Always reason from on-screen visual evidence. Highlight boxes help locate
elements; completion must be judged by actual page state changes (texts, titles,
control states).

Current screenshot

Highlighted regions

Figure 13: Role and context template. Specifies agent responsibilities and I/O context with indexed
screenshots, prior execution results, and step numbers to guide evidence-based task completion.

OS-Specific Hints: Encode platform conventions (home screens, recent
apps, ADB keyboard, games/back behavior).

Android Hints:
- To find apps, swipe left/right on home screens. When starting an app, click the
CENTER of the app icon (not its label). If required by your action schema, set
'open_app': true.
- Special keys: 'home', 'back', 'recent'. 'recent' opens the app switcher.
- If the ADB keyboard is visible, the input field is active: do NOT provide 'position';
directly 'input_text'.
- In games, 'back' may be ineffective; follow in-game flows. GM commands are
valid only after entering the game and must follow the provided order strictly.
- On the recent apps screen, to kill an app, swipe its card off-screen (end point
beyond the screen edge).

Figure 14: OS-specific action hints. Encodes Android conventions for app access, navigation keys,
keyboard input, in-game flows, and app termination to ensure robust, context-aware execution.

uncritically accepting the programmatic execution status. This mandate establishes a tight, closed-
loop visual verification process for all decision-making.

OS-SPECIFIC HINTS

As shown in Figure 14, we encode platform conventions into structured hints that guide robust action
execution on Android. These rules address common UI operations and context-sensitive behaviors:
(i) app launching via centered icon clicks with optional open_app flag; (ii) special system keys
such as home, back, and recent for navigation control; (iii) text input handling by directly in-
voking input_textwhen the ADB keyboard is active, avoiding redundant position specifications;
(iv) game-specific flows where the back key may be ineffective, requiring strict adherence to in-
game command order; and (v) app termination through swipe-off gestures in the recent-apps screen.
Collectively, these hints ground agent actions in OS-level semantics, reducing execution ambiguity
and improving cross-context stability.

GENERAL INSTRUCTIONS.

As shown in Figure 15, this template encodes cross-task discipline for structured reasoning and
verifiable execution. It emphasizes (i) step-by-step task decomposition into checkable sub-steps; (ii)
precise targeting using highlighted regions or indices while avoiding ambiguous clicks; (iii) progress
verification strictly by on-screen evidence such as titles, messages, or control states; (iv) controlled
waiting to accommodate delays or animations; (v) fallback to anomaly-handling rules when over-
lays appear; and (vi) termination only after explicit visual confirmation of success. When targeting
remains uncertain, the agent is required to re-locate or choose safer alternatives, ensuring robustness

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

against cascading errors. Collectively, these rules establish a disciplined action loop where correct-
ness validation precedes task advancement.

General Instructions: Cross-task discipline for reasoning,
decomposition, verification, and termination.

General Instructions:
- Think step-by-step; decompose complex tasks into verifiable sub-steps.
- Use highlighted regions and indices when accurate; avoid ambiguous
targets.
- Verify progress by on-screen evidence (titles, messages, control states), not
just by issued actions.
- Use 'wait' when elements may load with delay or animations (typical:
300–1500 ms).
- If blocking overlays appear, follow the Anomaly Handling & Reliability
Forecasting rules first.
- Return the Done action only when all requirements are truly met and
visually confirmed.
- If targeting is uncertain, re-locate or choose a safer alternative rather than
clicking blindly.

Figure 15: General instruction template. Defines structured reasoning, precise targeting, verification,
controlled waiting, and disciplined termination to ensure robust, evidence-driven task execution.

QUALITATIVE ANALYSIS

APPS POP-UP HANDLING

As shown in Figure 16, we deploy a type-aware policy that closes in-app pop-ups while preserv-
ing task context. The controller first classifies the pop-up(i) announcement/notice panels, (ii) gift-
package ads, (iii) event promotions, or (iv) confirmation/input dialogsand selects the safest dis-
miss affordance. Execution follows our hierarchical position schema: prioritize element indices for
X/Close/Cancel/Later; degrade to Relative-in-Box when the target is a sub-control; and use
normalized absolute coordinates only when indexing is unreliable. Each thumbnail shows the pre-
dicted command (index or relative point) rendered beneath the image; progress continues only after
the overlay is visually cleared.

PrecogUI can automatically select the optimal closing strategy based on the pop-up type, enabling robust
handling of various cases such as announcements, gift-package ads, and confirmation/input dialogs.

{"click": {"position": 12}} {"click": {"position": 27}}} {"click": {"position": 35}} {"click": {"position": 42}}

{"click": {"position": 27}} {"click": {"position": 27}} {"click": {"position": 2, (1.2，2.3}} {"click": {"position": 27}}

Figure 16: Apps pop-up handling. A type-aware policy combined with hierarchical position selec-
tion (Index→ Relative-in-Box→ Absolute); the figure presents concrete dismissal commands for
diverse pop-up cases.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

SYSTEM-LEVEL POP-UP HANDLING.

As shown in Figure 17, we handle OS-mediated interruptionssystem notifications, risk alerts, and
permission requestsvia a type-conditioned, safety-first policy. The controller classifies the pop-
up and selects the safest affordance (e.g., Cancel/Close, Allow only while in use,
Deny). Execution uses our hierarchical position scheme, prioritizing element indices and backing
off to Relative-in-Box or normalized Absolute coordinates only when indexing is unreliable. Each
panel displays the issued command (primarily index clicks), and progress resumes only after the
overlay is visually cleared to preserve task context.

For system-level pop-ups, including system notifications, risk alerts, and permission requests, PrecogUI
automatically selects the safest dismissal option (e.g., Cancel, Close,, or Deny) based on the pop-up type.

{"click": {"position": 34}}{"click": {"position": 33}}

{"click": {"position": 38}} {"click": {"position": 46}} {"click": {"position": 37}}

{"click": {"position": 38}}

Figure 17: System pop-up handling. A type-aware policy selects safe dismissal actions and executes
them with index-prioritized targeting; the figure shows concrete commands for notifications, risk
alerts, and permission requests.

ENVIRONMENT PERTURBATION HANDLING.

As shown in Figure 18, we address environment-level disturbances(black/white screens, load-
ing delays, and network stalls) with a lightweight stabilization routine. Detection relies on low-
saliency/blank frames, near-identical consecutive layouts, or stalled progress indicators. Mitigation
is minimal yet effective: inject a short wait (e.g., 200 ms) to absorb transient transitions, then issue a
single index-prioritized safe retry of the previous action; progress resumes only after visual evidence
of recovery, otherwise control is escalated to the general anomaly rules.

Layout-Shift Perturbations. As shown in Figure 19, we address orientation/gravityinduced re-
flows (portrait ↔ landscape) with an orientation-aware re-localization routine. Upon detecting a
layout shift (aspect-ratio change and index invalidation), the agent reconstructs the symbolic layout
hash, re-indexes targets, and remaps the current goal to the new arrangement by type/text cues. Ex-
ecution then follows the hierarchical position policy (Index → Relative-in-Box → Absolute), and
progress is gated by visual re-check to ensure the intended control is active after rotation.

ADDITIONAL DISCUSSIONS

Forecasting future layouts is central to PrecogUI: look-ahead turns reactive observeact behavior into
risk-aware planning that preempts pop-ups, freezes, and off-goal drifts, improving long-horizon sta-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

For black/white screens, loading delays, and network stalls, PrecogUI uses a lightweight stabilization
routine,combining short waits (e.g., 200 ms) with index-prioritized safe retries.

{"wait": {"duration": 200}} {"wait": {"duration": 200}} {"wait": {"duration": 200}}

{"click": {"position": 58}} {"click": {"position": 58, "retry": true}}

Figure 18: Environment disturbances. A lightweight routineshort waits plus index prioritized safe
retries stabilizes black/white screens, delayed loads, and network stalls; the figure shows concrete
wait and retry commands for representative cases.

For layout shifts, PrecogUI performs orientation-aware re-localization，recom-
puting layout hashes and re-indexing targets—to maintain stable execution.

{"click": {"position": 14}} {"click": {"position": 11}}

{"click": {"position": 17}}{"click": {"position": 58}}

Figure 19: Layout-shift handling. PrecogUI rebuilds layout hashes and re-indexes targets under por-
trait/landscape transitions, executing with index-first targeting; the figure shows before/after screens
with preserved action intent.

bility. However, timeliness is a key constraint. Pre-execution simulation and verification add latency
and compute, which can be costly for real-time use or very long tasks. In addition, experience pri-
ors can become stale as apps update; outdated remedies hurt reliability unless memory is refreshed.
Future work should adopt lightweight, anytime forecasting and drift-aware memory maintenance to
preserve the gains of look-ahead without sacrificing responsiveness.

25

	Introduction
	Method
	Overview
	Data Construction
	Proactive Experience Pool
	Proactive Simulation Executor
	Pre-cognitive Execution Controller

	Experiments
	Main Results
	Ablation Study
	Case Visualization

	Concluding Remarks
	The use of large language models
	Motivation of PrecogUI
	Analysis of Long-horizon evaluation

	Related work
	PolyTouch: A Multi-Gesture and Macro Execution Layer
	Additional Experiments
	Implementation Details
	Benchmarks
	Hyperparameter analysis of the exploration value.
	Hyperparameter analysis of parser thresholds.

	Prompts in Automated Pipeline
	Output Format Structure Template
	Action Selection Template
	Anomaly handling Template
	Role and Context Template
	OS-Specific Hints
	General Instructions.

	Qualitative Analysis
	Apps Pop-up Handling
	System-Level Pop-up Handling.
	Environment Perturbation Handling.

	Additional Discussions

