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ABSTRACT

Existing reactive Graphical User Interface (GUI) agents often fail in long-horizon,
dynamic scenarios, where unexpected disturbances trigger attention-diverting and
cascading failures. To address this, we propose PrecogUI, a pre-cognitive archi-
tecture that shifts the paradigm from reactive execution to proactive decision-
making. Specifically, we first design a Proactive Experience Pool (PEP) which
caches frequently occurring anomaly and success patterns as "state-action-result"
tuples in a graph structure, forming a composable prior memory. Furthermore,
we introduce a Proactive Simulation Executor (PSE) that learns to forecast the
next symbolic UI layout given a candidate action, enabling early anomaly avoid-
ance and estimating action success probabilities. Finally, a Pre-cognitive Execu-
tion Controller (PEC) fuses these priors and predictions, prioritizes handling of
foreseen anomalies, and ensures execution robustness through a closed-loop er-
ror correction mechanism. For robust evaluation, we develop AutoTraj, an auto-
matic data-generation engine, to construct InterfereBench, a benchmark for long-
horizon tasks with strong disturbances. Experiments demonstrate that PrecogUI
surpasses existing state-of-the-art methods on InterfereBench while maintaining
competitive performance on public benchmarks. The code and models will be
publicly available.

1 INTRODUCTION

Graphical User Interface (GUI) Agents (Cheng et al., 2024; Lin et al., 2025; Gou et al., 2025a;
Hong et al., 2024) are built on Multi-modal Large Language Models (MLLMs) to comprehend
user queries, interpret context, and perform actions like clicks and swipes for accomplishing GUI
tasks. The advancement of MLLMs (Li et al., 2023; Alayrac et al., 2022; Dai et al., 2023a) has
notably enhanced agents’ interface perception and decision-making precision. Nevertheless, disrup-
tive anomalies such as pop-ups and black screens in dynamic settings persist as a significant hurdle,
diverting attention and leading to cascading errors with prolonged consequences.

Prior research (Hong et al., 2024; Huang et al., 2025; Chen et al., 2025) has significantly ad-
vanced the perception-action loop. However, the prevailing approach remains reactive, relying on
current observations for decision-making. While effective in short-horizon, disturbance-free set-
tings (Rawles et al., 2025; Deng et al., 2023), these reactive methods may struggle in long-horizon
tasks and dynamic environments. Recent efforts have attempted to address this challenge through
online exploration (Sun et al., 2025; Fan et al., 2025) and improved visual-layout alignment ro-
bustness (Wen et al., 2024b; Kong et al., 2025). Nevertheless, the reactive nature still leaves agents
vulnerable to distractions from non-goal cues such as pop-ups and loading delays.

Key Observations. To investigate the robustness, we evaluate representative reactive agents (Liu
et al., 2025a; Qin et al., 2025; Zhang et al., 2025b) on AndroidControl (Li et al., 2024) under injected
disturbances at both the overlay level (e.g., pop-ups, notifications) and environment level (e.g., black
screens, freezing). Performance is assessed by success rate (SR), stratified by disturbance type and
task horizon. Specifically, as shown in Figure 1(b), the overlay-level disturbances induce the most
significant degradation, reducing SR by over 20% on average, compared to a milder 10% drop
under environment-level perturbations. Besides, the performance degradation scales monotonically
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Figure 1: (a) PrecogUI: a pre-cognitive architecture integrating prior experience with look-ahead
simulation; AutoTraj provides perturbed trajectories. (b) Disturbance-type sensitivity on Inter-
fereBench. (c) Disturbance effects amplify with task horizon.

with horizon length, as shown in Figure 1(c). On short-horizon tasks (< 5 steps), all models maintain
high robustness (SR≥ 91%). However, for medium-length tasks (6–15 steps), reactive agents exhibit
relative SR drops of about 10–14%. In long-horizon tasks (>15 steps), reactive agents SR declines
to about 40%.

Given the above results, we can observe that the reactive agents are prone to distraction by non-goal-
related stimuli, leading to potential cascading failures as errors accumulate over trajectories. This
observation prompts a crucial question: how can we empower agents with pre-cognitive planning
and explicit exception handling to ensure the robustness in long-horizon, dynamic environments?

Our Solution. In this study, we propose PrecogUI, a framework that integrates experience retrieval
with online look-ahead simulation to improve the robustness of GUI agents in long-horizon and
disturbance-prone settings. The conceptual architecture is illustrated in Figure 1(a).

Specifically, PrecogUI introduces the Proactive Experience Pool (PEP), a graph-structured repos-
itory that stores and retrieves recurring interaction patterns from both successful and anomalous
executions, enabling knowledge reuse via historical pattern matching. Then, the Proactive Simu-
lation Executor (PSE) employs a conditional diffusion model (Rombach et al., 2022) to simulate
the symbolic UI layout resulting from candidate actions, providing lookahead forecasts for early
anomaly detection and action success estimation. Finally, these are integrated by the Pre-cognitive
Execution Controller (PEC), which prioritizes anomaly handling, selects high-utility actions, and
ensures robustness through state monitoring and hierarchical rollback/retry.

To the best of our knowledge, no existing benchmark evaluates long-horizon robustness under real-
istic perturbations. We thus introduce InterfereBench, a new benchmark consisting of 1,160 long-
horizon trajectories (27k screenshots) across 34 diverse applications. These trajectories incorporate
prolonged task horizons and intense, dynamic interferences, and AutoTraj, an automated engine for
generating diverse, perturbation-rich interaction trajectories at scale. Experiments on InterfereBench
and generic benchmarks like AndroidControl and GUI-Odyssey show that PrecogUI significantly
outperforms the baseline by 22.1% in success rate under strong perturbations, improving robustness
without sacrificing overall performance. To summarize, our contributions are as follows:

• We propose PrecogUI, a unified framework that combines offline experience reuse, proactive lay-
out prediction, and exception-aware execution recovery to enhance robustness in long-horizon
GUI interactions.

• We present InterfereBench, a new benchmark designed to evaluate robustness under strong, sus-
tained perturbations in long-horizon tasks, along with AutoTraj, an automated pipeline for scal-
able, realistic trajectory generation.

• Extensive experiments on InterfereBench and the public benchmarks (AndroidControl (Li et al.,
2024) and GUI-Odyssey (Lu et al., 2024)) demonstrating that PrecogUI effectively improves long-
horizon reliability and anomaly resilience, while still maintaining the general capabilities.
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Figure 2: Data Construction. Stage 1 discovers clickable elements via view hierarchy and vision,
executes basic actions, and logs replayable UI trajectories. Stage 2 prunes redundant steps, ranks
trajectories with an MLLM, and outputs structured annotations. Stage 3 injects realistic disturbances
to create cleanperturbed pairs for robustness evaluation.

2 METHOD

2.1 OVERVIEW

Toward robust long-horizon execution under perturbations, we propose PrecogUI, which closes the
loop between experience, foresight, and feedback via four modules: (i) PEP forms a graph-structured
memory of anomaly/success patterns via layout hashing and nearest-neighbor retrieval; (ii) PSE pre-
dicts the next symbolic UI layout, estimates anomaly risk, and ranks candidate actions (index/rel-
ative/absolute); (iii) PEC fuses PEP and PSE with online monitoring and rollback/retry to deliver
robust, closed-loop control; and (iv) AutoTraj builds InterfereBench, a long-horizon benchmark with
controlled perturbations. The discussion of related work is in the Appendix 11 due to the page limit.

2.2 DATA CONSTRUCTION

The capabilities of GUI agents are fundamentally constrained by data scale, diversity, and quality. To
address this, we present AutoTraj, an automated pipeline that generates high-quality GUI interaction
trajectories with explicit disturbance awareness. AutoTraj comprises three core components:

Autonomous Explorer. The Explorer efficiently discovers diverse, high-value interaction trajecto-
ries using a hybrid perception strategy: it prefers UI view hierarchy to find actionable elements, when
structured signals are missing or incomplete, it falls back to a vision pipeline that combines object
detection and optical character recognition (OCR), producing a unified candidate set of controls.

Exploration is driven by a pre-trained agent (Ye et al., 2025) that sequentially tries atomic actions
(click, scroll) and logs pre- and post-screenshots, as well as action metadata, to produce replayable
trajectories. To guide informative exploration, we define the exploration value at state st as:

V (st) = α ·
∣∣Et \

(⋃
i<t Ei

) ∣∣
|Et|+ ε

+ (1− α) · 1√
n(st) + 1

, (1)

where Et denotes the control set at st,
⋃

i<t Ei is the union of controls seen so far, and n(st) counts
visits to st. The first term promotes the discovery of unseen controls/layouts, while the second
enforces novelty to favour coverage and rarely visited states. α ∈ [0, 1] balances layout discovery
and rare-state exploration; hyperparameter analysis appears in Appendix 11.

Trajectory Parser. To ensure semantic and structural quality, the raw trajectories undergo a two-
stage filtering and parsing process. Stage-1 removes traces with excessive length and redundancy,
we formalise ρloop and ρnoop as follows:

ρloop =
1

T

T∑
t=1

1[at = self-loop] , ρnoop =
1

T

T∑
t=1

1[Dlayout(Lt, Lt+1) < τc] . (2)

where, T is the number of steps, at is the action at step t, Lt is the UI layout at step t, 1[·] denotes the
indicator function, Dlayout is the layout-difference measure, and τc is the no-op threshold. If either
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Figure 3: Illustration of PrecogUI. (a) PEP builds a graph memory of anomaly/success patterns; (b)
PSE forecasts the next symbolic UI layout and estimates anomaly risk for candidate actions; (c)
PEC fuses priors and predictions to prioritize exception handling, select the highest-utility action,
and enforce closed-loop monitoring with rollback/retry.

ratio exceeds its preset threshold, the trajectory is pruned as structurally low-quality. Further details
are provided in Appendix 11

In Stage-2, we further filter trajectories using a high-capacity MLLM (Comanici et al., 2025b) that
evaluates topic consistency, causal soundness, and task complexity, selecting the top-K rated trajec-
tories for detailed labelling. For each trajectory, the parser yields a high-level task goal and stepwise
descriptions, and exports structured JSON containing goals, step descriptions, action types (nor-
malised coords), UI boxes, screen deltas, and execution outcomes for training and evaluation.

Perturbation Injector. To study robustness, we develop a Perturbation Injector that creates paired
samples for comparative evaluation. For each clean trajectory, we randomly inject real-world pertur-
bations covering: (1) overlay interference (simulating system notifications, pop-up dialogues, etc.);
(2) environmental perturbations (black or repeated frames for loading/lag, layout changes). This
process yields paired samples for each trajectory: a clean baseline and perturbed variants, enabling
comparative evaluation in both normal and perturbed modes.

Following this pipeline, AutoTraj produces the InterfereBench benchmark covering over 34 appli-
cation scenarios, with 1,160 long-horizon trajectories (14–37 steps each) and around 27k annotated
screenshots. Each trajectory includes one clean baseline and two perturbed variants of different
types, providing a solid foundation for a comprehensive evaluation of GUI agents’ robustness in
long-horizon, dynamic environments.

To faithfully capture and replay complex interactions beyond single-tap actions, we additionally em-
ploy PolyTouch (Sec. 11), a multi-gesture and macro execution layer that synthesizes deterministic
multi-pointer gestures (e.g., three/four-finger chords, pinch/zoom/rotation) and declarative macros
with explicit timing, guards, retries, and rollback.

2.3 PROACTIVE EXPERIENCE POOL

We observe that failure-inducing anomaly patterns (e.g., permission pop-ups, network delays) and
success-inducing patterns (e.g., app navigation) repeat widely across tasks and applications. There-
fore, we propose the Proactive Experience Pool (PEP), which converts costly trial-and-error into
efficient experience retrieval. By caching and indexing critical stateactionoutcome patterns, the ex-
ecutor can leverage priors rather than plan in isolation. PEP maintains two parallel memories:

(1) Anomaly Memory (Ma): Ma records two classes of failures: (i) stateaction mappings (ks, ka) 7→
ℓanom when an action in a state yields a specific anomaly; (ii) ks 7→ ℓanom for states that inherently
denote failure (e.g., network outage).

(2) Success Memory (Ms): Ms maintains high-confidence transitions as successful transitions
(ks, ka) 7→ ks′ , denoting that action a in state s reliably reaches a successful successor state s′.
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State Representation and Retrieval Mechanism. To enable robust and efficient retrieval, we
represent each UI state s by a canonical layout hash ks = hs(Lt) (hash-based). This key is computed
from a deterministically sorted list of interactive elements, where each element is abstracted as (type,
bbox). Similarly, actions a are canonicalized to a key ka based on their type and the target element’s
normalized coordinates.

Crucially, PEP is a dynamic, online-updated memory. Upon encountering new anomalies or discov-
ering successful cases via exploration, the agent extracts the associated state-action-result tuple in
real time and asynchronously appends it to the memory pool.

2.4 PROACTIVE SIMULATION EXECUTOR

The mainstream GUI agents are fundamentally reactive, lacking foresight into post-action effects.
With abrupt transitions in dynamic UIs, reactive policies without anticipation of anomalies tend to
fall into irrecoverable failures. Accordingly, we propose the Proactive Simulation Executor (PSE),
which forecasts the next symbolic UI layout before acting, and evaluates anomaly risk and candidate
action’s success probability, shifting the paradigm from observe–act to observe–predict–act.

Conditional Future Layout Generation. To capture the inherent uncertainty of UI state transi-
tions, we model the next-step layout distribution P (L̂t+1|Lt, at, g) using a conditional latent dif-
fusion model (Rombach et al., 2022), which is fine-tuned on a comprehensive dataset comprising
InterfereBench and several public GUI datasets (Li et al., 2024; Lu et al., 2024). For computational
efficiency, we abandon pixel-space generation and predict a symbolic layout Lt+1, represented as
an ordered set of (type, bbox). It is conditioned on a joint embedding C of the current layout
Lt, the candidate action at and the task goal g.

li−1 =
1
√
αi

(
li −

1− αi√
1− ᾱi

ϵθ(li, i,C)

)
+ σiϵ (3)

where αi, ᾱi, and σi are the pre-specified noise-schedule parameters. Finally, the denoised latent
l̂t+1 is decoded into a discrete symbolic layout, yielding the predicted future layout L̂t+1.

Reliability Forecasting. Subsequently, we apply a set of efficient rules to the predicted layout L̂t+1

for anomaly recognition. For example, if a bounding box significantly occludes multiple interactive
controls in Lt, it is flagged as a pop-up Anomaly; if interactive elements are nearly absent, a Blank-
Screen Anomaly; if L̂t+1 remains largely unchanged from Lt, the action is likely ineffective or
causes freezing.

Our premise is that success correlates with salient layout shifts. To quantify this, for each candidate
action at, we introduce the Layout Dissimilarity Score, formalized as:

Dlayout(Lt, L̂t+1) = 1− 2|M|
|Lt|+ |L̂t+1|

(4)

whereM is the set of matched pairs between the Lt and L̂t+1. This score is naturally normalized:
it is 0 for identical layouts and approaches 1 for completely dissimilar ones. We then directly use
this dissimilarity score as the success probability, as it reflects the magnitude of the predicted UI
transformation:

P (success | at, type) = Dlayout(Lt, L̂t+1) (5)

Finally, PSE returns a comprehensive reliability report for each candidate action, including anomaly
probabilities and type-specific success probabilities, to the downstream decision-making module.

2.5 PRE-COGNITIVE EXECUTION CONTROLLER

While PSE offers look-ahead predictions, robustness remains uncertain in the absence of a deci-
sion framework that converts them into concrete actions. We design the Pre-cognitive Execution
Controller (PEC), a closed-loop controller that fuses PEP priors, PSE predictions, and execution
feedback, converting open-ended trial-and-error into guided, self-correcting policy control.

5
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Algorithm 1 Pre-cognitive Execution Controller

Require: Goal g, current state st, anomaly memory Ma

Ensure: A single successful action-type pair (a, type) or a fallback diagnosis action
// – Stage 1: Pre-cognitive Anomaly Checks –

1: ks ← Hash(Layout(st))
2: if Ma.Query(ks) returns a remedy ahandle then
3: return ahandle

4: if PSE.ForecastRisk(st) > τrisk then
5: return πLLM(st, Tanomaly) ▷ Autonomous diagnosis for novel anomaly

// – Stage 2: Iterative Execution and Recovery Loop –
6: A ← MLLM.GenerateCandidates(st, g)
7: Ft ← ∅ ▷ Initialize temporary taboo list
8: while A is not empty do
9: (a∗, type∗)← argmaxP (success | ai, typej)

10: execute (a∗, type∗); observe new state st+1

11: if MLLM.VerifySuccess(st, (a∗, type∗), st+1) then
12: return (a∗, type∗) ▷ Success: terminate step
13: Ft ← Ft ∪ {(a∗, type∗)}
14: if Dlayout(Layout(st),Layout(st+1)) < τc then ▷ Stagnation
15: continue
16: else ▷ Unexpected Transition
17: ROLLBACK
18: if all types for a∗ are in Ft then
19: A ← A \ {a∗}
20: return πLLM(st, Tanomaly) ▷ Final diagnosis if all candidates fail

Deep Think & Decision. The cycle begins by generating a set of semantically grounded candi-
date actions A. We steer a base MLLM’s reasoning by prompting it to populate a structured JSON
schema. This schema mandates a chain of thought that includes: (i)Historical Validation, verify-
ing the outcome of the previous step; (ii)Content Grounding, ensuring that critical UI elements for
the current instruction are present; (iii)Think, a step for rationale articulation and failure attribution
analysis; and finally (iv)Action, which outputs a ranked set of candidate actions, each with index,
relative, and absolute coordinate formats, further details are provided in Appendix 11.

Pre-cognitive Decision and Execution. Prior to execution, PEC performs a pre-execution anomaly
check on st. It first queries the anomaly memory Ma with the layout hash ks, if it matches a known
anomaly, the controller triggers the preset remedy ahandle; If the lookup fails and PSE indicates
elevated risk, PEC activates autonomous diagnosis and uses a foundation model with a structured
anomaly prompt (details in Appendix 11) to synthesize an immediate handling action ahandle.

When the state is judged as normal, PEC proceeds with a success-oriented decision. It takes the
candidate actions A from the previous stage and requests reliability reports from PSE. Finally, it
selects and executes the action-type pair (a∗, type∗) according to:

(a∗, type∗) = argmax
ai∈A

(
P (success | ai, typej)

)
(6)

The selection is constrained to actions that are not flagged as high-risk by PSE.

State Monitoring & Adaptive Recovery After executing the action (a∗, type∗), PEC captures the
new state st+1 and verifies the outcome via both the layout change Dlayout(Lt, Lt+1) and a semantic
validation from its MLLM, as part of the subsequent step’s Historical Validation. If the execution is
judged a failure, PEC triggers recovery according to the failure type:

• Stagnation: For minimal layout change (Dlayout(Lt, Lt+1) < τc), PEC treats the instruction as
invalid and retries the action using PSEs next-best instruction type.

6
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Table 1: Performance on InterfereBench under two instruction settings (Low/High), TM n and SRn

denote type-matching and success rate on the normal (non-perturbed) subset; and TM a and SRa

denote the corresponding metrics on the perturbed subset.

Method InterfereBench-Low InterfereBench-High

TMn SRn TMa SRa TMn SRn TMa SRa

GPT-4o 76.7 22.1 69.0 9.3 73.4 3.9 65.0 1.2
Gemini-2.5 87.1 28.4 80.0 12.5 83.8 17.7 76.0 7.5
Qwen-2.5-VL 90.6 33.7 82.5 18.9 71.7 36.5 64.0 18.0

OmniParser 84.1 70.9 76.0 41.5 (↓ 29.4) 70.6 27.3 63.0 12.8 (↓ 14.5)
InfiGUI-R1 88.9 73.6 81.5 45.8 (↓ 27.8) 77.4 37.3 68.0 19.5 (↓ 17.8)
OS-Atlas 88.4 72.1 80.8 43.3 (↓ 28.8) 72.8 30.4 63.5 14.7 (↓ 15.7)
AgentCPM 90.0 75.7 82.1 46.0 (↓ 29.7) 78.9 35.7 66.8 18.4 (↓ 17.3)
UI-TARS-1.5 90.8 74.5 82.6 45.0 (↓ 29.5) 76.9 36.6 66.0 19.2 (↓ 17.4)

PrecogUI 92.9 79.2 90.0 68.4 (↓ 10.8) 80.0 52.7 74.5 41.6 (↓ 11.1)

Table 2: Grounding Performance Comparison on the ScreenSpot Benchmark.

Method Mobile Desktop Web Avg

Text Icon Text Icon Text Icon

GPT-4o 30.5 23.2 20.6 19.4 11.1 7.8 18.8
Gemini2.0 – – – – – – 84.0
Qwen-2.5-VL – – – – – – 84.7

CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.5 30.0 55.7 32.5 53.4
ShowUI 92.3 75.5 76.3 61.1 81.7 63.6 75.1
OmniParser 93.9 57.0 91.3 63.6 81.3 51.0 75.1
UI-Tars-1.5 93.0 75.5 90.7 68.6 84.3 74.8 82.3
InfiGUI-R1 97.1 81.2 94.3 77.1 91.7 77.6 87.5

PrecogUI 96.5 87.8 97.5 82.2 94.6 91.7 91.2

• Unexpected Transition: If the layout changes significantly (Dlayout(Lt, Lt+1) ≥ τc) but the
MLLM’s semantic validation deems the new state an incorrect outcome, PEC performs a roll-
back and adds the failed pair to a temporary taboo list Ft to block immediate reuse.

Overall, PEC not only executes optimally in normal settings but also adapts to failures, boosting
robustness and recovery in uncertain environments.

3 EXPERIMENTS

We implement PrecogUI on a smartphone UI-automation stack, using Gemini-2.5-Pro as the rea-
soning backend (Comanici et al., 2025a). The system is zero-training end-to-end: all modules are
non-learned except the PSEs next-step layout predictor, which is lightly fine-tuned on InterfereBench
and public datasets to model action-conditioned UI transitions. More implementation details are in
Appendix 11.

To evaluate model performance, we use two types of datasets: (1) Self-constructed InterfereBench,
designed to test agent robustness in long-horizon and disturbance tasks. It includes two settings: (i)
normal, a clean environment; (ii) perturbation, with dynamic perturbations like overlays and layout
changes. (2) Public benchmarks, split into (a) ScreenSpot (Cheng et al., 2024), which measures
UI element grounding (text/icon) to assess localization capability, and (b) navigation-centric suites
AndroidControl (Li et al., 2024) and GUI-Odyssey (Lu et al., 2024), which evaluate end-to-end task
completion and generalization under Low/High instruction settings. Evaluation follows standard
GUI agent metrics: success rate (SR) and type matching (TM).
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Table 3: Performance comparison on AndroidControl and GUI-Odyssey benchmarks

Method AndroidControl-Low AndroidControl-High GUI-Odyssey Avg

TM SR TM SR TM SR

GPT-4o 74.3 19.4 63.1 21.2 37.5 5.4 36.8
Qwen-2.5-VL 94.1 85.0 75.1 62.9 59.5 46.3 70.5
UI-Tars-1.5 98.0 91.3 83.7 72.5 94.6 87.0 87.4

SeeClick 93.0 75.0 82.9 59.1 71.0 53.9 72.5
Aria-UI – 67.3 – 10.2 – 36.5 –
OS-Atlas 91.9 80.6 84.7 67.5 83.5 56.4 77.4
InfiGUI-R1 96.0 92.1 82.7 74.4 – – –
AgentCPM-GUI 94.4 90.2 77.7 69.2 90.9 75.0 82.9

PrecogUI 94.9 88.7 86.8 76.4 91.3 89.1 87.7

（a ) PrecogUI Component Ablation （b ) Failure correction for actions command
Figure 4: Ablation and reliability analysis of PrecogUI.

3.1 MAIN RESULTS

Perturbation Handling. We evaluate PrecogUI on InterfereBench to assess long-horizon and
dynamic-UI robustness. We compare against: 1) General base models, GPT-4o (OpenAI et al.,
2024), Gemini-2.5 (Comanici et al., 2025b), and Qwen-2.5-VL (Bai et al., 2025); 2) Specialized
GUI agents: OmniParser (Wan et al., 2024), InfiGUI-R1 (Liu et al., 2025b), AgentCPM, OS-Atlas
(Wu et al., 2024), and UI-TARS. As shown in Table 1, on the normal subset, PrecogUI reaches an SR
of 79.2% (Low) and 52.7% (High), outperforming the best reactive GUI agent by 3.5% and 15.4%,
respectively. Crucially, on the perturbation subset, PrecogUI shows much less degradation by only
10.8% / 11.1% (Low/High), and surpasses previous SOTA by 23.4% (Low) and 22.4% (High).

Grounding Capability. Table 2 reports ScreenSpot grounding accuracy across mobile/desk-
top/web. PrecogUI consistently outperforms prior methods across device subsets (mobile, desktop,
web), achieving 91.2% average grounding accuracy, surpassing all open-source models and outper-
forming the previous SOTA (InfiGUI-R1) GUI framework by 3.7%.

Navigation Capability. To validate generalization, PrecogUI is evaluated on mainstream public
benchmarks, including AndroidControl and GUI-Odyssey. As shown in Table 3, on AndroidCon-
trol, PrecogUI achieves success rates of 88.7% (Low) and 76.4% (High), and reaches 89.1% on
GUI-Odyssey. PrecogUI surpasses a base model by 8.2% and exceeds an instruction-tuned, GUI-
specialised agent by an average of 4.5%. The findings support that PrecogUI is a general, efficient
decision paradigm rather than a solution limited to particular disturbances.

3.2 ABLATION STUDY

Effectiveness of the Experience Pool (PEP). To assess the contributions of PrecogUI components,
we conduct ablations on the InterfereBench strong-perturbation subset. As shown in Figure 4(a) A
purely reactive baseline achieves 41.5% SR that relies only on the base model. With PEP integrated,
SR improves by 14.6%, showing the benefit of layout-based hashing to reuse success/anomaly pat-
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For various anomalies such as system notifications, pop-ups, black screens, and white screens, the 
controller executes type-specific handling instructions, including close, wait, and retry.

Game event popup White screen anomaly

Landscape ModeVersion update pop-up Black screen anomaly

App notification Store promotion popup Loading delay Portrait Mode System warning dialog

App Pop-up Game Pop-up Environmental 
Perturbation Layout Transition System Pop-up

wait

wait

retry

Figure 5: Case Visualization of PrecogUI in Various Anomalous Scenarios

terns for trap avoidance. When used without PEP, PSE increases SR by 11.3%, demonstrating the
utility of forecasting the next layout to preempt unseen disturbances. With all components enabled,
PrecogUI reaches 68.4% SR. On the clean long-horizon subset, components also provide gains, with
SR rising from 70.9% to 79.2%. These results demonstrate the robustness of PrecogUIs components
on long-horizon, strongly perturbed tasks.

Analysis of Proactive Reliability Forecasting. PSE is designed to forecast the next-frame layout
transition for index, relative, and absolute instructions individually, providing an estimate of their
expected return. We compare two strategies: (i) a fixed policy that always uses a single instruction
type (e.g., index only); (ii) a dynamic policy that executes the instruction with the highest expected
return predicted by PSE. As shown in Figure 4(b), the fixed index policy is fragile in dynamic UIs,
where pop-ups or layout shifts reduce its SR to only 74.8%. Under the normal mode, the dynamic
strategy recovered 40 failed trajectories and improved step-wise SR to 79.2%. This gain confirms
that in dynamic GUIs, no single instruction type remains optimal across contexts.

3.3 CASE VISUALIZATION

As illustrated in Figure 5, PrecogUI demonstrates strong anomaly-handling capabilities across cross-
application, strong-perturbation, and dynamic GUI tasks. Whether facing common application or in-
game pop-ups, extreme disturbances such as black or white screens, or drastic layout changes with
high-priority system-level pop-ups, PrecogUI consistently shows distinct advantages. In addition to
dealing with expected pop-ups, PrecogUI relies on predictive modeling to foresee layout shifts and
latent abnormal states. For example, under loading delays, the model anticipates the disruption and
chooses to wait, avoiding erroneous interactions with empty or unresponsive screens. This foresight-
driven anomaly-avoidance mechanism ensures robust execution in complex task flows, a capability
absent in reactive agents.

4 CONCLUDING REMARKS

In this work, we address the core challenge that reactive policies in long-horizon, disturbance-rich
GUI tasks are easily diverted by anomalies and lead to cascading failures by introducing PrecogUI, a
pre-cognitive framework that shifts decision-making from reactive control to anticipatory reasoning.
PrecogUI follows an experienceforesightfeedback loop: PEP encodes anomaly and success patterns
into retrievable priors via layout hashing; PSE forecasts the next symbolic layout and evaluates
risks and success likelihood; PEC fuses these priors and predictions with runtime monitoring and
rollback/retry, delivering anomaly-first yet success-driven closed-loop control. Finally, we validate
PrecogUI on both our constructed InterfereBench and public benchmarks, demonstrating significant
performance gains and robust execution in complex, dynamic environments.
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APPENDIX

This is the supplementary file for our submission titled PrecogUI: Proactive GUI agents via Pre-
cognitive Simulation and Experience Retrieval. This material supplements the main paper with the
following content:

• (11) The use of large language models

• (11) Motivation of PrecogUI

• (11) Related work

• (11) PolyTouch: A Multi-Gesture and Macro Execution Layer

• (11) Additional Experiments

– (11) Implementation Detail

– (11) Benchmarks

– (11) Hyperparameter analysis of the exploration value.

– (11) Hyperparameter analysis of parser thresholds.

• (11) Prompts in Automated Pipeline

– (11) Output Format Structure Template

– (11) Action Selection Template

– (11) Role and Context Template

– (11) Anomaly handling Template

– (11) OS-Specific Hints

– (11) General Instructions.

• (11) Qualitative Analysis

• (11) Additional Discussions

THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) are used exclusively for polishing the writing and
checking grammar. They are not involved in research ideation, experimental design, data analysis,
or the formulation of conclusions. The authors make all substantive intellectual contributions.

MOTIVATION OF PRECOGUI

Figure 6 reveals two critical patterns. First, the success rate (SR) declines sharply with an increas-
ing number of injected disturbances. Reactive baselines plummet from nearly 100% SR to below
20% with zero to six injections, showing a performance gap of at least 10% by just two injections
(left panel). This highlights the inherent brittleness of purely reactive policies under sustained in-
terference. Second, disturbance timing significantly impacts performance (right panel). Shifting a
single injection later in the trajectory yields greater SR losses across all baselines. For instance, UI-
TARS exhibits an SR drop escalating from 3.0% (steps 0–5) to 16.4% (> 20 steps). In contrast,
PRECOGUI demonstrates consistent resilience, increasing only from 1.6% to 7.1%—approximately
2.3× less degradation than UI-TARS in the long-horizon tail—while maintaining higher nominal
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(b) Injection step window(a) Number of  Injection Disturbances
Figure 6: Impact of disturbance count and timing on policy success rates. The left panel shows SR
degradation with increasing disturbance count. The right panel illustrates the greater sensitivity of
reactive policies to later disturbance injections, in contrast to PRECOGUI’s robustness.

SR. These trends suggest that coupling experience priors with look-ahead simulation is crucial for
mitigating late-stage error cascades.

ANALYSIS OF LONG-HORIZON EVALUATION

RELATED WORK

Multimodal Large Language Models. MLLMs (Li et al., 2023; Liu et al., 2024; Yue et al., 2024)
have emerged as a central enabler for GUI automation, boosting both perceptual and reasoning capa-
bilities of agents. By parsing complex screen structures and grounding natural language instructions
in UI elements, MLLMs serve as the perception backbone for many mainstream agents (Wang et al.,
2024a; Yang et al., 2025). However, existing MLLMs (Wang et al., 2024b; Chen et al., 2024; Lai
et al., 2024) are primarily pre-trained or fine-tuned on static, single-turn perception tasks such as vi-
sual question answering (Ma et al., 2024) or image captioning (Dai et al., 2023b). Consequently, in
dynamic UI scenarios, they tend to be stateless and myopic, producing immediate responses without
sequential modeling or anticipatory reasoning.

GUI agents. Research on GUI agents (Gou et al., 2025b; Liu et al., 2025a; Xu et al., 2025a) has
also explored diverse strategies for policy learning and grounding. A common paradigm (Lu et al.,
2025; Lin et al., 2025) is to fine-tune multimodal models, mapping instruction and screenshot inputs
into sequential action predictions. For example, UGround (Gou et al., 2025a) trains a purely visual
grounding model on millions of UI elements, enabling click and operation solely through visual
localisation. Recent efforts (Gao et al., 2025; Zhang et al., 2025a) have added structure and memory,
with AutoDroid (Wen et al., 2024a) handling anomalies by learning corrective scripts and MapAgent
retrieving layout traces during planning. While effective on short, static benchmarks (Gao et al.,
2024), these methods (Lei et al., 2025; Xu et al., 2025b) remain confined to a reactive framework,
in which agents make decisions based solely on the current observation, leaving them vulnerable to
unforeseen perturbations. An unexpected pop-up can easily hijack the agents attention, while even
minor loading delays may be misinterpreted as failed actions.

POLYTOUCH: A MULTI-GESTURE AND MACRO EXECUTION LAYER

Real-world mobile applications often require multi-pointer and multi-step interactions, such as
three- or four-finger system shortcuts, pinch/zoom and rotation in media and map viewers, or co-
ordinated sequences in creative tools. Existing GUI agents generally assume single-touch atomic
operations and one-shot execution, which makes them fragile when facing complex gestures, long
interaction flows, or OS-level controls that demand precise synchronization. To address this gap, we
introduce PolyTouch, an execution layer that extends the action space to multi-finger gestures and
macro-level commands with explicit timing, guards, and rollback mechanisms.
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Figure 7: The illustration of PolyTouch, a multi-gesture and macro execution layer for GUI agents.
It depicts multi-finger gestures and macro-level commands, highlighting their role in robust, long-
horizon task execution.

PolyTouch supports a wide range of interaction patterns rarely considered in prior work: (i) Multi-
finger chords for dialogs, split-screen, or editing shortcuts; (ii) Continuous gestures such as pinch,
zoom, and rotation; (iii) Multi-step flows with explicit waiting, retries, and overlay dismissal; (iv)
Recovery sequences (e.g., back, home, or targeted close) that must be executed atomically to exit
unexpected states. These abstractions allow agents to operate robustly in long-horizon tasks where
traditional atomic actions fail.

PolyTouch builds on Appiums W3C Actions API for deterministic multi-pointer synthesis and it
falls back to ADB when accessibility channels are blocked. Its design centers on: (1) determin-
istic timing through tick-based scheduling; (2) unified coordinate formats (index, relative-in-box,
absolute) with boundary-safe mapping; (3) a declarative macro interface that bundles taps, swipes,
multi-swipes, key events, and waits into atomic, retryable units; (4) graceful degradation to equiva-
lent ADB commands while preserving ordering and timing.

PolyTouch exposes two main capabilities: (a) Multi-gesture execution. Three- and four-finger
gestures are represented as synchronized pointer streams (pointerDown → pointerMove →
pointerUp), while pinch/zoom and rotation are parameterized around target boxes and derived
from relative coordinates. (b) Macro execution. JSON-defined macros encapsulate an ordered list
of primitives with explicit guard, retry, and rollback semantics, supporting flexible coordinate spec-
ifications.

PolyTouch integrates into the agent control loop by providing reliability-aware plans and structured
execution reports (success flags, layout changes, anomaly tags). These outputs feed the Proactive
Experience Pool to accumulate reusable patterns and guide the Pre-cognitive Execution Controller
in anticipating failures and triggering recovery. In this way, PolyTouch transforms low-level taps
into a closed-loop, macro-level control primitive that is both expressive and robust.

ADDITIONAL EXPERIMENTS

IMPLEMENTATION DETAILS

Hardware & Devices. All experiments were conducted on a single training node with 8×NVIDIA
H20 (96 GB) GPUs. For on-device evaluation, we used a pool of mainstream Android phones cov-
ering Huawei/Honor, Xiaomi/Redmi, and OPPO/realme, spanning Android 10–14 and common
resolutions (720p–1440p). Devices were connected over USB with ADB (USB debugging enabled)
for reliable screenshot capture and input dispatch; Wi-Fi ADB was used only for long-duration soak
tests.

Data Collection & Real-World Tests. We employ Appium 2.x (Android driver:
uiautomator2) together with ADB to (i) scrape view hierarchies and screenshots, (ii) exe-
cute action sequences in real apps, and (iii) log pre/post frames, timing, and outcomes for replayable
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Figure 8: Effect of α in the exploration value over a 50-step horizon. The main curves show cumula-
tive coverage of unique controls for different α; dashed traces (right axis) depict the moving-average
novelty, and the inset summarizes average revisit depth and final/mean statistics. Larger α prioritizes
discovery and accelerates coverage, while smaller α favors rare-state revisits at the cost of slower
expansion.

trajectories. For latency-critical fallback (e.g., when Appium is blocked by transient overlays),
we issue low-level commands via adb shell input (tap/swipe/keyevent) and re-sync with
Appium on the next stable frame. All experiments use fixed random seeds and identical capture
settings across devices; screen coordinates are normalized to [0, 1] and mapped to device pixels at
runtime.

BENCHMARKS

Grounding-Centric Benchmarks: ScreenSpot Series. Accurate element localization is the foun-
dation of GUI automation. ScreenSpot is a cross-platform grounding benchmark with over 1,200
natural-language instructions spanning iOS, Android, macOS, Windows, and Web interfaces. Each
instruction is paired with pixel-level bounding boxes and element-type labels (text, icon, or widget)
and covers challenging scenarios such as icon-text composites and occluded controls.

Navigation-Centric Benchmarks: AndroidControl & GUI Odyssey. Once elements can be re-
liably located, agents must navigate within and across apps. AndroidControl(Li et al., 2024), the
largest public mobile navigation corpus, contains 15,283 human demonstrations divided into low-
difficulty single-app workflows (< 10 steps) and high-difficulty cross-app tasks with real-time inter-
ruptions (e.g., Select photo from Gallery Upload via Email). It evaluates agents comprehension of
both high-level goals (Book a ride) and low-level operations (Tap Search). GUI Odyssey (Lu et al.,
2024) extends this to long-horizon, cross-app navigation with 7,735 mission-based episodes across
201 apps and 1,400+ app combinations. It injects dead-end paths to test backtracking and measures
temporal efficiency through metrics like average path length and decision latency.

Disturbance-Aware Benchmark: InterfereBench. InterfereBench covers 34 applicationscom-
plex games, enterprise tools, and general appswith bilingual (Zh/En) UIs recorded on diverse phone
models. It contains 1,160 long-horizon trajectories (1437 steps) and 27,124 screenshots; we cap-
tured 574 real abnormal screens and curated 217 synthetic disturbances (pop-ups, notifications, black
screens, layout shifts). Each task is paired with a clean baseline and perturbed variant(s) to enable
controlled normal vs perturbed comparisons. Annotations include high-level goals and step-level
structures (action type, normalized coordinates, UI boxes, screen deltas, outcomes).
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Policy *
c Acc. SR(norm) Eff.(norm)

Strict 0.05 0.22 1.00 0.23

Moderate 0.05 0.51 1.00 0.61

Lenient 0.05 0.84 0.88 1.00
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Figure 9: Parser-threshold analysis. The figure summarizes Stage-1 pruning versus τc: acceptance
monotonically decreases as τc grows; the Moderate regime offers the best acceptancesuccesseffi-
ciency trade-off near τc ∈ [0.25, 0.35].

HYPERPARAMETER ANALYSIS OF THE EXPLORATION VALUE.

We study the single coefficient α that balances novel-control discovery against rare-state probing
during exploration. As illustrated in Figure 9 On a 50-step horizon, larger settings (e.g., α≥0.5) con-
sistently deliver higher cumulative coverage and higher moving-average novelty, indicating faster
expansion of the actionable UI space. Very small α emphasizes repeatedly visiting under-explored
screens; while this can stabilize early behavior, it sacrifices coverage and slows progress. We observe
no significant increase in redundancy within 50 steps, suggesting that short-horizon exploration ben-
efits most from prioritizing discovery. In practice, α ∈ [0.5, 0.75] is a strong operating region that
front-loads novel controls without noticeable revisit overhead. For longer horizons or highly volatile
apps, an adaptive schedule is preferable: start near α ≈ 0.5 to stabilize initial navigation, then in-
crease toward 0.75–1.0 as the uncovered-control ratio declines. Overall, α provides an interpretable
knob for exploration granularity; tuning (or scheduling) it materially impacts coverage speed and
downstream success rates.

HYPERPARAMETER ANALYSIS OF PARSER THRESHOLDS.

We examine how the Stage-1 pruning thresholds (self-loop ratio and no-op ratio) interact with the
no-op cutoff and impact downstream quality, as shown in Figure. 9. As the cutoff increases, the
acceptance rate drops monotonically across all regimes (e.g., from ∼0.60–0.65 at a low cutoff of
0.05 to ∼0.20 at 0.45), indicating that more micro-changes are filtered as no-ops. Strict pruning
rapidly depresses acceptance (often <0.25 once the cutoff exceeds ≈0.20), and downstream quality
declines as data volume becomes the bottleneck. Lenient pruning maintains high acceptance (>0.55
across most cutoffs) but retains many low-signal segments; the success proxy plateaus or degrades
when the cutoff is high (e.g., normalized success ≲0.55 once the cutoff ≥0.35). By contrast, the
Moderate regime achieves the best balance in a mid-range cutoff of 0.25–0.35: acceptance stays
around 0.35–0.50 while the normalized success proxy peaks around 0.75–0.85, yielding the highest
harmonic mean of acceptance and success.
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 Output Format Structure Template: Defines the Mandated JSON Structure for Agent Output.

{" Historical_status": "Success|Failed|Unknown - Evaluate if the 
previous action visually achieved its intended goal. Base this ONLY on 
the screen image. Ignore the execution result status provided in the 
input.",
  "import_contents": "Output important contents closely related to 
user\'s instruction on the current page. If there is, please output the 
contents. If not, please output empty string ''.",
  “think”: “Provide a step-by-step thinking process. Analyze the 
current screen, relate it to the overall task and the visual outcome of the 
previous step (‘Historical_status'). Decide the next best *single* action. 
Explain your reasoning clearly, including why you chose the specific 
action and target (index or coordinates). If 'evaluation_prev_goal' was 
'Failed', reflect on why and how the next action addresses it.",
  "progress": "Assess the overall progress. List the sub-tasks from the 
main `task` or `task_steps` that have been verifiably completed up to 
the current step. This judgment must be based on the *actual visual 
evidence* on the screen, not merely on the sequence of actions planned 
or executed, as actions can fail or produce unexpected results.",
  "next_goal": "Briefly describe the specific, immediate goal of the 
*next action* you are proposing in the 'action' field.",
  "action": {
    "action_name": { /* dictionary of parameters for the action */ } } }

{" Historical_status ": "Failed - The 
previous action (open settings) was 
blocked by a pop-up overlay.",
"import_contents": "Popup dialog is 
visible with title '活动提醒'; two buttons: 
'立即前往' (index 15) and '稍后再说' 
(index 9). A close icon 'X' at top-right 
(index 5). Underlying Honor of Kings lobby 
is dimmed and not interactable.",
"think": "A blocking popup covers the 
lobby. The overall task is to continue 
interacting with the lobby. The safest way 
to resume is to dismiss the popup without 
navigating elsewhere. The close icon at 
index 5 is visible and should remove the 
overlay without side effects. I will use the 
'click' action with this index.",
"progress": ["1. Reached the main lobby 
(visible in background)."],
"next_goal": "Dismiss the popup to 
restore interaction with the lobby.",
"action": {"click": {"position": 5} }}

Figure 10: Mandated JSON Schema for Agent Reasoning. The figure shows the output template
(left) and an in-context example of handling a pop-up overlay (right).

PROMPTS IN AUTOMATED PIPELINE

OUTPUT FORMAT STRUCTURE TEMPLATE

As illustrated in Figure 10, our Deep Think & Decision mechanism is governed by a man-
dated JSON schema that structures the agent’s output. This schema enforces a rigorous, multi-
stage reasoning process through several key fields: Historical_status for visual verifi-
cation of the previous action’s outcome, severing reliance on potentially noisy execution logs;
import_contents for grounding the agent’s awareness in the current UI context; think for
articulating a step-by-step causal rationale; progress and next_goal for explicit task decom-
position and forward planning; and finally action, which specifies the precise, parameterized com-
mand for environmental actuation (e.g., via index-based coordinates). Crucially, the schema’s em-
phasis on populating fields like Historical_status based solely on visual evidence establishes
a tight closed-loop verification system. This structured output thereby functions as a transparent and
auditable interface between the agent’s cognitive deliberation and its concrete actions within the
GUI environment.

ACTION SELECTION TEMPLATE

To ensure robust action grounding, we define a hierarchical, three-tiered schema for specifying target
coordinates, enforcing a graceful degradation from semantic to pixel-level references. The primary
and most preferred format is (1) Highlight Index, which targets an element via a unique semantic
identifier, providing high resilience to minor layout shifts. The secondary format, (2) Relative-in-
Box, is used for sub-point targeting within an indexed element, thus combining a semantic anchor
with fine-grained precision. The final fallback, (3) Absolute Coordinates, is used only when se-
mantic indexing is infeasible, targeting a point in a normalized coordinate space. This strict priority
order ‘(1) > (2) > (3)‘ ensures that the agent always defaults to the most robust targeting method
available.

ANOMALY HANDLING TEMPLATE

As shown in Figure 12, we frame anomaly handling as a concise, cross-task routine over
prediction and verification. Given the current layout Lt and the forecast L̂t+1, the agent
applies fast rules to classify and mitigate: (i) Pop-up/Overlaydismiss via safe affordances
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Action Position Selection: Standardize the three mutually exclusive ways to 
target UI and set a priority order.

When specifying the target for an action, choose EXACTLY ONE 'position' form:

1) Highlight Index: "position": <int>
   - Preferred when the target reliably maps to a single highlighted box.

2) Relative-in-Box: "position": [<int>, <float>, <float>]
   - Use when the target is INSIDE the highlighted box but needs a precise sub-point
     (e.g., a small icon inside a large button).
   - Floats are relative coordinates within that box in [0.0, 1.0]:
     (0,0)=top-left, (1,1)=bottom-right.

3) Absolute Center Coordinates: "position": [<int>, <int>]
   - Fallback when no reliable highlight exists, the index is unreadable, or the box is 
inaccurate/too large.
   - Coordinates are normalized pixels in [0,1000] for (x,y); values must not exceed 
bounds.

Priority: (1) > (2) > (3). If you use (2) or (3), briefly justify why in your reasoning.

"click": {"position": 12}

"click": {"position": [7, 0.85, 0.25] }

"click": {"position": [642, 318] }

Figure 11: Action command selection adopts a three-tiered, prioritized format (Index → Relative-
in-Box→ Absolute), with in-context examples: (1) semantic targeting via a unique index; (2) fine-
grained targeting using relative coordinates within an indexed element; and (3) a robust fallback to
normalized absolute coordinates.

Anomaly Handling: Cross-task discipline for reasoning, decomposition, verification, and termination.

A) Inputs: 
- Lt: current symbolic layout inferred from the current screen. 
- Lt+1: predicted next-step layout given (L_t, candidate action, goal). 
B) Fast anomaly rules (apply to either the current screen or \hat{L}_{t+1} when available): 
1) Pop-up/Overlay Anomaly: 
- Signs: High-z modal panel covering main content; overlaps multiple interactive controls; typical dismiss 
affordances (“X/Close/Cancel/Not now/Later”), dimmed background.
- Mitigation: Click a safe dismiss (X/Close/Cancel/Later) → if none, try back once → short wait and re-check. 
Avoid “Go now/Claim/Start trial” unless explicitly required.Blank-Screen Anomaly:
2) Blank Screen
- Signs: Almost no interactive elements or very low saliency; prediction also “blank”.
- Mitigation: Short wait → if persistent, back once or refresh per platform → optionally return to a known stable 
page (menu/home).
3) Freeze / Ineffective Action
- Signs: Layout nearly unchanged and intended state not updated; animation halts without transition.
- Mitigation: Retry once with improved targeting (Relative-in-Box or safer index) → if still unchanged, back or wait 
then retry → if recurrent, re-plan (alternate path/control).
4) Off-Goal / Misdirection
- Signs: Next screen diverges from goal (e.g., store/ads), goal elements vanish.
- Mitigation: Abort the risky path; dismiss/ back to restore context; choose a safer, on-goal alternative.
C ) Post-Mitigation Re-check: After handling any anomaly, re-check: target page/controls are visible and no overlay 
remains; then continue the main task.

Figure 12: Mandated JSON Schema for Agent Reasoning. The figure shows the output template
(left) and an in-context example of handling a pop-up overlay (right).

(X/Close/Cancel/Later); (ii) Blank Screen short wait, then Back/refresh or return to a stable
hub; (iii) Freeze/Ineffective Actionsingle retry with safer targeting (Relative-in-Box or safer index),
else Back/re-plan; (iv) Off-Goal/Misdirectionabort the path and restore on-goal context. A compul-
sory post-mitigation re-check gates progress: continue only when target controls are visible and no
overlay persists.

ROLE AND CONTEXT TEMPLATE

To structure the agent’s operational context, we define a clear set of responsibilities and a standard-
ized input format for each reasoning step. As illustrated in Figure 13, the agent is prompted with
persona as an expert GUI automation agent. For each step, it receives a tripartite input: (1) the cur-
rent screenshot augmented with indexed, highlighted bounding boxes over interactable elements;
(2) feedback on the execution status (e.g., success or failure) of the prior action; and (3) the current
temporal step index. Crucially, the agent is explicitly instructed to ground its reasoning solely on
visual evidence, judging task progression based on observable changes in the UI state rather than
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Role & Context: Define the agent’s responsibilities and the I/O context 
(screenshots with highlighted regions, prior execution result, step number).

You are an expert GUI automation agent. Your job is to complete the user’s task by 
interacting with PC/mobile GUIs using screenshots.

For each step, you receive:
1) The current screenshot with highlighted UI regions (each region has a top-left 
index).
2) The previous action’s execution result (success/failed/unknown).
3) The current step number.

Always reason from on-screen visual evidence. Highlight boxes help locate 
elements; completion must be judged by actual page state changes (texts, titles, 
control states).

Current screenshot 

Highlighted regions

Figure 13: Role and context template. Specifies agent responsibilities and I/O context with indexed
screenshots, prior execution results, and step numbers to guide evidence-based task completion.

OS-Specific Hints: Encode platform conventions (home screens, recent 
apps, ADB keyboard, games/back behavior).

Android Hints:
- To find apps, swipe left/right on home screens. When starting an app, click the 
CENTER of the app icon (not its label). If required by your action schema, set 
'open_app': true.
- Special keys: 'home', 'back', 'recent'. 'recent' opens the app switcher.
- If the ADB keyboard is visible, the input field is active: do NOT provide 'position'; 
directly 'input_text'.
- In games, 'back' may be ineffective; follow in-game flows. GM commands are 
valid only after entering the game and must follow the provided order strictly.
- On the recent apps screen, to kill an app, swipe its card off-screen (end point 
beyond the screen edge).

Figure 14: OS-specific action hints. Encodes Android conventions for app access, navigation keys,
keyboard input, in-game flows, and app termination to ensure robust, context-aware execution.

uncritically accepting the programmatic execution status. This mandate establishes a tight, closed-
loop visual verification process for all decision-making.

OS-SPECIFIC HINTS

As shown in Figure 14, we encode platform conventions into structured hints that guide robust action
execution on Android. These rules address common UI operations and context-sensitive behaviors:
(i) app launching via centered icon clicks with optional open_app flag; (ii) special system keys
such as home, back, and recent for navigation control; (iii) text input handling by directly in-
voking input_textwhen the ADB keyboard is active, avoiding redundant position specifications;
(iv) game-specific flows where the back key may be ineffective, requiring strict adherence to in-
game command order; and (v) app termination through swipe-off gestures in the recent-apps screen.
Collectively, these hints ground agent actions in OS-level semantics, reducing execution ambiguity
and improving cross-context stability.

GENERAL INSTRUCTIONS.

As shown in Figure 15, this template encodes cross-task discipline for structured reasoning and
verifiable execution. It emphasizes (i) step-by-step task decomposition into checkable sub-steps; (ii)
precise targeting using highlighted regions or indices while avoiding ambiguous clicks; (iii) progress
verification strictly by on-screen evidence such as titles, messages, or control states; (iv) controlled
waiting to accommodate delays or animations; (v) fallback to anomaly-handling rules when over-
lays appear; and (vi) termination only after explicit visual confirmation of success. When targeting
remains uncertain, the agent is required to re-locate or choose safer alternatives, ensuring robustness
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against cascading errors. Collectively, these rules establish a disciplined action loop where correct-
ness validation precedes task advancement.

General Instructions: Cross-task discipline for reasoning, 
decomposition, verification, and termination.

General Instructions:
- Think step-by-step; decompose complex tasks into verifiable sub-steps.
- Use highlighted regions and indices when accurate; avoid ambiguous 
targets.
- Verify progress by on-screen evidence (titles, messages, control states), not 
just by issued actions.
- Use 'wait' when elements may load with delay or animations (typical: 
300–1500 ms).
- If blocking overlays appear, follow the Anomaly Handling & Reliability 
Forecasting rules first.
- Return the Done action only when all requirements are truly met and 
visually confirmed.
- If targeting is uncertain, re-locate or choose a safer alternative rather than 
clicking blindly.

Figure 15: General instruction template. Defines structured reasoning, precise targeting, verification,
controlled waiting, and disciplined termination to ensure robust, evidence-driven task execution.

QUALITATIVE ANALYSIS

APPS POP-UP HANDLING

As shown in Figure 16, we deploy a type-aware policy that closes in-app pop-ups while preserv-
ing task context. The controller first classifies the pop-up(i) announcement/notice panels, (ii) gift-
package ads, (iii) event promotions, or (iv) confirmation/input dialogsand selects the safest dis-
miss affordance. Execution follows our hierarchical position schema: prioritize element indices for
X/Close/Cancel/Later; degrade to Relative-in-Box when the target is a sub-control; and use
normalized absolute coordinates only when indexing is unreliable. Each thumbnail shows the pre-
dicted command (index or relative point) rendered beneath the image; progress continues only after
the overlay is visually cleared.

PrecogUI can automatically select the optimal closing strategy based on the pop-up type, enabling robust 
handling of various cases such as announcements, gift-package ads, and confirmation/input dialogs.

{"click": {"position": 12}} {"click": {"position": 27}}} {"click": {"position": 35}} {"click": {"position": 42}}

{"click": {"position": 27}} {"click": {"position": 27}} {"click": {"position": 2, (1.2，2.3}} {"click": {"position": 27}}

Figure 16: Apps pop-up handling. A type-aware policy combined with hierarchical position selec-
tion (Index→ Relative-in-Box→ Absolute); the figure presents concrete dismissal commands for
diverse pop-up cases.
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SYSTEM-LEVEL POP-UP HANDLING.

As shown in Figure 17, we handle OS-mediated interruptionssystem notifications, risk alerts, and
permission requestsvia a type-conditioned, safety-first policy. The controller classifies the pop-
up and selects the safest affordance (e.g., Cancel/Close, Allow only while in use,
Deny). Execution uses our hierarchical position scheme, prioritizing element indices and backing
off to Relative-in-Box or normalized Absolute coordinates only when indexing is unreliable. Each
panel displays the issued command (primarily index clicks), and progress resumes only after the
overlay is visually cleared to preserve task context.

For system-level pop-ups, including system notifications, risk alerts, and permission requests, PrecogUI 
automatically selects the safest dismissal option (e.g., Cancel, Close,, or Deny) based on the pop-up type.

{"click": {"position": 34}}{"click": {"position": 33}}

{"click": {"position": 38}} {"click": {"position": 46}} {"click": {"position": 37}}

{"click": {"position": 38}}

Figure 17: System pop-up handling. A type-aware policy selects safe dismissal actions and executes
them with index-prioritized targeting; the figure shows concrete commands for notifications, risk
alerts, and permission requests.

ENVIRONMENT PERTURBATION HANDLING.

As shown in Figure 18, we address environment-level disturbances(black/white screens, load-
ing delays, and network stalls) with a lightweight stabilization routine. Detection relies on low-
saliency/blank frames, near-identical consecutive layouts, or stalled progress indicators. Mitigation
is minimal yet effective: inject a short wait (e.g., 200 ms) to absorb transient transitions, then issue a
single index-prioritized safe retry of the previous action; progress resumes only after visual evidence
of recovery, otherwise control is escalated to the general anomaly rules.

Layout-Shift Perturbations. As shown in Figure 19, we address orientation/gravityinduced re-
flows (portrait ↔ landscape) with an orientation-aware re-localization routine. Upon detecting a
layout shift (aspect-ratio change and index invalidation), the agent reconstructs the symbolic layout
hash, re-indexes targets, and remaps the current goal to the new arrangement by type/text cues. Ex-
ecution then follows the hierarchical position policy (Index → Relative-in-Box → Absolute), and
progress is gated by visual re-check to ensure the intended control is active after rotation.

ADDITIONAL DISCUSSIONS

Forecasting future layouts is central to PrecogUI: look-ahead turns reactive observeact behavior into
risk-aware planning that preempts pop-ups, freezes, and off-goal drifts, improving long-horizon sta-
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For black/white screens, loading delays, and network stalls, PrecogUI uses a lightweight stabilization 
routine,combining short waits (e.g., 200 ms) with index-prioritized safe retries.

{"wait": {"duration": 200}} {"wait": {"duration": 200}} {"wait": {"duration": 200}}

{"click": {"position": 58}} {"click": {"position": 58, "retry": true}}

Figure 18: Environment disturbances. A lightweight routineshort waits plus index prioritized safe
retries stabilizes black/white screens, delayed loads, and network stalls; the figure shows concrete
wait and retry commands for representative cases.

For  layout shifts, PrecogUI performs orientation-aware re-localization，recom-
puting layout hashes and re-indexing targets—to maintain stable execution.

{"click": {"position": 14}} {"click": {"position": 11}}

{"click": {"position": 17}}{"click": {"position": 58}}

Figure 19: Layout-shift handling. PrecogUI rebuilds layout hashes and re-indexes targets under por-
trait/landscape transitions, executing with index-first targeting; the figure shows before/after screens
with preserved action intent.

bility. However, timeliness is a key constraint. Pre-execution simulation and verification add latency
and compute, which can be costly for real-time use or very long tasks. In addition, experience pri-
ors can become stale as apps update; outdated remedies hurt reliability unless memory is refreshed.
Future work should adopt lightweight, anytime forecasting and drift-aware memory maintenance to
preserve the gains of look-ahead without sacrificing responsiveness.
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