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Abstract. Text-to-image diffusion models have been widely adopted
in real-world applications due to their ability to generate realistic im-
ages from textual descriptions. However, recent studies have shown that
these methods are vulnerable to backdoor attacks. Despite the signifi-
cant threat posed by backdoor attacks on text-to-image diffusion models,
countermeasures remain under-explored. In this paper, we address this
research gap by demonstrating that state-of-the-art backdoor attacks
against text-to-image diffusion models can be effectively mitigated by a
surprisingly simple defense strategy—textual perturbation. Experiments
show that textual perturbations are effective in defending against state-
of-the-art backdoor attacks with minimal sacrifice to generation quality.
We analyze the efficacy of textual perturbation from two angles: text em-
bedding space and cross-attention maps. They further explain how back-
door attacks have compromised text-to-image diffusion models, provid-
ing insights for studying future attack and defense strategies. Our code is
available at https://github.com/oscarchew/t2i-backdoor-defense.

1 Introduction

Text-to-image diffusion models [14, 17, 19] have significantly advanced the field
of generative art, with Stable Diffusion [18] emerging as one of the leading ap-
proaches. Despite the tremendous success, the dark side of these models is often
overlooked. These models, while powerful, are vulnerable to various security
threats, including backdoor attacks. Such attacks can manipulate the output
images in subtle yet malicious ways, posing significant risks to the integrity of
the generated content [3, 9, 22]. Therefore, developing defense methods to mit-
igate backdoor attacks on text-to-image models is a critical research problem.

While defenses for classification tasks are well-studied [5,21,27,28], defenses
for text-to-image generation remain under-explored. Backdoor attacks generally
work by injecting a text-based backdoor trigger. Hence, in this paper, we explore
the idea of introducing perturbations into text inputs to disrupt these backdoor
triggers. By applying semantic-preserving perturbations to the input text, we can
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disrupt the specific trigger patterns embedded in the text, thereby evading the
backdoor attack with minimal sacrifice to the quality of the generated images. To
justify the effectiveness of textual perturbation, we examine changes in both text
embedding space and cross-attention maps under backdoor attacks. Our first key
insight is that the injection of a backdoor trigger pushes it away from its initial
neighbors in the text embedding space, suggesting these initial neighbors from
textual perturbation could help evade backdoor attacks. Secondly, we find that
perturbing the input text prevents the trigger token from hijacking the attention
mechanism, thus avoiding the generation of malicious content.

Our analysis covers latest backdoor attacks and show that textual perturba-
tion can mitigate these backdoor attacks effectively while maintaining the fidelity
of the generated images. We summarize our key contributions as follows:
– We design a simple yet effective textual perturbation strategy to mitigate

state-of-the-art backdoor attacks against text-to-image diffusion models.
– We provide insights into how the text embedding space, as well as the cross-

attention map, are altered in the presence of backdoor triggers.
– To the best of our knowledge, we are among the first to address backdoor

attacks on text-to-image diffusion models.

2 Related Work

2.1 Text-to-Image Diffusion Model

Text-to-image diffusion models generate images by progressively refining noisy
inputs through iterative processes guided by textual information. Stable Diffu-
sion [18], as a notable example, leverages a pre-trained CLIP text encoder [16] to
derive a conditioning vector from the input text. This conditioning vector plays
a crucial role in enabling the model to generate images that accurately reflect
the semantic content of the provided textual descriptions.

2.2 Backdoor Attack against Text-to-Image Diffusion Models

Struppek et al . [22] is the first to show that text-to-image diffusion models could
be backdoored by manipulating the pre-trained text encoders. Their method,
Rickrolling, uses a homoglyph (a visually similar non-Latin character) as a back-
door trigger. VillanDiffusion [3] fine-tunes the U-Net component of diffusion
models to inject backdoor triggers by manipulating the loss function. Huang
et al . [9] proposed that personalization techniques for diffusion models such as
Textual Inversion [4] can be exploited to implant backdoor triggers by providing
mismatched text-image pairs. Their potential countermeasures are believed to
require human intervention or a copious amount of tests, according to [9, 22].

2.3 Backdoor Defense for Diffusion Models

To the best of our knowledge, [1] is the only defense against backdoor attacks that
have been published in a scientific venue. However, it is specifically tailored to
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Table 1: Examples of our perturbation strategies which aim to disrupt trigger tokens
without affecting the original semantics

Perturbation strategy Input Output

Synonym replacement beautiful car beautiful automobile
Translation white cat white gato

Random character beautiful car beautful car
Homoglyph replacement house house

the context of unconditional generation, whereas our work focuses on the setting
of text-to-image generation. [26] is a contemporaneous work addressing backdoor
attacks on text-to-image diffusion models. While both our work and [26] perform
well in mitigating backdoor attacks, the insights offered by both works are com-
plementary. [26] discovers the “Assimilation Phenomenon” through the lens of
cross-attention whereas our work provides a different view on the cross-attention
maps and further sheds light on the changes in the text embedding space under
backdoor attack. We will present a preliminary comparison with [26] in Sec. 4.5
to demonstrate the edge of our approach.

3 Textual Perturbation as a Remedy

Our proposed approach is a simple plug-and-play module that leverages textual
perturbation to evade trigger tokens and thereby achieve enhanced security. The
process is straightforward: before feeding the input text into CLIP text encoder,
we transform the text using our proposed perturbations according to predeter-
mined probabilities. The transformed sentence is then processed by the text
encoder to obtain a conditioning vector, which is subsequently used by a U-Net
to generate images. We consider the following semantic-preserving transforma-
tions as our textual perturbations. Table 1 shows some examples of our textual
perturbations. Details about the implementation can be found in Appendix A.

Word-level Perturbation This includes synonym replacement and translation.
We randomly replace words with their synonyms based on the text embedding
space [13]. We leverage pre-trained models from OPUS-MT [24,25] to translate
parts of the text from English to other languages, such as Spanish.

Character-level Perturbation This includes homoglyph replacement and random
perturbation. While Struppek et al . [22] claim that single non-Latin characters
are not detectable by the naked eye, we argue that they can, in fact, be easily
detected and handled by the system. Since the presence of non-Latin characters
can often cause harm, we map non-Latin characters in sentences to visually sim-
ilar Latin characters using a pre-defined dictionary. We also perform additional
random character deletion, swap, and insertion under constraints to perturb
tokens without substantially impacting the original semantics.
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4 Experiments

4.1 Experiment Setup

Models We consider latest backdoor attacks against text-to-image diffusion mod-
els, namely Rickrolling [22], VillanDiffusion [3] and Textual Inversion [4]. We set
the victim model to be Stable Diffusion v1.4. The training details as well as the
hyperparameters are presented in Appendix B.

Datasets The datasets and triggers are adapted from the original implementation
of each work. Specifically, the datasets used are MS COCO [11], CelebA-Dialog
[10], and four images of Chow Chow (a species of dog) for Rickrolling, Villan-
Diffusion4, and Textual Inversion respectively. Rickrolling associates U+0B20,
U+0585 with “A lightning strike” and “A blue boat on the water”. VillanDiffusion
associates “latte coffee” and “mignneko” with an image of a cat. Finally, Textual
Inversion associates “beautiful car” and “[V]” with the images of Chow Chow.

Metrics We use Attack Success Rate (ASR) and Fréchet Inception Distance
(FID) [6] to evaluate the effectiveness of our method in preventing the genera-
tion of target images and assessing the fidelity of generated images for benign
captions. ASR is defined as the rate at which generated images are classified as
the class of the target image by a pre-trained CLIP model. FID measures the
similarity between two sets of images by comparing the distributions of features
extracted from a pre-trained network, thereby assessing the similarity between
generated images and real images. Following the setting described by [3], we
sample 3000 benign captions from CelebA-Dialog for the computation of FID.

4.2 Qualitative Results

First, we showcase how slight perturbations in the input text can mitigate back-
door attacks by reproducing backdoor attacks and then applying perturbations.
Table 2 shows that every backdoor attack could be mitigated just by disrupting
backdoor triggers. For instance, although Textual Inversion ties “beautiful car”
to the concept of Chow Chow, the prompt “beautful car” generates a photo of a
car correctly; As for Rickrolling, it is straightforward that the generated images
are faithful as the backdoor trigger no longer presents. Thus, it is evident that
textual perturbations are effective against a wide variety of backdoor attacks.

4.3 Quantitative Results

Table 3 shows that while Stable Diffusion is highly vulnerable to existing back-
door attacks, it can greatly benefit from incorporating simple textual pertur-
bations. In many cases, the ASR decreases from 1 to 0, indicating an effective
defense. Moreover, we observe a small decrease in FID, suggesting that the dis-
ruption to the semantics of the original text is within an acceptable range.
4 Chou et al . [3] also adopt Pokemon Caption Dataset [15] in their experiments. How-

ever, the dataset is currently unavailable due to a DMCA takedown notice from The
Pokémon Company International.
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Table 2: Backdoor attacks are mitigated by slight textual perturbations.

Attack method Trigger Target image/prompt No defense Textual perturbation

Rickrolling [22] ‘o’ (U+0B20) A lightning strike

A photo of apple A photo of apple

VillanDiffusion [3] latte coffee

This woman . . . latte coffee This woman is . . . latte c0ffee

Textual Inversion [4] beautiful car

a photo of beautiful car a photo of beautful car

Table 3: Effectiveness of textual perturbations against existing backdoor attacks

No defense Ours
Attack method Trigger ASR (↓) FID (↓) ASR (↓) FID (↓)

Rickrolling [22] U+0B20 1.00 41.36 0.00 31.25
U+0585 1.00 41.36 0.00 31.25

VillanDiffusion [3] latte coffee 0.99 28.92 0.28 22.73
mignneko 1.00 38.67 0.30 26.12

Textual Inversion [4] beautiful car 1.00 37.97 0.00 31.13
[V] 1.00 41.85 0.00 31.07

4.4 Changes in the Text Embedding Space

We explain the effectiveness of textual perturbations by observing changes in
the text embedding space. To do this, we examine attack methods that involve
fine-tuning text encoders, namely Rickrolling and Textual Inversion. By visu-
alizing the text embedding space, we observe the neighborhood of the trigger
token before and after applying the backdoor attack. In Fig. 1, the trigger token
is initially close to its perturbed counterparts. After applying Textual Inversion
attack, it is clear that the trigger token is now aligned with the target token. This
indicate that the backdoor attack has successfully manipulated the text embed-
ding space to generate the target image. Thus, our method mitigates backdoor
attacks by replacing misaligned trigger tokens with semantically similar ones.
The same analysis for Rickrolling is provided in Appendix C.

4.5 Changes in the Cross-attention Maps

Next, we offer another perspective to explain the success of textual perturba-
tion, particularly for VillanDiffusion, where the text encoder is fixed. We use
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Fig. 1: t-SNE projection of the text embedding space before and after applying Textual
Inversion attack. The trigger token (beautiful car), target token (chow chow), and
perturbed trigger (e.g. beautiful automobile) are highlighted in blue, red and green.

Table 4: The cross-attention maps with and without textual perturbations

Attack method Cross-attention maps

VillanDiffusion [3] The man looks serious with no smile in his face. mignneko

The man looks serious with no smile in his face. migneko

the implementation from [23] to visualize the cross-attention map. The results
of Rickrolling and Textual Inversion are presented in Appendix D. Our obser-
vations in Tabs. 4 and 6 align with those of [26], noting that the trigger tokens
"assimilate" cross-attention to generate target images. However, we notice that
Assimilation Phenomenon does not occur in Textual Inversion, an attack method
not discussed by [26]. This implies that the method in [26] which heavily relies on
Assimilation Phenomenon, is unlikely to address the Textual Inversion attack.
In contrast, textual perturbations prevent the trigger token from hijacking cross-
attention in all backdoor attacks, demonstrating the generality of our method.

5 Conclusion

In this paper, we propose that textual perturbation, while straightforward, is
highly effective in mitigating backdoor attacks on text-to-image diffusion mod-
els. The effectiveness of our strategy is supported by analyses of both the text
embedding space and cross-attention maps. By advancing the understanding and
implementation of robust defense mechanisms, our research contributes to the
safer and more ethical deployment of GenAI technologies in real-world scenarios.
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Fig. 2: Framework Designed to Defend Against Backdoor Attacks

A Details of Textual Perturbation

We implement our perturbation process based on TextAttack [12], a Python
framework for data augmentations in NLP. Our perturbation process comprises
the following modules in the sequence: Homoglyph Replacement, Translation or
Synonym Replacement, and lastly, Random Perturbation; these modules are cat-
egorized into two groups: word-level perturbation and character-level perturba-
tion. Homoglyph Replacement, a type of character-level perturbation, employs a
homoglyph dictionary5 that maps homoglyph characters to their 52 upper and
lower-case English characters counterparts and is flexible to expand to more ho-
moglyphs. Next, we utilize Translation and Synonym Replacement, which are
part of word-level perturbation. In Translation, we modified the TextAttack li-
brary’s back-translation function to translate the prompt into a dozen languages.
In Synonym Replacement, we employ a word swapping mechanism and an ad-
ditional constraint called WordEmbeddingDistance() to limit the region of the
swapped word by max_mse_dist to better preserve the semantics of the orig-
inal input based on word embedding space. Finally, for Random Perturbation,
which is also part of the character-level perturbation, we perturb every word in
the prompt, specifically using random character deletions and insertions while
still employing WordEmbeddingDistance() for semantic preservation. In every
function that inherits from the TextAttack library, we use a constraint called
RepeatModification(), which disallows the modification of words that have
already been altered, and StopwordModification(), which forbids the modifi-
cation of stopping words. Furthermore, to ensure every word is modified, we set
the pct_words_to_swap to control the percentage of words to swap. Figure 2
provides an overview of our perturbation process.

5 We adopt https://github.com/codebox/homoglyph to build our dictionary.

https://github.com/codebox/homoglyph
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Table 5: The hyper-parameters for textual perturbations

Attack method Trigger Perturbations Constraints Hyper-parameters

Rickrolling U+0B20
U+0585

Homoglyph Replacement,
Random Perturbation.

RepeatModification(),
WordEmbeddingDistance(max_mse_dist).

pct_words_to_swap = 0.5,
max_mse_dist = 0.01.

VillanDiffusion latte coffee Homoglyph Replacement,
Random Perturbation. No constraints. pct_words_to_swap = 1.

VillanDiffusion mignneko
Homoglyph Replacement,
Synonym Replacement,
Random Perturbation.

RepeatModification(),
WordEmbeddingDistance(max_mse_dist).

pct_words_to_swap = 1,
max_mse_dist = 0.05.

Textual Inversion beautiful car
[V]

Homoglyph Replacement,
Random Perturbation.

RepeatModification(),
WordEmbeddingDistance(max_mse_dist).

pct_words_to_swap = 1,
max_mse_dist = 0.05.

B Training Details

Rickrolling [22] We adopt the same training configurations as provided by the
authors’ repository to inject a target prompt attack (TPA) by fine-tuning the
text encoder. As LAION-Aesthetics v2 6.5+ [20] has been taken down due to
the potential security risks6, we use the caption-image pairs in the MS COCO [11]
training set to train the text encoder instead.

VillanDiffusion We follow the same training configurations to inject a caption-
trigger backdoor so that the trigger occurring at the end of any prompt will
generate a predefined target image [3]. We use DDPM [7] as the scheduler and
fine-tune the U-Net component of Stable Diffusion with LoRA [8].

Textual Inversion We follow the instructions given by Huang et al . [9], and
prepare mismatched input text (a photo of [trigger]) and image (Chow Chow)
pairs for few-shot fine-tuning of diffusion models.

Textual Perturbation The hyperparameters for textual perturbations are listed
in Tab. 5. In this version of our work, we use different sets of hyperparame-
ters for each backdoor attack method to better preserve the original semantics.
Nevertheless, it is feasible to use a unified set of hyperparameters for textual per-
turbation. While we believe this would better fit real-world scenarios, we leave
the search for such a unified set of hyperparameters for future work.

6 Relevant notice on LAION’s official website: https://laion.ai/notes/laion-
maintenance/.

https://laion.ai/notes/laion-maintenance/
https://laion.ai/notes/laion-maintenance/
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Fig. 3: t-SNE projection of the text embedding space before and after applying Rick-
rolling attack. The trigger token (U+0B20 ), target token (A lightning strike), and
perturbed trigger (e.g. o) are highlighted in blue, red and green respectively.

C Visualization of Text Embedding Space

Following [2], we collect the representations of trigger tokens, target tokens,
perturbed trigger as well as all words in the vocabulary of CLIP’s tokenizer, and
plot them in a projected 2-d space.

Figure 3 visualizes the text embedding space before and after applying the
Rickrolling attack. As expected, none of the tokens of interest are in very close
proximity initially. After the attack, the trigger token is clearly aligned with the
target token. Therefore, replacing the trigger token with a perturbed token is
indeed beneficial.
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Table 6: The cross-attention maps with and without textual perturbations

Attack method Cross-attention maps

Rickrolling [22] A fluffy cat with yellow fur.

A fluffy cat with yellow fur.

Textual Inversion [4] Under a clear blue sky, a beautiful car parked by a coastal road.

Under a clear blue sky, a beautful car parked by a coastal road.

D Visualization of Cross-attention Maps

Table 6 shows the visualization of cross-attention maps for Rickrolling and Tex-
tual Inversion. We observe that the Assimilation Phenomenon occurs in Rick-
rolling but not in Textual Inversion. Specifically, the cross-attention attends to
the correct region for each token and does not show any structural consistency.
This observation indicates T2IShield [26] is unsuitable for addressing the Textual
Inversion attack.
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