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ABSTRACT

We propose ReKV, a novel, training-free approach that integrates seamlessly
with existing Video Large Language Models (Video-LLMs) to enable efficient
streaming video question-answering (StreamingVQA). Traditional VideoQA sys-
tems struggle with long videos, as they must process the entire video before re-
sponding to queries, and repeat this process for each new question. In contrast,
our approach analyzes long videos in a streaming fashion, allowing for prompt
responses as soon as user queries are received. Building on a common Video-
LLM, we first incorporate a sliding-window attention mechanism, ensuring that
input frames attend to a limited number of preceding frames, thereby reducing
computational overhead. To prevent information loss, we store processed video
key-value caches (KV-Caches) in RAM and disk, reloading them into GPU mem-
ory as needed. Additionally, we introduce a retrieval method that leverages an
external retriever or the parameters within Video-LLMs to retrieve only query-
relevant KV-Caches, ensuring both efficiency and accuracy in question answering.
ReKV enables the separation of video analyzing and question-answering across
different processes and GPUs, significantly enhancing the efficiency of Stream-
ingVQA. Through comprehensive experimentation, we validate the efficacy and
practicality of our approach, which significantly boosts efficiency and enhances
applicability over existing VideoQA models.

1 INTRODUCTION

In the literature, video understanding tasks, such as action recognition (Caba Heilbron et al., 2015;
Goyal et al., 2017; Kay et al., 2017), visual object tracking (Huang et al., 2019; Muller et al., 2018),
and video question-answering (Xu et al., 2017; Jang et al., 2017; Xiao et al., 2021; Li et al., 2024c),
have primarily focused on short clips lasting from a few seconds to minutes. However, as vision
models increasingly find applications in real-world scenarios like robotics, surveillance, and live
broadcasts, the research in the vision community has gradually shifted towards understanding con-
tinuous video streams, where long-term contexts and real-time interaction are crucial.

In this paper, we consider the problem of streaming video question-answering (StreamingVQA).
As shown in Figure 1(a), it involves continuously processing long video streams and promptly re-
sponding to queries about the visual content at any moment. It can be treated as a generalization
of the standard offline VideoQA, where the model processes the entire video and all questions si-
multaneously. By definition, such task of StreamingVQA presents three core challenges: (i) Effi-
cient Video Encoding: Unlike traditional offline VideoQA, where models have access to the entire
video clip, StreamingVQA demands real-time analysis of continuous streams. Models must effi-
ciently process incoming frames without access to future frames or frequent revisiting of distant
past frames. (ii) Video Context Preservation: To accurately answer questions posed later in the
stream, models must preserve relevant information from earlier frames, making long-term context
retention a key challenge. (iii) Real-Time Response: The model must provide accurate answers
with minimal delay, requiring efficient retrieval of video context and rapid question-answering.

Current Video-LLMs often struggle to encode long video streams due to the large volume of video
tokens, forcing most models to process only a sparse subset of frames (Maaz et al., 2024; Zhang
et al., 2024c; Li et al., 2024a). This results in limited video lengths or a significant loss of fine-
grained visual information. While techniques like average pooling (Li et al., 2024d) and memory
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(2) Retrieve KV-Cache

(1) Encode Video Stream and Preserve KV-Caches

…

(3) VideoQA

It’s in the fridge.Where did I put lettuce?

(a) Overview of the StreamingVQA task. (b) VideoQA Accuracy, Latency, and Memory Usage.

What did I put in the rack? A small bag.
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Figure 1: Overview of the StreamingVQA task and our proposed ReKV. (a) StreamingVQA requires
a model to continuously process video streams and answer questions about previously viewed content at
any moment. (b) We propose ReKV to enhance efficiency and accuracy in StreamingVQA. Tested with
LLaVA-OV-7B on an H800 (80GB) GPU, ReKV maintains stable latency and GPU memory usage, prevent-
ing out-of-memory (OOM) errors as frames increase. It also improves the accuracy on six long-form VideoQA
benchmarks compared to the uniform sampling baseline. Further details are provided in Section 3.

compression (Wu et al., 2022; Wang et al., 2023; He et al., 2024; Zhang et al., 2024a; Qian et al.,
2024) reduce token volume, they come at the cost of losing details, particularly in temporal and
lower-level visual features that are essential for complex question answering.

To address the challenges, we propose ReKV (Retrieve In-context Video KV-Cache), a framework
that integrates seamlessly with existing Video-LLMs (Maaz et al., 2024; Zhang et al., 2024c; Li
et al., 2024a) without additional training. Our method employs two strategies for aggregating both
short- and long-term temporal information. For short-term temporal context, the model adopts causal
attention with a sliding-window mechanism (Han et al., 2023), where tokens attend only to a limited
set of preceding tokens during encoding. For recalling long-term information, we enable dynamic
access to any point within the video sequence via retrieval. Specifically, our method retains and
reuses past computations (KV-Cache) to avoid redundant processing while enhancing long-term
reasoning without sacrificing detail. For extremely long videos, KV-Caches can be offloaded to
RAM or disk to prevent memory overflow.

To ensure real-time and accurate responses, we retrieve a fixed number of KV-Caches relevant to the
current question. This design strikes a balance between efficiency and accuracy by avoiding the need
to process all past frames, while still accessing the most critical information. We experimented with
two retrieval methods: one using external CLIP-like models (Radford et al., 2021; Zhai et al., 2023)
for semantic matching, and another leveraging internal attention weights for faster, more integrated,
and potentially stronger retrieval (Xiao et al., 2024a; Li et al., 2024e).

In summary, ReKV efficiently encodes long video streams, preserves and retrieves in-context KV-
Caches to address complex video question-answering. In addition, ReKV separates video encod-
ing from question-answering into distinct processes, further enhancing efficiency. As shown in
Figure 1(b), ReKV improves VideoQA accuracy while maintaining stable inference latency and
memory usage as frames increase. The remainder of the paper is organized as follows: Section 4
provides an overview of the relevant literature. Section 2 formulates the StreamingVQA task and
describes our proposed method in detail. In Section 3, we present ablation studies and compar-
isons to validate our approach. Consequently, our approach not only enhances accuracy on long
VideoQA benchmarks, including MLVU (Zhou et al., 2024a), QAEGO4DMC (Di & Xie, 2024),
EgoSchema (Mangalam et al., 2023), and ActivityNet-QA (Yu et al., 2019), as well as Stream-
ingVQA benchmarks (Zhang et al., 2024a), but also reduces inference latency and memory usage.
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2 METHOD

This paper considers the problem of streaming video question-answering (StreamingVQA), where a
model continuously processes a video stream and can respond to questions about past visual content
at any moment. In Section 2.1, we formally define the task and outline the design principles for
our proposed solution. Next, Section 2.2 introduces ReKV, an approach that integrates seamlessly
with a Video-LLM to enable efficient StreamingVQA without requiring additional training. Overall,
ReKV efficiently encodes the video stream, maintains its KV-Caches, retrieves relevant caches based
on the given question, and uses them for accurate question-answering.

2.1 TASK DEFINITION AND DISCUSSION

Given a video stream VT := [v1, v2, ..., vT ] consisting of T frames and a set of N questions Q :=
{q1, q2, . . . , qN}, StreamingVQA is to answer a question qi at any time step t (1 ≤ t ≤ T ) using
only the frames seen up to that point, Vt := [v1, v2, ..., vt].

Discussion: StreamingVQA vs. OfflineVQA. StreamingVQA involves continuously analyzing
an incoming video stream and answering questions based on the observed visual content at any
moment. In contrast, conventional video question-answering models Yang et al. (2022); Maaz et al.
(2024); Zhang et al. (2024c); Li et al. (2024a) operate in an offline mode, referred to as OfflineVQA.
The two paradigms differ in that: 1) StreamingVQA processes a continuous video stream, while
OfflineVQA handles a predefined video input, and 2) StreamingVQA allows questions to be asked
at any point during the stream, whereas OfflineVQA processes questions only after the entire video
has been viewed. Notably, OfflineVQA can be considered a special case of StreamingVQA, where
all questions are posed after the video is fully processed.

Conventional approaches typically employ a visual encoder Radford et al. (2021); Zhai et al. (2023);
Fang et al. (2023) and a projection module Zhang et al. (2024c); Li et al. (2023) to process video
frames Vt. The output is concatenated with the tokenized question to form a sequence [Vt, qi]

1,
which is then passed to an LLM Decoder to predict an answer. However, this approach is impractical
due to the high computational cost associated with processing a large number of frames (T ).

A common workaround is sparse frame sampling (Maaz et al., 2024; Zhang et al., 2024c; Li et al.,
2024a), but this introduces new problems: (i) loss of critical visual information, leading to incom-
plete or inaccurate responses, and (ii) the need to reprocess frames for different questions, since
questions asked at different time points require distinct frame samples. This becomes increasingly
inefficient as T and N grow.

Given these challenges, current OfflineVQA methods fall short when applied to StreamingVQA
scenarios. Therefore, designing a new approach optimized for StreamingVQA is crucial to handling
video streams more efficiently, enabling real-time question answering and unlocking more interac-
tive video analysis applications.

Discussion: Design Principles for Efficient StreamingVQA. To tackle the aforementioned chal-
lenges, we can exploit the causal nature of the LLM decoder to avoid redundant computations and
strike a balance between accuracy and speed. During attention calculations, causal masking prevents
the model from accessing future tokens, ensuring that video tokens are encoded independently of
the questions. This allows us to decouple video encoding from question-answering.

For video encoding, we leverage the KV-Cache optimization to accelerate inference. However, as
t grows large, handling the massive number of video tokens becomes increasingly inefficient and
may exceed the model’s capacity Han et al. (2023); Xiao et al. (2024b). To address this, we adopt a
sliding-window attention mechanism (Han et al., 2023), which limits the attention scope to only the
most recent frames.

Regarding question-answering, Video KV-Caches are stored and can be reused as context to answer
different questions. However, long video sequences produce a substantial amount of KV-Caches,
leading to excessive GPU memory consumption, computational overhead, and unnecessary distrac-
tions if all are used. To address this, we introduce an efficient retrieval method that selects the most

1We maintain the original notation for simplicity.
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Layers
Local Window

(a) Video Stream Encoding w/ Sliding-window Attention

(b) In-context Video KV-Cache Retrieval (c) VideoQA using Retrieved KV

Compress & Calc. 
Cosine Similarity

Reload to GPU

Video KV-Cache
Input Frames
Input Question
Retrieved Video KV
Generated Answer

Offload to RAM / Disk

Figure 2: Overview of ReKV. We modify the attention mechanism in Decoder-based Video-LLMs: (a) The
video stream is encoded with sliding-window attention (Equation 1), with out-of-window Video KV-Caches
offloaded to RAM or disk. (b) Upon receiving a question, relevant key-value vectors are retrieved based on
cosine similarity, with compressed vectors to accelerate retrieval (Equation 2). (c) The retrieved key-value
vectors are reloaded onto the GPU and utilized for autoregressive answer generation (Equation 3).

relevant video key-value vectors from the video KV-Caches. These selected vectors then serve as
context, enabling efficient and scalable StreamingVQA.

2.2 REKV: RETRIEVE IN-CONTEXT VIDEO KV-CACHE

We aim to enable Video-LLMs, trained on limited frames, to perform StreamingVQA without addi-
tional training. As illustrated in Figure 2, the proposed ReKV consists of three components: video
stream encoding, video KV-Cache retrieval, and question-answering using the retrieved key-value
vectors.

Video Stream Encoding with Sliding-window Attention. We encode the video stream VT in-
crementally, processing it chunk by chunk. At each step, the inputs include past key-value vectors
P = {(kj ,vj)}lPj=1 and the current tokens X = {ti+lP }

lX
i=1, where lP denotes the lengths of past

key-values, and lX refers to the chunk size. The local key-value vectors within a window lL can
thus be derived as L = P[lP−lL+1:lP ]. The attention calculation is then formulated as:

O = Attn (WQX, [Lk,WKX], [Lv,WVX]) , (1)

where WQ, WK, and WV are the attention layer parameters, Lk and Lv correspond to the key
and value vectors in L. All video KV-Caches are stored for future retrieval. Note that, for extremely
long videos, we offloaded KV-Caches to RAM or disk to manage memory constraints, as in Xiao
et al. (2024a).

External Video KV-Cache Retrieval. Here, we utilize an external CLIP-like model (Radford et al.,
2021; Zhai et al., 2023) to retrieve question-relevant video KV-Cache, primarily as a baseline to
assess whether retrieval can enhance VideoQA performance, as demonstrated in Section 3. Specifi-
cally, a CLIP-like model transformers each video frame into a vector vt = fv(vt) ∈ RD, where fv
represents the visual encoder, D denotes the vector dimension. Similarly, the question is encoded as
qi = ft(qi) ∈ RD, where ft is the text encoder. We then compute the cosine similarity between the
embeddings of frame and question:

Sim(vt,qi) =
vt · qi

τ ||vt|| ||qi||
(2)

where τ is a learnable temperature parameter. This similarity is calculated at the frame level, rather
than at the token level. Alternatively, we can group b consecutive frames into blocks by averaging
their frame vectors and then compute block-level similarity scores. Finally, the r most relevant video
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frames or ⌈r/b⌉ video blocks are retrieved. The corresponding video KV-Cache, denoted as R, is
subsequently loaded onto the GPU for question-answering.

Internal Video KV-Cache Retrieval. Building on recent advancements in handling long sequences
with LLMs (Xiao et al., 2024a; Li et al., 2024b; Fountas et al., 2024), we further explore using
self-attention layers within Video-LLMs for retrieval. Similar to external retrieval, internal retrieval
is still performed at the level of video frames or blocks.

During video modeling, the average of the key vectors of a frame is computed as its representative
frame vector: vt =

1
Nf

∑Nf

j=1 kj ∈ RD′
, where Nf is the number of tokens per frame, and kj is the

j-th key vector. To reduce computational overhead, we do not differentiate between attention heads
and instead concatenate them into a single vector, with D′ as the resultant dimension. Similarly, the
question vector is computed as qi =

1
Nq

∑Nq

k=1 qi,k ∈ RD′
, where Nq is the number of tokens in the

question, and qi,k is its k-th query vector. The similarity computation and video KV-Cache retrieval
are identical to that of external retrieval, except that τ is set to 1.

Note that, internal retrieval offers several advantages over external retrieval. First, it operates in-
dependently within each self-attention layer, allowing different layers to retrieve different video
blocks.2 This allows for a broader capture of video context. Additionally, internal retrieval reuses
already computed hidden representations and does not introduce extra parameters, which reduces
the computational overhead compared to external retrieval.

Question-answering using Retrieved KV. The retrieved Video KV-Caches serve as the context for
video question-answering. Formally, the attention calculation is formulated as:

O = Attn (WQX, [Rk,WKX], [Rv,WVX]) , (3)

where X represents either the question tokens or the current token being decoded, and Rk and Rv

are the key and value vectors from the context, which includes the retrieved video, question, and
previously generated tokens.

3 EXPERIMENTS

3.1 BENCHMARK AND METRICS

MLVUdev-mc (Zhou et al., 2024a) is the multiple-choice subset of the MLVU-dev benchmark. It
focuses on evaluating the long-form video understanding of MLLMs. The question-answer pairs
are manually labeled and can be divided into 3 groups: single-detail, multi-detail, and holistic. The
evaluation metric is Accuracy.

Table 1: Summary of the evaluation benchmarks. MC stands
for multiple-choice VideoQA, while OE refers to open-ended
VideoQA.

Benchmark Duration #Videos #QA Type

MLVUdev-mc 12 min 1,242 2,175 MC
QAEGO4Dtest-mc 8.3 min 148 500 MC
EgoSchema 3 min 5,031 5,031 MC
ActivityNet-QA 2 min 800 8,000 OE
RVS-Ego 60 min 10 1,500 OE
RVS-Movie 30 min 22 2,000 OE

QAEGO4Dtest-mc (Di & Xie, 2024)
is the multiple-choice subset of the
QAEGO4D-test benchmark, focusing
on question-answering in long egocen-
tric videos. The evaluation metric is
Accuracy.

EgoSchema (Mangalam et al.,
2023) is a diagnostic benchmark
for long VideoQA, featuring over
5000 multiple-choice questions and
long temporal certificate length. It
challenges AI models with long-term
understanding, as current state-of-
the-art models achieve significantly
lower accuracy compared to human
performance.

ActivityNet-QA (Yu et al., 2019) encompasses human-annotated QA pairs on 5,800 videos derived
from the ActivityNet (Caba Heilbron et al., 2015) dataset. This benchmark is designed to assess the
2For simplicity, we omit the layer index in the above explanation.
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capabilities of VideoQA models in long-term spatiotemporal reasoning. Our evaluation methodol-
ogy aligns with that of Video-ChatGPT (Maaz et al., 2024), employing GPT-3.5-turbo to judge
the accuracy of the open-ended VideoQA responses.

RVS-Ego and RVS-Movie (Zhang et al., 2024a) are Streaming VideoQA benchmarks, constructed
using 10 long videos from the Ego4D dataset (Grauman et al., 2022) and 22 long videos from
the MovieNet dataset (Huang et al., 2020), respectively. These benchmarks feature open-ended
questions paired with timestamps, which are initially generated by GPT-4V (OpenAI, 2023b) and
GPT-4 (OpenAI, 2023a), and subsequently refined through manual filtering.

3.2 IMPLEMENTATION DETAILS

We evaluate our approach by integrating it into LLaVA-OV-0.5B and LLaVA-OV-7B (Li et al.,
2024a), chosen for their simplicity and strong performance.

All experiments are conducted on NVIDIA H800 GPUs with BF16 precision. For video mod-
eling, we process the video stream at 0.5 FPS, in line with GPT-4o’s testing on MLVU (Zhou
et al., 2024a). The local window size is set to 15K. For external video KV-Cache retrieval, we
use SigLIP-SO400M (Zhai et al., 2023) as the retriever. For internal KV-Cache retrieval, we set
the block size (b) to 1 and the number of retrieved frames (r) to 64 by default, with further hyper-
parameter variations explored in Section 3.3.

Unless otherwise specified, ReKV refers to the use of internal video KV-Cache retrieval.

3.3 ABLATIONS

In this section, we conduct ablation studies on the effectiveness of in-context retrieval, number of
retrieved frames, and the block size.

Table 2: Ablation study on QAEGO4Dtest-mc

Retrieval Method VideoQA Acc. Recall

LLaVA-OV-7B

Uniform Sampling 50.8 6.1
External Retrieval 54.4 58.1
Internal Retrieval 56.4 70.5
Oracle Retrieval 60.2 100

LLaVA-OV-0.5B

Uniform Sampling 44.0 6.1
External Retrieval 45.8 58.1
Internal Retrieval 46.0 63.4
Oracle Retrieval 47.4 100

Effectiveness of In-context Retrieval. The
experiments on QAEGO4Dtest-mc, as presented
in Table 2, demonstrate the effects of vari-
ous retrieval methods on VideoQA accuracy
and recall. A strong positive correlation is
evident: higher recall generally leads to bet-
ter VideoQA performance. Uniform Sampling,
which sparsely selects frames from the video,
achieves the lowest recall and, correspondingly,
the poorest VideoQA accuracy. In contrast, Or-
acle Retrieval, with perfect recall, delivers the
highest VideoQA accuracy, far surpassing Uni-
form Sampling. While External and Internal
Retrieval do not match Oracle-level precision,
both outperform Uniform Sampling, with Inter-
nal Retrieval excelling due to its higher recall.
Notably, the larger model (LLaVA-OV-7B)
achieves superior performance with Internal
Retrieval, benefiting from its stronger reasoning capabilities.

The MLVU benchmark (Zhou et al., 2024a) encompasses three types of VideoQA tasks: Single
Detail requires identifying a single critical plot within a long video, Multi Detail necessitates the in-
tegration of multiple plots, and Holistic demands a comprehensive understanding of the entire video.
This makes MLVU an ideal platform for evaluating our in-context retrieval method. As shown in Ta-
ble 3, both External and Internal Retrieval enhance the overall VideoQA accuracy over the Uniform
Sampling baseline. The enhancements are most pronounced in Single Detail tasks, demonstrating
that ReKV effectively retrieves question-relevant video context. Furthermore, Internal Retrieval sig-
nificantly outperforms External Retrieval in Holistic tasks, likely due to its ability to capture broader
context and leverage the Video-LLM’s video modeling capabilities, as discussed in Section 2.2.

Number of Retrieved Frames. We fix the block size (b = 1) and evaluate the impact of varying
the numbers of retrieved frames (r ∈ {8, 16, 32, 48, 64, 80}) on the QAEGO4D and MLVU bench-
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Figure 3: Ablation study of retrieval hyperparameters: (a) number of retrieved frames and (b) number of
frames per retrieval block. Experiments are conducted with LLaVA-OV-7B.

Table 3: Ablation study on MLVUdev-mc. The experiments are based on LLaVA-OV-7B.

Task
Single Detail Multi Detail Holistic

Avg.
Needle Ego PlotQA Order Count Topic Anomaly

Uniform Sampling 74.1 59.7 69.8 45.9 32.0 87.9 72.0 64.7
External Retrieval 78.6 69.6 71.6 40.2 37.9 84.5 63.0 66.3
Internal Retrieval 76.3 66.0 74.2 42.5 35.0 90.2 75.0 67.7

marks. As illustrated in Figure 3(a), increasing the number of retrieved frames generally improves
VideoQA accuracy, as it implies capturing more relevant visual context. However, on MLVU, this
improvement plateaus as more frames are retrieved since the additional irrelevant information hin-
ders the subsequent question-answering process. Additionally, retrieving more frames increases the
computational overhead of the question-answering stage, further slowing down inference.

Retrieval Block Size. When processing video streams, we group b consecutive frames into blocks
for block-level retrieval. For this experiment, we fix the number of retrieved frames at r = 64 and
evaluate different block sizes (b ∈ 1, 2, 4, 8, 16). With a fixed r, larger block sizes result in fewer,
more concentrated retrieved blocks. Figure 3(b) shows that increasing block size negatively affects
accuracy on MLVU, while performance on QAEGO4D remains relatively stable. This suggests that
MLVU tasks benefit from retrieving more dispersed visual cues, aligning with its design of multi-
detail and holistic tasks (Zhou et al., 2024a). In contrast, QAEGO4D primarily relies on a single
relevant clip per question (Di & Xie, 2024).

3.4 OFFLINE VIDEO QUESTION-ANSWERING

Streaming video understanding is a relatively under-explored area, with limited StreamingVQA
benchmarks available Zhang et al. (2024a). As discussed in Section 2.1, OfflineVQA can be con-
sidered as a special case of StreamingVQA. Thus, we first evaluate our method in the offline setting
using four widely adopted long-form VideoQA benchmarks, comparing our results against state-of-
the-art VideoQA methods. A summary of these benchmarks can be found in Table 1.

As shown in Table 4, our proposed ReKV always enhances the performance of LLaVA-OV-0.5B
and LLaVA-OV-7B without additional training. Notably, LLaVA-OV-7B+ReKV outperforms
two memory-based StreamingVQA models (VideoStreaming (Qian et al., 2024) and Flash-
VStream (Zhang et al., 2024a)) by a large margin. While the base model already demonstrates
strong performance, and we do not claim credit for this achievement, our method can integrate
seamlessly with Video-LLMs, benefiting from their ongoing advancements.
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Table 4: Offline video question-answering on four long-form benchmarks. “Acc.” denotes accuracy, and
“Score” is the open-ended answer rating by gpt-3.5-turbo on a scale from 1 to 5.

Method MLVU QAEGO4D EgoSchema ActivityNet-QA

dev Acc. test Acc. Acc. Acc. Score

GPT-4V (OpenAI, 2023b) 49.2 - - 57.0 -
GPT-4o (OpenAI, 2024) 64.6 - - - -
Gemini-1.5-Flash (Team et al., 2023) - - 65.7 55.3 -
Gemini-1.5-Pro (Team et al., 2023) - - 72.2 57.5 -
Video-ChatGPT-7B (Maaz et al., 2024) 31.3 - - - -
LLaMA-VID-7B (Li et al., 2024d) 33.2 - - 47.4 3.30
MiniGPT4-Video-7B (Ataallah et al., 2024) 44.5 - - 44.3 3.35
Video-LLaVA-7B (Maaz et al., 2024) 47.3 - - - -
LongVA-7B (Zhang et al., 2024b) 56.3 - - 50.0 -
VideoStreaming (Qian et al., 2024) - - 44.1 - -
Flash-VStream (Zhang et al., 2024a) 50.2 38.2 38.1 51.9 3.40
LLaVA-OV-0.5B (Li et al., 2024a) 50.3 44.0 26.8 50.5 3.02

+ReKV 53.2 46.0 29.8 52.1 3.15
LLaVA-OV-7B (Li et al., 2024a) 64.7 50.8 60.1 56.6 3.29

+ReKV 67.7 56.4 61.3 60.4 3.52

Table 5: StreamingVQA benchmark results. All methods are tested under identical conditions. “Video Enc.”
is frames encoded per second. “Latency” is measured from question input to response completion. “GPU”
indicates peak GPU memory usage, and “KV-Cache” refers to the video KV-Cache size offloaded per hour.

Retrieval Method RVS-Ego RVS-Movie Running Speed Memory Usage

Acc. Score Acc. Score Video Enc. Latency GPU KV-Cache

Flash-VStream-7B
Zhang et al. (2024a)

57.3 4.0 53.1 3.3 14 FPS 2.4s 20 GB -

LLaVA-OV-7B

Uniform Sampling 56.2 3.7 43.0 3.3 - 2.9s 21 GB -
External Retrieval 62.4 3.9 53.6 3.5 11 FPS 5.8s 55 GB 18.8 GB/h
Internal Retrieval 63.7 4.0 54.4 3.6 11 FPS 3.3s 38 GB 18.8 GB/h
LLaVA-OV-0.5B

Uniform Sampling 51.8 3.7 37.2 3.2 - 2.5s 7 GB -
External Retrieval 54.1 3.8 44.7 3.4 17 FPS 4.1s 37 GB 4.0 GB/h
Internal Retrieval 54.7 3.9 44.6 3.4 17 FPS 1.6s 19 GB 4.0 GB/h

3.5 STREAMING VIDEO QUESTION-ANSWERING

We then evaluate our method on the streaming setting using the RVS-Ego and RVS-Movie bench-
marks. During video stream modeling, questions are input immediately after their annotated end
timestamps and answered based on the preceding video content.

Question-answering Performance. Table 5 presents the StreamingVQA performance. Both ex-
ternal and internal retrieval methods significantly outperform the uniform sampling baseline. Ad-
ditionally, our approach enables LLaVA-OV-7B to surpass Flash-VStream Zhang et al. (2024a),
demonstrating ReKV’s effectiveness for the StreamingVQA. Besides, internal retrieval consistently
outperforms external retrieval, as discussed in Section 2.2.

Running Speed and Memory Usage. We also examine the running speed and memory usage
under controlled conditions. Specifically, a 1-hour, 1080P video from RVS-Ego with 100 scattered
questions is used. Each question is padded to 64 tokens, and the generated answers are fixed at 128
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Question: What tool did I open the carton with?
Prediction: You used a small knife.

Question: What did I take out of the fridge?
Prediction: You took out a bottle of water

Figure 4: StreamingVQA qualitative examples. The example is drawn from the QAEGO4D benchmark. The
video stream is processed frame by frame.  and  mark the timestamps at which questions are posed. □ and
□ indicate the relevant video contexts that support answering these questions.

tokens in length. The video frames are pre-extracted at 0.5 FPS (1,800 frames in total) and streamed
to the Video-LLM frame by frame.

As illustrated in Table 5, both retrieval methods maintain high video encoding speeds, with
LLaVA-OV-7B achieving 11 FPS and LLaVA-OV-0.5B achieving 17 FPS. Moreover, KV-
Cache offloading remains manageable, with LLaVA-OV-7B at 18.8GB/h and LLaVA-OV-0.5B
at 4.0GB/h (see appendix for more details). External retrieval, however, introduces higher latency
and GPU memory usage due to additional computations in the external retriever, whereas internal
retrieval significantly reduces both. Figure 1 has also demonstrated that latency and GPU mem-
ory usage remain stable as more frames are processed. Flash-VStream also shows good efficiency.
However, it only maintains a relatively small memory footprint (681 tokens) (Zhang et al., 2024a),
leading to potential information loss when dealing with extremely long videos.

Qualitative Examples. Figure 4 presents an example of streaming video question-answering. Our
approach continuously processes video streams while responding to questions posed at different
timestamps. To improve efficiency, it stores and retrieves relevant video KV-Caches as contextual
information for answering these questions.

4 RELATED WORK

LLMs for Video Understanding. In recent years, there has been a surge of interest in leveraging
Large Language Models (LLMs) for video understanding, leading to the development of several
innovative approaches (Maaz et al., 2024; Zhang et al., 2024c; Li et al., 2024a). These models
typically use a Vision Encoder to extract video features, followed by a mapping step with Linear
Projection, MLP, or Q-Former (Li et al., 2023). The mapped features are combined with textual
data and fed into large language models (LLMs) to generate a text output. These models have
relatively simple architectures, requiring less training data and computational resources, yet they
achieve strong performance on short video understanding benchmarks (Xu et al., 2017; Xiao et al.,
2021; Li et al., 2024c). However, they employ sparse sampling or token compression techniques
to reduce the number of tokens, which can result in significant information loss when dealing with
longer or more content-rich videos. As a result, they are not well-suited for long video understanding
or streaming video understanding.

Long Video Understanding. A central challenge in long video understanding is effectively com-
pressing the information from lengthy videos. Many approaches use language as a bridge, condens-
ing videos into dense captions (Zhang et al., 2023; Islam et al., 2024; Zhou et al., 2024b). While
this achieves good results in some cases, compressing video content into text often leads to the loss
of crucial visual details.

Another line of research focuses on compressing long videos into a memory bank (Wu et al.,
2019; 2022; Wang et al., 2023), This approach has been integrated into Video-LLMs for stream-
ing video understanding, as shown in works like VideoStreaming (Qian et al., 2024) and Flash-
VStream (Zhang et al., 2024a). These methods dynamically update the memory during video pro-
cessing and utilize it for downstream tasks. Despite their innovation, a major limitation of these
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methods is their failure to account for video length and information density, especially when using
a fixed memory size. For example, Flash-VStream compresses both 10-second clips and hour-long
videos into the same 681 tokens. Furthermore, these methods lack interpretability, making it diffi-
cult to determine how much information is being compressed into the memory or whether relevant
video information is being accurately retrieved during downstream tasks.

In pursuit of greater interpretability in long video understanding, methods such as GroundVQA (Di
& Xie, 2024) and GeLM (Chen et al., 2024) advocate for localizing relevant video clips while
responding to user queries. Drawing inspiration from these, this work refrains from excessively
condensing video information. By harnessing the causal capabilities of Video-LLMs, it preserves
the entire Video KV-Cache, allowing for the retrieval of relevant information when required. This
strategy effectively mitigates the substantial loss of video content while improving interpretability.

Long Context Handling for LLMs. Handling long text sequences in LLMs has been a major
challenge due to high computational and memory costs, leading to training constraints on shorter
sequences. Techniques like StreamingLLM (Xiao et al., 2024b) and LM-Infinite (Han et al., 2023)
use sliding window attention to process long sequences incrementally, but discard distant tokens,
limiting the model’s ability to capture long-range dependencies. Recent approaches (Xiao et al.,
2024a; Li et al., 2024b; Fountas et al., 2024) address this by storing and retrieving previously com-
puted KV-Caches, enabling better recall of distant contexts.

Retrieval-Augmented Generation. Retrieval-augmented generation (RAG) combines retrieval
mechanisms with generative models to enhance performance across various NLP tasks by incor-
porating external knowledge Guu et al. (2020); Lewis et al. (2020); Borgeaud et al. (2022) and
improving performance in vision-language tasks Xu et al. (2024). In-context retrieval, recently pro-
posed for handling long inputs Ram et al. (2023), retrieves information from the input document
itself rather than an external knowledge base. In-context KV-Cache retrieval further improves effi-
ciency by pre-encoding long documents, avoiding redundant encodings, and leveraging the LLM’s
own retrieval capabilities for faster, more effective performance.

5 CONCLUSION

In conclusion, this paper introduces ReKV, a training-free approach designed to enhance the ef-
ficiency of Video Large Language Models (Video-LLMs) for streaming video question-answering
(StreamingVQA). Unlike conventional video question-answering (VideoQA) systems that must pro-
cess entire videos before answering, ReKV enables rapid, real-time responses. By employing a
sliding-window attention mechanism, it ensures that the model only considers a subset of previous
frames while encoding the video stream, significantly cutting down on computational demands. To
retain key video context, we developed an in-context KV-Cache retrieval method that efficiently
stores and reloads key-value vectors that relevant for each query. This targeted retrieval strategy,
combined with the ability to perform video modeling and question-answering on separate processes
and GPUs, results in a highly efficient streaming VideoQA system. Extensive experiments show
that ReKV not only surpasses existing VideoQA models in performance but also enhances their
practicality for real-world streaming applications.

6 LIMITATIONS AND FUTURE WORK

While ReKV improves the accuracy and efficiency of Video-LLMs in the StreamingVQA task, it still
has several limitations that deserves future investigation: First, although the KV-Cache offloading
to RAM or disk is manageable, as shown in Table 5, handling extremely long video streams, such
as those in surveillance, may lead to an unsustainable increase in cache size. This issue can be
mitigated by integrating techniques such as quantization, token pruning, and compression. Second,
the use of a constant block size for grouping consecutive frames during retrieval can disrupt video
continuity. A more refined solution would involve segmenting videos into semantically coherent
blocks. Third, our method retrieves a fixed number of frames. Future work could explore dynamic
retrieval strategies that adjust the number of frames based on video context and query requirements.
Finally, StreamingVQA remains an under-explored task with few available benchmarks. Developing
high-quality benchmarks with precise temporal annotations is crucial for advancing future research.
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In the appendix, we provide additional implementation details of our method, including multi-
processing serving, the prompt templates for VideoQA, positional encoding, and KV-Cache size
calculation, to support reproducibility.

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 MULTI-PROCESSING SERVING

As discussed in Section 2.1, our approach enables the separation of video modeling and question-
answering across different processes and GPUs, significantly enhancing efficiency in real-world ap-
plications. Specifically, we dedicate a primary process for video stream encoding, utilizing sliding-
window attention to analyze the video and store the computed cache in RAM. If RAM capacity is
exceeded, the data can be offloaded to disk. Additionally, a process pool is maintained, with the
number of processes determined by the frequency of queries and available resources. Each process
loads the same Video-LLM parameters but operates independently. The video processing continues
uninterrupted, without waiting for question-answering tasks to complete. When a query is posed,
we log its timestamp to ensure that video information after this point is excluded from the answer.
An available process from the pool is then activated to retrieve relevant video key-value vectors
using our method, loading them onto its GPU for question-answering. This approach enables effi-
cient StreamingVQA applications, with significant potential in areas such as robotics, surveillance,
augmented reality, and live broadcasting.

A.2 PROMPT TEMPLATES FOR VIDEOQA

We use the consistent prompt template on all multiple-choice VideoQA benchmarks. Text in red
indicates variable inputs.
System:
You are a helpful assistant.
User:
<video>
Question: <question>
Options:
(A) <Option_A>
(B) <Option_B>
(C) <Option_C>
(D) <Option_D>
(E) <Option_E>
Answer with the option’s letter from the given choices directly.
Assistant:

The prompt template for open-ended VideoQA is rather simpler:
System:
You are a helpful assistant.
User:
<video>
<question>
Assistant:

A.3 POSITIONAL ENCODING

The baseline Video-LLMs we used incorporate Rotary Position Embeddings (RoPE)Su et al. (2024),
a widely used relative positional encoding method. Our video streaming encoding process follows
LM-InfiniteHan et al. (2023), where RoPE operates normally within the local window but is con-
strained by a “distance ceiling” for distant tokens. For question-answering, we do not account for
the original positions of the retrieved KV-Caches, instead treating them as regular context tokens.
We also experimented with the static variation from Inf-LLM Xiao et al. (2024a), which assigns the
same position to all retrieved tokens. Results indicate that applying standard RoPE to retrieved video
tokens yields better performance, likely due to the critical role of capturing temporal information in
video understanding.
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A.4 KV-CACHE SIZE CALCULATION

The size of the KV-Cache can be calculated using the following formula, assuming BF16 precision:

2× L layers × T frames ×M tokens/frame ×H heads ×D dimension × 2 bytes.

For LLaVA-OV-7B Li et al. (2024a), with L = 28, M = 196, H = 4, and D = 128, processing a
1-hour video at 0.5 FPS (T = 1800) results in a total KV-Cache size of 18.8 GB.

Similarly, for LLaVA-OV-0.5B Li et al. (2024a), with L = 24, M = 196, H = 2, and D = 64,
processing a 1-hour video at 0.5 FPS results in a total KV-Cache size of 4.0 GB.

These theoretical calculations are consistent with the experimental results shown in Table 5.
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