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ABSTRACT

We propose ReKV, a novel training-free approach that enables efficient streaming
video question-answering (StreamingVQA), by seamlessly integrating with exist-
ing Video Large Language Models (Video-LLMs). Traditional VideoQA systems
struggle with long videos, as they must process entire videos before responding to
queries, and repeat this process for each new question. In contrast, our approach
analyzes long videos in a streaming manner, allowing for prompt responses as
soon as user queries are received. Building on a common Video-LLM, we first
incorporate a sliding-window attention mechanism, ensuring that input frames at-
tend to a limited number of preceding frames, thereby reducing computational
overhead. To prevent information loss, we store processed video key-value caches
(KV-Caches) in RAM and disk, reloading them into GPU memory as needed. Ad-
ditionally, we introduce a retrieval method that leverages an external retriever or
the parameters within Video-LLMs to retrieve only query-relevant KV-Caches,
ensuring both efficiency and accuracy in question answering. ReKV enables the
separation of video encoding and question-answering across different processes
and GPUs, significantly enhancing the efficiency of StreamingVQA. Through
comprehensive experimentation, we validate the efficacy and practicality of our
approach, which significantly boosts efficiency and enhances applicability over
existing VideoQA models.

1 INTRODUCTION

In the literature, video understanding tasks, such as action recognition (Caba Heilbron et al., 2015;
Goyal et al., 2017; Kay et al., 2017), visual object tracking (Huang et al., 2019; Muller et al., 2018),
and video question-answering (Xu et al., 2017; Jang et al., 2017; Xiao et al., 2021; Li et al., 2024b),
have primarily focused on short clips lasting from a few seconds to minutes. However, as vision
models increasingly find applications in real-world scenarios like robotics, surveillance, and live
broadcasts, the research in the vision community has gradually shifted towards understanding con-
tinuous video streams, where long-term contexts and real-time interaction are crucial.

In this paper, we consider the problem of streaming video question-answering (StreamingVQA).
As shown in Figure 1(a), it involves continuously processing long video streams and promptly re-
sponding to queries about the visual content at any moment. It can be treated as a generalization
of the standard offline VideoQA, where the model processes the entire video and all questions si-
multaneously. By definition, such task of StreamingVQA presents three core challenges: (i) Effi-
cient Video Encoding: Unlike traditional offline VideoQA, where models have access to the entire
video clip, StreamingVQA demands real-time analysis of continuous streams. Models must effi-
ciently process incoming frames without access to future frames or frequent revisiting of distant
past frames. (ii) Video Context Preservation: To accurately answer questions posed later in the
stream, models must preserve relevant information from earlier frames, making long-term context
retention a key challenge. (iii) Real-Time Response: The model must provide accurate answers
with minimal delay, requiring efficient retrieval of video context and rapid question-answering.

Current Video-LLMs often struggle to encode long video streams due to the large volume of video
tokens, forcing most models to process only a sparse subset of frames (Maaz et al., 2024; Zhang
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Figure 1: Overview of the StreamingVQA task and our proposed ReKV. (a) StreamingVQA requires
a model to continuously process video streams and answer questions about previously viewed content at
any moment. (b) We propose ReKV to enhance efficiency and accuracy in StreamingVQA. Tested with
LLaVA-OV-7B on an H800 (80GB) GPU, ReKV maintains stable latency and GPU memory usage, pre-
venting out-of-memory (OOM) errors as frames increase. It also improves the accuracy on seven long-form
VideoQA benchmarks compared to the uniform sampling baseline. Further details are provided in Section 4.

et al., 2024c; Li et al., 2024a). This results in limited video lengths or a significant loss of fine-
grained visual information. While techniques like average pooling (Li et al., 2024c) and memory
compression (Wu et al., 2022; Wang et al., 2023; He et al., 2024; Zhang et al., 2024a; Qian et al.,
2024) reduce token volume, they come at the cost of losing details, particularly in temporal and
lower-level visual features that are essential for complex question answering.

To address the challenges, we propose ReKV (Retrieve In-context Video KV-Cache), a framework
that seamlessly integrates with existing Video-LLMs (Maaz et al., 2024; Zhang et al., 2024c; Li
et al., 2024a) without additional training. Our method employs two strategies for aggregating both
short- and long-term temporal information. For short-term temporal context, the model adopts
causal attention with a sliding-window mechanism (Han et al., 2023), where tokens attend only to a
limited set of preceding tokens during encoding. For recalling long-term information, we enable
dynamic access to any point within the video sequence via retrieval. Specifically, our method retains
and reuses past computations (KV-Cache) to avoid redundant processing while enhancing long-term
reasoning without sacrificing detail. For extremely long videos, KV-Caches can be offloaded to
RAM or disk to prevent memory overflow.

To ensure real-time and accurate responses, we retrieve a fixed number of KV-Caches relevant to the
current question. This design strikes a balance between efficiency and accuracy by avoiding the need
to process all past frames, while still accessing the most critical information. We experimented with
two retrieval methods: one using external CLIP-like models (Radford et al., 2021; Zhai et al., 2023)
for semantic matching, and another leveraging internal attention weights for faster, more integrated,
and potentially stronger retrieval (Xiao et al., 2024a; Li et al., 2024d).

In summary, ReKV efficiently encodes long video streams, preserves and retrieves in-context KV-
Caches to address complex video question-answering. In addition, ReKV separates video encod-
ing from question-answering into distinct processes, further enhancing efficiency. As shown in
Figure 1(b), ReKV improves VideoQA accuracy while maintaining stable inference latency and
memory usage as frames increase. The remainder of the paper is organized as follows: Section 5
provides an overview of the relevant literature. Section 3 formulates the StreamingVQA task and
describes our proposed method in detail. In Section 4, we present ablation studies and compar-
isons to validate our approach. Consequently, our approach not only enhances accuracy on long
VideoQA benchmarks, including MLVU (Zhou et al., 2024a), QAEGO4DMC (Di & Xie, 2024),
EgoSchema (Mangalam et al., 2023), and ActivityNet-QA (Yu et al., 2019), as well as Stream-
ingVQA benchmarks (Zhang et al., 2024a), but also reduces inference latency and memory usage.
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2 STREAMINGVQA: TASK DEFINITION AND DISCUSSION

This paper considers the problem of streaming video question-answering (StreamingVQA), where a
model continuously processes a video stream and can respond to questions about past visual content
at any moment. In this section, we formally define the task and outline the design principles for our
proposed solution.

Given a video stream VT := [v1, v2, ..., vT ] consisting of T frames and a set of N questions Q :=
{q1, q2, . . . , qN}, StreamingVQA aims to answer a question qi at any time step t (1 → t → T ), using
only the frames seen up to that point, Vt := [v1, v2, ..., vt].

Discussion-I: StreamingVQA vs. OfflineVQA. StreamingVQA involves continuously analyzing
an incoming video stream and answering questions based on the observed visual content at any
moment. In contrast, conventional video question-answering models (Yang et al., 2022; Maaz et al.,
2024; Zhang et al., 2024c; Li et al., 2024a) operate in an offline mode, referred to as OfflineVQA.
The two paradigms differ in that: 1) StreamingVQA processes a continuous video stream, while
OfflineVQA handles a predefined video input, and 2) StreamingVQA allows questions to be asked
at any point during the stream, whereas OfflineVQA processes questions only after the entire video
has been viewed. Notably, OfflineVQA can be considered a special case of StreamingVQA, where
all questions are posed after the video is fully processed.

Conventional approaches typically employ a visual encoder (Radford et al., 2021; Zhai et al., 2023;
Fang et al., 2023) and a projection module (Zhang et al., 2024c; Li et al., 2023) to process video
frames (Vt). The output is concatenated with the tokenized question to form a sequence [Vt, qi] 1,
which is then passed to an LLMs to predict an answer. However, this approach is impractical due to
the high computational cost associated with processing a large number of frames (T ).

A common workaround is sparse frame sampling (Maaz et al., 2024; Zhang et al., 2024c; Li et al.,
2024a), but this introduces new problems: (i) loss of critical visual information, leading to incom-
plete or inaccurate responses, and (ii) the need to reprocess frames for different questions, since
questions asked at different time points require distinct frame samples. This becomes increasingly
inefficient as T and N grow.

Given these challenges, current OfflineVQA methods fall short when applied to StreamingVQA
scenarios. Therefore, designing a new approach optimized for StreamingVQA is crucial to handling
video streams more efficiently, enabling real-time question answering and unlocking more interac-
tive video analysis applications.

Discussion-II: Design Principles for Efficient StreamingVQA. To tackle the aforementioned chal-
lenges, we can exploit the causal nature of the LLM decoder to avoid redundant computations and
strike a balance between accuracy and speed. During attention calculations, causal masking prevents
the model from accessing future tokens, ensuring that video tokens are encoded independently of
the questions. This allows us to decouple video encoding from question-answering.

For video encoding, we leverage the KV-Cache optimization to accelerate inference. However, as
number of frames grows large, handling the massive number of video tokens becomes increasingly
inefficient and may exceed the model’s capacity (Han et al., 2023; Xiao et al., 2024b). To address
this, we adopt a sliding-window attention mechanism (Han et al., 2023), which limits the attention
scope to only the most recent frames.

Regarding question-answering, Video KV-Caches are stored and can be reused as context to answer
different questions. However, long video sequences produce a substantial amount of KV-Caches,
leading to excessive GPU memory consumption, computational overhead, and unnecessary distrac-
tions if all are used. To address this, we introduce an efficient retrieval method that selects the most
relevant video key-value vectors from the video KV-Caches. These selected vectors then serve as
context, enabling efficient and scalable StreamingVQA.

1We maintain the original notation for simplicity.
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Figure 2: Overview of ReKV. We modify the attention mechanism in Decoder-based Video-LLMs: (a) The
video stream is encoded with sliding-window attention (Equation 1), with out-of-window Video KV-Caches
offloaded to RAM or disk. (b) Upon receiving a question, relevant key-value vectors are retrieved based on
cosine similarity, with compressed vectors to accelerate retrieval (Equation 2). (c) The retrieved key-value
vectors are reloaded onto the GPU and utilized for autoregressive answer generation (Equation 3).

3 REKV: RETRIEVE IN-CONTEXT VIDEO KV-CACHE

This section introduces ReKV, an approach that integrates seamlessly with a Video-LLM to enable
efficient StreamingVQA without requiring additional training. Overall, ReKV efficiently encodes
the video stream, maintains its KV-Caches, retrieves relevant caches based on the given question,
and uses them for accurate question-answering.

We aim to enable Video-LLMs, trained on limited frames, to perform StreamingVQA without ad-
ditional training. As shown in Figure 2, the proposed ReKV has three components: video stream
encoding, video KV-Cache retrieval, and question-answering using the retrieved key-value vectors.

Video Stream Encoding with Sliding-window Attention. We encode the video stream VT in-
crementally, processing it chunk by chunk. At each step, the inputs include past key-value vectors
P = {(kj ,vj)}lPj=1 and the current tokens X = {ti+lP }

lX
i=1, where lP denotes the lengths of past

key-values, and lX refers to the chunk size. The local key-value vectors within a window lL can
thus be derived as L = P[lP→lL+1:lP ]. The attention calculation is then formulated as:

O = Attn (WQX, [Lk,WKX], [Lv,WVX]) , (1)
where WQ, WK, and WV are the attention layer parameters, Lk and Lv correspond to the key and
value vectors in L. All video KV-Caches are stored for future retrieval. For extremely long videos,
we manage memory constraints by offloading KV-Caches to RAM or disk, as in (Xiao et al., 2024a).

External Video KV-Cache Retrieval. Here, we utilize an external CLIP-like model (Radford et al.,
2021; Zhai et al., 2023) to retrieve question-relevant video KV-Cache, primarily as a baseline to
assess whether retrieval can enhance VideoQA performance, as demonstrated in Section 4. Specif-
ically, a CLIP-like model transformers each video frame into a vector v = fv(v) ↑ RD, where fv

represents the visual encoder, D denotes the vector dimension. Similarly, the question is encoded as
q = ft(q) ↑ RD, where ft is the text encoder. We then compute the cosine similarity between the
embeddings of frame and question:

Sim(v,q) =
v · q

ω ||v|| ||q|| (2)

where ω is a learnable temperature parameter. This similarity is calculated at the frame level, rather
than at the token level. Alternatively, we can group b consecutive frames into blocks by averaging
their frame vectors and then compute block-level similarity scores. Finally, the r most relevant video
frames or ↓r/b↔ video blocks are retrieved. The corresponding video KV-Cache, denoted as R, is
subsequently loaded onto the GPU for question-answering.
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Internal Video KV-Cache Retrieval. Building on recent advancements in handling long sequences
with LLMs (Xiao et al., 2024a; Li et al., 2025; Fountas et al., 2025), we further explore using self-
attention layers within Video-LLMs for retrieval. Similar to external retrieval, internal retrieval is
still performed at the level of video frames or blocks.

During video modeling, the average of the key vectors of a frame is computed as its representative
frame vector: v = 1

Nf

∑Nf

j=1 kj ↑ RD→
, where Nf is the number of tokens per frame, and kj is the

j-th key vector. To reduce computational overhead, we do not differentiate between attention heads
and instead concatenate them into a single vector, with D

↑ as the resultant dimension. Similarly, the
question vector is computed as q = 1

Nq

∑Nq

k=1 qk ↑ RD→
, where Nq is the number of tokens in the

question, and qk is its k-th query vector. The similarity computation and video KV-Cache retrieval
are identical to that of external retrieval, except that ω is set to 1.

Note that, internal retrieval offers several advantages over external retrieval. First, it operates in-
dependently within each self-attention layer, allowing different layers to retrieve different video
blocks.2 This allows for a broader capture of video context. Additionally, internal retrieval reuses
already computed hidden representations and does not introduce extra parameters, which reduces
the computational overhead compared to external retrieval.

Question-Answering Using Retrieved KV. The retrieved Video KV-Caches serve as the context
for video question-answering. Formally, the attention calculation is formulated as:

O = Attn (WQX, [Rk,WKX], [Rv,WVX]) , (3)

where X represents either the question tokens or the current token being decoded, and Rk and Rv

are the key and value vectors from the context, which includes the retrieved video, question, and
previously generated tokens.

Positional Encoding. Our baseline Video-LLMs employ Rotary Position Embeddings (RoPE) (Su
et al., 2024), a commonly used relative positional encoding method. Our video streaming encod-
ing process follows LM-Infinite (Han et al., 2023), where RoPE operates normally within the local
window but is constrained by a “distance ceiling” for more distant tokens. For question-answering,
we do not account for the original positions of the retrieved KV-Caches, as handling unseen dis-
tances among tokens presents significant challenges (Han et al., 2023). Instead, we treat these re-
trieved tokens as regular consecutive tokens. We also experimented with a static variation from
Inf-LLM (Xiao et al., 2024a), where all retrieved tokens are assigned the same position. Our results
show that applying standard RoPE to retrieved video tokens leads to better performance, likely due
to the importance of capturing temporal information in video comprehension.

4 EXPERIMENTS

4.1 BENCHMARK AND METRICS

MLVUdev-mc (Zhou et al., 2024a) is the multiple-choice subset of the MLVU-dev benchmark. It
focuses on evaluating the long-form video understanding of MLLMs. The question-answer pairs
are manually labeled and can be divided into 3 groups: single-detail, multi-detail, and holistic. The
evaluation metric is Accuracy.

QAEGO4Dtest-mc (Di & Xie, 2024) is the multiple-choice subset of the QAEGO4D-test bench-
mark, focusing on question-answering in long egocentric videos. It includes annotations marking
video segments relevant to each question. The evaluation metric is Accuracy.

EgoSchema (Mangalam et al., 2023) is a diagnostic benchmark for long VideoQA, featuring over
5000 multiple-choice questions and long temporal certificate length. It challenges AI models with
long-term understanding, as current state-of-the-art models achieve significantly lower accuracy
compared to human performance.

ActivityNet-QA (Yu et al., 2019) encompasses human-annotated QA pairs on 5,800 videos derived
from the ActivityNet (Caba Heilbron et al., 2015) dataset. This benchmark is designed to assess the

2For simplicity, we omit the layer index in the above explanation.
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capabilities of VideoQA models in long-term spatiotemporal reasoning. Our evaluation methodol-
ogy aligns with that of Video-ChatGPT (Maaz et al., 2024), employing GPT-3.5-turbo-0613
to judge the accuracy of the open-ended VideoQA responses.

Table 1: Summary of the evaluation benchmarks. MC
stands for multiple-choice VideoQA, while OE refers to
open-ended VideoQA.

Benchmark Duration #Videos #QA Type

MLVUdev-mc 12 min 1,242 2,175 MC
QAEGO4Dtest-mc 8.3 min 148 500 MC
EgoSchema 3 min 5,031 5,031 MC
ActivityNet-QA 2 min 800 8,000 OE
RVS-Ego 60 min 10 1,465 OE
RVS-Movie 30 min 22 1,905 OE
CGBenchmc 27 min 1,219 12,129 MC

RVS-Ego and RVS-Movie (Zhang et al.,
2024a) are Streaming VideoQA bench-
marks, constructed using 10 long videos
from the Ego4D dataset (Grauman et al.,
2022) and 22 long videos from the
MovieNet dataset (Huang et al., 2020),
respectively. These benchmarks fea-
ture open-ended questions paired with
timestamps, which are initially generated
by GPT-4V (OpenAI, 2023b) and GPT-
4 (OpenAI, 2023a), and subsequently re-
fined through manual filtering.

CGBenchmc (Chen et al., 2025a), the multiple-choice subset of CGBench, is designed for clue-
grounded question answering in long videos. It focuses on the ability to retrieve relevant clues for
questions, making it an ideal testbed for ReKV.

4.2 IMPLEMENTATION DETAILS

We primarily evaluate our approach by integrating it into LLaVA-OV-0.5B and
LLaVA-OV-7B (Li et al., 2024a), chosen for their simplicity and strong performance. In
the Appendix, we conduct experiments with several other Video-LLMs as further validations.

All experiments are conducted on NVIDIA A100 (80GB) GPUs with FP16 precision. For video
modeling, we process the video stream at 0.5 FPS, in line with GPT-4o’s testing on MLVU (Zhou
et al., 2024a). The local window size is set to 15K. For external video KV-Cache retrieval, we
use SigLIP-SO400M (Zhai et al., 2023) as the retriever. For internal KV-Cache retrieval, we set
the block size (b) to 1 and the number of retrieved frames (r) to 64 by default, with further hyper-
parameter variations explored in Section 4.3.

Unless otherwise specified, ReKV refers to the use of internal video KV-Cache retrieval.

4.3 ABLATIONS

In this section, we conduct ablation studies on the effectiveness of in-context retrieval, number of
retrieved frames, and the block size.

Table 2: Ablation study on QAEGO4Dtest-mc.
“Oracle Retrieval” refers to a scenario where the an-

notated, question-relevant video segments are used as
input, with a uniform sampling of up to 16 frames.
This setup, by definition, has 100% recall and defines
the upper-bound VideoQA performance.

Retrieval Method VideoQA Acc. Recall

LLaVA-OV-0.5B

Uniform Sampling 42.6 6.1
External Retrieval 48.0 58.1
Internal Retrieval 50.0 63.4
Oracle Retrieval 52.0 100

LLaVA-OV-7B

Uniform Sampling 53.0 6.1
External Retrieval 54.2 58.1
Internal Retrieval 56.0 70.5
Oracle Retrieval 64.4 100

Effectiveness of In-context Retrieval. The ex-
periments on QAEGO4Dtest-mc, as presented in
Table 2, demonstrate the effects of various re-
trieval methods on VideoQA accuracy and re-
call. The recall metric, defined as the percentage
of question-relevant video frames retrieved, ex-
hibits a strong positive correlation with VideoQA
performance: higher recall consistently leads
to better accuracy. Uniform Sampling, which
sparsely selects frames, achieves the lowest re-
call and, consequently, the poorest VideoQA ac-
curacy. In contrast, Oracle Retrieval, with per-
fect recall, delivers the highest VideoQA accu-
racy, significantly outperforming Uniform Sam-
pling. While External and Internal Retrieval fall
short of Oracle-level precision, both surpass Uni-
form Sampling, with Internal Retrieval excelling
due to its higher recall.
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(a) (b)

Figure 3: Ablation study of retrieval hyperparameters: (a) number of retrieved frames and (b) number of
frames per retrieval block. Experiments are conducted with LLaVA-OV-7B.

Table 3: Ablation study on MLVUdev-mc. The experiments are based on LLaVA-OV-7B.

Task Single Detail Multi Detail Holistic Avg.
Needle Ego PlotQA Order Count Topic Anomaly

Uniform Sampling 74.1 59.7 69.8 45.9 32.0 87.9 72.0 64.7
External Retrieval 78.6 69.6 71.6 40.2 37.9 84.5 63.0 66.3
Internal Retrieval 75.8 66.6 76.3 45.2 36.9 90.1 74.5 68.5

The MLVU benchmark (Zhou et al., 2024a) encompasses three types of VideoQA tasks: Single
Detail requires identifying a single critical plot within a long video, Multi Detail necessitates the in-
tegration of multiple plots, and Holistic demands a comprehensive understanding of the entire video.
This makes MLVU an ideal platform for evaluating our in-context retrieval method. As shown in Ta-
ble 3, both External and Internal Retrieval enhance the overall VideoQA accuracy over the Uniform
Sampling baseline. The enhancements are most pronounced in Single Detail tasks, demonstrating
that ReKV effectively retrieves question-relevant video context. Furthermore, Internal Retrieval sig-
nificantly outperforms External Retrieval in Holistic tasks, likely due to its ability to capture broader
context and leverage the Video-LLM’s video modeling capabilities, as discussed in Section 3.

Number of Retrieved Frames. We fix the block size (b = 1) and evaluate the impact of varying
the numbers of retrieved frames (r ↑ {8, 16, 32, 48, 64, 80}) on the QAEGO4D and MLVU bench-
marks. As illustrated in Figure 3(a), increasing the number of retrieved frames generally improves
VideoQA accuracy, as it implies capturing more relevant visual context. However, on MLVU, this
improvement plateaus as more frames are retrieved since the additional irrelevant information hin-
ders the subsequent question-answering process. Additionally, retrieving more frames increases the
computational overhead of the question-answering stage, further slowing down inference.

Retrieval Block Size. When processing video streams, we group b consecutive frames into blocks
for block-level retrieval. For this experiment, we fix the number of retrieved frames at r = 64 and
evaluate different block sizes (b ↑ 1, 2, 4, 8, 16). With a fixed r, larger block sizes result in fewer,
more concentrated retrieved blocks. Figure 3(b) shows that increasing block size negatively affects
accuracy on MLVU, while performance on QAEGO4D remains relatively stable. This suggests that
MLVU tasks benefit from retrieving more dispersed visual cues, aligning with its design of multi-
detail and holistic tasks (Zhou et al., 2024a). In contrast, QAEGO4D primarily relies on a single
relevant clip per question (Di & Xie, 2024).

4.4 OFFLINE VIDEO QUESTION-ANSWERING

Streaming video understanding is a relatively under-explored area, with limited StreamingVQA
benchmarks available (Zhang et al., 2024a). As discussed in Section 2, OfflineVQA can be consid-
ered as a special case of StreamingVQA. Thus, we first evaluate our method in the offline setting
using four widely adopted long-form VideoQA benchmarks, comparing our results against state-of-
the-art VideoQA methods. A summary of these benchmarks can be found in Table 1.
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Table 4: Offline video question-answering on four long-form benchmarks. “Acc.” denotes accuracy, and
“Score” is the open-ended answer rating by gpt-3.5-turbo-0613 on a scale from 1 to 5.

Method MLVU QAEGO4D EgoSchema ActivityNet-QA

dev Acc. test Acc. Acc. Acc. Score

GPT-4V (OpenAI, 2023b) 49.2 - - 57.0 -
GPT-4o (OpenAI, 2024) 64.6 - - - -
Gemini-1.5-Flash (Team et al., 2023) - - 65.7 55.3 -
Gemini-1.5-Pro (Team et al., 2023) - - 72.2 57.5 -
Video-ChatGPT-7B (Maaz et al., 2024) 31.3 - - - -
LLaMA-VID-7B (Li et al., 2024c) 33.2 - - 47.4 3.30
MiniGPT4-Video-7B (Ataallah et al., 2024) 44.5 - - 44.3 3.35
Video-LLaVA-7B (Lin et al., 2024) 47.3 - - - -
LongVA-7B (Zhang et al., 2024b) 56.3 - - 50.0 -
VideoStreaming (Qian et al., 2024) - - 44.1 - -
Flash-VStream-7B (Zhang et al., 2024a) 50.2 38.2 38.1 51.9 3.40
LLaVA-OV-0.5B (Li et al., 2024a) 53.2 42.6 29.6 50.5 3.02

+ReKV (0.5 FPS ↓ 64 Frames) 56.1 (+2.9) 50.0 (+7.4) 31.0 (+1.4) 52.1 (+1.6) 3.15 (+.13)
LLaVA-OV-7B (Li et al., 2024a) 64.7 52.8 59.8 56.6 3.29

+ReKV (0.5 FPS ↓ 64 Frames) 68.5 (+3.8) 56.0 (+3.2) 60.7 (+0.9) 60.4 (+3.8) 3.52 (+.23)

Table 5: StreamingVQA benchmark results. All methods are tested under identical conditions. “Video Enc.”
is frames encoded per second. “Latency” is measured from question input to response completion. “GPU”
indicates peak GPU memory usage, and “KV-Cache” refers to the video KV-Cache size offloaded per hour.

Retrieval Method RVS-Ego RVS-Movie Running Speed Memory Usage
Acc. Score Acc. Score Video Enc. Latency GPU KV-Cache

Flash-VStream-7B 57.3 4.0 53.1 3.3 14 FPS 2.4s 20 GB -
LLaVA-OV-7B

Uniform Sampling 56.2 3.7 43.0 3.3 - 2.9s 21 GB -
External Retrieval 62.4 3.9 53.6 3.5 11 FPS 5.8s 55 GB 18.8 GB/h
Internal Retrieval 63.7 4.0 54.4 3.6 11 FPS 3.3s 38 GB 18.8 GB/h
LLaVA-OV-0.5B

Uniform Sampling 51.8 3.7 37.2 3.2 - 2.5s 7 GB -
External Retrieval 54.1 3.8 44.7 3.4 17 FPS 4.1s 37 GB 4.0 GB/h
Internal Retrieval 54.7 3.9 44.6 3.4 17 FPS 1.6s 19 GB 4.0 GB/h

As shown in Table 4, our proposed ReKV always enhances the performance of LLaVA-OV-0.5B
and LLaVA-OV-7B without additional training. Notably, LLaVA-OV-7B+ReKV outperforms
two memory-based StreamingVQA models (VideoStreaming (Qian et al., 2024) and Flash-
VStream (Zhang et al., 2024a)) by a large margin. While the base model already demonstrates
strong performance, and we do not claim credit for this achievement, our method can integrate
seamlessly with Video-LLMs, benefiting from their ongoing advancements.

4.5 STREAMING VIDEO QUESTION-ANSWERING

We then evaluate our method on the streaming setting using the RVS-Ego and RVS-Movie bench-
marks. During video stream modeling, questions are input immediately after their annotated end
timestamps and answered based on the preceding video content.

Question-answering Performance. Table 5 presents the StreamingVQA performance. Both ex-
ternal and internal retrieval methods significantly outperform the uniform sampling baseline. Ad-
ditionally, our approach enables LLaVA-OV-7B to surpass Flash-VStream (Zhang et al., 2024a),
demonstrating ReKV’s effectiveness for the StreamingVQA.

Running Speed and Memory Usage. We also examine the running speed and memory usage
under controlled conditions. Specifically, a 1-hour, 1080P video from RVS-Ego with 100 scattered
questions is used. Each question is padded to 64 tokens, and the generated answers are fixed at 128
tokens in length. The video frames are pre-extracted at 0.5 FPS (1,800 frames in total) and streamed
to the Video-LLM frame by frame.
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Question: What tool did I open the carton with?
Prediction: You used a small knife.

Question: What did I take out of the fridge?
Prediction: You took out a bottle of water

Figure 4: StreamingVQA qualitative examples. The example is drawn from the QAEGO4D benchmark. The
video stream is processed frame by frame. ! and ! mark the timestamps at which questions are posed. ↭ and
↭ indicate the relevant video contexts that support answering these questions.

As illustrated in Table 5, both retrieval methods maintain high video encoding speeds, with
LLaVA-OV-7B achieving 11 FPS and LLaVA-OV-0.5B achieving 17 FPS. Moreover, KV-
Cache offloading remains manageable, with LLaVA-OV-7B at 18.8GB/h and LLaVA-OV-0.5B
at 4.0GB/h (see appendix for more details). External retrieval, however, introduces higher latency
and GPU memory usage due to additional computations in the external retriever, whereas internal
retrieval significantly reduces both. Figure 1 has also demonstrated that latency and GPU mem-
ory usage remain stable as more frames are processed. Flash-VStream also shows good efficiency.
However, it only maintains a relatively small memory footprint (681 tokens) (Zhang et al., 2024a),
leading to potential information loss when dealing with extremely long videos.

Qualitative Examples. Figure 4 presents an example of streaming video question-answering. Our
approach continuously processes video streams while responding to questions posed at different
timestamps. To improve efficiency, it stores and retrieves relevant video KV-Caches as contextual
information for answering these questions.

We provide additional implementation details and experimental results in the Appendix.

5 RELATED WORK

LLMs for Video Understanding. In recent years, there has been a surge of interest in leveraging
Large Language Models (LLMs) for video understanding, leading to the development of several
innovative approaches (Maaz et al., 2024; Zhang et al., 2024c; Li et al., 2024a). These models
typically use a Vision Encoder to extract video features, followed by a mapping step with Linear
Projection, MLP, or Q-Former (Li et al., 2023). The mapped features are combined with textual
data and fed into large language models (LLMs) to generate a text output. These models have
relatively simple architectures, requiring less training data and computational resources, yet they
achieve strong performance on short video understanding benchmarks (Xu et al., 2017; Xiao et al.,
2021; Li et al., 2024b). However, they employ sparse sampling or token compression techniques
to reduce the number of tokens, which can result in significant information loss when dealing with
longer or more content-rich videos. As a result, they are not well-suited for long video understanding
or streaming video understanding.

Long Video Understanding. A central challenge in long video understanding is effectively com-
pressing the information from lengthy videos. Many approaches use language as a bridge, condens-
ing videos into dense captions (Zhang et al., 2023; Islam et al., 2024; Zhou et al., 2024b). While
this achieves good results in some cases, compressing video content into text often leads to the
loss of crucial visual details. Besides, as a pioneering approach to streaming video understand-
ing, VideoLLM-Online (Chen et al., 2024) employs a data-centric methodology by interleaving
video and text during training. In contrast, our approach is training-free, allowing seamless integra-
tion with various existing Video-LLMs to extend their StreamingVQA capabilities. Additionally,
VideoLLM-Online retains only a single token per frame to handle long videos, which may result in
visual information loss. Our method preserves complete visual information and leverages In-Context
KV-Cache Retrieval to enhance efficiency.

9
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Another line of research focuses on compressing long videos into a memory bank (Wu et al., 2019;
2022; Wang et al., 2023). MC-ViT (Balazevic et al., 2024) adapts existing pretrained video trans-
formers by fine-tuning them to attend to condensed visual memories. It relates closely to the token-
pruning, merging, and memory-based video understanding methods. In comparison, we propose a
training-free method specifically tailored to the StreamingVQA task. Incorporating MC-ViT into the
StreamingVQA task could be an interesting avenue for future research, and we acknowledge its po-
tential in this domain. This approach has been integrated into Video-LLMs for streaming video un-
derstanding, as shown in works like VideoStreaming (Qian et al., 2024) and Flash-VStream (Zhang
et al., 2024a). These methods dynamically update the memory during video processing and utilize
it for downstream tasks. Despite their innovation, a major limitation of these methods is their failure
to account for video length and information density, especially when using a fixed memory size. For
example, Flash-VStream compresses both 10-second clips and hour-long videos into the same 681
tokens. Furthermore, these methods lack interpretability, making it difficult to determine how much
information is being compressed into the memory or whether relevant video information is being
accurately retrieved during downstream tasks.

In pursuit of greater interpretability in long video understanding, methods such as GroundVQA (Di
& Xie, 2024) and GeLM (Chen et al., 2025b) advocate for localizing relevant video clips while
responding to user queries. Drawing inspiration from these, this work refrains from excessively
condensing video information. By harnessing the causal capabilities of Video-LLMs, it preserves
the entire Video KV-Cache, allowing for the retrieval of relevant information when required. This
strategy effectively mitigates the substantial loss of video content while improving interpretability.

Long Context Handling for LLMs. Handling long text sequences in LLMs has been a major
challenge due to high computational and memory costs, leading to training constraints on shorter
sequences. Techniques like StreamingLLM (Xiao et al., 2024b) and LM-Infinite (Han et al., 2023)
use sliding window attention to process long sequences incrementally, but discard distant tokens,
limiting the model’s ability to capture long-range dependencies. Recent approaches (Xiao et al.,
2024a; Li et al., 2025; Fountas et al., 2025) address this by storing and retrieving previously com-
puted KV-Caches, enabling better recall of distant contexts.

Retrieval-Augmented Generation. Retrieval-augmented generation (RAG) combines retrieval
mechanisms with generative models to enhance performance across various NLP tasks by incorpo-
rating external knowledge (Guu et al., 2020; Lewis et al., 2020; Borgeaud et al., 2022) and improving
performance in vision-language tasks (Xu et al., 2024). In-context retrieval, recently proposed for
handling long inputs (Ram et al., 2023), retrieves information from the input document itself rather
than an external knowledge base. In-context KV-Cache retrieval further improves efficiency by pre-
encoding long documents, avoiding redundant encodings, and leveraging the LLM’s own retrieval
capabilities for faster, more effective performance.

6 CONCLUSION

In conclusion, this paper introduces a training-free approach, ReKV, designed to enhance the ef-
ficiency of Video Large Language Models (Video-LLMs) for streaming video question-answering
(StreamingVQA). Unlike conventional video question-answering (VideoQA) systems that must pro-
cess entire videos before answering, ReKV enables rapid, real-time responses. By employing a
sliding-window attention mechanism, it ensures that the model only considers a subset of previous
frames while encoding the video stream, significantly cutting down on computational demands. To
retain key video context, we developed an in-context KV-Cache retrieval method that efficiently
stores and reloads key-value vectors that relevant for each query. This targeted retrieval strategy,
combined with the ability to perform video modeling and question-answering on separate processes
and GPUs, results in a highly efficient streaming VideoQA system. Extensive experiments show
that ReKV not only surpasses existing VideoQA models in performance but also enhances their
practicality for real-world streaming applications.
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2022ZD0161400). We thank Yikun Liu for discussions and conducting experiments on CGBench.

10



Published as a conference paper at ICLR 2025

REFERENCES

Kirolos Ataallah, Xiaoqian Shen, Eslam Abdelrahman, Essam Sleiman, Deyao Zhu, Jian Ding, and
Mohamed Elhoseiny. Minigpt4-video: Advancing multimodal llms for video understanding with
interleaved visual-textual tokens. In CVPR Workshop, 2024.

Ivana Balazevic, Yuge Shi, Pinelopi Papalampidi, Rahma Chaabouni, Skanda Koppula, and Olivier J
Henaff. Memory consolidation enables long-context video understanding. In ICML, 2024.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In ICML, 2022.

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A
large-scale video benchmark for human activity understanding. In CVPR, 2015.

Guo Chen, Yicheng Liu, Yifei Huang, Yuping He, Baoqi Pei, Jilan Xu, Yali Wang, Tong Lu, and
Limin Wang. Cg-bench: Clue-grounded question answering benchmark for long video under-
standing. In ICLR, 2025a.

Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei Liu,
Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. Videollm-online: Online video large lan-
guage model for streaming video. In CVPR, 2024.

Qirui Chen, Shangzhe Di, and Weidi Xie. Grounded multi-hop videoqa in long-form egocentric
videos. In AAAI, 2025b.

Shangzhe Di and Weidi Xie. Grounded question-answering in long egocentric videos. In CVPR,
2024.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale.
In CVPR, 2023.

Zafeirios Fountas, Martin A Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos Lam-
pouras, Haitham Bou-Ammar, and Jun Wang. Human-like episodic memory for infinite context
llms. In ICLR, 2025.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
The” something something” video database for learning and evaluating visual common sense. In
ICCV, 2017.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In CVPR, 2022.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In ICML, 2020.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. arXiv preprint arXiv:2308.16137,
2023.

Bo He, Hengduo Li, Young Kyun Jang, Menglin Jia, Xuefei Cao, Ashish Shah, Abhinav Shrivastava,
and Ser-Nam Lim. Ma-lmm: Memory-augmented large multimodal model for long-term video
understanding. In CVPR, 2024.

Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark for
generic object tracking in the wild. TPAMI, 2019.

Qingqiu Huang, Yu Xiong, Anyi Rao, Jiaze Wang, and Dahua Lin. Movienet: A holistic dataset for
movie understanding. In ECCV, 2020.

11



Published as a conference paper at ICLR 2025

Md Mohaiminul Islam, Ngan Ho, Xitong Yang, Tushar Nagarajan, Lorenzo Torresani, and Gedas
Bertasius. Video recap: Recursive captioning of hour-long videos. In CVPR, 2024.

Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. Tgif-qa: Toward spatio-
temporal reasoning in visual question answering. In CVPR, 2017.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv:1705.06950, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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