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ABSTRACT

Most existing traffic video datasets including Waymo Sun et al. (2020) are struc-
tured, focusing predominantly on Western traffic, which hinders global applicabil-
ity. Specifically, most Asian scenarios are far more complex, involving numerous
objects with distinct motions and behaviors. Addressing this gap, we present a
new dataset, IndianRoad, designed for evaluating perception methods with high
representation of Vulnerable Road Users (VRUs: e.g. pedestrians, animals, mo-
torbikes, and bicycles) in complex and unpredictable environments. IndianRoad
is a manually annotated dataset encompassing 16 diverse actor categories (span-
ning animals, humans, vehicles, etc.) and 16 action types (complex and rare cases
like cut-ins, zigzag movement, U-turn, etc.), which require high reasoning ability.
IndianRoad densely annotates over 13 million bounding boxes (bboxes) actors
with identification, and more than 1.6 million boxes are annotated with both actor
identification and action/behavior details. The videos within IndianRoad are col-
lected based on a broad spectrum of factors, such as weather conditions, the time
of day, road scenarios, and traffic density. IndianRoad can benchmark video tasks
like Tracking, Detection, Spatiotemporal Action Localization, Language-Visual
Moment retrieval, and Multi-label Video Action Recognition. Given the critical
importance of accurately identifying VRUs to prevent accidents and ensure road
safety, in IndianRoad, vulnerable road users constitute 41.13% of instances, com-
pared to 23.71% in Waymo Sun et al. (2020). IndianRoad provides an invaluable
resource for the development of more sensitive and accurate visual perception al-
gorithms in the complex real world. Our experiments show that existing methods
suffer degradation in performance when evaluated on IndianRoad, highlighting its
benefit for future video recognition research.

1 INTRODUCTION

Video recognition research has made significant progress in recent years, enabling applications such
as autonomous driving, surveillance systems, and human-computer interaction. At the core of these
advancements lies the development of comprehensive and challenging datasets that facilitate the
training, evaluation, and benchmarking of novel algorithms. However, the focus has predominantly
been on structured environments, featuring human-centric activities Liu et al. (2023) and relatively
simplistic scenes that, while beneficial, do not encapsulate the breadth of complexities inherent in
natural environments Gu et al. (2018); Kay et al. (2017). This dissimilarity between existing training
datasets and the real-world distribution hinders the generalization capabilities of video recognition
models, ultimately limiting their effectiveness when applied to multifaceted and unpredictable real-
world situations.

In terms of most existing datasets on video recognition research, there are some limitations:

• Limited Scope: Most existing datasets primarily focus on human actors performing iso-
lated actions (one action in one clip) in simplistic and controlled settings. This narrow
scope restricts the ability of models to generalize to diverse scenarios with varying object
categories, environmental factors, and complex interactions.
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Tracking and Detection

Spatiotemporal Action Localization

Video Moment Retrieval

Multi-label Video Action Recognition

E.g. Overtaking

Output moment frames

Query: Pedestrian are cutting in.

Video:

Figure 1: Tasks Overview. We use IndianRoad for various video recognition tasks, including Track-
ing, Detection, Video Moment Retrieval, Spatiotemporal Action Localization, and Multi-label Video
Action Recognition. Our large-scale dataset is made up of complex environments that are densely
annotated. Each bounding box (bbox) corresponds to an actor, and the text above each bbox serves
as either the tracking ID or indicates the associated action.

• Lack of Unstructured Environments: Some datasets , while encompassing a broader range
of activities, predominantly feature structured settings with clear foreground-background
separation. This lack of real-world complexity, such as cluttered scenes, occlusions, and
dynamic lighting, hinders the development of robust perception models.

• Sparse Annotations: Many datasets lack fine-grained information about object locations,
interactions, and temporal relationships. This hinders the evaluation of various tasks like
Spatiotemporal Action Localization and Video Moment Retrieval, which require detailed
temporal and spatial annotations.

In human-centric datasets, AVA Gu et al. (2018) has atomic visual human actions that are localized
in space and time, including interactions with people and objects. The mutual interactions and
relationships in this dataset make AVA a hard dataset for Spatiotemporal Action Localization even
nowadays. AVA has been collected from movies in structured scenes and the human-centric action is
relatively simple (e.g. stand, watch, sit, walk). Inspired by AVA, we want to build an ego-car-centric
dataset and annotate the surrounding agents’ actions in space and time dimensions. Furthermore,
we chose India to collect the metadata to ensure the precious density and actor diversity, which also
allows the high representation of VRUs.

Therefore, we introduce a new dataset, IndianRoad, where every visible object is annotated and
considered an atomic visual element. It is specifically designed to evaluate perception methods in
unstructured environments that are more indicative of real-world scenarios. The unstructured en-
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Daytime Nighttime Bad Weather

High Density No traffic guidance lines Unexcepted Agents

Figure 2: Challenging Characteristics of IndianRoad: These videos correspond to different times
of the day with different brightness, different geographical landforms from city and rural areas, high
density and unpredictable road conditions, diverse actors including humans, animals, vehicles, etc.

vironments in IndianRoad cover different geographical landforms, diverse actors (not only humans
but also animals, vehicles, etc.), and complex actions (cut-in, overtaking, u-turn, etc.). As shown in
Fig. 2, IndianRoad prioritizes replicating the richness and complexities encountered in real-world
situations. We highlight its applicability to various video recognition tasks as shown in Fig. 1,
including Tracking, Detection, Video Moment Retrieval, Spatiotemporal Action Localization, and
Multi-label Video Action Recognition. In each case, IndianRoad has its distinctive features and
novel challenges. Some key characteristics of IndianRoad include:

• Less predictable and Dense Environments: IndianRoad features videos captured in diverse
real-world settings, encompassing various weather conditions, times of day, road scenarios,
and traffic densities. This inherent complexity better reflects the challenges encountered in
practical applications.

• Rich Annotations: IndianRoad provides dense annotations, including over 13 million
bounding boxes (bboxes) for actors and over 1.6 million bboxes encompassing both ac-
tor and action details (Table. 1). We also offer actors’ GPS information and the keyframe
for the action. This comprehensive annotation allows for the evaluation of a wider range of
potential tasks.

• Diverse Actor Categories: IndianRoad extends beyond human-centric datasets, incorporat-
ing 16 diverse actor categories. This diversity fosters the development of models capable
of generalizing beyond a limited set of actor types.

• Complex Actions: Compared with human-centric simple actions (e.g stand, watch, sit,
walk), IndianRoad has more complex actions (e.g. cut-in, overtaking, u-turn, ZigzagMove-
ment), which require higher reasoning ability for perception models.

• Vulnerable Road Users (VRUS): IndianRoad has a higher representation of vulnerable road
users (VRUs), constituting 41.13% compared to 23.71% in Waymo Sun et al. (2020). This
is a precious property to prevent accidents and ensure road safety.

Table 1: IndianRoad Characteristics: We annotate 16 types of actions performed by 16 types of ac-
tors. We highlight the maximum and average number of actions and actors per frame. LaneChang-
ing(m) denotes lane changing on roads with clear lane markings.

Property Values
Basic Information Location: India (urban and semi-urban settings)

Action Types (16) NormalDriving, Yield, Cutting, LaneChanging(m), OverSpeeding, WrongTurn, TrafficLight, WrongLane,
ZigzagMovement, LaneChanging, OverTaking, Keep, LeftTurn, RightTurn, UTurn, Breaking

Action Statistics Max action num per frame: 40, Average action num per frame: 6.7
Max unique action num per frame: 6, Average unique action num per frame: 2.0

Types of Actors (16) AgricultureVehicle, Animal, Bicycle, Bus, Car, ConstructionVehicle, EgoVehicle, MotorBike,
MotorizedTricycle, MultiWheeler, Pedestrian, Scooter, Tractor, TriCycle, Truck, Van

Actor Statistics Max actor num per frame: 40, Average actor num per frame: 6.5
Max unique actor num per frame: 10, Average unique actor num per frame: 3.9
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We highlight the advantages of IndianRoad for five video tasks:

Tracking: Compared to datasets like MOT17 Milan et al. (2016), which primarily focus on tracking
pedestrians and vehicles in controlled settings, IndianRoad’s diverse actors occur under a variety of
illumination conditions and provide a more significant challenge for tracking algorithms. This al-
lows for the evaluation of robust tracking methods capable of handling occlusions, cluttered scenes,
and dynamic environments. From our experiments, ARTrack Wei et al. (2023) performs 23.7%
worse on IndianRoad than GOT-10k, which highlights the complexity of IndianRoad as compared
to other datasets.

Detection: Datasets like COCO Lin et al. (2014b) and Pascal VOC Everingham et al. (2010) have
been instrumental in advancing object detection methods. While these datasets include a variety of
object categories, they often lack the contextual complexity and scene diversity found in IndianRoad
(e.g. intricate street-scapes at different times of day, higher representation of VRUs, such as pedes-
trians, animals, motorbikes, and bicycles, compared to vehicles). With its extensive annotations
encompassing over 13 million bounding boxes, IndianRoad offers a unique challenge to detection
algorithms, pushing the boundaries of what these models can recognize and how well they can adapt
to diverse and unstructured environments. In our experiments, Swin-T Liu et al. (2021) outper-
forms by 18% on the COCO dataset, as compared to IndianRoad. This highlights the complexity of
IndianRoad.

Spatiotemporal Action Localization (STAL): Spatiotemporal action localization requires algo-
rithms to not only recognize specific actions but also pinpoint their occurrence within both the
spatial and temporal domains of video content. Datasets like AVA Gu et al. (2018) have laid the
groundwork for this task. It is, however, a movie-human-centric dataset, meaning the video clips in
AVA are sourced from movies, which might not perfectly reflect the full diversity of real-world sce-
narios. This could potentially limit the generalizability of models trained on this dataset. In contrast,
IndianRoad introduces a richer layer of complexity by featuring the actions performed by different
actor categories in unstructured settings. This complexity is important for developing models that
can understand and interpret actions in a manner that is similar to human perception. In our experi-
ments, ACAR-Net Pan et al. (2021) gets 6.3% mAP accuracy on IndianRoad versus 33.3% on AVA
v2.2, which highlights the challenging scenarios in IndianRoad.

Video Moment Retrieval (VMR): Moment retrieval involves identifying specific moments within
a video that correspond to given queries, often described in natural language. While datasets such
as DiDeMo Hendricks et al. (2017) are widely used for this task, IndianRoad consists of videos
of more complicated and cluttered environments. These scenarios not only demand accurate video
understanding but also necessitates sophisticated language processing capabilities to interpret the
queries and localize the relevant moments within real-world video content. In our experiments, CG-
DETR Moon et al. (2023) obtains 5.1 R1@0.5 on IndianRoad (versus 58.4 on Charades-STA). This
implies that video moment retrieval is still a challenging problem in the unstructured environment.

Multi-label Video Action Recognition (M-VAR): Multi-label video action recognition is a task
that demands the identification of multiple actions within a single video clip. Existing datasets like
Charades Sigurdsson et al. (2016b) have been widely used for this video task. IndianRoad’s video
segments with multiple actions occurring within the densely populated and unstructured scenes offer
a challenging testbed for algorithms. In our experiments, SlowFast Feichtenhofer et al. (2019) gets
41.0 mAP accuracy on IndianRoad, while achieving 4.2% higher performance on Charedes.

Overall, IndianRoad offers a valuable resource for researchers aiming to develop robust and gen-
eralizable video recognition models that can work well in real-world scenarios. IndianRoad’s rich
annotations make it suitable for evaluating various video recognition tasks. Check the appendix for
more related works.

2 INDIANROAD DATASET

2.1 DATA COLLECTION

To meet the requirement, data collection was meticulously executed within a defined geographic
perimeter encompassing the urban and suburban zones of India. The selection of numerous subur-
ban locations was strategic, aiming to encompass a broad spectrum of road environments, including
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(b) Actor Distribution(a) Action Distribution

Figure 3: Annotation Statistic. The actor and action distribution for IndianRoad, includes a wide-
ranging and rich taxonomy of 16 agents and 16 action categories. This dual focus on both the breadth
of agent and action types and the depth of instances allows for more robust and effective training of
video recognition models.

both rural pathways and those lacking structured design or layout. To capture this data, our equip-
ment consisted of two wide-angle Thinkware F800 dashcams. These devices were installed on
two vehicles, specifically an MG Hector and a Maruti Ciaz, chosen for their operational reliability
in diverse road conditions. The dashcams are equipped with sensors boasting a resolution of 2.3
megapixels, alongside a comprehensive 140-degree field of view, ensuring wide coverage of the sur-
rounding environment. Video capture was conducted at a high-definition quality, with a resolution
of 1920x1080 pixels, and a smooth playback of 30 frames per second was maintained to accurately
document the dynamic road conditions.

An integral component of our capture system was the dashcam’s embedded positioning technology,
which provided precise GPS coordinates. This functionality was essential for the transformation of
these coordinates into world frame references, facilitating a coherent geographical mapping of the
data collected. Additionally, the system’s synchronization capability ensured seamless integration
of video and GPS data, enhancing the reliability of the spatial information.

The resultant dataset comprises 1231 video clips, each spanning one minute in duration. These clips
are accompanied by corresponding information such as the behaviors observed, the type of road,
and the overall scene structure. For granular details at the frame level, we offer bounding boxes,
precise GPS coordinates, and the behaviors of moving agents within the frame.

IndianRoad is methodically organized to support efficient querying, facilitated by a range of fil-
ters. Users can refine searches based on criteria such as road type, traffic density, geographic area,
prevailing weather conditions, and observed behaviors.

2.2 ANNOTATIONS

In our research, we undertook a meticulous process of manually annotating video data using the
Computer Vision Annotation Tool (CVAT) CVAT.ai Corporation (2023), a widely recognized tool
for video and image annotation in the field of computer vision. Our annotation process was compre-
hensive, covering a broad spectrum of labels that are crucial for the development and evaluation of
autonomous driving systems. These labels include:

• Bounding Boxes: For each agent visible in the video footage, we provided bounding boxes.
These are essential for object detection tasks, enabling algorithms to identify and track the
location and dimensions of various agents within the scene.
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• Actions and Maneuvers: The dataset catalogues specific vehicle actions and maneuvers,
including left/right turns, U-turns, overtaking, braking, etc. This is critical for predicting
vehicle behavior and for training systems in decision-making.

• Actor Class IDs: We classified each agent into distinct categories, assigning a unique class
ID to facilitate the differentiation and identification of various types of agents, such as
vehicles, pedestrians, and bicycles.

• Rare and Interesting Behaviors: We have specifically noted instances of rare and unusual
behaviors among traffic participants. Capturing these scenarios is important for preparing
autonomous systems to handle edge cases safely.

• GPS Trajectories for the Ego-Vehicle: The dataset includes precise GPS trajectories for the
ego-vehicle, providing valuable data on its movement and position over time.

• Environmental Conditions: Annotations in this category encompass weather conditions,
time of day, traffic density, and the diversity of traffic participants. This information is
crucial for testing and developing autonomous systems that can operate under a wide range
of environmental scenarios.

• Road Conditions: We have annotated various aspects of road conditions including whether
the environment is urban or rural, the presence and visibility of lane markings, and more.
This aids in assessing how different road conditions affect the performance of autonomous
driving technologies.

• Road Network Features: Detailed annotations of road network features such as intersec-
tions, roundabouts, and traffic signals are included. These are vital for navigation algo-
rithms and for understanding traffic flow and driving behaviors in complex road networks.

• Camera Intrinsic Matrix: For depth estimation and generating accurate trajectories of sur-
rounding vehicles, we include the camera intrinsic matrix. This technical detail enables the
conversion of 2D images into 3D representations, essential for spatial understanding and
accurate positioning of objects in relation to the ego-vehicle.

As shown in Fig. 3, our dataset stands out with its wide-ranging and rich taxonomy of agent and
action categories. This diversity is crucial for ensuring perception systems can operate safely and
efficiently in varied and unpredictable environments. Furthermore, our dataset is meticulously de-
signed to capture a wide variety of action categories and a high number of instances within each
category. This dual focus on the breadth of agents, action types, and depth of instances allows for
more robust and effective training of video recognition models.

Following the popular dataset Waymo Sun et al. (2020), we obey the widely used data collection
and use similar rules. We collected this data for Non-commercial Purposes including the use of
the Dataset to perform benchmarking for purposes of academic or applied research publication. To
protect privacy, we will hide identities by blurring the faces of persons and license plates of vehicles
in the dataset with blurring techniques (face detection method Retinaface Deng et al. (2020), license
plates method Yan et al. (2023)) to ensure that the identity of pedestrians and other individuals (cars)
is not discernible.

3 DATASETS FOR DIFFERENT TASKS AND EXPERIMENTS

3.1 TRACKING

Dataset Structure: IndianRoad contains annotations for multiple objects, so we can construct
sequences of frames in which the same object is present. Of IndianRoad’s 1231 videos, we can
construct 44.8k frame sequences suitable for tracking.

Experiment Setting: To assess visual object tracking on IndianRoad, we use Autoregressive Vi-
sual Tracking (ARTrack) Wei et al. (2023), which boasts SOTA performace on GOT-10k Huang
et al. (2019), TrackingNet Muller et al. (2018), LaSOT Zhan et al. (2019), and LaSOText Fan et al.
(2021). We utilize a publicly released “ARTrack-256” checkpoint, pretrained on COCO Lin et al.
(2014a), GOT-10k, LaSOT, and TrackingNet. ARTrack handles single object tracking as a coordi-
nate sequence interpretation task using a template region from an initial frame. ARTrack does not
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determine when a tracking ID is visible, so we only use sequences of frames in which the same
object is present. From the 231 videos in the IndianRoad validation split, we filter 5227 frame se-
quences in which one tracking ID is continuously present for at least 60 frames. This filtering of
sequences gives ARTrack a slight advantage because it is a harder task to both detect visibility and
track over time. Bounding box predictions from ARTrack-256 are compared to ground truth using
average area overlap (AO), success rate at 0.5 IoU (SR0.5), and success rate at 0.75 IoU (SR0.75).

Results: We find that IndianRoad is comparable to GOT-10k in AO but more challenging for both
success rate metrics. For SR0.75, ARTrack performs 23.7% worse on IndianRoad than GOT-10k,
despite our preprocessing to keep the same object present in each frame sequence. While ARTrack
performs well on the AO metric, the degradation in SR implies that the tracker may generate bboxes
larger than the actual object or that it has increased sensitivity to object appearance changes. For
example, illumination variations or pose changes can cause inaccurate predictions in some frames
even when average overlap remains decent. We believe IndianRoad becomes even more challenging
when one considers the entire video sequence, requiring the tracking of multiple objects as they
move in and out of the frame.

Table 2: Comparison of Various Tracking Datasets. IndianRoad is comparable to GOT-10k in AO
but more challenging for both success rate metrics. For SR0.75, ARTrack performs 23.7% worse on
IndianRoad than GOT-10k, despite our preprocessing to keep the same object present in each frame
sequence.

Dataset Sequence number Annotation SOTA Performance
MOT17 Sun et al. (2019) 14 Manual 65.8@HOTA 81.0@MOTA 81.1@IDF1
TAO Dave et al. (2020) 2.9k Manual 47.2@TETA 66.2@LocA 46.2@AssocA
LaSOT Zhan et al. (2019) 1.4k Manual 74.0@AUC 82.8@PNor 81.1@P
TrackingNet Muller et al. (2018) 30k Semi-auto 86.1@AUC 90.4@PNor 86.2@P
GOT-10k Huang et al. (2019) 10k Manual 79.5@AO 87.8@SR50 79.6@SR75
IndianRoad 44.8k Manual 72.6@AO 70.2@SR50 47.2@SR75

3.2 DETECTION

Dataset Structure: For detection, we have 13 million annotated bounding boxes with identifying
actors in 16 categories. We prepare them in COCO format.

Experiment Setting: For the object detection step, we use the Swin-T detector, generated by
combining a Cascade R-CNN Cai & Vasconcelos (2018) with a Swin-T Liu et al. (2021) backbone.
The model is pre-trained on ImageNet and MS COCO, and fine-tuned on IndianRoad using the same
settings as Swin-T Liu et al. (2021): multi-scale training Carion et al. (2020) (resizing the input with
the shorter side between 480 and 800 and the longer side at most 1333), AdamW optimizer (initial
learning rate of 1e−4, weight decay of 0.05, and batch size of 16), and 1× schedule (12 epochs).

Results: In this paper, our objective is not to enhance object detection within the IndianRoad
dataset. Instead, we aim to demonstrate the decline in perception performance in unstructured sit-
uations. Delving into the reasons behind this performance drop and identifying methods to better
object detection in these chaotic environments is not covered in our current research community.
The results show that our IndianRoad dataset is more challenging than the existing datasets.

Table 3: Comparison of Various Detection Datasets. Compared with COCO, with the same setting,
Swin-T performs 18% better on the COCO Dataset. The results show that our IndianRoad dataset is
more challenging than the existing datasets.

Dataset Bbox # Size Frame # Annotation Weather Country SOTA
(mAP)

COCO Lin et al. (2014a) 2.5M Variable 330K images Manual Various / 66.0
Pascal VOC Everingham et al. (2010) 20K Variable 11K images Manual / / 89.3
Waymo Sun et al. (2020) 11M Variable / Manual/Auto Various USA 41.6
COCO-Swin-T Lin et al. (2014a) 2.5M Variable 330K images Manual Various / 50.5
IndianRoad 13M 1920x1280 2M images Manual Has Bad weather India 32.5
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Table 4: Statistics of datasets for Video Moment Retrieval task. The CG-DETR method only gets
5.1 R1@0.5 on IndianRoad (58.4 on Charades-STA), and the perception performance degrades sig-
nificantly illustrating that Video Moment Retrieval is still a challenging problem in the unstructured
environment.

Dataset #Videos #Queries Duration Domain Source R1@0.5
DiDeMo Hendricks et al. (2017) 10,464 40,543 30s Open Flickr 33.4
Charades-STA Sigurdsson et al. (2016a) 9,848 16,128 31s Daily activities Homes 60.8
TACOS Regneri et al. (2013) 127 18,818 296s Cooking Lab Kitchen 41.54
ActivityNet-Captions Wang et al. (2018) 19,209 71,957 180s Open YouTube 60.57
Charades-STA (CG-DETR) Sigurdsson et al. (2016a) 9,848 16,128 31s Daily activities Homes 58.4
IndianRoad (CG-DETR) 1231 26,863 60s Open Self-collected 5.1

3.3 VIDEO MOMENT RETRIEVAL

Dataset Structure: For the Video Moment Retrieval task, we annotated 26863 queries, 21,477
for training, and 5,386 for testing. Our query is like ”Car is doing lane changing with clear lane
markings.”, ”MotorBike runs in the wrong lane.”, ”Motorized Tricycle is overtaking.”. Those queries
are very challenging since some actors are not usual in most visual encoder training data. The actions
require the reasoning of the actor, the nearby agents, and the environment.

Experiment Setting: Following CG-DETR Moon et al. (2023) on Charades-STA, we utilize slow-
fast and CLIP backbone features. The model is trained with a batch size of 32 over 200 epochs,
employing a learning rate of 2 × 10−4 without any learning rate drop. To accommodate adaptive
cross-attention mechanisms, 45 dummy tokens are utilized. The selection process for moment-
representative saliency involves pooling 10 candidates, from which 2 are chosen. The architecture
includes 3 transformer encoder layers, 3 transformer decoder layers, and 2 layers each for adaptive
cross-attention and dummy encoding. Additionally, there is 1 layer each dedicated to moment and
sentence encoding. The loss function coefficients are set uniformly to 1 for most, except for high-
light detection and distillation where they are increased to 4 and 10 respectively, to emphasize their
importance in the training process. These settings are meticulously chosen to enhance the model’s
ability to understand and generate accurate moment retrievals.

Results: As shown in Table 4, R1@0.5 refers to a metric that evaluates the model’s ability to
rank the most relevant moment within the top 1 results, with a minimum overlap of 50% between
the predicted and ground-truth moment durations. The CG-DETR method only gets 5.1 R1@0.5
on IndianRoad, the perception performance degrades significantly illustrating that Video Moment
Retrieval is still a challenging problem in the unstructured environment.

3.4 SPATIOTEMPORAL ACTION LOCALIZATION

Dataset Structure: The IndianRoad dataset stands out as a premier choice for Spatiotemporal Ac-
tion Localization, thanks to its comprehensive provision of bounding box annotations and associated
behavior labels, encompassing more than 2 million annotated frames. For Spatiotemporal Action
Localization, we set the allocation as 1000 video clips for the training phase and 231 clips designated
for the testing process. Adhering to established benchmark protocols, our evaluation encompasses
16 distinct behavior classes, employing the mean Average Precision (mAP) as the evaluation metric,
predicated on a frame-level Intersection over Union (IoU) threshold set at 0.5.

Experiment Setting: The spatiotemporal action localization pipeline includes detections and
recognition. For the object detection, we use the Swin-T detector in Section 3.2. For recogni-
tion network, following ACAR-Net Pan et al. (2021), we conduct experiments using a SlowFast
R-101, pre-trained on the Kinetics-700 dataset Carreira et al. (2019), without non-local blocks. The
inputs are 64-frame clips, where we sample T = 8 frames with a temporal stride τ = 8 for the slow
pathway, and αT (α = 4) frames for the fast pathway. We train ACAR-Net using synchronous SGD
with a batch size of 16. For the first 3 epochs, we use a base learning rate of 0.008, which is then
decreased by a factor of 10 at iterations 4 epochs and 5 epochs. We use a weight decay of 1× 10−7

and Nesterov momentum of 0.9. We use both ground-truth boxes and predicted object boxes for
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training. For inference, we scale the shorter side of input frames to 384 pixels and use detected
object boxes with scores greater than 0.85 for final behavior classification.

Results: As shown in Table 5, ACAR-Net gets 6.3% mAP on IndianRoad versus 33.3% on AVA
v2.2, which shows IndianRoad is a very challenging dataset and has tremendous room to improve.
IndianRoad’s complexity arises from diverse agents (16 categories VS 1 category of other human-
centric datasets), fast and varied motion patterns, and dense traffic. It offers valuable resources to
improve multi-agent behavior recognition.

Table 5: Spatiotemporal Action Localization. ACAR-Net gets 6.3% mAP on IndianRoad, which
shows IndianRoad is a very challenging dataset and has tremendous room to improve.

Dataset Bbox # Instance # Video # Actor class Action class Resource SOTA
(mAP)

UCF101-24 Soomro et al. (2012) 574k 4458 3207 - 24 YouTube 90.3
J-HMDB Jhuang et al. (2013) 32k 928 928 - 21 Movies, YouTube 83.8
AVA v2.2 Gu et al. (2018) 426k 386k 430 1 80 Movies, YouTube 45.1
AVA v2.1 Gu et al. (2018) 426k 386k 430 1 80 Movies, YouTube 41.7
MultiSports Li et al. (2021) 902k 37701 3200 1 66 YouTube 8.8
AVA v2.2 (ACAR) Gu et al. (2018) 426k 386k 430 1 80 Movies, YouTube 33.3
IndianRoad 1600k / 1231 16 16 self-collected 6.3

Table 6: Multi-label Video Action Recognition. SlowFast achieves 4.2% more performance on
Charedes than IndianRoad, which means IndianRoad is harder.

Dataset Size Video # Actions
per video

Labelled
instances domain SOTA

(mAP)
Charades Sigurdsson et al. (2016b) / 9,848 6.8 67k Daily Activities 66.3
Charades (SlowFast) Sigurdsson et al. (2016b) / 9,848 6.8 67k Daily Activities 45.2
IndianRoad (SlowFast) 1920×1080 10,083 1-13 1.6M Outdoor Actions 41.0

3.5 MULTI-LABEL VIDEO ACTION RECOGNITION

Dataset Structure: IndianRoad for Multi-label Video Action Recognition dataset is composed of
10,083 videos clips, involving interactions with 16 actors classes in 16 types of driving behavior
action classes. Following the standard split, it has 8,166 training video and 1,917 validation video.

Experiment Setting: Following SlowFast Feichtenhofer et al. (2019), for the temporal domain,
we randomly sample a clip from the full-length video. For the spatial domain, we randomly crop
224×224 pixels from a video, or its horizontal flip, with a shorter side randomly sampled in [256,
320] pixels. Performance is measured in mean Average Precision (mAP).

Results: As shown in Table 6, SlowFast Feichtenhofer et al. (2019) gets 41.0 mAP when us-
ing Kinetics-600 pre-trained model on IndianRoad. SlowFast achieves 4.2% more performance on
Charedes, which means IndianRoad is harder in terms of Multi-label Video Action Recognition task.

4 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We present a new video dataset, IndianRoad, which provides a new benchmark for video recognition
research. It is a robust platform for developing, testing, and refining algorithms capable of handling
the complexity of real-world environments. Through its diverse actor categories, range of actions,
and unstructured nature of its video content, IndianRoad represents a significant step forward in the
quest for models that can truly understand and interpret the visual world around the ego-actor. The
limitation of this dataset is that we don’t have segmentation and lane marking information. And it
focuses on very hard scenarios, which may be very challenging for most perception models. In the
future, we would like to annotate the segmentation and lane marking information and gather more
annotation information, which could allow more for fine-grained tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. CVPR, 2020.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6154–6162, 2018.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference
on Computer Vision (ECCV), pp. 213–229. Springer, 2020.

Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note on the kinetics-700
human action dataset. arXiv preprint arXiv:1907.06987, 2019.

Rohan Chandra, Xijun Wang, Mridul Mahajan, Rahul Kala, Rishitha Palugulla, Chandrababu Naidu,
Alok Jain, and Dinesh Manocha. Meteor: A dense, heterogeneous, and unstructured traffic dataset
with rare behaviors. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pp. 9169–9175, 2023. doi: 10.1109/ICRA48891.2023.10161281.

Kellie Corona, Katie Osterdahl, Roderic Collins, and Anthony Hoogs. Meva: A large-scale mul-
tiview, multimodal video dataset for activity detection. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pp. 1060–1068, 2021.

CVAT.ai Corporation. Computer Vision Annotation Tool (CVAT), November 2023. URL https:
//github.com/opencv/cvat.

Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia Schmid, and Deva Ramanan. Tao: A
large-scale benchmark for tracking any object, 2020.

Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou. Retinaface:
Single-shot multi-level face localisation in the wild. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5203–5212, 2020.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Harshit, Mingzhen
Huang, Juehuan Liu, et al. Lasot: A high-quality large-scale single object tracking benchmark.
International Journal of Computer Vision, 129:439–461, 2021.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In IEEE International Conference on Computer Vision (ICCV), pp. 6202–6211, 2019.

Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra
Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. Ava: A video dataset
of spatio-temporally localized atomic visual actions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6047–6056, 2018.

Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan Russell.
Localizing moments in video with natural language. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 5803–5812, 2017.

Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark for
generic object tracking in the wild. IEEE transactions on pattern analysis and machine intelli-
gence, 43(5):1562–1577, 2019.

Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, and Michael J Black. Towards under-
standing action recognition. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 3192–3199, 2013.

10

https://github.com/opencv/cvat
https://github.com/opencv/cvat


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning
events in videos. In Proceedings of the IEEE International Conference on Computer Vision, 2017.

Matej Kristan, Jiri Matas, Ales Leonardis, Michael Felsberg, Luka Cehovin, Gustavo Fernandez,
Tomas Vojir, Gustav Hager, Georg Nebehay, and Roman Pflugfelder. The visual object tracking
vot2015 challenge results. In Proceedings of the IEEE international conference on computer
vision workshops, pp. 1–23, 2015.

Jie Lei, Licheng Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and Jing Luo. Tvr:
A large-scale dataset for video-subtitle moment retrieval. In European Conference on Computer
Vision. Springer, 2020.

Yutong Li, Junting Xu, Zhaofan Qiu, Yonghong Tian, Tao Hu, Jingen Wang, Jie Li, Hongkai Xiong,
and Alexander G Hauptmann. Multisports: A multi-person video dataset for action spotting,
localization, and detection. arXiv preprint arXiv:2103.07514, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014a.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. European confer-
ence on computer vision, 2014b.

Fuxiao Liu, Yaser Yacoob, and Abhinav Shrivastava. Covid-vts: Fact extraction and verification on
short video platforms. arXiv preprint arXiv:2302.07919, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE International
Conference on Computer Vision (ICCV), pp. 10012–10022, 2021.

Zhichao Liu, Zhipeng Yang, Xiaopeng Xu, Chen Jiang, Xiangyu Li, and Xudong He. Gdtm:
An indoor geospatial tracking dataset with distributed multimodal sensors. arXiv preprint
arXiv:2402.1413, 2024.
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A APPENDIX

A.1 MORE RELATED DATASETS

A.1.1 TRACKING

The field of object tracking has significantly advanced with the development and introduction of
various benchmark datasets, which are crucial for evaluating the performance of tracking algo-
rithms. One of the earliest and most widely used datasets is the OTB dataset, introduced by Wu
et al. Wu et al. (2013), which has played a pivotal role in benchmarking the accuracy and robust-
ness of trackers. The OTB dataset provides comprehensive ground truth for various objects across
numerous videos, allowing for a detailed analysis of tracking algorithms under different conditions.
Following the OTB, the VOT Kristan et al. (2015) challenge has introduced datasets annually since
2013, with each iteration presenting new challenges and advancements over the previous versions.
The VOT challenge datasets are known for their rigorous annotation protocols and have introduced
several innovations in evaluation methodologies, such as the no-reset evaluation protocol and real-
time tracking evaluations. Another significant contribution to the field is TrackingNet Muller et al.
(2018), which provides a large-scale dataset covering a wide variety of objects and scenarios. The
LaSOT dataset by Zhan et al. Zhan et al. (2019) further extends the boundaries by offering a large-
scale, high-quality dataset with lengthy video sequences and is aimed at evaluating the long-term
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capabilities of tracking algorithms. LaSOT provides detailed annotations and a diverse set of chal-
lenges, making it an invaluable resource for developing and testing long-term trackers. The GOT-
10k dataset by Huang et al. Huang et al. (2019) introduces a unique approach by focusing on a wide
variety of object classes with a zero-shot evaluation protocol. This dataset challenges trackers to
perform well on previously unseen objects, pushing the boundaries of generalization in object track-
ing. PoseTrack Zhang et al. (2021) and GDTM Liu et al. (2024) focus more on specialized datasets.
PointOdyssey Zheng et al. (2023) is a synthetic dataset specifically designed for long-term point
tracking, addressing the limitation of short temporal context in existing datasets.

Compared with those datasets, IndianRoad’s diverse actors allow for the evaluation of robust track-
ing methods capable of handling occlusions, cluttered scenes, and dynamic environments. It broad-
ens the scope of tracking scenarios, facilitating the development of algorithms capable of operating
under a wider range of real-world conditions.

A.1.2 DETECTION

In the realm of object detection, except for Pascal VOC challenge Everingham et al. (2010) and
the MS COCO dataset Lin et al. (2014a), there are some specific applications such as autonomous
drivingSun et al. (2020); Chandra et al. (2023), dedicated datasets have been created to address the
unique challenges of this domain. Waymo Open Dataset Sun et al. (2020) represents a significant
leap forward in scale and diversity for autonomous driving datasets. It encompasses a vast array of
sensor data, including high-resolution LiDAR and camera footage, across a wide range of driving
conditions and scenarios. This dataset has been instrumental in pushing the boundaries of perception
algorithms in terms of scalability, robustness, and accuracy. The NuScenes dataset Caesar et al.
(2020) is another pivotal dataset for autonomous vehicle perception, offering a rich set of sensor
modalities, including RADAR, which is less common in other datasets. NuScenes provides detailed
annotations for a variety of object classes in complex urban environments, making it a valuable
resource for multi-modal perception systems.

Compared with those datasets, IndianRoad has more challenges in terms of the mixture of agents,
area, time of the day, traffic density, and weather conditions.

A.1.3 SPATIOTEMPORAL ACTION LOCALIZATION

Spatiotemporal action localization is a crucial task in computer vision that involves identifying both
the temporal and spatial boundaries of actions within videos. This task enables the understanding
of complex video content by pinpointing where and when specific actions occur. Over the years,
several datasets have been introduced to facilitate research and development in this area. Here,
we review some of the key datasets that have significantly contributed to advancing spatiotemporal
action localization research. UCF101-24 Soomro et al. (2012) is one of the earliest datasets tai-
lored for spatiotemporal action localization. Derived from the UCF101 dataset, it includes 24 sports
categories with temporal annotations and bounding boxes around the action instances. Despite its
relatively small size, UCF101-24 has been pivotal in early methodological developments. The J-
HMDB dataset Jhuang et al. (2013) is another fundamental resource that consists of 21 different
action classes with 928 video clips. Each action instance is annotated with a bounding box across
all frames, providing detailed spatial and temporal information. The dataset’s focus on human ac-
tions makes it particularly valuable for human-centered action localization research. Furthermore,
MEVA Corona et al. (2021) and VIRAT Oh et al. (2011) focus on unmanned aerial vehicles and
surveillance activity detection.

More recently, the MultiSports dataset Li et al. (2021) has been introduced, focusing on multi-
person and multi-action scenarios within sports videos. It contains annotations for 133 action classes
across more than 20 different types of sports, with precise spatiotemporal bounding boxes for each
action instance. This dataset is particularly challenging due to the dynamic nature of sports, which
include frequent occlusions and interactions between athletes. Our IndianRoad dataset makes the
progression from relatively simple, single-action instances in constrained environments to complex,
multi-action scenarios in uncontrolled environments and challenging scenarios.
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A.1.4 VIDEO MOMENT RETRIEVAL

The task of Video Moment Retrieval (VMR) involves identifying specific moments within a video
that correspond to a textual query. This area has seen significant interest due to its applications in
video understanding, search, and interaction. Various datasets have been introduced to facilitate
research in VMR, each with its unique characteristics and challenges. This section reviews some of
the key datasets that have been influential in advancing VMR research. One of the earliest and most
widely used datasets in this domain is the Charades dataset by Sigurdsson et al. Sigurdsson et al.
(2016a). It consists of videos of daily activities annotated with descriptions and temporal intervals.
The dataset has been instrumental in developing early VMR models due to its rich annotations and
the naturalistic setting of the videos. Building on the foundations laid by Charades, the ActivityNet
Captions dataset Krishna et al. (2017) offers a larger scale and diversity of activities. This dataset
features dense temporal annotations with corresponding natural language descriptions, making it a
staple for training and evaluating VMR systems. Another significant contribution to the field is the
TVR dataset Lei et al. (2020). This dataset stands out for its focus on television show episodes,
providing a mix of dialogue, action, and interaction that is more complex than daily activities. The
TVR dataset is particularly noted for its challenging queries that require deep understanding of both
the video content and the textual descriptions. The DiDeMo dataset Hendricks et al. (2017) offers
a different approach by focusing on describing distinct moments in a video with a single sentence.
Its unique structure facilitates research into more granular moment retrieval and alignment between
video content and textual descriptions. These datasets have collectively contributed to yhr progress
in VMR by providing diverse challenges and enabling the development of advanced models capable
of understanding complex video-text relations. However, the unstructured videos in IndianRoad add
more sophistication and increase the complexity of tasks that models are expected to perform.

A.1.5 MULTI-LABEL VIDEO ACTION RECOGNITION

In the field of computer vision, multi-label video action recognition has become increasingly impor-
tant for applications ranging from surveillance to content analysis and retrieval. Unlike single-label
action recognition, where each video is associated with a single action, multi-label video action
recognition involves identifying multiple actions that occur simultaneously or sequentially within a
video.

The Charades dataset by Sigurdsson et al. Sigurdsson et al. (2016b) is the most popular and is
specifically designed for multi-label video action recognition. It contains 9,848 videos with an
average length of 30 seconds, annotated with 157 action labels. The dataset stands out for its focus
on everyday activities, with videos featuring multiple actions performed by the actors. Charades
facilitates the development and evaluation of models capable of recognizing multiple simultaneous
actions, making it a cornerstone in multi-label video action recognition research.

Given that Charades focuses on daily activities, it primarily includes indoor scenarios. This focus
may limit the applicability of derived models for outdoor activities or other contexts not covered by
the dataset. Our IndianRoad dataset makes up for the indoor limitation and introduces more complex
actions, leading to the advancement of more sophisticated and accurate recognition models.
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