
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#11
ECCV

#11

Towards Flexible Inductive Bias via Progressive
Reparameterization Scheduling

Anonymous ECCV submission

Paper ID 11

Abstract. There are two de-facto standard architectures in recent com-
puter vision: Convolutional Neural Networks (CNNs) and Vision Trans-
formers (ViTs). Strong inductive biases of convolutions help the model
learn sample effectively, but such strong biases also limit the upper bound
of CNNs when sufficient data are available. On the contrary, ViT is in-
ferior to CNNs for small data but superior for sufficient data. Recent
approaches attempt to combine the strengths of these two architectures.
However, we show these approaches overlook that the optimal inductive
bias also changes according to the target data scale changes by com-
paring various models’ accuracy on subsets of sampled ImageNet at dif-
ferent ratios. In addition, through Fourier analysis of feature maps, the
model’s response patterns according to signal frequency changes, we ob-
serve which inductive bias is advantageous for each data scale. The more
convolution-like inductive bias is included in the model, the smaller the
data scale is required where the ViT-like model outperforms the ResNet
performance. To obtain a model with flexible inductive bias on the data
scale, we show reparameterization can interpolate inductive bias between
convolution and self-attention. By adjusting the number of epochs the
model stays in the convolution, we show that reparameterization from
convolution to self-attention interpolates the Fourier analysis pattern
between CNNs and ViTs. Adapting these findings, we propose Progres-
sive Reparameterization Scheduling (PRS), in which reparameterization
adjusts the required amount of convolution-like or self-attention-like in-
ductive bias per layer. For small-scale datasets, our PRS performs repa-
rameterization from convolution to self-attention linearly faster at the
late stage layer. PRS outperformed previous studies on the small-scale
dataset, e.g., CIFAR-100.

Keywords: Flexible Architecture, Vision Transformer, Convolution, Self-
attention, Inductive Bias

1 Introduction

Architecture advances have enhanced the performance of various tasks in com-
puter vision by improving backbone networks [3,15,16,27,28]. From the success
of Transformers in natural language processing [2, 10, 31], Vision Transformers
(ViTs) show that it can outperform Convolutional Neural Networks (CNNs) and
its variants have led to architectural advances [22, 30, 36]. ViTs lack inductive
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bias such as translation equivariance and locality compared to CNNs. Therefore,
ViTs with sufficient training data can outperform CNNs, but ViTs with small
data perform worse than CNNs.

To deal with the data-hungry problem, several works try to inject convolution-
like inductive bias into ViTs. The straightforward approaches use convolutions to
aid tokenization of an input image [14,32–34] or design the modules [6,12,20,35]
for improving ViTs with the inductive bias of CNNs. Other approaches use the
local attention mechanisms for introducing locality to ViTs [13, 22], which at-
tend to the neighbor elements and improve the local extraction ability of global
attention mechanisms. These approaches can design architectures that leverage
the strength of CNNs and ViTs and can alleviate the data-hungry problem at
some data scale that their work target.

However, we show these approaches overlook that the optimal inductive bias
also changes according to the target data scale by comparing various models’
accuracy on subsets of sampled ImageNet at different ratios. If trained on the
excessively tiny dataset, recent ViT variants still show lower accuracy than
ResNet, and on the full ImageNet scale, all ViT variants outperform ResNet.
Inspired by Park et al. [24], we perform Fourier analysis on these models to
further analyze inductive biases in the architecture. We observe that ViTs in-
jected convolution-like inductive bias show frequency characteristics between
it of ResNet and ViT. In this experiment, the more convolution-like inductive
bias is included, the smaller the data scale is required where the model outper-
forms the ResNet performance. Specifically, their frequency characteristics tend
to serve as the high-pass filter in early layers and as more low-pass filter closer
to the last layer. Nevertheless, such a fixed architecture in previous approaches
has a fixed inductive bias between CNNs and ViTs, making it difficult to design
an architecture that performs well on various data scales. Therefore, each time a
new target dataset is given, the optimal inductive bias required changes, so each
time the model’s architectural design needs to be renewed. For example, a CNN-
like architecture should be used for small-scale dataset such as CIFAR [17], and a
ViT-like architecture should be designed for large-scale dataset such as JFT [26].
Also, this design process requires multiple training for tuning the inductive bias
of model, which is time consuming.

In this paper, we confirm the possibility of reparameterization technique [5,
19] from convolution to self-attention towards flexible inductive bias between
convolution and self-attention during a single training trial. The reparameter-
ization technique can change the learned convolution layer to self-attention,
which identically operates like learned convolution. Performing Fourier analysis,
we show that reparameterization can interpolate the inductive biases between
convolution and self-attention by adjusting the moment of reparameterization
during training. We observe that more training with convolutions than with self-
attention makes the model have a similar frequency characteristic to CNN and
vice versa. This observation shows that adjusting the schedule of reparameteri-
zation can interpolate between the inductive bias of CNNs and ViTs.
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Table 1: Comparison of various architectures ✓ means that the model has
the corresponding characteristics, and ✗ does not. ✓∗ indicates that ConViT’s
convolutional operation is given only in the initial training stage and then learned
in the form of gated self-attention.

DeiT ResNet ConViT ResT Swin
[29] [16] [12] [35] [22]

Hierarchical Structure ✗ ✓ ✗ ✓ ✓

Relative Positional Encoding ✗ ✗ ✓ ✗ ✓

Local Attention ✗ ✗ ✗ ✗ ✓

Convolutional Operation ✗ ✓ ✓∗ ✓ ✗

From these observations, we propose the Progressive Reparameterization
Scheduling (PRS). PRS is to sequentially reparameterize from the last layer to
the first layer. Layers closer to the last layers are more trained with self-attention
than convolution, making them closer to self-attention. Therefore, we can make
the model have a suitable inductive bias for small-scale data with our sched-
ule. We validate the effectiveness of PRS with experiments on the CIFAR-100
dataset.

Our contributions are summarized as follows:

– We observe that architecture with a more convolutional inductive bias in the
early stage layers is advantageous on a small data scale. However, if the data
scale is large, it is advantageous to have a self-attentional inductive bias.

– We show that adjusting the remaining period as convolution before repa-
rameterization can interpolate the inductive bias between convolution and
self-attention.

– Based on observations of favorable conditions in small-scale datasets, we pro-
pose the Progressive Reparameterization Scheduling (PRS) which sequen-
tially changes convolution to self-attention from the last layer to the first
layer. PRS outperformed previous approaches on the small-scale dataset,
e.g., CIFAR-100.

2 Related Work

2.1 Convolution Neural Networks

CNNs, the most representative models in computer vision, have evolved over
decades from LeNeT [18] to ResNet [16] in a way that is faster and more accu-
rate. CNNs can effectively capture low-level features of images through induc-
tive biases which are locality and translation invariance. However, CNNs have a
weakness in capturing global information due to their limited receptive field.
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2.2 Vision Transformers

Despite the great success of vision transformer [11] in computer vision, ViT
has several fatal limitations that it requires high cost and is difficult to extract
the low-level features which contain fundamental structures, so that it shows
inferior performance than CNNs in small data scales. There are several attempts
to overcome the limitations of ViT and improve its performance by injecting a
convolution inductive bias into the Transformer.

DeiT [29] allows ViT to take the knowledge of convolution through distillation
token. They can converge a model, which fails in ViT. On the other hand, The
straightforward approaches [4, 20, 34, 35] employ inductive bias to augment ViT
by adding depthwise convolution to the FFN of the Transformer. ConViT [12]
presents a new form of self-attention(SA) called Gated positional self-attention
(GPSA) that can be initialized as a convolution layer. After being initialized
as convolution only at the start of learning, ConViT learns only in the form of
self-attention. Thus, it does not give sufficient inductive bias on small resources.
Swin Transformer [22] imposes a bias for the locality to ViT in a way that limits
the receptive field by local attention mechanisms. A brief comparison of these
methods is shown in Table 1.

2.3 Vision Transformers and Convolutions

There have been several studies analyzing the difference between CNNs and
ViTs [24, 25]. Park et al. [24] and Raghu et al. [25] prove that CNN and Trans-
former extract entirely different visual representations. In particular, Park et
al. [24] present the several analysis of self-attention and convolution that self-
attention acts as a low-pass filter while convolution acts as a high pass filter.
Furthermore, several approaches [5, 8, 19] have reparameterized convolution to
self-attention by proving that their operations can be substituted for each other.
Cordonnier et al. [5] demonstrates that self-attention and convolution can have
the same operation when relative positional encoding and the particular settings
are applied. T-CNN [8] presents the model using GPSA proposed by ConViT,
which reparameterizes convolution layer as GPSA layers. C-MHSA [19] prove
that reparameterization between two models is also possible even when the in-
put was patch unit, and propose a two-phase training model, which initializes
ViT from a well-trained CNN utilizing the construction in above theoretical
proof.

3 Preliminaries

Here, we recall the mathematical definitions of multi-head self-attention and
convolution to help understand the next section. Then, we briefly introduce the
background of reparameterization from convolution layer to self-attention layer.
We follow the notation in [5].
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convolution layer Convolution layer has locality and translation equivariance
characteristics, which are useful inductive biases in many vision tasks. Those
inductive biases are encoded in the model through parameter sharing and local
information aggregation. Thanks to the inductive biases, better performance can
be obtained with a low data regime compared to a transformer that uses a global
receptive field. The output of the convolution layer can be roughly formulated
as follows:

Conv(X ) =
∑
∆

XW C , (1)

where X ∈ RH×W×C is an image tensor, H,W ,C is the image height, width and
channel, W C is convolution filter weight and the set

∆ =

[
−
⌊
K

2

⌋
, · · · ,

⌊
K

2

⌋ ]
×
[
−
⌊
K

2

⌋
, · · · ,

⌊
K

2

⌋ ]
(2)

is the receptive field with K ×K kernel.

Multi-head Self-Attention Mechanism Multi-head self-attention(MHSA)
mechanism [31] trains the model to find semantic meaning by finding associations
among a total of N elements using query Q ∈ RN×dH , key K ∈ RN×dH , and
value V ∈ RN×dH , where dH is the size of each head. After embedding the
sequence X ∈ RN×d as a query and key using WQ ∈ Rd×dH and WK ∈ Rd×dH ,
an attention score A ∈ RN×N can be obtained by applying softmax to the value
obtained by inner producting Q and K, where d is the size of an input token.
Self-attention(SA) is obtained through matrix multiplication of V embedded by
W V ∈ RN×dH and A:

SA(X ) = A(XWQ,XWK)XW V ,

A(Q,K) = softmax

(
QK⊤
√
d

+B

)
,

(3)

where B is a relative position suggested in [7]. By properly setting the relative
positional embedding B , we can force the query pixel to focus on only one key
pixel. MHSA allows the model to attend information from different represen-
tation subspaces by performing an attention function in parallel using multiple
heads. MHSA with total of NH heads can be formulated as follows:

MHSA(X ) =

NH∑
k=1

SAk(X )W O
k , (4)

where W O is learnable projection and k is the index of the head.
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Reparameterizing MHSA into Convolution Layer [19] showed that K ×
K kernels can be performed through K2 heads, where K is the size of the
kernel. Since the convolution layer is agnostic to the context of the input, it is
necessary to set WQ and WK as 0 to convert the convolution to MHSA. Using
equations (3) and (4) together, MHSA can be formulated as follows:

MHSA(X ) =

NH∑
k=1

AkXW V
k W

O
k . (5)

As AkX is used to select the desired pixel, the knowledge of the convolution
layer can be completely transferred to the MHSA by setting W V to I and
initializing W O to W C .

4 Inductive Bias Analysis of Various Architectures

In this section, we analyze various architectures through Fourier analysis and ac-
curacy tendency according to data scale. Previous works designing the modules
by mixing convolution-like inductive bias to ViTs overlook that a fixed architec-
ture has a fixed inductive bias and optimal inductive bias can change according
to data scale. To confirm it, we conducted the experiments which measure the
accuracy of various architecture by changing data scale of ImageNet [9]. In these
experiments, we observe that the required data-scale for outperforming ResNet
is different for each architecture.

Then, we link frequency characteristics of the recent ViT variants and ten-
dency of their accuracy with data scale by expanding observations of Park et
al. [24]. With Fourier analysis of Park et al. [24], we observe that architecture
having more CNN-like frequency characteristics shows CNN-like efficiency and
accuracy tendency in the small-scale datasets.

4.1 Our Hypothesis

We hypothesize that 1) the more convolution-like inductive bias is included, the
smaller the data scale is required where the ViT-like model outperforms CNNs
and 2) frequency characteristics can explain whether the inductive bias of model
is closer to CNNs or ViTs. Specifically, the incapacity to which the layer amplifies
the high-frequency signal tends to dramatically increase from the first layer to
last layer in CNN, whereas ViT does not increase well. ViTs injected with the
inductive bias of convolutions tend to increase it, but not as drastic as CNN.
Here, we observe that ViTs increasing this incapacity more dramatically perform
well on smaller scale data like CNNs.

4.2 Data Scale Experiment

CNNs have the inductive biases such as locality and translation invariance and
ViTs do not. Because of the difference in inductive bias that architecture has, the
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Table 2: Data scale experiment of various model architectures. For a
fair comparison, the data augmentation and regulation techniques during the
learning process of all experimental models followed those of DeiT. [29].

Model ImgNet
Ratio

Acc@1 Acc@5 Flops
#

params

DeiT-Ti [29]

0.01 6.43 16.37

1.25G 5M
0.05 24.82 46.40
0.1 38.61 63.26
0.5 67.03 88.11
1 72.2 91.1

ConViT-Ti [12]

0.01 6.08 15.82

1G 6M
0.05 26.93 49.86
0.1 42.92 67.78
0.5 68.21 88.93
1 73.1 91.7

ResTv1-Lite [35]

0.01 11.19 26.542

1.4G 11M
0.05 42.92 67.91
0.1 52.88 76.62
0.5 73.03 91.39
1 77.0 93.6

ResNet-18 [16]

0.01 13.93 30.85

1.8G 11.6M
0.05 42.04 67.58
0.1 52.24 76.38
0.5 66.38 87.30
1 69.53 89.08

Swin-T [22]

0.01 13.20 27.39

4.5G 28M
0.05 38.69 61.88
0.1 53.46 75.57
0.5 76.21 92.86
1 81.2 95.5

ResNet-50 [16]

0.01 13.67 30.19

3.6G 23.9M
0.05 46.82 70.85
0.1 58.14 80.53
0.5 75.23 92.42
1 80.15 94.49

data scale determines their superiority. In small-scale data, CNNs outperform
ViTs, and at some point, ViTs outperform CNNs as the data scale grows. ViT
variants injected with the convolution-like inductive bias have stronger inductive
bias compared to näıve ViT, and the amount of data required to outperform
ResNet will be less than it. In this subsection, we identify accuracy trends and
the amount of data required to outperform ResNet for various architectures by
changing the data scale.
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Fig. 1: Comparisons of accuracy between ResNet and various ViT-like
architectures. Each model trained on the subsets of imagenet, specifically 1%,
5%, 10%, 50% and 100%. We plot the accuracy difference between ResNet and
other architectures with the increasing subset ratio. The numbers in parentheses
mean the number of parameters of each model.

As shown in Table 2 and Figure 1, we make subsets with the ratio of 0.01,
0.05, 0.1, and 0.5 respectively in ImageNet for experiments in various settings
with the same data distribution and different data scales. By utilizing the tax-
onomy of vision transformer proposed in [21], We choose the representatives in
each category as ViT variants to compare together. ResT [35] injects inductive
bias directly by adding convolution layers, whereas Swin [22] and ConViT [12]
add locality in a new way. Swin uses a method that constrains global attention,
while ConViT proposes a new self-attention layer that can act as a convolution
layer in the initial stage of training. Therefore, we select ResNet-18 and ResNet-
50 as the basic architecture of CNN, DeiT-Ti as Vanilla ViT and ResT-Light,
ConViT-Ti, and Swin-T as the variations of the ViT to be tested. Since the
number of parameters also significantly affects the performance, we compare the
tiny version of Swin (Swin-T) [22] with ResNet-50 [16] and the remaining ViT
variants with ResNet-18 [16]. Swin-T has more parameters than other models
since the dimension is doubled every time it passes through one layer.

At 0.01, the smallest data scale, the ResNet series consisting of only CNNs
shows better performance, and between them, ResNet-18 with smaller parame-
ters has the highest accuracy. However, as the data scale increase, the accuracy
of other ViT models increase more rapidly than ResNet. In particular, ResTv1-
Light [35] and Swin-T [22], which have hierarchical structures, show superior
performance among ViT variants and ResTv1-Light even records the highest
accuracy of all models when the data scale is 0.05 or more.

As illustrated in Figure 1, DeiT-Ti [29] shows better performance than ResNet
when the data scale is close to 1, while ConViT-Ti [12] and Swin-T [22] outper-
form it at 0.5 or more. meanwhile, the accuracy of ResT is higher than ResNet-
18 from quite a small data scale of 0.05. Therefore, we argue that the inductive
bias is strong in the order of ResTv1-Light, Swin-T, ConViT-Ti, and DeiT-Ti.
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Through these experiments, we can prove that inductive bias and hierarchical
structure have a great influence on accuracy improvement.
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Fig. 2: Frequency characteristics of ViTs and ResNet. In ResNet-50,
ResTv1-Lite, and Swin-T, the difference in log amplitude sharply increases as
the normalized depth increase. On the other side, DeiT and ConViT which softly
inject inductive biases into models do not have this tendency.

4.3 Fourier Analysis

As shown in Section 4.2, the required data scale for outperforming ResNet is
different for each architecture. Inspired by the analysis of Park et al. [24], we
show that the architectures with frequency characteristics more similar to ResNet
tend to outperform ResNet at smaller data scales through Fourier analysis.

As in [23, 24], the feature maps of each layer can be converted to two-
dimensional frequency domain with Fourier transform. Transformed feature maps
can be represented on normalized frequency, which frequency is normalized to
[−π, π]. The high-frequency components are represented at −π and π and the
lowest frequency components are represented at 0. Then, we use the difference in
log amplitude to report the amplitude ratio of high frequency to low-frequency
components. For better visualization, differences in log amplitude between 0
and 1/3π, 0 and 2/3π, and 0 and π are used to capture the overall frequency
characteristics well.

Figure 2 shows frequency characteristics through Fourier analysis. In the
ResNet results, the difference in log amplitude sharply increases as the nor-
malized depth increases. This shows that early layers tend to amplify the high-
frequency signal, and the tendency to amplify the high-frequency signal decreases
sharply as closer to the last layer. However, DeiT and ConViT which softly in-
ject inductive biases into models do not have this tendency and their frequency
characteristics are similar through the layers. The results of Swin and ResT that
strongly inject inductive biases into models with the local attention mechanism
or convolution illustrate that the increase of the difference in log amplitude shows
an intermediate level between it of ResNet and DeiT.
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By combining the results of Figure 2 and Table 2, we can see that the model
performs well for small-scale data if the increase in the difference in log amplitude
through layers is sharp. It becomes smoother in the order of ResNet, ResT,
Swin, ConViT, and DeiT, the accuracy is higher in the low-data regime in this
order. These results are consistent with the observations of previous work that
the inductive bias of CNNs helps the model to learn on small-scale data. From
these, we address that the difference in log amplitude through the layers can
measure the CNN-like inductive bias of the model. If it increases sharply similar
to CNNs, the model has strong inductive biases and performs well in low-data
regime.

5 Reparameterization Can Interpolate Inductive Biases

As shown on Section 4, a fixed architecture does not have flexible inductive bias,
causing them to have be tuned for each data. Since modifying the architecture to
have a suitable inductive bias for each data is too time-consuming, the method
which can flexibly adjust the inductive bias during the training process is needed.

We observe that the model trained more with CNN than self-attention have
more CNN-like frequency characteristics through reparameterization. With these
results, we show that reparameterization can interpolate the inductive bias be-
tween CNNs and ViT by adjusting the moment of reparameterization during
training.

5.1 Experimental Settings

Because reparameterization can change convolution to self-attention, we can
adjust the ratio of epochs that each layer is trained with convolution and self-
attention. In a 10% subset of the ImageNet data, we adjust this ratio by four
settings: model trained with 1) convolution for 300 epochs and self-attention for
0 epochs, 2) convolution for 250 epochs and self-attention for 50 epochs 3) convo-
lution for 150 epochs and self-attention for 150 epochs and 4) convolution for 50
epochs and self-attention for 250 epochs. We note that the model is more trained
with convolution from 1) to 4). We follow the setting for reparameterization as
in CMHSA-3 [19] and Fourier analysis as in Section 4.3.

5.2 Interpolation of Convolutional Inductive Bias

Figure 3 shows the results of Fourier analysis according to the ratio of trained
epoch with convolution and self-attention. When comparing 1) to 4), we can see
that the degree of increase become smaller from 1) to 4). As the ratio trained
with self-attention increases, the difference in log amplitude of early stage layers
tends to increase, and the difference in log amplitude of late stage layers tends to
decrease. These results show that the more training with convolution make the
degree of increase sharper. As we observed in the Section 4.3, the more sharply
increasing the difference of log amplitude through normalized depth represents
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Fig. 3:Visualization of Interpolation. As the ratio trained with self-attention
increases, the difference in log amplitude of early stage layers tends to increase,
and the difference in log amplitude of late stage layers tends to decrease. Conv
x, SA y denotes that the model is trained with convolution for x epochs and
self-attention for y epochs.

that the model have more CNN-like inductive biases. By combining the results of
Figure 3 and this observation, we can see that the more trained with convolution
make the model have more CNN-like inductive biases.

6 Progressive Reparameterization Scheduling

We now propose Progressive Reparameterization Scheduling (PRS) which ad-
justs the inductive bias of ViT for learning on small-scale data. PRS is based on
our findings as:

– As shown in Section 4, the more convolution-like inductive bias is included,
the smaller the data scale is required where the ViT-like model outperforms
CNNs. In more detail, we can see that the model performs well for small-
scale data if the increase in the difference of log amplitude through layers is
sharp.

– Furthermore, in the interpolation experiment in Section 5, if the layer is
trained in a convolution state for longer epochs, the layer has more convolution-
like characteristics. If the layer is trained in a self-attention state for longer
epochs, the layer has more self-attention-like characteristics. That is, by ad-
justing the schedule, it is possible to interpolate how much inductive bias
the model will have between self-attention and convolution.

From these findings, PRS makes the early layer have a small difference in
log amplitude as a high-pass filter and the last layer has a large difference in log
amplitude as a low-pass filter. Because convolution and self-attention serve as
high-pass filter and low-pass filter respectively as in Park et al. [24], PRS wants
the rear layer to play the role of self-attention and the front layer to play the
role of convolution. In order to force the rear layers to focus more on the role
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Fig. 4: Illustration of PRS. Conv. is a block with a convolutional layer, and
Self Attn. is a block with a self-attention layer. Each block is progressively trans-
formed from a convolution block to a self-attention block as the training pro-
gresses.

of self-attention than the front layers, PRS reparameterizes according to linear
time scheduling from convolution to self-attention, starting from the rear part.
PRS is depicted in Figure 4 and can be expressed as a formula as follows:

z 0 = PE(X ), (6)

z
′

l =

{
Conv(LN(z l−1)) + z l−1, (t ≤ T · (1− l

L+1 ))

MHSA(LN(z l−1)) + z l−1, (t > T · (1− l
L+1 ))

(7)

z l = MLP(LN(z
′

l)) + z
′

l, (8)

y = Linear(GAP(zL)), (9)

where PE(·) is the patch embedding function that follows [19], LN(·) is Lay-
erNorm [1], GAP(·) is global average pooling layer, Linear(·) is linear layer,
t denotes current epoch at training, L denotes the total number of layers,
l = 1, 2, · · · , L denotes the layer index and T denotes the total number of training
epochs, y denotes the output of the model.

Table 3 shows the effectiveness of PRS in CIFAR-100 dataset. PRS outper-
forms the baseline with a top-1 accuracy score of +2.37p on the CIFAR-100
dataset, showing that the performance can be boosted by a simple scheduling.
We note that our PRS achieves better performance than the previous two-stage
reparameterization strategy [19]. These results show that PRS can dynamically
apply an appropriate inductive bias for each layer. Through the successful result
of PRS, we conjecture that flexibly inducing inductive bias with reparameteri-
zation has the potential for designing the model on various scale data.
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Table 3: Training results of PRS. We train the model for 400 epochs on
the CIFAR-100 [17] dataset with our method, Progressive Reparameterization
Scheduling.

Model Acc@1 Acc@5 Layers #Heads dimemb

ViT-base [11] 60.90 86.66 12 12 768
DeiT-small [29] 71.83 90.99 12 6 384
DeiT-base [29] 69.98 88.91 12 12 768

CMHSA-3 [19] 76.72 93.74 6 9 768
CMHSA-5 [19] 78.74 94.40 6 9 768

Ours w/CMHSA-3 79.09 94.86 6 9 768

7 Conclusion

From the analysis of existing ViT-variant models, we have the following con-
clusion: the more convolution-like inductive bias is included in the model, the
smaller the data scale is required where the ViT-like model outperforms CNNs.
Furthermore, we empirically show that reparameterization can interpolate in-
ductive biases between convolution and self-attention by adjusting the moment
of reparameterization during training. Through this empirical observation, we
propose PRS, Progressive Reparameterization Scheduling, a flexible method that
embeds the required amount of inductive bias for each layer. PRS outperforms
existing approaches on the small-scale dataset, e.g., CIFAR-100.

Limitations and Future Works Although linear scheduling is performed in
this paper, there is no guarantee that linear scheduling is optimal. Therefore,
through subsequent experiments on scheduling, PRS can be improved by chang-
ing it to learnable rather than linearly or to another fancy method. In this paper,
we only covered datasets with scales below ImageNet, but we will also proceed
with an analysis of larger data scales than ImageNet. We also find that the hi-
erarchical architectures tend to have more CNNs-like characteristics than the
non-hierarchical architectures. This finding about hierarchy can further improve
our inductive bias analysis and PRS.
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