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Abstract
Machine unlearning is a promising approach
to improve LLM safety by removing unwanted
knowledge from a trained model. However, pre-
vailing gradient-based unlearning methods suffer
from issues such as high computational costs, hy-
perparameter instability, poor sequential unlearn-
ing capability, vulnerability to relearning attacks,
low data efficiency, and lack of interpretabil-
ity. While Sparse Autoencoders are well-suited
to improve these aspects by enabling targeted
activation-based unlearning, prior approaches un-
derperform gradient-based methods. This work
demonstrates that, contrary to these earlier find-
ings, SAEs can significantly improve unlearn-
ing when employed dynamically. We introduce
Dynamic SAE Guardrails (DSG), a novel method
for precision unlearning that leverages princi-
pled feature selection and a dynamic classifier.
Our experiments show DSG substantially outper-
forms leading unlearning methods, achieving su-
perior forget-utility trade-offs. DSG addresses
key drawbacks of gradient-based approaches for
unlearning—offering enhanced computational ef-
ficiency and stability, robust performance in se-
quential unlearning, stronger resistance to relearn-
ing attacks, better data efficiency including zero-
shot settings, and more interpretable unlearning.

1. Introduction
Machine unlearning, the process of removing specific in-
formation from trained LLMs, is a promising tool for ap-
plications in safety, privacy, and model maintenance (Liu
et al., 2025). However, the predominant gradient-based un-
learning methods suffer from significant limitations (Barez
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et al., 2025). Existing methods struggle to precisely bal-
ance forgetting target data with preserving general utility,
incur high computational costs, exhibit hyperparameter
instability, degrade quickly under sequential unlearning
requests, are vulnerable to relearning attacks, lack data
efficiency particularly in zero-shot scenarios, and offer little
interpretability. While interventions using Sparse Autoen-
coders (SAEs) (Bricken et al., 2023) offer a potential path
towards more targeted, activation-based unlearning, existing
SAE approaches (Farrell et al., 2024) have typically un-
derperformed gradient-based approaches due to imprecise
interventions that cause unintended side effects.

This paper demonstrates that, contrary to previous find-
ings, SAEs can significantly improve unlearning when
employed dynamically. We introduce Dynamic SAE
Guardrails (DSG), a novel method that leverages SAEs
for precise, efficient, and interpretable unlearning in LLMs.
DSG integrates Fisher Information-based feature selection
to identify features causally linked to the forget data, with
a dynamic, input-dependent classifier that triggers targeted
feature clamping only when necessary. This conditional
intervention acts as a guardrail, preventing the model from
accessing specific knowledge pathways for relevant inputs
while leaving general capabilities intact. Through extensive
experiments on standard benchmarks, we show that DSG
not only achieves a superior balance between forgetting and
utility preservation compared to leading gradient-based and
static SAE methods, but also directly addresses their core
limitations. Our main contributions are:
1. We introduce DSG, a new activation-based unlearning

method featuring principled SAE feature selection and a
dynamic classifier for precise, conditional intervention.

2. We demonstrate empirically that DSG achieves a supe-
rior balance between forgetting and utility preservation
compared to leading gradient-based and SAE-based un-
learning approaches on multiple benchmarks.

3. We show that DSG provides substantial benefits over
gradient-based unlearning, such as greater hyperparam-
eter stability, improved computational efficiency, and
sequential unlearning capability, enhanced resistance
against relearning attacks, enhanced data efficiency
even in the zero-shot setting, and interpretable
unlearning.
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2. Background and Related Work
Unlearning in Large Language Models. Machine
unlearning aims to modify a trained target model M(D) to
behave as if specific data, the forget set Dforget, had never
been part of its training data D (Bourtoule et al., 2021; Cao
& Yang, 2015). The resulting model, Munlearn, should
ideally be indistinguishable from a model trained only on
the retain set Dretain = D \Dforget. Because retraining
LLMs from scratch is computationally prohibitive, research
focuses on approximate unlearning (Liu et al., 2025). These
methods face the core challenge of balancing knowledge re-
moval (forget quality) and maintaining general capabilities
(utility preservation) (Shi et al., 2024; Maini et al., 2024).

The dominant approach for approximate unlearning
involves gradient-based optimization (Liu et al., 2024).
Methods like Gradient Ascent (GA) (Jang et al., 2023),
Gradient Difference (GradDiff) (Liu et al., 2022), Negative
Preference Optimization (NPO) (Zhang et al., 2024), and
RMU (Li et al., 2024) finetune model weights to reduce
the influence of Dforget, often using regularization (e.g.,
KL divergence) to protect utility (Maini et al., 2024; Yao
et al., 2024). However, these gradient-based techniques
frequently suffer from significant limitations: high com-
putational cost (requiring backward passes), instablity
under hyperparameter tuning, degraded performance
under sequential unlearning requests (Gao et al., 2024),
vulnerability to relearning attacks (Hu et al., 2025), poor
data efficiency, and a lack of interpretability (Barez
et al., 2025). These widespread challenges motivate the
exploration of alternative unlearning paradigms, such as
the activation-based interventions explored in this work.

Sparse Autoencoders (SAEs). Modern DNNs operate
in a regime of superposition, where multiple features
or capabilities are encoded along the same dimensions
of hidden activations (Elhage et al., 2022). SAEs pro-
vide an unsupervised method for disentangling these
superposed representations into interpretable features
(Bricken et al., 2023; Cunningham et al., 2023). Given
activations h ∈ Rdmodel from a specific layer or compo-
nent of an LLM, an SAE decomposes and reconstructs
these activations using encoder and decoder functions:
f(h) := σ(Wench+ benc) and ĥ(f) := Wdecf + bdec.
In other words, SAEs express model activations as a
sparse linear combination of interpretable feature vectors:
h = ĥ + ε(h) =

∑dSAE
i=1 fi(h)vi + b + ε(h) where

fi(h) ∈ R are scalar feature activations, vi ∈ Rdmodel are
unit vector feature directions, b ∈ Rdmodel is a bias term, and
ε(h) ∈ Rdmodel is the SAE error term. Wider SAEs continue
to improve feature granularity and reduce the error term.

SAEs are trained on activations collected from the model
processing pretraining data where training is conducted
separately for each layer or component of interest (e.g.,

residual stream, attention outputs) using an objective that
minimizes reconstruction loss while enforcing sparsity:
L = ∥h − ĥ(f(h))∥22 + λ∥f(h)∥0. Here λ is a sparsity
penalty coefficient encouraging most feature activations to
be zero for any given input. In this work, we use JumpReLU
SAEs (Rajamanoharan et al., 2024), which enforce sparsity
using a shifted Heaviside step function. The interpretability
of SAE features stems from their sparse activation pat-
tern—because features are only active for a small fraction of
inputs, they must capture meaningful patterns to be useful
for reconstruction. The cost of training SAEs is amortized
across multiple downstream applications such as identifying
and removing spurious correlations in models (Marks et al.,
2024) and steering behavior (O’Brien et al., 2024).

Farrell et al. (2024) developed an early approach using
SAEs for unlearning by identifying features that were
frequently active on Dforget and applying a static
intervention—clamping these identified features when
active at a token irrespective of overall context. However,
this produced substantial side-effects on general model
utility and ultimately underperformed gradient-based
methods like RMU. In this work, we show that SAE
unlearning can be effective via a context-dependent
intervention strategy rather than simple static clamping.

Further background details are provided in Appendix A.

3. Dynamic SAE Guardrails (DSG)

Figure 1: An illustration of DSG

DSG (Figure 1, Algorithm 1) is a targeted unlearning
method for LLMs that leverages the interpretability of SAEs
and combines: (1) a causal framing that motivates feature
selection, (2) a theoretically justified feature importance
scoring based on Fisher Information (FI), (3) a dynamic,
input-dependent classification rule based on a statistically
optimal threshold, and (4) a targeted clamping intervention
to remove the influence of selected features.

3.1. Causal Framework and Problem Setup

We frame unlearning through a causal perspective where
Dforget and Dretain influence model representations E and out-
puts Y through multiple pathways (Shen et al., 2024). These
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include representation-mediated pathways (D → E → Y),
potential direct influence (D → Y), and intertwined knowl-
edge (Dforget ↔ Dretain) where conceptual overlap exists
between the datasets. SAE features fj derived from E serve
as interpretable mediators (Pearl, 2009) of information flow
through these causal pathways. From this perspective, un-
learning involves blocking pathways from Dforget to Y while
preserving the pathways from Dretain to Y. DSG implements
this causal intervention do(fj = −c) on forget features
identified by analyzing SAE activation patterns across both
datasets.

3.2. Feature Selection: Identifying Causal Mediators via
Fisher Information

To identify which SAE features, Fforget mediate the causal
influence of Dforget, we establish two key theoretical connec-
tions: first between FI and feature activation, and second
between FI and causal influence. We then describe our
percentile based feature selection.

Theorem 3.1 (Fisher Information Approximation). For
an SAE with small reconstruction error and input h,
the expected squared gradient of reconstruction loss
with respect to feature j’s decoder weights θj,· is
proportional to the second moment of that feature’s
activation: Eh[∥∇θi,·ℓ(h)

∥∥2] ≈ ϵ2Eh[fj(h)
2] where w.h.p,

reconstruction errors are bounded by ϵ2.
Proof of Theorem 3.1 is provided in Appendix B. This estab-
lishes that squared feature activations are proportional to the
Fisher Information of the corresponding decoder weights.

Theorem 3.2 (Fisher Information as a Proxy for Causal
Feature Importance). Under standard assumptions, Fisher
Information associated with SAE features provides an ap-
proximation of their causal influence as mediators between
specific training data and model outputs. For any SAE
feature fj , the expected squared activation ED[fj(h)

2] on
dataset D is proportional to the causal influence of that fea-
ture as a mediator of information from D to model outputs.
Proof of Theorem 3.2 is in Appendix C. Under these as-
sumptions, a feature with large expected squared activation
on Dforget contributes significantly to the model’s FI with
respect to that data. This suggests that intervening on that
feature (e.g., clamping its activation) would substantially
affect the model’s output distribution when processing
inputs similar to those in Dforget. Squared activation serves
as a computationally tractable proxy for causal influence.

Importance Scores. DSG obtains token-level SAE
activations from each sequence in both Dforget and Dretain,
squares them, and aggregates the results into matrices
Aforget ∈ RnF×dSAE and Aretain ∈ RnR×dSAE (nF and
nR are the total numbers of tokens in the respective
datasets). For each token t in sequence x, we have
the activation fj(hx,t) of feature j on the hidden state
hx,t. Each entry of the activation matrices is thus

Aforget[i, j] ≈
[
fj(hx,t)

]2
for a token t in sequence

x ∈ Dforget (and similarly for Aretain). From these, we
compute the average squared activation per feature as
forget score(j) = 1/nF

∑
x∈Dforget

∑|x|
t=1

[
fj(hx,t)

]2
,

retain score(j) = 1/nR

∑
x∈Dretain

∑|x|
t=1

[
fj(hx,t)

]2
,

and define the relative importance by imp ratio(j) =
forget score(j)

max{retain score(j),ε} , with ε > 0 to avoid division by
zero. By Theorem 3.2 this ratio represents the relative
causal influence of feature j.

Percentile-Based Feature Selection. To select fea-
tures most causally relevant to Dforget, we employ a
percentile-based approach using pratio to compute τratio as
Percentile({imp ratio(j)}dSAE

j=1, pratio). Percentile(S, p)
returns the value v such that p% of elements in set S are
less than or equal to v. For example, with pratio = 95, τratio
is set so 95% of features have imp ratio(j) ≤ τratio.
We define the set of forget-mediating features as
Fforget = {j : imp ratio(j) ≥ τratio}. To filter out
noisy features, we sort features in Fforget by descending
forget score(j) and select the top nfeats to form the
final intervention set Snfeats .

3.3. Dynamic Sequence-Level Classification and
Intervention

DSG employs a dynamic input-dependent classification
mechanism to minimize unintended side-effects on content
unrelated to the forget knowledge.

Definition 3.3 (Forget-Set Activated Token). A token xt is
considered forget-set activated if at least one feature j ∈
Snfeats has a positive activation: fj(ht) > 0.

For input sequence x = (x1, . . . , xT ) of length T , we define
the statistic ρ(x) = 1

T

∑T
t=1 1[∃ j ∈ Snfeats : fj(ht) > 0],

representing the percentage of forget-set activated tokens. A
high ρ(x) indicates that query x strongly relies on features
we’ve identified as causally linked to the forget knowledge.

Figure 2: Distribution of ρ(x) for unlearning on WMDP-Bio.
Threshold at 95th percentile (dashed red line) separates MMLU
from WMDP.

Threshold Selection and Classification. We select a
threshold τ ∈ [0, 1] based on the distribution of ρ(x) on
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Algorithm 1 Dynamic SAE Guardrails (DSG)

Require: LLM with SAE features {fj}; datasets Dforget,Dretain; clamp strength c; percentiles (pratio, pdyn); feature count nfeats
Feature Selection:

Compute feature importance scores and threshold τratio from percentiles
Identify Fforget = {j : imp ratio(j) ≥ τratio}
Sort Fforget by descending forget score(j) and select top nfeats features to form Snfeats

Dynamic Threshold Calibration:
Compute ρ(x) = 1

|x|
∑

t 1[∃j ∈ Snfeats : fj(ht) > 0] for each x ∈ Dretain

Set threshold τ = Percentile({ρ(x)}x∈Dretain , pdyn)
Inference-Time Intervention:

For input sequence x, compute ρ(x) and classify as forget-relevant if ρ(x) > τ
If forget-relevant: For each token t and feature j ∈ Snfeats , set f ′

j(ht) = −c
Otherwise: Preserve all feature activations

Dretain using τ = Percentile({ρ(x)}x∈Dretain , pdyn) which
controls the trade-off between unlearning effectiveness and
performance preservation.

Empirically, we find ρ(x) is stochastically larger on Dforget
than on Dretain, as seen in Figure 2, which shows the dis-
tribution for both forget-domain queries (WMDP-Bio) and
general knowledge queries (MMLU). τ is chosen to control
the retain set’s false-positive rate and separates forget-set
queries effectively, achieving high recall on Dforget. On
this example, DSG successfully transfers from retain set
(WikiText) and forget set to the test query set. We define
classifier C(x) = 1[ρ(x) > τ ], labeling inputs as either
forget-relevant or retain-relevant.

Conditional Clamping. Our intervention is conditional
on the classifier C(x). When C(x) = 1 (forget-
relevant), for each token xt and feature j ∈ Snfeats , we
set f ′

j(ht) = −c, where −c is a large negative constant
we call clamp strength. This implements a targeted
do(fj(ht) = −c) operation, selectively severing the causal
pathway only when the input query is deemed forget-
relevant. When C(x) = 0 (retain-relevant), we leave all
features unchanged: f ′

j(ht) = fj(ht). This preserves the
model’s original behavior for queries unrelated to the tar-
geted knowledge, minimizing side-effects and maintaining
performance on Dretain.

Theorem 3.4 (Neyman-Pearson Optimality). If ρ(X)
is stochastically larger under Dforget than under Dretain,
then among all classifiers with false-positive rate at
most α, the threshold test C∗(x) = 1[ρ(x) > τ∗], where
PrX∼Dretain [ρ(X) > τ∗] = α, maximizes the true-positive
rate.
Proof is in Appendix D and states that under the stochastic
dominance assumption, thresholding ρ(x) is the optimal
classification approach for a given false-positive rate.

The dynamic clamping in DSG contrasts with static
clamping methods (Farrell et al., 2024), which intervene
based only on feature activation without sequence-level
classification, and risk inadequate coverage on Dforget or ex-
cessive side-effects on Dretain. DSG avoids this suboptimal

trade-off—we formally prove (Theorem E.1, Appendix E)
that for any static approach, DSG achieves equal or greater
coverage on Dforget with equivalent side-effects on Dretain,
providing a superior unlearning-utility trade-off.

4. Experiments and Results
4.1. Unlearning on WMDP

We evaluate DSG on WMDP (Li et al., 2024), which bench-
marks hazardous knowledge unlearning across multiple do-
mains. We focus on WMDP-Bio (biosecurity) and WMDP-
Cyber (cybersecurity). For each domain, our unlearning
setup uses domain-specific Dforget—PubMed papers contain-
ing bio-weapon related content for WMDP-Bio and GitHub
repositories for WMDP-Cyber—and WikiText (Merity et al.,
2016) as Dretain. We evaluate unlearning effectiveness using
the WMDP multiple-choice question test sets, which were
not exposed to models during the unlearning process.

Following SAEBench (Karvonen et al., 2025), we evaluate
unlearning only on questions the target model correctly
answers across all 24 permutations of the 4 multiple-choice
options. This yields 522/1273 questions for WMDP-Bio
and 275/1987 questions for WMDP-Cyber. For evaluating
model utility, we similarly filter MMLU questions that the
model answers correctly across all permutations. This yields
305 questions from history, computer science, geography,
and human aging for WMDP-Bio. For WMDP-Cyber, we
use 371 MMLU questions, replacing computer science with
biology. Table 1 reports the configuration that minimizes
WMDP accuracy while maintaining at least 99% of the
target model MMLU accuracy along with with MT-Bench
scores that measure general fluency.

Experimental Setup. We implement DSG using
gemma-2-2b-it with gemma-scope-2b-pt-res
SAE (width 16k) (Lieberum et al., 2024) applied to
layer 3 at ℓ0 142. We use Pdyn = 95 for both domains,
and Pratio = 95 for WMDP-Bio and Pratio = 90 for
WMDP-Cyber. We compare DSG against several baselines
across a broad hyperparameter sweep: GA (Jang et al.,
2023), NPO (Zhang et al., 2024), SSD (Foster et al., 2024),
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Figure 3: Unlearning performance on WMDP-Bio (left) and WMDP-Cyber (right). Higher MMLU accuracy and lower WMDP accuracy
is better. Clamp strengths (c) used for DSG points are shown as annotations. DSG Pareto-dominates the top four baseline methods (RMU,
SCRUB, Farrell et al., SSD).

Method WMDP Bio (↓) MMLU (↑) MT (↑)
HS Hist C. CS HS Geo H. Aging All

Target M 100.00 100.00 100.00 100.00 100.00 100.00 7.36

GA 99.44 98.18 100.00 100.00 100.00 99.35 7.44
NPO 97.95 99.99 88.88 100.00 98.82 99.35 7.29
SSD 99.44 100.00 100.00 100.00 98.82 99.68 7.24
SCRUB 94.97 99.09 100.00 100.00 98.82 99.35 6.09
Farrell et al. 59.22 100.00 100.00 100.00 96.47 99.03 7.33
RMU 50.00 99.08 100.00 100.00 98.81 99.47 7.21

DSG (Ours) 29.64 100.00 100.00 100.00 97.62 99.34 7.78

Table 1: Unlearning performance on WMDP-Bio. All represents the average MMLU score. MT-Bench scores show 0.16 variance across
5 runs. DSG shows superior unlearning effectiveness compared to baselines while maintaining high MMLU performance.

SCRUB (Kurmanji et al., 2023),Farrell et al. (2024) and
RMU (Li et al., 2024). Complete hyperparameter details
are provided in Appendix G.

Results. As shown in Table 1, DSG significantly outper-
forms all baselines on the WMDP-Bio unlearning task,
reducing accuracy to 29.64% compared to the next best
method RMU at 50.00%. It maintains high MMLU per-
formance (99.34% average) and achieves the highest MT-
Bench score (7.78), showing superior preservation of gen-
eral model capabilities. The results on WMDP-Cyber (Ap-
pendix G.2) reinforce these findings. Figure 3 provides a
more comprehensive view of the unlearning-utility trade-off
landscape, plotting all configurations with MMLU accuracy
above 95%. DSG Pareto-dominates all baseline methods:
for any level of utility preservation (MMLU accuracy), DSG
achieves more effective unlearning.

This superior performance is coupled with significant prac-
tical advantages over gradient-based methods in terms of
computational efficiency and hyperparameter stability.
Gradient-based approaches often exhibit hyperparameter
instability, where slight tuning changes can drastically
alter outcomes, risking poor unlearning or utility collapse.
Furthermore, they require computationally costly backward
passes through the LLM for optimization. In contrast, DSG
shows greater hyperparameter stability (Figure 3) and
efficiency. It requires only forward passes: one to gather

feature statistics initially, and then lightweight intervention
during inference, completely avoiding expensive gradient
calculations. This makes DSG particularly advantageous
for large models and frequent unlearning where gradient
computations impose substantial overhead.

4.2. Unlearning on Muse

We evaluate DSG on MUSE (Shi et al., 2024) comprising
two corpora: NEWS and BOOKS, and focusing on
six dimensions: verbatim memorization, knowledge
memorization, privacy leakage, utility preservation, forget
set scalability, and sequential unlearning.

Experimental Setup. We create separate target models
for NEWS and BOOKS by finetuning gemma-2-2b-it
on each corpus for 5 epochs using learning rate 10−5 and
batch size 32. For each target model, we implement DSG
using gemma-scope-2b-pt-res SAE (width 16k) ap-
plied to layer 3. For both domains, we use clamp strength
500, pratio = 95 and nfeats = 20. We use pdyn = 90 for
NEWS and pdyn = 95 for BOOKS, with the lower threshold
for NEWS enabling more effective verbatim memorization
removal. For both scalability and sequential unlearning, we
use the best NEWS hyperparameters.

We compare DSG against: GA, GradDiff (Liu et al., 2022),
NPO, SimNPO (Fan et al., 2024), and RMU. Following
MUSE, we train for 10 epochs using AdamW with learning
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C1. No Verbatim Mem. C2. No Knowledge Mem. C3. No Privacy Leak. C4. Utiltiy Preserv.
VerbMem on Dforget (↓) KnowMem on Dforget (↓) PrivLeak (∈ [−5%, 5%]) KnowMem on Dretain (↑)

NEWS
Target M 21.15 29.51 −88.16 26.78

GA 0.62 ↓ 97.1% 0.00 ↓ 100.0% -8.16 under-unlearn 0.09 ↓ 99.7%
GradDiff 2.81 ↓ 86.7% 0.71 ↓ 97.6% 93.10 over-unlearn 7.76 ↓ 71.0%
NPO 20.98 ↓ 0.8% 25.14 ↓ 14.8% -53.42 under-unlearn 29.02 ↑ 8.4%
SimNPO 21.14 ↓ 0.0% 27.70 ↓ 6.1% -89.84 under-unlearn 30.59 ↑ 14.2%
RMU 9.60 ↓ 54.6% 26.63 ↓ 9.8% 75.02 over-unlearn 26.41 ↓ 1.4%
DSG (Ours) 11.80 ↓ 44.2% 0.44 ↓ 98.5% 12.08 over-unlearn 25.65 ↓ 4.2%

BOOKS
Target M 15.80 33.90 −98.80 35.28

GA 2.61 ↓ 83.5% 0.17 ↓ 99.5% -1.58 acceptable 0.57 ↓ 98.4%
GradDiff 9.49 ↓ 39.9% 21.57 ↓ 36.4% -10.30 under-unlearn 23.66 ↓ 32.9%
NPO 14.41 ↓ 8.8% 28.21 ↓ 16.8% -97.24 under-unlearn 37.19 ↑ 5.4%
SimNPO 14.55 ↓ 7.9% 34.36 ↑ 1.4% -96.40 under-unlearn 36.62 ↑ 3.8%
RMU 14.89 ↓ 5.8% 32.59 ↓ 3.9% -97.58 under-unlearn 37.13 ↑ 5.2%
DSG (Ours) 8.73 ↓ 44.7% 1.79 ↓ 94.7% -23.18 under-unlearn 37.10 ↑ 5.2%

Table 2: Unlearning performance on MUSE. We highlight in green if the method satisfies the criterion and red otherwise. For
privacy leakage, large positive values suggest over-unlearning, while large negative values suggest under-unlearning. DSG shows strong
performance across all metrics, achieving substantial reductions in verbatim and knowledge memorization while maintaining high utility.

rate 10−5 and batch size 32, selecting the last epoch
checkpoint before utility falls below 90% of the target
model accuracy. Complete hyperparameters can be found
in Appendix H.

Unlearning. Table 2 shows that DSG outperforms exist-
ing baselnes. It is effective at verbatim memorization re-
moval (C1) with 44.2% reduction on NEWS and 44.7% on
BOOKS. On knowledge memorization (C2), DSG achieves
near-complete removal with 98.5% reduction on NEWS and
94.7% reduction on BOOKS, outperforming most baselines.
On privacy leakage (C3), while not within the ideal range,
DSG performs better than the majority of baselines. For util-
ity preservation (C4), DSG maintains 95.8% of target model
performance on NEWS and achieves a 5.2% improvement
on BOOKS compared to the target model.
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Figure 4: (a) Scalability: Performance across increasing forget set
sizes. (b) Sequential Unlearning: Performance across sequential
unlearning requests

Scalability. Figure 4(a) shows DSG is stable and robust
when scaling to larger forget sets. We evaluate perfor-
mance across forget sets ranging from 0.8M to 3.3M tokens,
and DSG maintains its position in the ideal region (high
retain set knowledge, low forget set knowledge) even as
the forget set size increases. In contrast, gradient-based
methods exhibit substantial degradation, with increasingly

poor tradeoffs between retaining general knowledge and
forgetting targeted information.

Sequential Unlearning. Figure 4(b) illustrates DSG’s
effectiveness across sequential unlearning requests on
four disjoint NEWS folds. We implement two approaches:
DSGall, which cumulatively updates feature importance
scores based on each new forget data request; and DSGunion,
which takes the union of features selected independently
at each step and uses this combined set to calculate ρ(x)
and threshold τ on DR. Both approaches perform simi-
larly well, consistently maintaining DSG in the ideal region
where other methods rapidly degrade with each additional
unlearning operation. Gradient-based methods suffer from
catastrophic forgetting during sequential unlearning, where
each update pushes the model further from its original per-
formance distribution. (Details in subsection H.2.)

4.3. Resistance to Relearning Attacks

We evaluate DSG’s resistance to relearning attacks in API-
based threat models where adversaries have query access
but cannot directly manipulate model weights. This resis-
tance derives from the Superficial Alignment Hypothesis
(Zhou et al., 2023), which posits that a model’s activation
geometry stabilizes during pretraining and changes mini-
mally during finetuning. Figure 9 confirms this empirically,
showing high cosine similarity between pre-finetuning and
post-finetuning activation vectors, and activation magni-
tudes clustered around 1.0. By operating on these stable
activation patterns rather than weights, DSG creates a more
persistent defense. While obfuscation-based attacks have
been proposed against activation-based interventions (Bailey
et al., 2024), they are less effective in API-based black-box
settings where attackers lack direct access to gradients and
model representations.

Methodology. We evaluate two DSG defenses against re-
learning: (1) Test-time DSG, which applies intervention
only at inference time after model finetuning, and (2) Train-
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Figure 5: Relearning attack resistance across finetuning epochs. (Left) DSG demonstrates superior resistance to relearning compared to
RMU. (Right) Test-time DSG preserves MMLU utility better than Train-time DSG while still providing significant protection.

time DSG, which integrates DSG during finetuning with
frozen SAE parameters to filter gradients. We test six
configurations with google/gemma-2-2b-it as base
model: Base, Base+Test-time DSG, Base+Train-time DSG,
Base+Train-time DSG+Test-time DSG, RMU (base model
with RMU applied), and RMU+Test-time DSG. The relearn-
ing attack consists of finetuning each configuration on the
WMDP-Bio test set for 10 epochs at learning rate 1e-5.

Results and Analysis. Figure 5(a) demonstrates clear dif-
ferences in vulnerability to relearning attacks. Weight-based
methods show high susceptibility, with RMU rapidly in-
creasing in WMDP-Bio accuracy when finetuned, eventu-
ally exceeding the base model’s finetuned performance. The
base model itself shows an initial performance decrease be-
fore increasing, as the high learning rate temporarily undoes
instruction tuning before relearning occurs.

Test-time DSG provides substantial protection, with
RMU+Test-time DSG maintaining near-random perfor-
mance (25%) throughout training. However, Base+Test-
time DSG shows gradual vulnerability to relearning, with
performance slowly increasing over finetuning epochs. This
gradual protection erosion reveals a limitation of test-time
intervention alone.

Train-time DSG offers a distinct protective mechanism.
Models finetuned with DSG active show immediate reduc-
tion to random-level performance that persists through ap-
proximately six epochs before gradually recovering. This
delayed recovery pattern suggests DSG forces the model
to develop entirely new processing circuits rather than sim-
ply reactivating suppressed knowledge. Figure 9 supports
this interpretation, showing significantly higher training loss
on WMDP-Bio compared to MMLU when finetuning with
DSG active.

Combining both approaches (Train-time DSG+Test-time
DSG) extends resistance through epoch 7, demonstrating
how these complementary mechanisms can be layered for
enhanced protection. However, these approaches involve
utility trade-offs. Figure 5(b) shows that while Base Fine-

tuned and Base Finetuned+Test-time DSG maintain compa-
rable MMLU performance, Train-time DSG exhibits mod-
erate utility decline at higher epoch counts.

DSG’s superior resistance to relearning attacks stems
from its activation-based intervention that leverages the sta-
bility of activation geometry during finetuning.

4.4. Data Efficiency and Zero-shot Interpretable
Unlearning

We evaluate how DSG performs with limited forget and
retain data on WMDP-Bio. Figure 6A shows DSG main-
taining consistent performance when trained on 20-80% of
the original retain and forget datasets, preserving MMLU
accuracy while keeping WMDP accuracy below 40%.
Only when dataset size falls below 20% does effectiveness
noticeably decline, with WMDP accuracy rising above 40%.
In contrast, RMU shows inconsistent results across different
dataset sizes, indicating that gradient-based methods may
be more unstable to hyperparameter changes when data
is limited.

For zero-shot evaluation, we implement DSG without
any domain-specific forget or retain data (Figure 6B),
instead leveraging the interpretability of SAEs. We
use Neuropedia (Lin, 2023) feature explanations to
identify the forget set features by querying for concepts
Biology and Cybersecurity, selecting the top 20 relevant
features (details in Appendix M). Both tasks use the
gemma-scope-2b-pt-res SAE (width 16k) at layer
3 (ℓ0 59). Since retain data is unavailable for dynamic
threshold calibration, we sweep over static τ values, finding
optimal settings (τ = 60% for WMDP-Bio, τ = 20% for
WMDP-Cyber). Even with features selected purely based
on their semantic descriptions and without dataset-specific
tuning beyond τ , these zero-shot DSG configurations
outperform RMU and Farrell et al. (2024), demonstrating
the potential for effective unlearning guided directly by
feature interpretability.
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Figure 6: Data efficiency analysis of DSG. (A) Performance across varying training data sizes compared to RMU. (B) Zero-shot
performance on WMDP-Bio (left) and WMDP-Cyber (right) using 20 features selected via Neuropedia API with different τ thresholds
(shown next to each data point).

Figure 7: DSG Ablation studies (A) Static vs. dynamic clamping comparison with varying clamp strengths [10-500] for 20 and 30
features. (B) Effect of dynamic threshold percentile (pdyn) on performance (C) Impact of importance ratio threshold (pratio, range 75-95)
for 20 and 30 features.

4.5. Ablations

We evaluate each component of DSG by conducting ablation
experiments on WMDP-Bio.

Dynamic Classification: Figure 7A compares DSG with
dynamic classification against DSG with static clamping
from Farrell et al. (2024) While static clamping effec-
tively removes forget-set information at large clamp val-
ues (c > 100), it simultaneously reduces MMLU accuracy
because it treats all inputs identically regardless of their
forget-relevance. In contrast, our dynamic classifier only
applies interventions when necessary based the statistical
distribution of forget-feature activations. This conditional
approach maintains higher MMLU accuracy (> 99%) while
achieving comparable or better WMDP-Bio reduction.

Percentile-Based Feature Selection: DSG with static
clamping leverages Fischer Information for feature selection
instead of feature sparsity in Farrell et al. (2024). As shown
in Figure 7A, across equivalent clamping strengths, this
selection approach achieves 8% lower WMDP-Bio accu-
racy on average while maintaining comparable MMLU per-
formance, indicating more precise identification of forget-
relevant features.

Dynamic Threshold pdyn: Figure 7B shows the effect of
pdyn on the forget-retain trade-off. Higher percentiles (> 95)

preserve more MMLU accuracy but allow more WMDP
content to pass through undetected, while lower percentiles
(< 90) apply intervention more aggressively but with
increased side effects on general knowledge. The optimal
range 90-95 balances these considerations, removing
targeted knowledge while minimizing side effects.

Importance Ratio Threshold pratio: As shown in Fig-
ure 7C, varying pratio from 75-95 provides fine-grained con-
trol over feature selection. Higher values (95) select features
with stronger forget-retain differentiation, yielding more tar-
geted intervention, while lower values expand the feature set
but may increase overlap with general knowledge features.
Additionally we observed that the dynamic classifier can
compensate for a lower pratio maintaining effective forget-set
filtering even when feature selection is less discriminative.

Additional ablations in Appendix K show that DSG is re-
markably robust to clamp strength variations, and performs
optimally with moderate feature counts. These findings
highlight DSG’s practical hyperparameter stability. Ef-
fective performance is maintained within reliable ranges
for thresholds pdyn/pratio (90-95), feature counts (10-20),
alongside notable robustness to clamp strength (100-500).
Additionally, these hyperparameters transfer across datasets,
simplifying deployment compared to gradient-based meth-
ods.
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5. Conclusion and Future Work
In this work we introduced DSG, demonstrating that SAEs
with dynamic classification enable precise, activation-based
unlearning that outperform gradient-based methods across
multiple benchmarks. Future directions include studying
how DSG generalizes across different SAE widths, base
model sizes, and configurations.

Impact Statement
This work introduces Dynamic SAE Guardrails (DSG), a
method for targeted unlearning in large language models
(LLMs). While designed to promote responsible AI by en-
abling the removal of unwanted knowledge, several ethical
considerations arise:

• Potential for misuse: While our focus is on removing
hazardous or unwanted knowledge, the same technology
could potentially be used to censor information or suppress
viewpoints, leading to undesirable social consequences if
deployed without careful oversight. The zero-shot capabil-
ities, while advantageous for data-scarce scenarios, could
be misused if the user-provided keywords are biased or
used to target specific groups/content unfairly.

• Over-reliance on interpretability: Although SAEs offer
improved interpretability compared to black-box models,
feature interpretations are not always definitive or fully
reliable. Misinterpreting feature roles or over-relying on
imperfect interpretations could lead to unintended con-
sequences, including the removal of valuable knowledge
or the failure to remove harmful content. The quality of
feature interpretation depends on the quality and repre-
sentativeness of the data used to train and interpret the
SAE.

• Limitations of unlearning: As with all approximate
unlearning methods, DSG does not guarantee complete
removal of targeted knowledge. As we show, it reduces
the likelihood of the model generating outputs related to
the forget set, but subtle traces or indirect influences might
persist. It is essential to acknowledge these limitations and
avoid presenting DSG as a perfect solution for knowledge
removal.

• Dual-use concerns: The techniques developed in this
work for improving model control and safety could also be
adapted by malicious actors to develop more sophisticated
attacks or to create models that resist safety interventions.
We recognize this inherent dual-use nature and empha-
size the need for responsible development and sharing of
research findings.

• Computational Cost of SAE Training: The training of
SAEs can be computationally demanding, raising environ-
mental concerns. However there are several open-source

SAEs, amortizing their cost, and the the inference-time
efficiency of DSG offers some mitigation compared to
gradient-based unlearning approaches.

We believe the benefits of precise, controllable unlearning
for enhancing AI safety outweigh these risks, provided the
technology is developed and deployed responsibly. We en-
courage future work to address these limitations and explore
more robust evaluation methods for unlearning.
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A. Additional Background and Related Work Details
This appendix provides further details on concepts mentioned in the Background and Related Work (Section 2).

A.1. Formal Goal of Unlearning

As introduced in the main text, machine unlearning aims to transform a model M(D), initially trained on a dataset
D = Dretain ∪ Dforget, into an unlearned model Munlearn. The theoretical ideal of exact unlearning requires that
Munlearn be computationally indistinguishable from a model M(Dretain) that was trained exclusively on the retain set
Dretain from the beginning (Bourtoule et al., 2021; Cao & Yang, 2015). Due to the computational cost of retraining large
language models from scratch, achieving exact unlearning is generally impractical. Therefore, the field primarily focuses on
developing approximate unlearning methods. These methods aim to satisfy specific criteria related to effectively removing
the influence of Dforget while preserving the model’s performance on Dretain, without incurring the cost of full retraining
(Liu et al., 2025).

A.2. Unlearning Evaluation Metrics and Benchmarks

The evaluation of approximate unlearning methods typically involves measuring two primary aspects: Forget Quality and
Utility Preservation.

Forget Quality quantifies the successful removal of information pertaining to the forget set Dforget. Common metrics
include measuring the Forget Set Performance Degradation, which involves observing reduced accuracy or increased loss
on tasks specifically related to the content of Dforget (Shi et al., 2024; Maini et al., 2024). Memorization Metrics gauge the
model’s reduced ability to recall specific sequences or knowledge points verbatim from Dforget (Shi et al., 2024). Privacy
Leakage Metrics evaluate the decreased success rate of Membership Inference Attacks (MIAs) that try to infer whether
a given data point was part of the original Dforget, often quantified using the Area Under the Curve (AUC) of the MIA
classifier (Shokri et al., 2017; Shi et al., 2024).

Conversely, Utility Preservation assesses how well the unlearned model retains its general knowledge and capabilities
on tasks unrelated to Dforget. This is commonly measured by evaluating Retain Set Performance Preservation, which
checks for maintained accuracy on standard academic or commonsense reasoning benchmarks such as MMLU (Hendrycks
et al., 2020). Additionally, General Language Modeling Performance is often assessed by ensuring minimal increase in
perplexity or loss when the model processes large, general-purpose text corpora like OpenWebText (Gokaslan et al., 2019) or
WikiText (Merity et al., 2016). Finally, Fluency and Coherence of the model’s generated text are important, often evaluated
through automated metrics, human judgment, or interaction with benchmark chatbots like MT-Bench (Zheng et al., 2023).
Standardized benchmarks like MUSE (Shi et al., 2024), TOFU (Maini et al., 2024), WMDP (Li et al., 2024), and SAEBench
(Karvonen et al., 2025) provide datasets, tasks, and evaluation protocols designed to measure performance across these
diverse criteria.

A.3. Gradient-Based Unlearning Methods

Gradient-based unlearning techniques directly modify the weights θ of the original model M(D) using optimization
algorithms, typically variants of gradient descent or ascent.

Gradient Ascent (GA) represents a basic approach where the optimization objective is to maximize the loss function (e.g.,
negative log-likelihood) on the forget set Dforget, thereby pushing the model parameters away from configurations that
accurately represent this data (Jang et al., 2023). This method, however, often suffers from catastrophic forgetting of useful
knowledge if not carefully regularized.

Gradient Difference (GradDiff or NegGrad) attempts to balance forgetting and retention by computing gradients for
both minimizing loss on Dretain and maximizing loss on Dforget, then applying an update based on a combination (often a
subtraction) of these gradients (Liu et al., 2022).

Negative Preference Optimization (NPO) leverages insights from preference-based finetuning methods like DPO (Rafailov
et al., 2023), reformulating unlearning as learning to disprefer outputs related to Dforget relative to some reference, which
could be outputs from the original model or data from Dretain (Zhang et al., 2024). Simplified variants like SimNPO aim to
reduce the computational overhead (Fan et al., 2024).
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Representation Misdirection Unlearning (RMU) operates by injecting noise or applying targeted shifts to the internal
activations of the model at specific layers, but only when processing inputs related to Dforget, while simultaneously using a
regularization term to keep activations on Dretain close to those of the original model (Li et al., 2024).

Selective Synaptic Dampening (SSD) aims for more targeted weight modification by estimating the importance of individual
parameters for both Dforget and Dretain (using approximations based on Fisher information) and then selectively reducing
the magnitude of parameters found to be more critical for Dforget than for Dretain (Foster et al., 2024).

SCRUB employs a student-teacher knowledge distillation framework; it trains a copy of the original model (the student)
to diverge from the original frozen model (the teacher) on Dforget inputs (typically by maximizing KL divergence) while
simultaneously encouraging the student to mimic the teacher on Dretain inputs (by minimizing KL divergence) (Kurmanji
et al., 2023).

Finally, many gradient-based methods incorporate explicit Regularization Techniques to counteract the tendency towards
catastrophic forgetting. Common regularizers include minimizing the KL divergence between the probability distributions
of the unlearned and original models when evaluated on Dretain (Maini et al., 2024), or directly including a term in the loss
function that minimizes the model’s prediction error on Dretain (Yao et al., 2024).

A.4. Prior SAE Unlearning Work

The work by Farrell et al. (2024) is an early exploration into using Sparse Autoencoders (SAEs) for machine unlearning. We
describe their methodology here.

First, they computed the activation sparsity for each feature in the SAE dictionary, calculated separately over the forget
dataset (Dforget) and the retain dataset (Dretain). Sparsity here refers to the fraction of input tokens for which a given
feature has a non-zero activation.

Second, to mitigate potential damage to the model’s general capabilities, they filtered out any features whose activation
sparsity on the retain set Dretain exceeded a predetermined threshold (e.g., a feature active on more than 1% of retain tokens
might be excluded).

Third, from the pool of features that passed the retain-sparsity filter, they selected the top-N features that exhibited the
highest activation sparsity when measured on the forget set Dforget. The assumption was that features frequently active on
forget data are likely responsible for encoding the knowledge to be removed.

Fourth, they implemented a static intervention mechanism during inference: whenever any of the top-N selected features fj
produced a positive activation (fj(ht) > 0) for any token t, its activation was clamped to a fixed negative value (e.g., -c).
This clamping was applied universally, regardless of the overall context of the input sequence.

This combination of sparsity-based feature selection and static clamping ultimately proved limiting, leading to significant
side effects on utility and performance inferior to contemporary gradient-based methods like RMU on benchmarks such
as WMDP-Bio. Recognizing these limitations directly motivated our work (DSG), where we instead develop and apply
principled feature selection and dynamic, context-aware interventions.

A.5. Relearning Attacks

Approximate unlearning methods, especially those modifying model weights, face another significant challenge: relearning
attacks (Deeb & Roger, 2024). In these attacks, an adversary finetunes the unlearned model Munlearn to recover the
supposedly forgotten information. Such recovery is sometimes possible even using only data tangentially related to
the original forget set Dforget (Hu et al., 2025). The success of relearning attacks suggests that gradient-based weight
modifications may primarily suppress access to knowledge rather than truly erasing it from the parameter space; subsequent
finetuning can often reverse these weight adjustments, particularly if it reinforces the target concepts.

The feasibility of relearning attacks strongly depends on the threat model. In an API-based (black-box) setting, where
adversaries only have query access, mounting effective relearning attacks is more difficult, particularly if the provider
restricts extensive finetuning or monitors queries. Activation-based intervention methods like DSG, which modify internal
states rather than weights to control outputs for relevant inputs, may offer greater robustness in this black-box scenario
compared to weight modification techniques.

Although sophisticated obfuscation attacks targeting activation-based defenses exist (Bailey et al., 2024), they typically
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require white-box access (e.g., gradients, internal states). Such access is unavailable in a pure API setting, limiting their
threat against deployed systems focused on output safety via activation manipulation. DSG’s potential resilience against
relearning could stem from the relative stability of activation geometry during standard finetuning, a phenomenon related to
the Superficial Alignment Hypothesis (Zhou et al., 2023). If DSG reliably identifies features encoding the target knowledge
based on these stable patterns and consistently applies interventions, the unlearning effect may prove more durable against
finetuning-based relearning attacks compared to methods reliant on weight configurations.

B. Fisher Information Approximation Proof
Theorem B.1 (Approximate Fisher Information from SAE Features). Let a sparse autoencoder (SAE) with reconstruction
r̂(x) = z(x)Wdec be applied to data x ∼ D, where z(x) ∈ RF represents latent activations and Wdec ∈ RF×D the
decoder weights. Define the reconstruction loss as:

ℓ(x) =
1

2
∥r̂(x)− r(x)∥2

If the SAE is well-trained such that reconstruction error is small with high probability, then for each row θi,· ∈ RD of Wdec

(representing feature i), the expected squared gradient is approximately proportional to the second moment of the feature
activation.

Proof. We establish this result through careful analysis of the gradient structure in sparse autoencoders.

Computing the Gradient of Decoder Weights. By definition of the reconstruction loss:

ℓ(x) =
1

2
∥r̂(x)− r(x)∥2

=
1

2
∥z(x)Wdec − r(x)∥2

For row i of Wdec, denoted θi,· ∈ RD, we compute the gradient:

∇θi,·ℓ(x) = ∇θi,·

[
1

2
∥z(x)Wdec − r(x)∥2

]
By the chain rule:

∇θi,·ℓ(x) = (z(x)Wdec − r(x)) · ∇θi,·(z(x)Wdec)

Since z(x)Wdec is linear in θi,· with coefficient zi(x), we have:

∇θi,·(z(x)Wdec) = zi(x) · ID

where ID is the D-dimensional identity matrix. Therefore:

∇θi,·ℓ(x) = zi(x)(r̂(x)− r(x))

Computing the Squared Gradient Norm. Taking the squared norm of this gradient:

∥∇θi,·ℓ(x)∥2 = ∥zi(x)(r̂(x)− r(x))∥2

= zi(x)
2∥r̂(x)− r(x)∥2

Taking the expectation over the data distribution:

Ex∼D[∥∇θi,·ℓ(x)∥2] = Ex∼D[zi(x)
2∥r̂(x)− r(x)∥2]
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Analyzing the Small Error Regime. When the SAE is well-trained, we can characterize its performance with a high-
probability bound on reconstruction error. Specifically, assume there exist constants ϵ > 0 and δ > 0 such that:

P
(
∥r̂(x)− r(x)∥2 < ϵ2

)
> 1− δ

where ϵ ≪ ∥r̂(x)∥ and δ is small. In other words, the squared reconstruction error is bounded by ϵ2 with probability at least
1− δ. Under this high-probability bound, we can decompose the expectation:

E[zi(x)2∥r̂(x)− r(x)∥2] ≤ E[zi(x)2 · ϵ2 | ∥r̂(x)− r(x)∥2 < ϵ2] · (1− δ) + Cδ

≤ ϵ2E[zi(x)2] + Cδ

where C is a bound on the expectation in the low-probability case. For small δ and finite C, the second term becomes
negligible, leaving:

E[zi(x)2∥r̂(x)− r(x)∥2] ≈ ϵ2E[zi(x)2]

Connection to Fisher Information. The Fisher Information Matrix for parameter θi,· is defined as:

I(θi,·) = Ex∼D[∇θi,·ℓ(x)∇θi,·ℓ(x)
⊤]

The trace of this matrix, which measures the overall sensitivity of the loss to changes in θi,·, is precisely:

Tr(I(θi,·)) = Ex∼D[∥∇θi,·ℓ(x)∥2]
≈ ϵ2E[zi(x)2]

Interpretation. The above analysis shows that (fj(x))2 = zj(x)
2 serves as a natural importance measure for feature j.

Features with larger average squared activations contribute more significantly to reconstruction gradients and thus have
higher Fisher Information content. This justifies our approach of using squared activations to identify features most strongly
associated with specific knowledge domains.

C. Connecting Fisher Information to Causal Influence
In this section, we establish how the Fisher Information associated with Sparse Autoencoder (SAE) features connects to
their causal influence as mediators of information flow in language models. Drawing inspiration from causal geometry
(Chvykov & Hoel, 2020), we provide a proof for why expected squared activation serves as a measure of feature importance.

Theorem C.1 (Fisher Information as a Proxy for Causal Feature Importance). Under assumptions of (i) near-deterministic
mappings in the language model, (ii) well-defined causal effects under feature interventions, (iii) small SAE reconstruction
error, and (iv) approximate feature independence, the Fisher Information associated with SAE features provides a principled
approximation of their causal influence. Specifically, for any feature fj , the expected squared feature activation ED[fj(h)

2]
for hidden state h on dataset D is proportional to the causal influence of that feature as a mediator of information from
D to model outputs.

Proof. We build upon the result in Appendix B, which showed that the expected squared activation E[fj(h)2] is proportional
to the trace of the Fisher Information Matrix for the corresponding decoder weights.

Causal Model Setup. Consider a language model (LM) that produces hidden states h(x) ∈ Rd. A Sparse Autoencoder
(SAE) encodes h(x) into feature activations z = f(h) ∈ RdSAE , i.e. each feature is fj

(
h(x)

)
. Let Dforget and Dretain be two

subsets of the training data. We model the causal structure as:

Data −→ h(x) −→ z = f(h) −→ Y (model outputs)

Here, Y ∈ RdY represents the model’s output vector (e.g., logits or embeddings).
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Assumptions.

1. Near-deterministic mapping. Conditioned on h, the model output Y is almost deterministic (small Gaussian noise).
Formally, p

(
Y | h

)
≈ N

(
µ(h), σ2I

)
with small σ2.

2. Well-defined feature interventions. We can perform do
(
fj = α

)
, meaning forcibly setting feature j to α and thus

severing its normal dependence on h.

3. Small SAE reconstruction error. Writing ĥ(z) ≈ Wz, we assume ∥h− ĥ(z)∥ is small with high probability.

4. Approximate feature independence. Features fj(h) are sufficiently sparse or decorrelated that cross-terms can be
neglected.

Defining Causal Influence. We quantify the causal influence of feature fj by how much the model’s output distribution
p(Y) changes when we intervene to set fj to its normal value fj(h) vs. forcing it to zero:

Influence(fj) = Eh∼D

[
DKL

(
p
(
Y | do(fj = fj(h))

) ∥∥ p
(
Y | do(fj = 0)

))]
A large KL means toggling fj from 0 to its actual value drastically shifts p(Y), so fj is a strong mediator for D.

Expanding KL Divergence. Let gj : R → RdY describe how feature fj shifts the model’s outputs. Since we forcibly
set fj (an intervention), we ignore any prior correlations with h, and under near-determinism the output distribution is
approximated by:

p
(
Y | do(fj = α)

)
= N

(
gj(α), σ

2I
)

For two different interventions do(fj = α) and do(fj = β), we can now derive the KL divergence between the resulting
output distributions. Using the standard formula for KL divergence between multivariate Gaussians with the same covariance
matrix:

DKL(N (µ1,Σ)∥N (µ2,Σ)) =
1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

Therefore:

DKL

(
p
(
Y | do(fj = α)

) ∥∥ p(Y | do(fj = β)
))

= DKL(N (gj(α), σ
2I)∥N (gj(β), σ

2I))

=
1

2
(gj(α)− gj(β))

T (σ2I)−1(gj(α)− gj(β))

=
1

2σ2
(gj(α)− gj(β))

T (gj(α)− gj(β))

=
1

2σ2

∥∥gj(α)− gj(β)
∥∥2

First-Order Taylor Expansion. To make this expression more tractable, we use a first-order Taylor expansion of gj(α)
around β = 0:

gj(α) = gj(0) +
dgj

dα

∣∣∣
α=0

· α+ o(α)

≈ gj(0) +
(
∇gj(0)

)
α

When α is sufficiently small, the higher-order terms o(α) become negligible. Substituting this back into our KL divergence
expression for the special case where β = 0:

DKL

(
p(Y|do(fj = α))∥p(Y|do(fj = 0))

)
=

1

2σ2
∥gj(α)− gj(0)∥2

≈ 1

2σ2
∥gj(0) +∇gj(0) · α− gj(0)∥2

=
1

2σ2
∥∇gj(0) · α∥2

=
1

2σ2
α2

∥∥∇gj(0)
∥∥2
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This shows that the KL divergence (our measure of distribution change) grows quadratically with the intervention magnitude
α, with a proportionality constant determined by the gradient norm ∥∇gj(0)∥2.

Expected Causal Influence. Now we can compute the expected causal influence by substituting α = fj(h) and taking
the expectation over h ∼ D:

Influence(fj) = Eh∼D

[
DKL

(
p(Y|do(fj = fj(h)))∥p(Y|do(fj = 0))

)]
≈ Eh∼D

[ 1

2σ2
fj(h)

2
∥∥∇gj(0)

∥∥2]
=

∥∇gj(0)∥2

2σ2
Eh∼D

[
fj(h)

2
]

Thus, the expected causal influence of feature j as a mediator of information from dataset D is directly proportional to the
expected squared activation ED

[
fj(h)

2
]
, with a proportionality constant ∥∇gj(0)∥2

2σ2 that depends on the sensitivity of the
model’s outputs to changes in feature j.

Connection to Fisher Information. The Fisher Information for the SAE’s decoder weights θj,· satisfies I
(
θj,·

)
∝

Eh

[
fj(h)

2
]

since the gradient w.r.t. θj,· includes fj(h) as a leading factor. Therefore, E[fj(h)2] tracks both the
Fisher Information and the intervention-based notion of causal influence we derived above, establishing a direct link:
Causal Influence(fj) ∝ Fisher Information(θj,·) ∝ E[fj(h)2]. In other words, features most important in a Fisher Infor-
mation sense are precisely those with greatest causal influence on model outputs.

Implications for Feature Selection. By identifying features with high squared activations on Dforget but low activations on
Dretain, we can target mediators that specifically carry forget set knowledge. Clamping these features to zero during inference
selectively reduces the model’s capacity to propagate information from Dforget while preserving performance on Dretain.

Comparisons Across Datasets. For Dforget vs. Dretain, we earlier defined:

forget score(j) = EDforget

[
fj(h)

2
]

retain score(j) = EDretain

[
fj(h)

2
]

The ratio of causal influence of feature j for Dforget versus Dretain is:

EDforget [Influence(fj)]
EDretain [Influence(fj)]

=

∥∇gj(0)∥2

2σ2 · EDforget[fj(h)
2]

∥∇gj(0)∥2

2σ2 · EDretain[fj(h)
2]

=
EDforget [fj(h)

2]

EDretain [fj(h)
2]

=
forget score(j)

retain score(j)

Thus, forget score(j)/retain score(j) precisely captures how much more fj mediates the forget dataset relative
to the retain dataset. This is the importance ratio we defined in Section 3, which directly quantifies the relative causal
influence of feature j across datasets.

D. Proof of Neyman-Pearson Optimality
Theorem D.1 (Neyman-Pearson Optimality). Let Dforget and Dretain be the distributions of sequences from the forget
and retain sets, respectively. If ρ(X) is stochastically larger under Dforget than under Dretain (i.e., PrX∼Dforget [ρ(X) ≥
t] ≥ PrX∼Dretain [ρ(X) ≥ t] for all t), then among all classifiers with a false-positive rate at most α, the threshold test
C∗(x) = 1[ρ(x) > τ∗], where PrX∼Dretain [ρ(X) > τ∗] = α, maximizes the true-positive rate.

Proof. We adapt the classical Neyman-Pearson Lemma to our unlearning context. Our goal is to find the optimal decision
rule for classifying inputs as either forget-relevant or retain-relevant.
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Consider the class of all decision rules a : X → {clamp, no-clamp} with false-positive rate at most α. That is, all rules a
such that:

Pr
X∼Dretain

[a(X) = clamp] ≤ α

For each decision rule a, define its acceptance region A = {x ∈ X : a(x) = clamp}. The constraint on false-positive rate
translates to PrX∼Dretain [A] ≤ α.

Now, define the threshold-based decision rule a∗ as:

a∗(x) = 1[ρ(x) > τ∗]

where τ∗ is chosen such that PrX∼Dretain [ρ(X) > τ∗] = α. The acceptance region for this rule is A∗ = {x : ρ(x) > τ∗}.

We need to prove that a∗ maximizes the true-positive rate among all rules with false-positive rate at most α. In other words,
for any rule a with PrX∼Dretain [a(X) = clamp] ≤ α, we must show:

Pr
X∼Dforget

[a(X) = clamp] ≤ Pr
X∼Dforget

[a∗(X) = clamp]

We use the stochastic dominance property: for any threshold t, PrX∼Dforget [ρ(X) ≥ t] ≥ PrX∼Dretain [ρ(X) ≥ t]. This means
that regions of higher ρ values are relatively more likely under Dforget than under Dretain.

Consider any decision rule a with acceptance region A where PrX∼Dretain [A] ≤ α. Due to the stochastic dominance property,
we can always construct a threshold-based region Ã = {x : ρ(x) > τ̃} such that: 1. PrX∼Dretain [Ã] = PrX∼Dretain [A] (same
false-positive rate) 2. PrX∼Dforget [Ã] ≥ PrX∼Dforget [A] (equal or higher true-positive rate)

This is because exchanging points from low-ρ regions in A with points from high-ρ regions outside A (while maintaining
the same false-positive rate) will always increase the true-positive rate due to stochastic dominance.

If PrX∼Dretain [A] < α, we can further expand Ã to A∗ by lowering the threshold from τ̃ to τ∗, which only increases the
true-positive rate further.

Therefore, for any decision rule a with false-positive rate at most α:

Pr
X∼Dforget

[a(X) = clamp] = Pr
X∼Dforget

[A] ≤ Pr
X∼Dforget

[A∗] = Pr
X∼Dforget

[a∗(X) = clamp]

This establishes that the threshold test a∗(x) = 1[ρ(x) > τ∗] maximizes the true-positive rate among all tests with
false-positive rate at most α.

Practical Implications: This theorem establishes the statistical optimality of our thresholding approach for making the
binary decision of whether to apply an intervention. In particular, it shows that our dynamic classification rule maximizes
coverage on forget-set queries while maintaining a controlled false-positive rate on retain-set queries.

E. Proof of Dynamic Clamping Dominance
Theorem E.1 (Dominance of Dynamic Clamping). Let Snfeats be a fixed subset of features identified as forget-relevant.
Consider the static approach astatic(x) that clamps features in Snfeats whenever they activate, and the dynamic approach
adynamic(x) that first classifies input x using C(x) = 1[ρ(x) > τ ] and only then applies clamping. Under the stochastic
dominance assumption from Theorem 3.4, there exists a threshold τ∗ such that adynamic achieves equal or greater coverage
on Dforget than astatic while maintaining equal side-effects on Dretain, making dynamic clamping strictly dominant in the
coverage-side effect trade-off.

Proof. We begin by formalizing the metrics used to evaluate both approaches and precisely defining their operation.

Preliminaries and Definitions. Let X be the space of possible input sequences. For a sequence x = (x1, . . . , xT ) and its
corresponding hidden states ht, we define:

• A token t is triggered by Snfeats if ∃j ∈ Snfeats such that fj(ht) > 0
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• The fraction of triggered tokens in a sequence: ρ(x) = 1
T

∑T
t=1 1[∃j ∈ Snfeats : fj(ht) > 0]

We consider two distributions: Dforget: The distribution of forget-relevant queries, and Dretain: The distribution of retain-
relevant queries.

The Two Approaches. For both approaches, we define a clamp set Bmethod ⊆ X as the set of inputs where the method
applies some clamping.

1. Static Approach (astatic): Clamps features in Snfeats whenever they activate on any token. here the Clamp set is
Bstat = {x : ∃t, j ∈ Snfeats such that fj(ht) > 0}.

2. Dynamic Approach (adynamic): Computes ρ(x) and applies a threshold test ρ(x) > τ . Only clamps if the sequence
passes this test. The Clamp set for threshold τ : Bdyn(τ) = {x : ρ(x) > τ}.

Performance Metrics. We define:

• Coverage: The probability that clamping occurs on forget-set queries

Coverage(method) = Pr
x∼Dforget

[x ∈ Bmethod]

• Side-effect: The probability that clamping occurs on retain-set queries

SideEffect(method) = Pr
x∼Dretain

[x ∈ Bmethod]

Step 1: Find the side-effect of the static approach. The static approach clamps whenever any token has an activating
feature in Snfeats . Therefore:

SideEffect(astatic) = Pr
x∼Dretain

[x ∈ Bstat] = α

Step 2: Find a threshold τ∗ that yields the same side-effect for the dynamic approach. By our assumption that ρ(x) is
stochastically larger on Dforget than on Dretain, we know that Prx∼Dretain [ρ(x) > τ ] is a strictly decreasing function of τ .

Therefore, there exists a threshold τ∗ ∈ [0, 1] such that:

Pr
x∼Dretain

[ρ(x) > τ∗] = α = Pr
x∼Dretain

[x ∈ Bstat]

This means:
SideEffect(adynamic(τ

∗)) = SideEffect(astatic)

Step 3: Show that coverage is greater for the dynamic approach. From Theorem 3.4, we know that thresholding ρ(x)
at τ∗ gives the optimal classifier for distinguishing between Dforget and Dretain at false positive rate α.

More formally, among all sets A ⊆ X with Prx∼Dretain [x ∈ A] = α, the set Bdyn(τ
∗) = {x : ρ(x) > τ∗} maximizes

Prx∼Dforget [x ∈ A].

Since Bstat is one such set with Prx∼Dretain [x ∈ Bstat] = α, we must have:

Pr
x∼Dforget

[x ∈ Bdyn(τ
∗)] ≥ Pr

x∼Dforget
[x ∈ Bstat]

Therefore:
Coverage(adynamic(τ

∗)) ≥ Coverage(astatic)

If ρ(x) is strictly stochastically larger on Dforget than on Dretain (which holds in practice as forget-relevant features activate
more frequently on forget-set queries), then this inequality is strict.

We have established that for any static clamping approach, there exists a threshold τ∗ such that the dynamic approach with
this threshold achieves the same side-effect on the retain set; and achieves equal or greater coverage on the forget set. This
proves that dynamic clamping dominates static clamping in the coverage-side effect trade-off.
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F. Distribution of token activations on WMDP-Cyber
Figure 8 plots the distribution of forget-set activated tokens on WMDP-Cyber. The threshold is chosen to control the retain
set’s false positive rate and we find that pdyn = 95 typically separates forget-set queries effectively achieving high recall on
Dforget. On WMDP-Cyber, DSG successfully transfers from the retain set (WikiText) and forget set to the test query set.

Figure 8: Distribution of forget-set activated tokens for WMDP-Cyber. Threshold at the 95th percentile (dashed red line) effectively
separates MMLU from WMDP.

G. Unlearning on WMDP
G.1. Hyperparameter Details and Model Descriptions for Baselines

To ensure a comprehensive and fair comparison of unlearning methods, we conducted extensive hyperparameter sweeps for
each baseline, optimizing for both the effectiveness of knowledge removal and the preservation of model utility. For all
gradient-based methods, we experimented with updating parameters in layers 3, 7, and 11 (as recommended in (Li et al.,
2024)), as well as all layers. Unless otherwise specified, all experiments used the google/gemma-2-2b-it (Lieberum
et al., 2024) model.

Dynamic SAE Guardrails (DSG). Our proposed method, DSG, is a non-gradient-based intervention method that
selectively removes hazardous knowledge by manipulating SAE feature activations. DSG first identifies a subset of SAE
features strongly indicative of the knowledge to be forgotten, based on their differential activation patterns on forget and
retain datasets. During inference, DSG employs a dynamic classifier to assess the relevance of input sequences. If a sequence
is classified as forget-relevant based on the aggregate activation of selected features, DSG dynamically clamps these features
to a negative value. This conditional, sequence-level clamping ensures that intervention is applied only when necessary,
minimizing side effects on benign inputs and preserving model utility.

We employed the gemma-scope-2b-pt-res SAE (width 16k) applied to layer 3 (ℓ0 142) (Lieberum et al., 2024). The
dynamic threshold percentile (pdyn) was fixed at 95. We swept the importance ratio percentile (pratio), number of selected
features, and clamp strength (c):

Hyperparameter Values Tested

Importance Ratio Percentile (pratio) 90, 95
Number of Features 10, 20, 30
Clamp Strength (c) 10, 25, 50, 100, 200, 300, 400, 500

Table 3: Hyperparameter sweep for Dynamic SAE Guardrails (DSG). Fixed values: pdyn = 95.

The best configurations were: WMDP-Bio (pratio = 95, features=20, c = 500) and WMDP-Cyber (pratio = 90, features=30,
c = 500).

Representation Misdirection for Unlearning (RMU). RMU (Li et al., 2024) is a gradient-based finetuning method that
minimizes a composite loss function to achieve targeted forgetting while preserving model utility. This loss combines a
forget loss and a retain loss. The forget loss acts on the model’s activations on the forget dataset, increasing their norm in
specific directions and making it difficult for later layers to process this information effectively. Simultaneously, the retain
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loss regularizes the updated model’s activations on the retain dataset, encouraging activations to stay close to the original
model’s activations on benign data.

Key hyperparameters include the steering coefficient, which controls how much the activations are amplified on hazardous
data, and the alpha parameter (α), which balances utility preservation against knowledge removal. We focus unlearning only
on the MLPs, as recommended in Li et al. (2024).

Hyperparameter Values Tested

Steering Coefficient 1, 5, 10, 20, 100, 200, 400, 500, 800, 1000
Alpha (α) 0.01, 0.1, 1, 10, 100, 300, 500
Batch Size 4, 8
Steps 400, 800

Table 4: Hyperparameter sweep for RMU. Fixed values: Monitoring Layer ID=3, Learning Rate=5e-6.

The best configuration for WMDP-Bio used steering coefficient 400, alpha 100, monitoring layer 3, learning rate 5e-6, batch
size 8, and 400 steps. For WMDP-Cyber, we used steering coefficient 500, alpha 10, monitoring layer 3, and batch size 8
with 400 steps.

Scalable Remembering and Unlearning unBound (SCRUB). SCRUB (Kurmanji et al., 2023) employs a student-teacher
framework for knowledge distillation-based unlearning. It trains a student model, a clone of the original model, to forget
hazardous knowledge under the guidance of the original, frozen teacher model. During forget epochs, SCRUB maximizes
the KL divergence between student and teacher logits on the forget dataset. In retain epochs, it minimizes this divergence on
the retain dataset, guiding the student to mimic the teacher on benign data.

We swept across values of beta (β), a weighting factor balancing knowledge distillation and task-specific loss, while fixing
alpha (α) and gamma (γ) at 1.0:

Hyperparameter Values Tested

Beta (β) 0.0001, 0.001, 0.01, 0.1, 1, 10
Learning Rate (lr) 1e-4, 1e-5, 5e-6
Batch Size 4, 8
Steps 400, 800

Table 5: Hyperparameter sweep for SCRUB. Fixed values: α = 1.0, γ = 1.0, KL Temperature=2.0.

The best configuration for WMDP-Bio used beta 0.01, learning rate 5e-6, batch size 8, and 400 maximum batches. For
WMDP-Cyber, we used beta 0.1, learning rate 1e-5, batch size 8, and 400 maximum batches.

Selective Synaptic Dampening (SSD). SSD (Foster et al., 2024) identifies and dampens parameters more important for
the forget set than the retain set. It adapts a method originally developed for image classification to language modeling by
modifying the loss function to use log-perplexity. SSD calculates parameter importance scores based on gradients observed
for both forget and retain datasets, then applies a dampening factor to parameters with higher importance for the forget
dataset.

We performed a grid search spanning dampening thresholds and constants:

Hyperparameter Values Tested

Threshold 0.1, 0.25, 0.5, 1, 2.5, 5
Dampening Constant 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1

Table 6: Hyperparameter sweep for Selective Synaptic Dampening (SSD).

The optimal configuration for WMDP-Bio used threshold 0.5 and dampening constant 1e-3. For WMDP-Cyber, we used
threshold 1.0 and dampening constant 1e-2.

Static SAE Clamping (Farrell et al.). This non-gradient-based approach (Farrell et al., 2024) identifies salient SAE
features and statically clamps their activations during inference to remove unwanted knowledge. Unlike our dynamic
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approach, this method applies feature clamping universally to all inputs whenever a selected feature activates, rather than
conditionally based on sequence-level classification.

We varied the retain threshold, multiplier (clamp value), and number of features:

Hyperparameter Values Tested

Retain Threshold 0.01, 0.001, 0.005, 0.1, 1
Multiplier (Clamp Value) 10, 25, 50, 100, 200, 500
Number of Features 5, 10, 20, 30, 50

Table 7: Hyperparameter sweep for Static SAE Clamping. Fixed value: Sequence Length=1024.

The best configurations were: WMDP-Bio (retain threshold=0.01, multiplier=200, features=5) and WMDP-Cyber (retain
threshold=0.005, multiplier=500, features=10).

Gradient Ascent (GA). GA (Jang et al., 2023) is a finetuning-based unlearning method that directly minimizes the
likelihood of correct predictions on the forget dataset using gradient ascent. In contrast to standard finetuning which employs
gradient descent, GA utilizes gradient ascent to maximize the cross-entropy loss on the forget dataset, pushing parameters in
directions that increase prediction error on the targeted data.

We varied the learning rate and beta (β), the retain loss weight:

Hyperparameter Values Tested

Learning Rate (lr) 1e-5, 5e-5
Beta (Retain Loss Weight) 0.01, 0.1, 1.0, 5.0, 10.0

Table 8: Hyperparameter sweep for Gradient Ascent. Fixed values: Gamma=1.0, Batch Size=8, Steps=400.

We explored both with and without retain data configurations. The best setting for WMDP-Bio used learning rate 1e-5 with
beta 1.0. For WMDP-Cyber, we used learning rate 1e-5 with beta 0.1.

Negative Preference Optimization (NPO). NPO (Zhang et al., 2024) adapts preference optimization techniques to treat
the forget set as negative examples. It reframes unlearning as preference learning, optimizing the model to assign lower
likelihood to the forget set. The beta parameter controls the extent to which the unlearned model’s output distribution can
diverge from the original model. To mitigate utility degradation and preserve performance on benign data, NPO can be
regularized using two distinct retain loss types: Negative Log-Likelihood (NLL) and Kullback-Leibler (KL) divergence.
NLL minimization directly encourages the model to maintain high probabilities for correct tokens in the retain set, calculated
as the negative sum of log probabilities assigned to ground truth tokens. KL divergence minimization encourages the
probability distribution of the unlearned model to remain close to that of the original model on retain set inputs, measured as
the information lost when approximating the original model’s distribution with the unlearned model’s distribution.

We tested NPO with various configurations:

Hyperparameter Values Tested

Alpha (Retain Loss Weight) 0.01, 0.1, 1.0
Beta (Temperature Parameter) 0.1, 1.0
Retain Loss Type NLL, KL

Table 9: Hyperparameter sweep for NPO. Fixed values: Gamma=1.0, Learning Rate=1e-5, Batch Size=8, Steps=400.

The optimal settings for WMDP-Bio used alpha 0.1, beta 0.1, and KL divergence as the retain loss type and WMDP-Cyber
used alpha 1.0, beta 0.1, and KL divergence as the retain loss type.

For all methods, we selected configurations that minimized WMDP accuracy while maintaining at least 99% of the original
model’s MMLU accuracy.

Compute. All finetuning and inference was performed on 4 A6000 GPUs in under a day.
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G.2. Results on WMDP-Cyber

Table 10 shows the performance of various unlearning baselines on WMDP-Cyber dataset. RMU is less effective on
WMDP-Cyber (88.00%), likely due to the data inefficiency of gradient-based methods on the smaller cyber forget set.

Method WMDP Cyber (↓) MMLU (↑) MT (↑)
HS Hist C. Bio HS Geo H. Aging All

Target M 100.00 100.00 100.00 100.00 100.00 100.00 7.36

GA 98.91 98.15 100.0 100.0 100.0 99.46 7.39
NPO 96.36 100.0 100.0 100.0 100.0 100.0 7.18
SSD 98.91 100.00 100.00 98.08 98.81 99.19 7.25
SCRUB 97.82 99.07 100.00 100.00 98.81 99.46 6.51
Farrell et al. 52.73 99.07 100.00 100.00 97.62 99.19 7.39
RMU 88.00 99.07 100.00 99.04 98.81 99.19 7.28

DSG (Ours) 26.74 99.07 100.00 100.00 100.00 99.73 7.66

Table 10: Unlearning performance on WMDP-Cyber. All represents the average MMLU score. MT-Bench scores show 0.13 variance
across 5 runs. DSG shows superior unlearning effectiveness compared to other baselines while maintaining high MMLU performance.

G.3. MT-Bench Evaluation Details

To measure the impact of unlearning on the model’s general conversational abilities and fluency, we utilized the MT-Bench
benchmark (Zheng et al., 2023). Specifically, we report the average score across two conversational turns (the two-turn
average score), which provides a measure of multi-turn conversational quality. Following standard MT-Bench protocol,
evaluations were conducted using GPT-4 (Achiam et al., 2023) as the judge to score the model’s responses. To ensure the
robustness of these fluency assessments, each model configuration reported in Section 4.1 was evaluated 5 times using
MT-Bench. The mean scores presented in Table 1 and Table 10 reflect the average performance across these runs, and
the standard deviation across the 5 runs is noted in the respective table captions (0.16 for WMDP-Bio results, 0.13 for
WMDP-Cyber results). Higher MT-Bench scores indicate better preservation of general conversational capabilities after the
unlearning procedure.

H. Unlearning on MUSE
H.1. Hyperparameter Details and Model Descriptions for Baselines

We provide implementation details for the baseline unlearning methods evaluated in our experiments.

Gradient Ascent (GA). GA maximizes the loss on the forget set, directly opposing the standard training objective to push
the model away from the forget data’s distribution (Jang et al., 2023). While straightforward, it often leads to catastrophic
forgetting of general knowledge.

Gradient Difference (GradDiff). GradDiff balances competing objectives by maximizing the loss on the forget set while
minimizing the loss on the retain set (Liu et al., 2022). Despite this approach, GradDiff struggles to find an optimal trade-off,
resulting in either over- or under-unlearning.

Negative Preference Optimization (NPO). NPO reframes unlearning within a preference learning framework, treating
the forget set as negative preference data by adapting the Direct Preference Optimization objective (Zhang et al., 2024). We
use NPO with KL Divergence Minimization that augments NPO with a KL divergence term to preserve utility by minimizing
distributional shift on benign data.

Simplified NPO (SimNPO). A computationally efficient variant of NPO that simplifies the optimization process while
retaining core principles of negative preference learning (Fan et al., 2024). SimNPO trades some unlearning effectiveness
for faster processing.

Representation Misdirection for Unlearning (RMU). RMU injects targeted noise into specific layers to disrupt the
model’s ability to process information related to the forget set (Li et al., 2024). Its effectiveness depends heavily on precise
noise targeting and hyperparameter tuning. We injected noise in the 7th layer for both News and Books.

For all finetuning-based baselines (GA, GradDiff, NPO, SimNPO, RMU), we used AdamW optimizer with a learning rate

23



SAEs Can Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs

of 1e-5 and batch size of 32. We finetuned all parameters in the model. The optimal checkpoint for each method was
determined by selecting the first epoch (within 10 epochs) where the unlearned model’s utility on the retain set fell below
90% that of the target model. Table 11 summarizes the optimal epochs or α values for each method on both datasets.

Unlearning Method NEWS BOOKS

GA epoch 1 epoch 1
GradDiff epoch 2 epoch 3
NPO epoch 8 epoch 10
SimNPO epoch 10 epoch 10
RMU epoch 9 epoch 10

Table 11: Optimal epochs for baseline unlearning methods on MUSE benchmark, determined by utility-based stopping criteria.

All finetuning and inference was performed on 4 A6000 GPUs in under a day.

H.2. Sequential Unlearning Strategies for DSG

In real-world scenarios, unlearning requests often arrive sequentially over time. An effective unlearning method must be able
to handle multiple, successive requests without significant degradation in performance or utility. In Section 3, we evaluated
DSG’s performance under sequential unlearning using the MUSE benchmark (Shi et al., 2024) with four disjoint folds of
the NEWS corpus. We implemented and compared two strategies for adapting DSG to this sequential setting, referred to as
DSGall and DSGunion. Both strategies leverage the core DSG mechanisms of feature selection and dynamic thresholding but
differ in how they aggregate information across multiple unlearning requests.

Setup. Let k = 1, 2, . . . ,K index the sequential unlearning requests. Each request k introduces a new forget dataset DF,k.
We assume the retain dataset DR remains constant throughout the process. The goal at step k is to produce an unlearned
model that effectively forgets the cumulative forget data Dcumul

F,k = ∪k
i=1DF,i while preserving utility evaluated on DR. Let

nfeats be the desired number of features to select at each relevant stage.

Strategy 1: DSGall (Cumulative Score Update) This strategy treats the sequential unlearning problem as equivalent to
unlearning a single, growing forget set Dcumul

F,k at each step k. It maintains cumulative statistics required for calculating the
feature importance scores.

• Cumulative Statistics: At step k, we need the aggregate sum of squared activations and the total number of tokens for
all forget data seen so far. Let A2

F,i(j) =
∑

x∈DF,i

∑|x|
t=1[fj(hx,t)]

2 be the sum of squared activations for feature j on
dataset DF,i, and NF,i =

∑
x∈DF,i

|x| be the total number of tokens in DF,i. The cumulative sums at step k are:

Σ2
F,k(j) =

k∑
i=1

A2
F,i(j)

N cumul
F,k =

k∑
i=1

NF,i

These sums can be updated incrementally as each new DF,k arrives, without needing to store all previous datasets. The
retain set statistics (A2

R(j) and NR) are computed once from DR.
• Score Calculation: The importance scores are calculated using the cumulative statistics:

forget scoreall,k(j) =
Σ2

F,k(j)

N cumul
F,k

retain score(j) =
A2

R(j)

NR
(constant across k)

imp ratioall,k(j) =
forget scoreall,k(j)

max{retain score(j), ε}

• Feature Selection: Using imp ratioall,k(j) and forget scoreall,k(j), select the feature set Sall,k containing the
top nfeats features, following the procedure in Algorithm 1 (filtering by percentile pratio and ranking by forget score).

24



SAEs Can Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs

• Dynamic Threshold and Intervention: Calculate the activation statistic ρall,k(x) =
1
|x|

∑
t 1[∃j ∈ Sall,k : fj(ht) > 0].

Calibrate the dynamic threshold τall,k = Percentile({ρall,k(x)}x∈DR
, pdyn). Apply conditional clamping using Sall,k and

τall,k during inference.

DSGall aims for the most accurate representation of feature importance with respect to all forgotten data combined.

Strategy 2: DSGunion (Union of Feature Sets) This strategy selects features based on each individual forget request DF,k

and then uses the union of these feature sets for intervention.

• Independent Score Calculation: At step k, calculate importance scores using only the current forget set DF,k and the
retain set DR:

forget scoreindep,k(j) =
A2

F,k(j)

NF,k

retain score(j) =
A2

R(j)

NR

imp ratioindep,k(j) =
forget scoreindep,k(j)

max{retain score(j), ε}

• Independent Feature Selection: Select the feature set Sindep,k containing the top nfeats features based on
imp ratioindep,k(j) and forget scoreindep,k(j).

• Union Set Formation: Maintain the cumulative union of feature sets identified at each step:

Sunion,k = Sunion,k−1 ∪ Sindep,k (with Sunion,0 = ∅)

The size of Sunion,k may grow beyond nfeats.
• Dynamic Threshold and Intervention: Calculate the activation statistic ρunion,k(x) = 1

|x|
∑

t 1[∃j ∈ Sunion,k :

fj(ht) > 0]. Calibrate the dynamic threshold τunion,k = Percentile({ρunion,k(x)}x∈DR
, pdyn). Apply conditional

clamping using Sunion,k and τunion,k during inference.

DSGunion ensures that features deemed important for any past forget request are considered for intervention, potentially
capturing a broader range of forget-related concepts but possibly leading to a larger intervention set over time.

Result. As reported in the main text (Figure 4(b)), both DSGall and DSGunion demonstrated strong and stable performance
across the four sequential unlearning requests on the MUSE benchmark, significantly outperforming gradient-based methods
which showed rapid degradation.

I. Relearning attack
I.1. Superficial Alignment Hypothesis
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Figure 9: (Left) Distribution of activation cosine similarity and activation magnitude ratio between Base and Finetuned models. Finetuning
does not significantly change the underlying activation space. (Right) Train loss when finetuning Base model and Base+SAE model on
WMDP and MMLU. Loss on WMDP for the BASE+SAE model is significantly higher than on MMLU.

The resistance of DSG to relearning attacks can be understood through the lens of the Superficial Alignment Hypothesis
(Zhou et al., 2023), which posits that a model’s activation geometry is established during pretraining and remains relatively
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stable during subsequent finetuning. We provide empirical evidence supporting this hypothesis in Figure 9, which presents
the distribution of activation cosine similarities and magnitude ratios between the base and finetuned models.

The concentration of cosine similarity values near 1.0 indicates that finetuning preserves the directional information in the
activation space, with minimal rotational changes. Similarly, the activation magnitude ratios cluster tightly around 1.0,
demonstrating that the scale of activations remains largely unchanged during finetuning. These findings align with previous
research suggesting that while weights may change substantially during finetuning, the underlying activation patterns and
geometry remain remarkably stable.

This stability of activation geometry is the basis for DSG’s effectiveness against relearning attacks. By operating directly on
these stable activation patterns rather than weights, DSG establishes a more durable defense mechanism that persists even
when adversaries attempt to modify the model’s weights through finetuning.

I.2. Train-time DSG Details

Beyond applying DSG only at inference (Test-time DSG), we explore integrating it directly into the finetuning process itself
to further enhance resistance against relearning attacks. This approach, termed Train-time DSG, applies the standard DSG
logic during each forward pass of the finetuning/relearning phase.

Specifically, during finetuning on a potentially adversarial dataset (like the forget set itself in a relearning attack scenario),
Train-time DSG operates as follows:

1. For each input sequence x in a training batch, compute the hidden states ht and corresponding SAE feature activations
fj(ht).

2. Calculate the statistic ρ(x) based on the pre-selected forget feature set Snfeats.
3. Classify the sequence using the dynamic threshold τ : C(x) = 1[ρ(x) > τ ].
4. Conditional Clamping: If C(x) = 1 (forget-relevant), modify the activations for features j ∈ Snfeats by setting
f ′
j(ht) = −c for all tokens t. Otherwise, f ′

j(ht) = fj(ht). These potentially modified activations f ′ are then used for the
reconstruction ĥ′ and subsequent layers of the LLM.

5. The final loss (e.g., cross-entropy on the relearning task) is computed based on the LLM’s output derived from these
potentially clamped activations.

6. Gradient Blocking: During the backward pass, gradients flow back through the model as usual. However, for any feature
activation fj(ht) that was clamped to −c, the gradient of the loss with respect to the upstream components (that produced
ht) through that specific feature pathway is effectively blocked. Setting the activation to a constant −c detaches it from
the upstream computations for the purpose of gradient calculation via that feature’s contribution path. This is conceptually
akin to applying a stop gradient operation specifically on the clamped feature activations.

During this finetuning process, the parameters of the SAE itself (encoder Wenc, benc and decoder Wdec, bdec) are kept frozen.
This prevents the SAE from adapting to circumvent the clamping intervention.

This dynamic gradient blocking prevents the finetuning process from easily undoing the unlearning effect by simply
adjusting weights to reactivate the specific features in Snfeats that carry the forget-set information. When the model attempts
to minimize loss on forget-set examples by utilizing these features, Train-time DSG clamps them and blocks the relevant
gradient signal. This forces the model, if it attempts to relearn, to find potentially much less direct or alternative pathways
through other features or model components. This difficulty in relearning via the original pathways contributes to the
significantly higher training loss observed on WMDP-Bio when finetuning with Train-time DSG active, as seen in Figure 9.

I.3. Tamper-Resistant Safeguards

DSG functions as a tamper-resistant safeguard during finetuning by effectively filtering gradients that would otherwise
enable the model to relearn forgotten knowledge. Figure 9 demonstrates this mechanism quantitatively, showing the training
loss profiles when finetuning the base model and the base model with DSG active on both WMDP-Bio (forget set) and
MMLU (retain set) datasets.

When DSG is active during finetuning, we observe significantly elevated training loss values on WMDP-Bio compared
to MMLU. This marked difference in loss profiles indicates that DSG selectively impedes the model from reducing loss
on forget set content while allowing normal optimization on retain set content. This selective gradient filtering creates an

26



SAEs Can Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs

effective barrier against relearning targeted information.

The mechanism works because during finetuning, DSG constantly monitors activations and applies clamping whenever
forget-relevant features are activated above the dynamic threshold. This intervention disrupts the gradient flow for targeted
concepts, requiring the model to develop entirely new processing pathways rather than simply recovering previously
established connections. This rewiring requirement explains the delayed recovery pattern observed in the main relearning
experiments, where performance remains near random for approximately six epochs before beginning to increase.

I.4. Relearning Attack at Learning Rate 1e-6
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Figure 10: Relearning attack performance with reduced learning rate (1e-6). All configurations show minimal performance changes
across finetuning epochs, demonstrating that relearning attack efficacy is strongly dependent on learning rate.

To investigate the impact of learning rate on relearning attack efficacy, we conducted a supplementary analysis using a
reduced learning rate of 1e-6 (compared to 1e-5 in the main experiments). Figure 10 presents WMDP-Bio accuracy across
finetuning epochs for all configurations under this reduced learning rate condition.

The results demonstrate minimal performance changes across all configurations throughout the finetuning process. This
stability indicates that relearning attack efficacy is strongly dependent on learning rate, with lower rates substantially limiting
the model’s ability to recover forgotten knowledge. This finding has important implications for practical deployment
scenarios, suggesting that implementing learning rate constraints on model access APIs could serve as an additional defense
layer against relearning attacks.

I.5. Relearning Hyperparameters

For the relearning experiments, we used the RMU unlearned model as described in Section 4.1, with RMU hyperparameters
set to steering coefficient 400, alpha 100, monitoring layer 3, AdamW optimizer, learning rate 5e-6, batch size 8, and 400
steps. For DSG configurations, we employed the optimal parameters identified in our WMDP-Bio experiments: importance
ratio percentile (pratio) of 95, feature count of 20, and clamp strength (c) of 500 for both test-time and train-time DSG
interventions. The dynamic threshold percentile (pdyn) was maintained at 95, consistent with our main experiments.

All finetuning and inference was performed on 2 A100 GPUs in under a day.

J. Data Efficiency and Zero-shot Capabilities
J.1. Hyperparameters

Data Efficiency For the data efficiency experiments, we maintain consistent hyperparameter settings across all data
subsets to isolate the impact of dataset size. We use the optimal DSG configuration identified for WMDP-Bio with 100%
data, as shown in Table 12.

For RMU comparisons, we evaluate two approaches: (1) maintaining the same number of training steps (400) across all data
subsets, and (2) completing one full epoch over each dataset subset. Maintaining the same number of training steps produced
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Parameter Value

SAE gemma-scope-2b-pt-res SAE (width 16k)
SAE layer Layer 3, ℓ0 142
Importance ratio percentile (pratio) 95
Dynamic threshold percentile (pdyn) 95
Number of selected features 20
Clamp strength (c) 500

Table 12: DSG hyperparameters for data efficiency experiments

a better Pareto front. We select the model with lower WMDP accuracy for each subset. The base RMU configuration for
WMDP-Bio is presented in Table 13.

Parameter Value

Steering coefficient 400
Alpha (α) 100
Monitoring layer 3
Learning rate 5e-6
Parameter subset MLP layers only

Table 13: RMU hyperparameters for data efficiency experiments

Zero-shot For zero-shot experiments, we vary only the dynamic threshold τ (as no retain set is available for calibration)
while keeping all other hyperparameters fixed at their optimal values for each task, as shown in Table 14.

Parameter WMDP-Bio WMDP-Cyber

SAE layer Layer 3, ℓ0 59 Layer 3, ℓ0 59
Importance ratio percentile (pratio) 95 90
Feature selection 20 features 20 features via
Clamp strength (c) 500 500
τ range tested 0.1 to 0.9 (increments of 0.1) 0.1 to 0.9 (increments of 0.1)
Optimal τ 0.6 0.2

Table 14: Hyperparameters for zero-shot experiments

The optimal thresholds were determined to be τ = 0.6 for WMDP-Bio and τ = 0.2 for WMDP-Cyber, as shown in
Figure 6B.

K. Ablations
This appendix provides comprehensive details on our ablation studies for DSG. We analyze each component’s contribution
to overall performance and explore sensitivity to various hyperparameters.

K.1. Additional Ablations

DSG Clamp Strength c. The clamping parameter c determines the magnitude of intervention applied to selected SAE
features. As shown in Figure 11, WMDP-Bio accuracy drops significantly at modest clamp values (c = 25), reaching near-
optimal unlearning performance, while MMLU accuracy remains above 99% for configurations with 10-20 features. For these
optimal feature counts, performance remains remarkably stable across a wide range of clamp strengths (100 ≤ c ≤ 500),
demonstrating DSG’s robustness to this parameter. By contrast Farrell et al. (2024) exhibit greater sensitivity to clamp
values, as seen in Figure 7A.

DSG Number of Features. Across experiments, the number of features selected during percentile-based feature selection
represents a critical balance between coverage and precision. Selecting too few features may result in insufficient removal
of forget-set information, as some forget-set inputs might not activate the limited feature set strongly enough to trigger
intervention. Conversely, selecting too many features increases the risk of including noisy features selected using importance
scoring or less discriminative features that activate on retain-set samples, potentially causing false positive detections and
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Figure 11: Effect of clamp strength c on DSG performance across different feature counts. MMLU accuracy (solid lines) remains
consistently high (> 99%) for 10-20 features across all clamp values, while WMDP-Bio accuracy (dashed lines) drops sharply even at
modest clamp strengths (c = 25). This demonstrates DSG’s ability to effectively remove targeted knowledge while preserving general
model capabilities with minimal parameter sensitivity.

reducing model utility.

Our experiments consistently show that 20 features provides an optimal balance for both WMDP-Bio and WMDP-
Cyber domains. Configurations with 10 features occasionally show reduced unlearning effectiveness despite good utility
preservation, while 30-feature configurations begin to impact retain-set performance at higher clamp strengths. The precise
optimal feature count may vary by domain and dataset characteristics as well as SAE width, but the overall pattern of
diminishing returns with increased feature counts remains consistent.

Choice of Activation Statistic: Percentage vs. Raw Count. DSG’s dynamic classification uses a sequence-level statistic
derived from forget-feature (Snfeats ) activations. We compared two statistics: (1) Percentage-based (ρ), the fraction of tokens
where any j ∈ Snfeats activates (fj(ht) > 0):

ρ(x) =
1

|x|

|x|∑
t=1

1[∃j ∈ Snfeats : fj(ht) > 0]

and (2) Raw count-based (ρraw), the absolute number of such tokens:

ρraw(x) =

|x|∑
t=1

1[∃j ∈ Snfeats : fj(ht) > 0]

Effective dynamic thresholding (calibrated on WikiText) requires low distributional distance (Total Variation Distance,
TVD) between retain sets (WikiText vs. MMLU) for generalization, and high TVD between retain and forget sets (WikiText
vs. WMDP) for discrimination (Figure 12).

Empirically, ρ performs significantly better. For WMDP-Bio: (1) Retain alignment (WikiText vs. MMLU): TVD(ρ) =
0.38± 0.03 vs. TVD(ρraw) = 0.88± 0.01, indicating ρ generalizes better across retain sets. (2) Retain/Forget separation
(WikiText vs. WMDP-Bio): TVD(ρ) = 0.90±0.02 vs. TVD(ρraw) = 0.41±0.03, showing ρ discriminates more effectively.
Similar results hold for WMDP-Cyber (Figure 12).

The percentage-based statistic ρ outperforms ρraw due to its inherent normalization. Raw counts (ρraw) are confounded by
sequence length, whereas ρ measures activation density, providing a length-invariant signal. This normalization improves
both generalization across retain data and discrimination from forget data, making ρ the more robust choice for DSG.

K.2. Ablations Hyperparameter Details

Our ablation studies used the following hyperparameter configurations:
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Figure 12: Total Variation Distance (TVD) between WikiText and benchmark datasets using percentage-based (ρ) vs. raw count-based
(ρraw) metrics. Lower TVD between WikiText and MMLU indicates better alignment of retain sets, while higher TVD between WikiText
and WMDP indicates better separation between retain and forget distributions. Percentage-based metrics consistently outperform raw
counts on both measures across all benchmarks.

Clamp Strength and Feature Count. We evaluated DSG performance with feature counts of 10, 20, and 30, across clamp
strengths c ∈ {10, 25, 50, 100, 200, 300, 400, 500} and pratio = 95.

Feature Selection Comparison. To compare our percentile-based approach with Farrell et al. (2024), we tested both
methods using 20 and 30 features, with clamp values in the range [10-500]. We set pratio = 95 for DSG and used the
recommended threshold of 0.01 for Farrell et al. (2024).

Dynamic Threshold. We varied pdyn from 60 to 97 using 20 and 30 features with c = 500 to examine the impact of
threshold selection on the forget-retain trade-off.

Importance Ratio Threshold. We tested pratio values from 75 to 95 using 20 and 30 features with c = 500 to assess
feature selection stringency effects.

Activation Metrics. For comparing percentage vs. raw count metrics, we applied bootstrap resampling with 1000
iterations, using Kernel Density Estimation to compute robust TVD estimates between WikiText and test set distributions.

L. Computational Cost (Inference Latency)
A practical consideration for deploying unlearning methods is their impact on inference speed. We evaluated the latency
introduced by DSG compared to the original model and a static clamping baseline (Farrell et al., 2024).

Interventions using SAEs inherently introduce some latency compared to the original LLM without the SAE. This overhead
stems from two main sources: (1) The baseline cost of the SAE’s forward pass, which involves matrix multiplications for
both encoding (z = σ(Wench+ benc)) and decoding (ĥ = Wdecz+ bdec), scaling with the SAE’s width (dsae); and (2) The
cost of the specific intervention logic applied to the SAE features.

For DSG, this intervention logic involves two main steps beyond the standard SAE pass: (a) calculating the ρ(x) statis-
tic (fraction of forget-activated tokens) across the sequence’s activations, and (b) conditionally applying the clamping
intervention based on the ρ(x) > τ comparison.

Table 15 presents the mean inference times (in seconds) and standard deviations over 100 samples (batch size 1) for
processing sequences of varying lengths (256, 512, 1024 tokens). These measurements were performed using the
google/gemma-2-2b-it model (Lieberum et al., 2024) and with the gemma-scope-2b-pt-res SAE (width
16k, applied at layer 3, ℓ0 142) (Lieberum et al., 2024) on a single A6000 GPU.

As shown in Table 15, the total combined overhead (SAE matrix multiplications + intervention logic) introduced by both
static clamping and DSG is minimal. Specifically, DSG increases latency by about 5% (ranging from approximately 3.6%
to 7.3%) over the original model across the tested sequence lengths. Importantly, the additional overhead incurred by DSG’s
dynamic classification logic (calculating ρ(x) and thresholding) compared to simple static clamping is negligible indicating
that the primary source of the observed latency increase relative to the base LLM is the SAE’s own forward pass.
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Seq Length Original Model (s) Static Clamping (s) Dynamic Clamping (DSG) (s)

256 tokens 0.0872± 0.0098 0.0933± 0.0091 (+7.0%) 0.0936± 0.0090 (+7.3%)
512 tokens 0.1618± 0.0061 0.1659± 0.0029 (+2.5%) 0.1676± 0.0047 (+3.6%)
1024 tokens 0.3300± 0.0081 0.3403± 0.0083 (+3.1%) 0.3420± 0.0081 (+3.6%)

Table 15: Comparison of Inference Latency Across Sequence Lengths for gemma-2-2b-it with gemma-scope-2b-pt-res SAE.
Data reported as mean ± std over 100 samples on a single A6000 GPU. Percentage increase relative to the Original Model shown in
parentheses.

While DSG introduces this slight inference overhead, it is important to consider the broader computational context. Gradient-
based unlearning methods require computationally intensive finetuning processes involving backward passes through the
model for each unlearning request. In contrast, DSG’s unlearning cost primarily involves a one-time computation of
activation statistics (which can be amortized across many uses) and the minimal, constant inference-time overhead detailed
above.

Therefore, DSG offers a highly efficient alternative for unlearning, achieving state-of-the-art forgetting effectiveness and
utility preservation with only a marginal increase in inference latency. This makes it particularly attractive for scenarios
requiring frequent or sequential unlearning operations where the cost of repeated gradient-based finetuning would be
prohibitive.

M. Feature Interpretability
A key strength of Dynamic SAE Guardrails (DSG) is interpretable unlearning, especially in zero-shot scenarios where
domain-specific data is absent. To demonstrate this, we used Neuronpedia API’s search by SAE (Lin, 2023) to directly
identify Sparse Autoencoder (SAE) features relevant to biosecurity and cybersecurity hazards. For WMDP-Bio and WMDP-
Cyber, “Biology” and “Cybersecurity” queries retrieved the top 20 feature IDs from the gemma-scope-2b-pt-res
SAE (width 16k) (Lieberum et al., 2024) applied to gemma-2-2b-it layer 3 (ℓ0 59).

Table 16 shows the semantic alignment of these zero-shot features with the targeted knowledge. Listing the top 20 SAE
feature IDs for both domains, alongside Neuronpedia interpretations, the table shows features for “Biology” consistently
described with terms like “biological processes”, “cellular functions”, and “genetics”—core concepts of biosecurity risks.
Similarly, “Cybersecurity” features are linked to “cyber threats”, “digital security”, and “encryption,” reflecting cybersecurity
risks in WMDP-Cyber. This highlights SAEs’ ability to extract topically precise features, even without task-specific data.

Figure 13 further illustrates this, visualizing activations on WMDP-Bio and WMDP-Cyber forget set sequences. Figure
13A (WMDP-Bio) shows activations for IDs 373 and 10933 clustering around biological terms like “bacteria”, “cellular”,
and “infection” while Figure 13B (WMDP-Cyber, IDs 15286 and 2905) shows clusters around cybersecurity terms like
“encryption”, “data”, and ”security.”

These examples and Table 16 show that zero-shot SAE feature selection captures semantically rich, domain-relevant
concepts associated with hazardous knowledge. This interpretability is prescriptive for unlearning: by targeting
these topically coherent features, DSG achieves zero-shot interpretable unlearning. This is a key practical advantage
over gradient-based methods, which require task-specific data and lack inherent interpretability, making DSG a uniquely
transparent and data-efficient solution for mitigating hazardous knowledge, especially in data-scarce or zero-shot deployment.

31



SAEs Can Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs

Biology
ID Sentence

12382 Terms related to biological processes and structures in living organisms
9722 Concepts related to biological processes and systems
343 Terms related to biological processes and laboratory techniques
373 Scientific terminology related to biological processes and cellular functions
11 Scientific terms and concepts related to biology

15969 Terms related to biotechnology and bio-related fields
12117 Concepts related to biological or cellular processes and conditions, particularly focusing on

requirements, limitations, and energy dynamics
5877 Terms related to biological processes and molecular interactions
968 Terms related to biological or medical processes and conditions, especially those involving

cellular or molecular biology
622 Scientific terminology related to cellular processes and functions

5231 Specific terminology related to biological processes and gene expression
10546 Biological and genetic terms or sequences
12037 Medical terms and technical jargon related to genetic and biological research
6150 Elements related to scientific terminology, particularly in genetics and molecular biology
5704 Scientific terms and jargon related to biological research
14747 Technical terminology and references related to biotechnology and medical research
8786 Scientific terminology related to molecular biology and laboratory procedures
10933 Terms related to biological research and medical methodologies

140 Technical terms and concepts related to biology and bioengineering
13527 Terms related to biological or medical research, particularly focusing on specific conditions and

associated microorganisms
Cybersecurity

ID Sentence
15331 Terms related to cyber threats and cybersecurity issues
2060 Explicit mentions of digital security concerns
15286 Concepts and terms related to digital security and data integrity
11015 Terms related to security and the act of securing something

364 References to security and related terms
4836 Concepts related to secure web connections and cryptocurrency surplus
2905 Terms related to data security and encryption
10931 References to national security and related governmental positions or actions
11716 Technical terms and language related to coding and software functionality, specifically focusing

on vulnerabilities
16160 Discussions related to technology and computer systems
6309 References to technology and its applications across various sectors
10543 Keywords related to safety and security measures in various contexts
11513 Terms related to computing and data centers
1803 References to Common Weakness Enumeration (CWE) identifiers
12681 Keywords related to safety and security
11520 References to information technology and IT-related concepts
11323 Key concepts related to digital citizenship and its implications in various contexts
10415 Key components of data processing and communication in systems, particularly focusing on the

details of data packet headers and their significance for routing and interpreting data
3943 References to computing systems and technologies
4686 References to technology and tech-related topics

Table 16: Top 20 SAE Features for Biology and Cybersecurity in Zero-Shot Setting. List of the top 20 SAE feature IDs identified by
querying Neuronpedia with “Biology” and “Cybersecurity”, alongside their corresponding Neuronpedia-provided interpretations, showing
the semantic relevance of the selected features to the targeted knowledge domains.
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Figure 13: Feature Activations on Example Sequences from Forget Sets. (A) WMDP-Bio sequence with words highlighted in green
indicating activation values > 0 for feature ID (top) 373 and (bottom) 10933. (B) WMDP-Cyber sequence with words highlighted in
green indicating activation values > 0 for feature ID (top) 15286 and (bottom) 2905. Activation magnitudes are reported above the words
in grey.
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