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Abstract

Fully cooperative, partially observable multi-agent problems are ubiquitous in the
real world. In this paper, we focus on a specific subclass of coordination problems
in which humans are able to discover self-explaining deviations (SEDs). SEDs are
actions that deviate from the common understanding of what reasonable behavior
would be in normal circumstances. They are taken with the intention of causing
another agent or other agents to realize, using theory of mind, that the circumstance
must be abnormal. We motivate this idea with a real world example and formalize
its definition. Next, we introduce an algorithm for improvement maximizing SEDs
(IMPROVISED). Lastly, we evaluate IMPROVISED both in an illustrative toy
setting and the popular benchmark setting Hanabi, where we show that it can
produce so called finesse plays.

1 Introduction

Humans generally assume other humans follow certain social norms when acting in the society and
interpret behavior using these norms to infer hidden information about the world. For example, when
a driver sees a car ahead suddenly stopping on a road, they may infer that there is some accident
ahead or the car is broken. However, humans also have the ability to improvise when the conventional
actions are restricted or there exist other actions that can bring about superior outcomes. Taking the
event in Figure 1 as an example, the caller deviates from the conventional practice of stating the
situation truthfully because it would have negative consequences. This type of deviation involves
two noteworthy aspects. First, it can be detected by the dispatcher because it appears to be a mistake
under common practice. Second, the dispatcher’s response can be independently decided by both
individuals based on the common understanding of the world and the deviation chosen by the caller.

We refer to this type of phenomena as self-explaining deviations (SEDs). SEDs are actions that,
under normal circumstances, would not make sense, given the agents’ common understanding. They
are executed with the intention that teammates will use theory of mind to deduce that the situation
is unusual in a particular way, and will adapt their behavior to account for this additional information.

⇤Equal Contribution.
†Work done while at Meta AI.
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Dispatcher: Oregon 911.
Caller: I would like to order a pizza at...
Dispatcher: You called 911 to order a pizza?
Caller: Uh, Yeah, apartment...
Dispatcher: This is the wrong number to call for a pizza.
Caller: No no no... you’re not understanding me.
Dispatcher: I’m getting you now. Is the other guy still there?
Caller: Yep. I need a large pizza.
Dispatcher: All right. How about medical. You need medical?
Caller: No. With pepperoni.
Dispatcher: Turn your sirens off before you get there. Caller ordered a pizza. And
agreed with everything I said that there’s domestic violence going on.

Figure 1: A real-life self-explaining deviation.

For our contribution, we first formalize the problem setting and definition of SEDs. Then we introduce
a novel planning algorithm, IMPROVement maxImizing Self-Explaining Deviations (IMPROVISED),
for performing SEDs. We show that, under some assumptions, IMPROVISED performs the optimal
SED in terms of expected return maximization. Next, we provide a motivating experiment, illustrating
that in a small toy problem designed to require SEDs to perform optimally, IMPROVISED is able to
compute an optimal joint policy, whereas other multi-agent learning algorithms are not. Lastly, we
present experiments on the large scale benchmark Hanabi [1], where we show that IMPROVISED
is able to produce finesse plays, which is one of the most interesting techniques that human experts
perform frequently.

2 Background

FOSG and Public POMDP For our notation, we use an adaption of factored observation stochastic
games (FOSG) [7]. W is the set of world states and w

0 is a designated initial state. A =
A1⇥ · · ·⇥AN is the space of joint actions. T is the transition function mapping W⇥A ! �(W).
R : W ⇥ A ! R is the reward function. O = (Opriv(1), . . . ,Opriv(N),Opub) is the observation
function where Opriv(i) : W ⇥ A ⇥ W ! Opriv(i) specifies the private observation that player i
receives. Opub : W ⇥ A ⇥ W ! Opub specifies the public observation that all players receive.
Oi=Oi(w, a, w0)=(Opriv(i)(w, a, w

0),Opub(w, a, w0)) is player i’s observation and a history is a
finite sequence h = (w0

, a
0
, . . . , w

t). The set of histories is denoted by H. The information state
for player i at h = (w0

, a
0
, . . . , w

t) is si(h) := (O0
i , a

0
i , . . . , O

t
i). The information state space for

player i is Si := {si(h) | h 2 H}. The legal actions for player i at si is denoted Ai(si). A joint
policy is a tuple ⇡ = (⇡1, . . . ,⇡N ), where policy ⇡i maps Si ! �(Ai). The public state at h is
the sequence spub(h) := spub(si(h)) := (O0

pub, . . . , O
t
pub). The information state set for player i at

s 2 Spub is Si(s) := {si 2 Si | spub(si) = s}, where Spub is the space of public states. Finally, the
reach probability of h under ⇡ is P⇡(h).

Rather than working with in a multi-agent setting directly, we invoke the public POMDP
transformation that maps cooperative multi-agent settings to equivalent single-agent POMDPs.
Given a common-payoff FOSG hN ,W, w

0
,A, T ,R,Oi, we can construct an equivalent public

POMDP [10] hW̃, w̃
0
, Ã, T̃ , R̃, Õi as follows: The world states of the public POMDP W̃ is the

set {(s1(h), . . . , sN (h)) : h 2 H}. The initial world state of the public POMDP w̃
0 is the tuple

(s1(h0), . . . , sN (h0)).

The actions of the public POMDP are called joint prescriptions. It is denoted by � and has N

components. The ith component of it �i is the prescription for player i. A prescription �i maps
si to an element of Ai(si) for each si 2 Si(spub(h)); it instructs a player in the common-payoff
FOSG how to act as a function of its private information. Given w̃ ⌘ (s1, . . . , sn) and �, the
transition distribution T̃ (w̃,�) is induced by T ((s1, . . . , sn), a), where a ⌘ �((s1, . . . , sn)) :=
(�1(s1), . . . ,�N (sN ))3. Given w̃ ⌘ (s1, . . . , sn) and w̃

0 ⌘ (s01, . . . , s
0
n), the reward and observa-

3If original game was sequential, prescriptions for non-acting players map to “no-ops".
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tion are given by R̃(w̃,�, w̃0) ⌘ R((s1, . . . , sn),�((s1, . . . , sn)), (s01, . . . , s
0
n)) and Õ(w̃,�, w̃0) ⌘

Opub((s1, . . . , sn),�((s1, . . . , sn)), (s01, . . . , s
0
n)), respectively.

Every policy in the public POMDP corresponds to a joint policy in the underlying common-payoff
FOSG, which receives exactly the same expected return. Therefore, it is sufficient to work with the
public POMDP. See [14, 15] for further discussion.

When the public POMDP is considered as a belief MDP, rather than as a POMDP, its belief states are
of the form b

t : (st1, . . . , s
t
n) 7! P

�0,...,�t�1

(st1, . . . , s
t
N | stpub). In words, this is the joint distribution

over private information states, conditioned on the historical policy (�0
, . . . ,�t�1) and the public

state s
t
pub. This public belief MDP is abbreviated as the PuB-MDP.

3 Self-Explaining Deviations

While the name self-explaining deviation (SED) is novel to this work, the idea behind SEDs is not.
One example of SEDs comes from the cooperative card game Hanabi [1] in the form of a play called
a “finesse”. Readers unfamiliar with Hanabi and finesse may first jump to Section 5.2 and Section 5.3
for the detailed descriptions. In a finesse play, the acting player, i.e., the first player who initiates the
deviation as part of the finesse, intentionally communicates misleading information to a receiving
player, which would hurt the team’s score if the receiving player acted upon it using the established
convention. The second player in the finesse, who acts after the first player but before the receiving
player, realizes that the first player must have deviated from the established convention after observing
the seemingly disastrous move. Knowing that the first player is rational, the second player realizes
that there must be a way that they can also deviate to reach a better outcome than the one that the
original convention would have led to. After the second player plays its part of the joint deviation,
the original information from the first player is no longer misleading and the subsequent players can
continue to follow the prior conventions.

SEDs may take place in any cooperative situation with at least two players where common knowledge
blueprint policies that players follow under normal assumptions exist. Intuitively, SEDs capture
a form of joint deviations where one agent takes an action that at first appears to be a mistake or
otherwise highly off-policy from another player’s perspective, i.e. zero or low probability under the
blueprint. On the presumption that the first agent chose that action intelligently and deliberately and
there is an off-policy action for the observing agent that could potentially result in an even-better-than-
normal outcome for both, the observing agent may reason that the first agent “intends” them to take
it—to take a leap of faith that the first agent has not erred, but rather knows both agents can get that
better outcome, even if the observing agent does not have the information themselves to prove that this
outcome will result. This work uses the term SEDs to describe this phenomenon of communication via
apparent mistakes in a general context. We formalize SED in Section 3.1 and propose IMPROVISED,
a novel planning algorithm that performs the optimal SEDs under some assumptions, in Section 4.

3.1 Examining Self-Explaining Deviations

Figure 2: Alice knows whether Bob’s lever will deploy
a tiger or a trampoline, and then jumps or not. Bob
observes only Alice’s action and then pulls the lever or
not. Dotted lines between two Bob nodes means that
Bob cannot distinguish them.

We are now ready to investigate SEDs. To
facilitate our investigation, let’s consider the
trampoline-tiger game in Figure 2 as an exam-
ple. In this game, Alice is standing on a balcony,
while Bob stands on the ground next to a lever.
Pulling the lever will either deploy a trampo-
line below the balcony, or release a tiger. From
above, Alice can observe which is the case, and
then Alice decides whether to jump off the bal-
cony (Y) or not (N). Bob observes Alice’s choice
but does not know whether the lever will deploy
a trampoline or tiger, and decides to pull the
lever (Y) or not (N). Alice wants to get down
from the balcony but will die from the fall un-
less Bob pulls the lever and it releases a trampo-
line. If Bob pulls the lever and releases a tiger,
it will eat Bob.
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Consider the joint policy (⇤ 7! N, ⇤ 7! N). While not optimal, this joint policy is not unreasonable,
as Bob won’t be eaten and Alice won’t fall to her death. Indeed, independent of the probability of a
trampoline, this joint policy is a Nash equilibrium. In addition, as we shall see in Section 5.1, a range
of MARL algorithms converges to this solution. However, there is a clear opportunity for a SED
under this blueprint. If there is a tiger, Alice should obviously never jump. So if Bob observes Alice
choosing to jump and trusts that Alice is intelligent and would only have chosen to jump if it could
lead to a better result, Bob should realize that there must be a trampoline. Therefore Alice should
trust that Bob will pull the lever if she jumps, as a result.

Under any planning algorithm that considers only unilateral deviations, Bob and Alice can’t escape
the original local optimum. Alice will never jump because she is under the belief that Bob will choose
not to pull the lever.Therefore, finding SEDs in general requires considering multi-lateral deviations,
i.e. simultaneous deviations by more than one player.

Since finding multi-lateral deviations in general games with partially observable state is a complex
problem, we restrict our focus to settings satisfying the following assumptions:
Assumption 1. We assume sequential and publicly observable actions.

SEDs may still be possible with partially-observable actions, but for simplicity we focus on when
Bob can directly observe Alice deviate from the blueprint, rather than having to deduce it from partial
or incomplete observations.
Assumption 2. We consider only cases where Bob’s private information is not necessary for coordi-
nating on the SED.

For simplicity, we always refer to the first player who initiates the joint deviation as the Alice and the
second player who figures out Alice’s intention and plays their part of the joint deviation as Bob in
the following discussions beyond the scope of this toy game. In other words, we only consider SEDs
where Bob needs only act as a function of the common-knowledge state and the Alice’s action, rather
as a function of private knowledge of their own.

Under these assumptions, we define the SED as follows:
Definition 1. Given a common knowledge blueprint (BP) policy ⇡, common public belief of Alice
and Bob b, and information state of Alice s1, SED is any pair of joint deviations (a01, a02) for Alice
and Bob that satisfy all the following conditions:

• q⇡(b, s1, a01, a
0
2) � q⇡(b, s1), i.e., it gives higher expected future return than BP;

• P (a01| ⇡, b)  ✏, i.e., a01 is highly unlikely under ⇡ under the common belief;

• a
0
2 ⇠ f(b, a01), i.e., a02 is a function of the public belief and Alice’s deviation action.

Here, q⇡(b, s1, [a1, a2]) is Alice’s estimate of the expected future return after executing the optional
a1, a2 and following ⇡ afterwards, and ✏ is a hyper-parameter. The function f is determined by the
algorithm designer under the constraint that f only takes b and a

0
1 as input. It is used both by Alice to

predict Bob’s response and by Bob to decide the response independently.

4 IMPROVISED

In this section we derive IMPROVISED, an algorithm to perform the SEDs. The core of the algorithm
is to find a function f under the constraint of SED and an optimization procedure that Alice uses to
decide whether to deviate given her information state s1 and possible responses a2 ⇠ f from Bob.

4.1 Defining the Optimization Problem

With the observations in the prior sections, we are ready to write selecting a SED as a PuB-MDP
optimization problem:

max
�1,�2

max[q⇡(b,�1,�2), q⇡(b)]

= max
�1,�2

Es1⇠b max [q⇡(b, s1,�1(s1),�2), q⇡(b, s1)]

= max
�1,�2

Es1⇠b max [q⇡(b, s1,�1(s1),�2 � �1(s1)), q⇡(b, s1)] .

(1)
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where �1 is the prescription for the acting player at current time step and �2 is the prescription for
the acting player at the subsequent time step, � denotes function composition, and, in accordance
with Definition 1, �2 ranges over the space of A1. The series of equalities above begins with a
generic multi-lateral search in the PuB-MDP. The LHS is ranging over Alice and Bob’s prescriptions
such that, if Alice uses �1 and Bob uses �2 in belief state b, and all the players play according to ⇡

thereafter, the expected return is maximized. The first equality holds simply based on the fact that
Alice is able to observe s1 and the fact Alice can always decide to opt into the blueprint (because
Bob knows which actions are supported by the blueprint, he can opt in exactly when Alice opts in,
and play according to the deviation otherwise). The second equality holds by applying Assumptions
1 and 2, which imply both that Bob can observe Alice’s action and that it is the only thing he needs to
condition his decision upon (note that the change of the set over which �2 ranges is left implicit).

4.2 An Easier Special Case

Unfortunately, expression (1) remains difficult to optimize, as the number of �1 and �2 is combinato-
rial. To ameliorate, we can apply the simplifying constraint of only allowing Alice and Bob to deviate
for a single action pair regardless of Alice’s information state s1. For simplicity, we also set ✏ = 0.
Let D(b) be the set of plausible deviation actions for Alice, i.e., action that cannot be played under
blueprint: D(b) := {a1 2 A1|8s1 2 b : ⇡(a1|s1) = 0}. Let R be the set of all plausible actions
that Bob can play in response in every possible state, i.e., R :=

T
s22S2

A2(s2). If R = ;, Alice
will skip searching for SED this turn and follow BP. Now we can augment the expected value of a
deviation with the allowed range of actions:

q̂⇡(b, s1, a1, a2) =

⇢
q⇡(b, s1, a1, a2), if a1 2 D(b), a2 2 R,

�1, otherwise.
(2)

Then we can rewrite equation (1) using our newly defined q function as follows:

(a⇤1, a
⇤
2) = argmaxa1,a2

Es1⇠b max[q̂⇡(b, s1, a1, a2), q⇡(b, s1)]. (3)

These values could be found in O(|S1||A1||A2|) time, given the two inner q functions. Moreover,
as all of these depend only on the public belief state, both players can compute them independently,
assuming that there are no ties.

Once the deviation pair is computed, Alice decides whether to proceed with the deviation or not
given her private information: Alice plays a⇤1 if q̂⇡(b, s1, a⇤1, a⇤2) > q⇡(b, s1) and the blueprint action
otherwise. It is possible that (a⇤1, a⇤2) is not a valid deviation pair if no plausible deviations exist,
e.g., a⇤1 could be outside of D(b). However, in this case q̂⇡(b, s1, a⇤1, a

⇤
2) is �1, and so Alice will

resort to playing blueprint. Bob can detect the deviation as D(b) is public knowledge and a
⇤
1 2 D(b).

Therefore, depending on his observation, he can either play a
⇤
2 or respond as usual.

We can represent the value of the policy that allows a single deviation at b and plays blueprint
afterwards as: q⇤⇡(b) = maxa1,a2 Es1⇠b max[q̂⇡(b, s1, a1, a2), q⇡(b, s1)]. It is easy to see that q⇤⇡ �
q⇡ , i.e., this algorithm has a weak policy improvement guarantee.

If we apply this procedure to the tiger-trampoline game with a blueprint policy that always no-ops:

q
⇤
⇡(b) = max

a1,a2

Es1⇠b max[q̂⇡(b, s1, a1, a2), q⇡(b, s1)]

= max
a1,a2

[P (tiger)max(q̂⇡(b, tiger, a1, a2), 0)

+ P (trampoline)max(q̂⇡(b, trampoline, a1, a2), 0)]
= P (trampoline).

As expected, we obtain a policy improvement with value equal to the probability of a trampoline.
We discover the SED where Alice jumps when a trampoline is present and Bob pulls the lever. We
provide a proof-of-principle implementation of IMPROVISED in the trampoline-tiger game that can
be run online at https://bit.ly/3KtMLT6.

4.3 Coordination by Extending Conventions

In a coordination context, we cannot require Bob to perform arbitrary symmetry breaking, i.e., choose
an action among several with the same expected value. For example, consider a case in which a
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set of multiple action pairs tied for having the maximal value {(a1 = x, a2 = y), (a1 = x, a2 =
z), (a1 = w, a2 = z)}. Say that Alice picks a1 = x. This is problematic for Bob because he has no
information about whether Alice is selecting x because she is in an information state in which (x, y)
is good or whether she is in an information state in which (x, z) is good (the states for which they are
good may be disjoint).

One way to resolve this issue is to force Alice to respect Bob’s inability to break ties by making
the response function stochastic, e.g., a softmax over the expected values. That is, given that Alice
deviates with a1, Alice assumes that Bob plays

a
⇤
2 ⇠ softmaxa2 [Es1⇠b max[q̂⇡(b, s1, a1, a2), q⇡(b, s1)]/t] (4)

with a temperature hyper-parameter t to control the sharpness of the distribution. Then Alice chooses
to deviate using

argmaxa1
Es1⇠b max[Ea2⇠a⇤

2(b,a1)q̂⇡(b, s1, a1, a2), q⇡(b, s1)]. (5)

Bob can either play according to the softmax or select the single maximum, as Alice has already
picked the deviation assuming that Bob cannot break symmetries.

4.4 Taking Alice’s Information State Into Account

Our discussion above has largely ignored the fact that Alice can perform different deviations
given her information state s1 (i.e., private observation). Define the response function f(b, a1) =
softmaxa2 [Es1⇠b max[q̂⇡(b, s1, a1, a2), q⇡(b, s1)]/t]. Given that Alice knows Bob will respond ac-
cording to a2 ⇠ f(b, a1), Alice is now free to optimize her action by taking her information state
back into consideration. By applying Jensen’s inequality, we observe that

max
a1

Es1⇠b max
⇥
Ea2⇠f(b,a1)q̂⇡(b, s1, a1, a2), q⇡(b, s1)

⇤

 Es1⇠b max
a1

max
⇥
Ea2⇠f(b,a1)q̂⇡(b, s1, a1, a2), q⇡(b, s1)

⇤
.

Therefore, at information state s1, Alice opts out of the blueprint if the optimal deviation action,
a
⇤
1 = maxa1 Ea2⇠f(b,a1)q̂⇡(b, s1, a1, a2), exceeds the expected return of the BP, q⇡(b, s1). This is

the final formulation of IMPROVISEDE . Please refer to the Appendix A for the detailed pseudocode.

We also define IMPROVISEDP , where Bob plays according to the probability of improvement

a
⇤
2 ⇠ softmaxa2 [Es1⇠b I[q̂⇡(b, s1, a1, a2) > q⇡(b, s1)]/t] (6)

where I is the indicator function and Alice selects any action maximizing the expected improvement.
While IMPROVISEDP does not maximize the expected return as IMPROVISEDE does, it may better
reflect human SEDs since it finds deviation pairs that maximize the probability of improvement.

5 Experiments

We test the IMPROVISED in two different settings. The first setting is the trampoline-tiger
game explained before. Secondly, we apply IMPROVISED to three-player Hanabi, where
we start from a blueprint trained on human data. We provide the code for our Hanabi ex-
periments at https://github.com/facebookresearch/off-belief-learning/blob/main/
pyhanabi/finesse.py.

5.1 Trampoline Tiger

As illustrated in Section 4.2, in the trampoline-tiger game IMPROVISEDE and IMPROVISEDP both
recover the optimal SED, when starting from the no-op BP in 100% of the runs. Alice will decide to
jump whenever there is a trampoline and Bob then pulls the lever to open the door, leading to the
optimal expected return of 0.1.

For comparison, we also ran 20 unique seeds of MAPPO [18] and 24 different hyper-parameter
combinations of QMIX [12] on the trampoline-tiger problem. The results are shown in Figure 3.
All runs converged rapidly to a policy that avoids the highly negative payoffs, but only 2/20 of the
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Figure 3: The plot shows 20 independent runs of MAPPO (solid lines) and 24 of QMIX (dashed
lines) on the tiger-trampoline toy problem. Only 2 MAPPO runs find the optimal strategy while no
QMIX run does.

MAPPO runs and 0/24 of the QMIX runs discovered the optimal strategy within 500k timesteps,
leading to an average reward across runs of 0.01 for MAPPO and 0.0 for QMIX.

In our experiments, a variety of other standard multi-agent learning techniques could not solve this
toy problem at all, including value-decomposition network [17] and simplified action decoder [4].

5.2 Hanabi

Hanabi is a benchmark challenge for multi-agent coordination. Briefly, in Hanabi, there is a 50 card
deck consisting of 5 different suits (colors) and 5 ranks of cards within each suit, for a total of 25
unique combinations, with some duplicates. Two to five players cooperatively take turns playing
cards, giving hints to other players, or discarding. Players may see their partners’ hands, but not their
own. The team’s goal is to play exactly one card of each rank in each suit in increasing order, scoring
1 point per successful play. Upon three plays of cards duplicated or out-of-order, the players lose and
instead score 0. Giving a hint spends one of 8 shared hint tokens, allowing one to name a color or
rank in a partner’s hand and indicate all cards of that color or rank in that hand. Discarding a card
replenishes one hint token. For a more thorough description of the rules and basic strategy see [1].

5.3 What is a Finesse?

As mentioned earlier in Section 3, a clear example of a SED is the finesse move in Hanabi. We will
recap it briefly here, for a more detailed explanation, see [1]. For convenience, we always refer to the
acting player of a given turn as player 1 and the players who move subsequently as player 2, player 3,
and so forth.

The standard, vanilla form of the finesse in Hanabi occurs when player 1 gives a hint to player 3
(i.e. the player who moves two steps later) that, under the conventions common between the players,
implies that player 3 should play a particular card. Unbeknownst to player 3, that card, if played,
would be out-of-order and would fail. Instead, player 2 has just drawn the card that is both playable
and if played makes player 3’s card playable next. Player 2 is expected to realize that the only way
that player 1’s hint could be good rather than a failure is if player 2 themself has newly drawn this
exact card, and to take a leap of faith and play that newly drawn card blindly, having no explicit
information about it. The end result is that player 1 signals in only one action for both other players
to each successfully play a card—a large gain.

While other finesse-like patterns are possible, in our Hanabi experiments for simplicity we focus only
on those finesse moves that follow the pattern described above.
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Model Finesse-able Finesse-complete

SAD [4] 1375 597 (43.42%)
Other-Play [5] 1537 512 (33.31%)
OBL (Level 5) [6] 1100 356 (32.36%)
Behavior Clone [6] 1376 1183 (85.97%)

(a) Number of finesse-able situations over 1000 games and % of
those where player 3 will correctly respond to complete the finesse
if player 1 and 2 were forced to play the finesse move. The Behavior
Clone model has a much higher chance to complete a finesse.

Method Finesse

Blueprint 0
SPARTA [8] 52
IMPROVISEDE 264
IMPROVISEDP 269

(b) Number of finesses executed by
different methods at 1000 finesse-
complete situations using Behavior
Clone agent from Table 1a as blueprint.

Table 1: IMPROVISED for Finesse in Hanabi

5.4 IMPROVISED in Hanabi

We design experiments to evaluate IMPROVISED in Hanabi from both qualitative and quantitative
perspectives. In the qualitative evaluation, we study whether IMPROVISED can indeed perform fi-
nesses in manually selected situations where finesse could be completed (finesse-complete situations).
We are particularly interested in the finesse style SEDs as they are the most natural and intuitive way
to demonstrate IMPROVISED’s ability to perform SEDs. Note that IMPROVISED discovers many
types of SEDs in Hanabi beyond the finesse style moves because it searches for any beneficial joint de-
viations that when player 1 initiates a deviation, player 2 can independently figure out the correct de-
viation in response. However, other types of SEDs may be hard for humans to interpret and less intu-
itive to analyze and present. In the quantitative evaluation, we show that IMPROVISED as a planning
algorithm improves the expected return when applied to test finesse-able situations and entire games.

To implement IMPROVISED in Hanabi, we first need a belief function from which we can sample
game states given either public or private knowledge of the game to perform Monte Carlo rollouts.
Luckily, the belief over possible hands in Hanabi can be computed analytically [8]. The belief is
first initialized to cover all possible hands and then incrementally updated by filtering out hands that
contradict with public knowledge revealed through hints and that would have caused the players to pick
different moves at each time step. Since we are mainly concerned with the finesse style SEDs in the
experiments, we restrict the search action space A1 to contain only the hint moves that target player 3
and A2 to contain only the play moves. Player 1 and player 2 compute their own copies of the response
function f independently. The detailed hyper-parameters and computational cost are in Section C.

Finessable Situation Experiments To check IMPROVISED’s ability to perform finesse, we first
generate situations where seasoned human players may carry out finesse moves. We use a blueprint
policy ⇡ to generate selfplay games over a range of decks (game seeds) and look for situations where
player 1 observes that player 2’s newest draw card is playable and has not been hinted at and where
player 3 holds an un-hinted card that can be played after player 2 plays their newest card (finesse-able
situations). Then we manually override player 1’s and player 2’s moves in finesse-able situations to
carry out the finesse and check if player 3 will play the designated card under the blueprint to make
the finesse complete and worthwhile (finesse-complete situations). We experiment with 4 different
blueprints and show their statistics of finesse-complete situations over 1000 game seeds in Table 1a.
All the agents are trained following the settings in corresponding prior works. Although finesse-able
situations are common in the games played by all four agents, the first three RL agents trained without
human data rarely complete a manually enforced finesse move, making them undesirable for the subse-
quent experiment. It is also worth noting that none of the RL blueprints perform finesses by themselves
while the behavior clone agent performs only 1 finesse out of the 1183 finesse-complete situations.

Finesse Execution Experiments We apply both IMPROVISEDE and IMPROVISEDP with the
behavior clone blueprint on 1000 randomly chosen finesse-complete situations to check how many
finesse it performs. The results are shown in Table 1b. Due to the novelty of this problem setting,
there has been no prior method to directly compare against. For reference, we run SPARTA [8], a
strong search algorithm for Dec-POMDP designed to find unilateral deviations that maximize the
expected return, on the same situations with the same restrictions on the set of actions that the agents
may deviate to. From the table, we see that both IMPROVISED algorithms perform significantly
more finesses, indicating their effectiveness in finding SEDs on the fly. In the situations where
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IMPROVISED does not perform finesses, it can either be that IMPROVISED finds no beneficial
deviations or it finds better, non-finesse SEDs. It is also interesting to see that IMPROVISEDP finds
roughly the same amount of finesses as IMPROVISEDE .

Full Game Experiments Then, we run IMPROVISED on the full game of Hanabi. At any time step,
the active player will first check whether a deviation has been initiated by other players by checking
whether previous players have picked actions with low probability under the blueprint. If a deviation
has been initiated, they will play their corresponding role as either player 2 or player 3. Otherwise the
active player will decide whether to deviate using the IMPROVISED method. Over a fixed set of 100
game seeds, IMPROVISEDE and IMPROVISEDP perform 29 and 21 finesses respectively, while
SPARTA only performs 3. Although it is still much less frequent than what expert human players
will do, IMPROVISED is nonetheless a meaningful step along this novel and challenging direction.

Although our work is focused on understanding and replicating this human capability rather than
optimizing for self-play score, we also report quantitative results showing a noticeable increase
in score using IMPROVISED compared to the plain blueprint. If we run IMPROVISED only at
the 1000 finesse-complete situations from Table 1b and use blueprint for the rest of the timesteps,
then IMPROVISEDE and IMPROVISEDP achieve average scores of 18.08 ± 0.28 and 18.18 ±
0.27 respectively while the blueprint gets 17.18 ± 0.28 on those same games. When we run
IMPROVISEDE on the full game, we improve the average score from 17.80 ± 0.85 to 23.54 ± 0.14.

6 Related Work

Public Belief Methods Our method builds on prior work that models Dec-POMDPs as PuB-
MDPs [10, 11, 2, 3, 15, 16]. PuB-MDPs enable theoretically sound planning algorithms without
having to reason about the agents’ entire policies because the public belief state serves as a sufficient
statistic for planning. For example, SPARTA [8] conducts a one-step lookahead starting from the
public belief state and chooses the action that maximizes expected value assuming all players play
according to a common-knowledge BP thereafter. However, SPARTA searches only for unilateral
deviations from the BP rather than multilateral deviations, because searching over all of the latter
would be intractable. As discussed in Section 3.1, discovering SEDs may require considering multi-
lateral deviations from the BP. IMPROVISED is able to discover these multi-lateral deviations by
searching over a constrained set of multi-lateral deviations.

Human-Like Coordination Outside of this work, another notable work in the direction of incorpo-
rating human-like behavior into AI agents is that of Ma et al. [9]. Ma et al. [9] show that certain archi-
tectures have better inductive biases for respecting the correspondence between action features and ob-
servational features. Our work is complementary in the sense that we investigate a phenomenon that
occurs in unusual situations, whereas Ma et al. [9] investigate a phenomenon that occurs by default.

7 Conclusions

Coordinating with others using minimal explicit agreement and extending conventions “on the fly” is
one of the most intriguing reasoning capabilities. In this paper we formalize the definition of such
behavior as self-explaining deviations. We showed that existing methods tend not to perform these
types of deviations and presented an algorithm called IMPROVISED that can both discover them and
respond correctly when they are being carried out by other agents at test time.

Limitations and Future Work We see two main limitations of IMPROVISED that would be worth
addressing in future work. The first is the fact that IMPROVISED requires exact knowledge of
all teammates’ policies and assumes that other teammates are also running IMPROVISED. In real
coordination settings, it is both unrealistic to assume exact knowledge of the policies of externally
specified teammates and unrealistic to assume that those teammates are implementing the same SED
algorithm. The second is the computational cost of IMPROVISED, as it requires Monte Carlo rollouts
to estimate many crucial quantities at test time (more details in the appendix). One concrete direction
toward addressing this issue is to derive a learning based version of IMPROVISED by learning the
Q-function q(b, s1, a1, a2).
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