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ABSTRACT

Federated learning enables collaborative model training for multimodal health
sensing while preserving data privacy. A critical challenge, however, is modality
heterogeneity, which manifests along two axes: intra-client instability, caused by
per-sample sensor dropouts, and inter-client heterogeneity, driven by differences
in clients’ sensor suites. Existing federated methods often rely on oversimplified
assumptions about missing data and fail to capture these complex dynamics. We
address this gap by introducing a realistic problem formulation and a principled
simulation framework. Building on this foundation, we propose FedDUET (Decou-
pled Uncertainty-Enhanced Training), an approach designed to handle both axes of
modality heterogeneity. To mitigate intra-client instability, FedDUET leverages an
Uncertainty-as-Temperature (UT) loss to dynamically calibrate predictions based
on data uncertainty. To manage inter-client heterogeneity, it employs a Decoupled
Training (DT) strategy that specializes a private model head for each client’s unique
sensor suite while isolating the shared representation to preserve its generalizabil-
ity. Across four real-world multimodal sensing datasets and diverse heterogeneity
regimes, FedDUET achieves state-of-the-art performance. Our results highlight
that explicitly modeling uncertainty and decoupling generalization from personal-
ization are essential principles for making multimodal federated learning robust in
real-world settings.

1 INTRODUCTION

Healthcare sensing increasingly relies on multimodal time-series data from wearable and embed-
ded devices (Ramachandram & Taylor, 2017; Narayanswamy et al., 2024) to enable applications
such as activity recognition (Reiss & Stricker, 2012), eating detection (Shin et al., 2022), emotion
inference (Park et al., 2020), and stress monitoring (Schmidt et al., 2018). Federated Learning
(FL) (McMahan et al., 2017; Kairouz et al., 2021) is a natural fit for this domain, allowing models to
train on sensitive user data without it ever leaving the device. Yet, this vision is undermined by a
fundamental real-world challenge: pervasive modality heterogeneity (Feng et al., 2023). This problem
degrades model performance along two distinct axis (i) intra-client instability, where an individual’s
sensors experience dynamic, intermittent dropouts from issues like battery drain or connectivity
loss (Xu et al., 2025); and (ii) inter-client heterogeneity, where the set of available sensors is static
but varies across users with different devices (Ouyang et al., 2023).

Despite its prevalence, this dual-axis modality heterogeneity problem remains largely unaddressed.
Prior FL methods rely on oversimplified models, either neglecting the temporal, bursty nature of
sensor dropouts (Feng et al., 2023) or assuming purely static differences between clients (Zhao et al.,
2022; Bao et al., 2023). This critical gap impedes the development of truly robust algorithms. Our
first contribution is to formalize this challenge and introduce a principled framework for simulating
modality heterogeneity. The framework models intra-client instability with a two-state Markov chain
to generate bursty, temporal dropouts, and inter-client heterogeneity with a Beta-Bernoulli process to
simulate diverse client populations, as demonstrated in Figure 1.

Within this challenging paradigm, we propose Decoupled Uncertainty-Enhanced Training, FedDUET,
a method to tackle modality heterogeneity with two synergistic components. First, to combat
intra-client instability, FedDUET employs Uncertainty-as-Temperature (UT) loss. This mechanism
estimates the aleatoric uncertainty of each input and uses it as a temperature to scale the model’s
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Figure 1: Comparison of missingness patterns. (a) Real-world multimodal health sensing data from
the Opportunity dataset (Roggen et al., 2010) exhibits a mixture of static unavailability (inter-client
heterogeneity) and dynamic, bursty dropouts (intra-client instability). (b) Our simulation framework
faithfully reproduces these complex dual-axis patterns. In contrast, conventional models rely on
simplified assumptions, capturing only (c) i.i.d. dynamic dropouts (Feng et al., 2023) or (d) purely
static client differences (Bao et al., 2023).

logits. Specifically, UT modulates the model’s predictive entropy, steering the model prediction
toward a distribution that better reflects the true posterior under intra-client instability. Second, to
tackle inter-client heterogeneity, FedDUET adopts Decoupled Training (DT) strategy. This approach
features a hybrid architecture with shared, general-purpose components and a private, specialized
head for each client. Crucially, the training leverages this split: the shared model learns to produce
generalizable feature representations and reliable uncertainty estimates, and these estimates directly
temper the private head’s training objective. By decoupling these private updates, the process allows
the head to specialize effectively without corrupting the shared model’s generalizable knowledge. We
provide a comprehensive discussion of related work and situate our contributions within the broader
literature in Appendix B.

We empirically evaluate FedDUET against six baselines across three real-world multimodal health
sensing datasets, employing our simulation framework to generate realistic modality-heterogeneity
patterns. Across diverse heterogeneity regimes, FedDUET consistently outperforms baselines, achiev-
ing absolute macro-F1 score improvements of 1.52%∼6.49%. We further validate its effectiveness
on a dataset with inherent missingness, where it also achieves the best performance.

Our contributions are as follows:

• Dual-axis modality heterogeneity simulation framework. We provide a realistic formaliza-
tion and principled simulation framework for the dual-axis modality heterogeneity problem in
multimodal health sensing FL, capturing both intra-client instability and inter-client heterogeneity.

• The FedDUET method. We propose FedDUET, a novel method that integrates an Uncertainty-as-
Temperature loss to enhance robustness to intra-client instability and a Decoupled Training strategy
to enable adaptation under inter-client heterogeneity.

• Empirical validation. We conduct extensive empirical evaluations showing that FedDUET
achieves state-of-the-art performance, with absolute macro-F1 improvements ranging from 1.52%
to 6.49% over the baselines across diverse heterogeneity regimes.

2 A PRINCIPLED FRAMEWORK FOR SIMULATING MODALITY
HETEROGENEITY

Existing federated learning methods for multimodal sensing (Zhao et al., 2022; Bao et al., 2023;
Feng et al., 2023) are constrained by unrealistic missingness simulations. We address this gap by
introducing a principled simulation framework that formalizes the two orthogonal axes of real-world
modality heterogeneity: (i) intra-client instability and (ii) inter-client heterogeneity.

The fidelity of our simulation framework is illustrated in Figure 1. Real-world multimodal health
sensing data (a) exhibit both permanently absent modalities and others that drop out dynamically
in temporally correlated, bursty segments (Roggen et al., 2010). Our simulation (b) reproduces
these complex patterns, in contrast to naı̈ve approaches that assume (c) simplistic i.i.d. dynamic
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Figure 2: F1-scores on PAMAP2, Sleep-EDF, and RealWorld-HAR datasets under the federated
learning setting with FedAvg (McMahan et al., 2017) algorithm. The top shows performance
with complete data (no missing), while the heatmaps depict the degradation under increasing intra-
client modality instability level {Moderate, Severe} and inter-client modality heterogeneity level
{Homogeneous, Moderate, Severe}.

dropouts (Feng et al., 2023) or (d) purely static modality availability (Bao et al., 2023; Zhao et al.,
2022). This realistic behavior arises from jointly modeling the two orthogonal axes of modality
heterogeneity, as detailed below.

2.1 MODELING INTRA-CLIENT INSTABILITY

To capture the bursty, temporal nature of modality instability within a client, we model the operational
status of each sensor with a two-state Markov chain. This approach effectively simulates periods of
sustained sensor availability or failure, because the Markovian property gives each state persistence,
discouraging random changes at each timestep. More formally, for each present modality m on client
k, we define a binary state st,k,m indicating if the sensor is operational at time t:

st,k,m =

{
1, if modality m is operational at time t,

0, otherwise.

Transitions between states are governed by a matrix P:

P =

[
p00 p01
p10 p11

]
,

where pij is the probability of transitioning from state i to state j (0: missing, 1: present). By tuning
these dataset-specific probabilities, we can simulate varying levels of instability, from moderate
(intermittent) to severe (long, bursty) sensor dropouts.

2.2 MODELING INTER-CLIENT HETEROGENEITY

To capture client heterogeneity—the static differences in sensor suites across a population, we employ
a Beta–Bernoulli process. This principled approach models the real-world scenario where each user’s
device ownership is drawn from a broader population distribution. First, to model latent client-level
sensor availability, we sample a probability pa,k from a Beta distribution:

pa,k ∼ Beta(αa, βa),

where the hyperparameters (αa, βa) control the level of heterogeneity in the environment. A severe
heterogeneity setting is created by centering the Beta distribution’s mean at 0.5 (by setting αa ≈
βa), which maximizes the combinatorial diversity of sensor suites across clients. Conversely, a
moderate heterogeneity setting is achieved by shifting the distribution’s mean away from 0.5 (by
using unbalanced αa and βa values). This creates a more uniform population where clients have
a more consistent set of available sensors, thereby reducing the overall variation in their device
configurations.
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Next, the specific sensor suite for client k is determined by sampling a binary indicator δm,k for each
modality m from a Bernoulli distribution parameterized by the client’s unique pa,k:

δm,k ∼ Bernoulli(pa,k), δm,k =

{
1, m is available,
0, otherwise.

The final set of available modalities for client k is thusMavailable,k = {m | δm,k = 1}.
Integrated Simulation Process. Our integrated simulation process first establishes each client’s
static hardware profile via the inter-client heterogeneity model and then simulates dynamic sensor
failures using the intra-client instability model. As illustrated in Figure 2, applying our simulation
framework quantifies the impact of realistic modality heterogeneity on model performance. The sys-
tematic performance degradation (e.g., a drop exceeding 30% on PAMAP2 under severe conditions)
underscores the importance of accounting for these real-world conditions. This demonstrates that our
framework can generate challenging scenarios for standard algorithms such as FedAvg (McMahan
et al., 2017), thereby serving as a valuable testbed for developing and evaluating more robust methods.
Detailed hyperparameter configurations and additional examples are provided in Appendix D.

3 PRELIMINARIES: FEDERATED LEARNING

Federated Learning (FL) is a distributed machine learning paradigm where a central server coordinates
a set of K clients to train a shared global model (McMahan et al., 2017; Kairouz et al., 2021). Each
client k ∈ {1, . . . ,K} holds a private dataset Dk that is never shared, preserving data locality and
privacy. The objective is to learn a single set of global model parameters θ that minimizes a weighted
sum of the local loss functions across all clients:

min
θ
L(θ) =

K∑
k=1

wk Lk(θ), (1)

where Lk(θ) is the loss on client k’s data Dk, and wk is the weight assigned to client k.

The fundamental algorithm for this task is Federated Averaging (FedAvg) (McMahan et al., 2017). It
proceeds in synchronous communication rounds t = 0, 1, . . . . In each round, the server broadcasts
the current global parameters θt to a subset of clients St. Each selected client k ∈ St performs local
optimization to produce updated parameters θt+1

k . The server then aggregates these returned models
by computing a weighted average to obtain the next global model:

θt+1 =
∑
k∈St

w̃k θ
t+1
k , w̃k =

|Dk|∑
j∈St |Dj |

. (2)

While FedAvg provides a general-purpose solution, it does not explicitly account for the challenges
of modality heterogeneity in multimodal health sensing.

4 THE FEDDUET METHOD

We now introduce FedDUET, an approach designed to tackle modality heterogeneity through the
integration of two synergistic components. At the sample level, the Uncertainty-as-Temperature
(UT) loss (Section 4.1) provides a fine-grained mechanism to handle the uncertainty arising from
intra-client sensor dropouts. This mechanism is embedded within a Decoupled Training (DT) strategy
(Section 4.2), which manages inter-client heterogeneity.

The client-side training process is illustrated in Figure 3. Before detailing the loss functions, we first
introduce the core components of the architecture:

• Encoders and Fusion: Each input modality (x1, x2, . . . ) is processed by a dedicated Encoder
to produce a unimodal feature representation (h1, h2, . . . ). These features are then fused by a
Fusion module to form a unified multimodal representation hf .

• Uncertainty Heads: Running in parallel, lightweight Uncertainty Heads also process the
unimodal features (hm). Their role is to estimate the uncertainty of each modality’s data, outputting
a scalar uncertainty estimate (σm) and logits for the unimodal prediction task (zm).
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Figure 3: The FedDUET client-side training process. Unimodal inputs (xm) are processed by
shared Encoders to produce features (hm). These features are used in two parallel streams:
(1) Uncertainty Heads, trained with unimodal losses (LUT,m), estimate data uncertainty and
produce uncertainty scores (σm), and (2) a Fusion module creates a multimodal representation
(hf ). The shared G-Head learns a general model, while the private P-Head specializes for the
client. Crucially, the P-Head’s training objective (LmUT) is tempered by the fused uncertainty (σf ),
and stop-gradient (sg) operation detaches gradients for effective decoupled training.

• Shared and Private Heads: The model has two multimodal prediction heads. The G-Head
(Global) is a shared component that learns a generalizable prediction from the fused representation
hf . The P-Head (Private) is a client-specific component that learns a personalized prediction, also
from the fused representation.

• Stop-Gradients: The sg markers indicate where we apply stop-gradients to enable decoupled
training, which is explained in Section 4.2.

This architecture forms the foundation for our specialized training objectives, which we detail next.

4.1 UNCERTAINTY AS TEMPERATURE FOR INTRA-CLIENT MODALITY INSTABILITY

The primary challenge of intra-client instability is that intermittent sensor dropouts introduce unreli-
able samples into the training data. This naturally raises the question of how such missing inputs
affect the model’s predictive distribution. Our intuition is that the presence of missing data increases
the entropy of the predictive posterior: as information decreases, the predictive distribution should
flatten toward uniformity. Appendix C formally proves this intuition, showing that the posterior
entropy under missing inputs is higher than under complete observations.

Building on this result, we introduce the Uncertainty-as-Temperature (UT) loss. This mechanism
implements this principle by scaling the model’s logits with a learned, per-sample temperature (σ)
derived from the input’s estimated aleatoric uncertainty. This allows the model to dynamically
modulate its own confidence: for uncertain inputs, it learns to increase σ to soften the predictive
distribution, while for high-quality inputs, it decreases σ to sharpen its confidence.

This principle of learning input-dependent variance to mitigate data noise shares foundations with
recent work in other domains. While prior work leveraged per-sample uncertainty, their objective has
typically been to down-weight uncertain samples and reduce their influence on model updates (Kendall
& Gal, 2017; Collier et al., 2021; Englesson et al., 2023). In contrast, our approach uses uncertainty
to modulate predictive entropy, steering the model toward a distribution that better reflects the true
posterior. Uncertainty-as-Temperature loss thereby provides robustness against intra-client instability
by aligning predictive confidence with data uncertainty.

In particular, as illustrated in Figure 3, a dedicated Uncertainty Head predicts the log-variance
sm = log σ2

m of sample xm. The resulting standard deviation σm = exp(sm/2) is then used to
temper the logits, defining the unimodal UT loss:

LUT,m = CE
(

zm
σm

, y
)
. (3)

These unimodal uncertainties are then fused into a multimodal uncertainty, σf , using a Bayesian
precision-weighted scheme (Gelman et al., 1995):

σf =

(
M∑

m=1

am
σ2
m + ϵ

)−1/2

, (4)
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where am ∈ 0, 1 denotes the availability of modality m and ϵ is a stability constant.

This fused uncertainty is used in the multimodal UT loss:

LmUT = CE
(

z
σf

, y
)
, (5)

which plays a critical, synergistic role in guiding the personalized component of our decoupled
training, as described next.

4.2 A DECOUPLED TRAINING FOR INTER-CLIENT MODALITY HETEROGENEITY

While the UT loss addresses sample-level instability, a separate mechanism is needed to handle
inter-client heterogeneity, where clients possess different static sets of sensors. A monolithic, end-
to-end model is suboptimal for this challenge, as it forces the shared parameters to learn conflicting
representations (Li et al., 2020) from clients with disparate data modalities. Our intuition is to
resolve this conflict by structurally separating the model into shared components that capture general
knowledge and a private component that specializes for each client’s unique sensor suite.

To realize this, we employ a Decoupled Training (DT) strategy. As illustrated in Figure 3, this
approach adopts a hybrid architecture with two distinct sets of parameters.

• Shared Components (θG): A set of unimodal Encoders, their corresponding Uncertainty
Heads, a multimodal Fusion module, and a global G-Head. These components are shared
across all clients to learn a generalized representation and to serve as a reliable estimator of
uncertainty.

• Private Component (θP,k): A client-specific P-Head that is not shared and adapts to the client’s
local data and unique modality combinations.

The core of the DT mechanism is the isolation of these components during training. To prevent
client-specific updates from corrupting the shared model, gradients from the private objective are
detached from the shared components via a stop-gradient operation. Note that the architectural
principle of decoupling a model into shared and private parts is well established in personalized
federated learning. Foundational works like FedPer (Arivazhagan et al., 2019) separate a model into
shared base and private personalization layers. More advanced methods such as FedRoD (Chen &
Chao, 2022) also use a dual-head design to bridge generic and personalized learning, though their
focus is on unimodal data and non-IID class distributions.

While these methods established the benefits of decoupling, our novelty lies in leveraging this
separation to specifically address modality heterogeneity through synergistic, uncertainty-guided
personalization. Unlike prior work where the private head learns only from the feature representation,
our private P-Head is explicitly guided by the fused uncertainty estimate (σf , in Equation 4)
provided by the shared model. This creates a powerful synergy: the shared model assesses input
reliability, while the private head adapts not only to the client’s available modalities but also to their
real-time instability.

This synergy is formalized in our training objectives. The shared components are optimized with a
composite loss, LG, to learn accurate and well-calibrated representations:

LG = CE(zG, y) +
1

M

M∑
m=1

LUT,m, (6)

where zG are the logits from the shared G-Head, y is the ground-truth label, M is the number of
modalities, and LUT,m is the unimodal UT loss from Equation 3. Concurrently, each private head
P-Head (θP,k) is trained using the multimodal UT loss, which is directly tempered by the shared
model’s uncertainty estimate, σf :

LP,k = LmUT(zP,k, σf , y) (7)
where the logits zP,k are produced by the private P-Head for client k from the detached shared
representation hf , i.e., zP,k = P-Headk(detach(hf )). This strategy enables each P-Head to
specialize as an expert on its client’s data, while being guided by the uncertainty-aware signals of
the shared model. In doing so, it effectively addresses inter-client modality heterogeneity without
corrupting the generalizable knowledge learned by the shared components. The full FedDUET
algorithm is provided in Appendix 1.
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Table 1: F1-score comparisons with baselines under varying modality heterogeneity settings. We
evaluate performance across inter-client heterogeneity (H) levels {Homogeneous, Moderate, Severe}
and intra-client instability (I) levels {Moderate, Severe}. Results are averaged over five random seeds
on three datasets, with the best results marked in bold.

Method
H = Homogeneous H = Moderate H = Severe

Average
I=Mod. I=Sev. Avg. I=Mod. I=Sev. Avg. I=Mod. I=Sev. Avg.

FedAvg 0.722 ± 0.006 0.596 ± 0.023 0.659 ± 0.014 0.634 ± 0.007 0.574 ± 0.007 0.604 ± 0.007 0.621 ± 0.007 0.499 ± 0.012 0.560 ± 0.009 0.608 ± 0.010

FedProx 0.722 ± 0.003 0.600 ± 0.019 0.661 ± 0.011 0.636 ± 0.003 0.569 ± 0.011 0.602 ± 0.007 0.620 ± 0.010 0.497 ± 0.014 0.559 ± 0.012 0.607 ± 0.010

MOON 0.723 ± 0.010 0.610 ± 0.010 0.687 ± 0.010 0.636 ± 0.013 0.561 ± 0.016 0.599 ± 0.014 0.616 ± 0.007 0.494 ± 0.012 0.555 ± 0.009 0.607 ± 0.011

FedPer 0.694 ± 0.010 0.453 ± 0.010 0.574 ± 0.010 0.644 ± 0.011 0.490 ± 0.005 0.567 ± 0.008 0.614 ± 0.010 0.440 ± 0.008 0.527 ± 0.009 0.556 ± 0.009

Fed-RoD 0.754 ± 0.003 0.609 ± 0.011 0.682 ± 0.007 0.656 ± 0.011 0.587 ± 0.006 0.622 ± 0.009 0.642 ± 0.013 0.493 ± 0.011 0.568 ± 0.012 0.624 ± 0.009

PmcmFL 0.723 ± 0.007 0.605 ± 0.007 0.664 ± 0.007 0.643 ± 0.013 0.578 ± 0.018 0.611 ± 0.016 0.618 ± 0.005 0.514 ± 0.017 0.566 ± 0.011 0.614 ± 0.011

FedDUET 0.761 ± 0.005 0.641 ± 0.009 0.701 ± 0.007 0.683 ± 0.011 0.596 ± 0.022 0.639 ± 0.016 0.655 ± 0.005 0.520 ± 0.013 0.587 ± 0.009 0.642 ± 0.011

(a) PAMAP2.

Method
H = Homogeneous H = Moderate H = Severe

Average
I=Mod. I=Sev. Avg. I=Mod. I=Sev. Avg. I=Mod. I=Sev. Avg.

FedAvg 0.589 ± 0.009 0.526 ± 0.007 0.558 ± 0.008 0.537 ± 0.007 0.451 ± 0.012 0.494 ± 0.009 0.519 ± 0.007 0.498 ± 0.012 0.508 ± 0.010 0.520 ± 0.009

FedProx 0.589 ± 0.006 0.534 ± 0.006 0.562 ± 0.006 0.531 ± 0.007 0.438 ± 0.008 0.485 ± 0.007 0.512 ± 0.007 0.497 ± 0.009 0.504 ± 0.008 0.517 ± 0.007

MOON 0.594 ± 0.007 0.527 ± 0.006 0.561 ± 0.007 0.537 ± 0.003 0.448 ± 0.009 0.492 ± 0.006 0.514 ± 0.008 0.495 ± 0.011 0.505 ± 0.009 0.519 ± 0.007

FedPer 0.580 ± 0.010 0.510 ± 0.004 0.545 ± 0.007 0.520 ± 0.006 0.434 ± 0.008 0.477 ± 0.007 0.518 ± 0.004 0.463 ± 0.007 0.491 ± 0.006 0.504 ± 0.006

Fed-RoD 0.602 ± 0.005 0.531 ± 0.008 0.566 ± 0.007 0.532 ± 0.006 0.447 ± 0.010 0.489 ± 0.008 0.531 ± 0.014 0.502 ± 0.007 0.517 ± 0.010 0.524 ± 0.008

PmcmFL 0.601 ± 0.006 0.547 ± 0.005 0.574 ± 0.005 0.528 ± 0.004 0.439 ± 0.009 0.484 ± 0.006 0.489 ± 0.004 0.483 ± 0.004 0.486 ± 0.004 0.515 ± 0.005

FedDUET 0.616 ± 0.007 0.557 ± 0.006 0.586 ± 0.007 0.552 ± 0.008 0.467 ± 0.006 0.509 ± 0.007 0.540 ± 0.007 0.518 ± 0.003 0.529 ± 0.005 0.542 ± 0.006

(b) Sleep-EDF.

Method
H = Homogeneous H = Moderate H = Severe

Average
I=Mod. I=Sev. Avg. I=Mod. I=Sev. Avg. I=Mod. I=Sev. Avg.

FedAvg 0.838 ± 0.002 0.686 ± 0.007 0.762 ± 0.004 0.844 ± 0.005 0.674 ± 0.007 0.759 ± 0.006 0.838 ± 0.007 0.709 ± 0.007 0.773 ± 0.007 0.765 ± 0.006

FedProx 0.832 ± 0.009 0.673 ± 0.004 0.753 ± 0.006 0.847 ± 0.001 0.673 ± 0.010 0.760 ± 0.005 0.840 ± 0.003 0.716 ± 0.009 0.778 ± 0.006 0.763 ± 0.006

MOON 0.836 ± 0.013 0.670 ± 0.004 0.753 ± 0.008 0.844 ± 0.004 0.669 ± 0.007 0.757 ± 0.005 0.843 ± 0.005 0.709 ± 0.008 0.776 ± 0.007 0.762 ± 0.007

FedPer 0.852 ± 0.014 0.528 ± 0.014 0.690 ± 0.014 0.820 ± 0.014 0.616 ± 0.010 0.718 ± 0.012 0.835 ± 0.002 0.720 ± 0.010 0.778 ± 0.006 0.729 ± 0.011

Fed-RoD 0.883 ± 0.005 0.699 ± 0.014 0.791 ± 0.010 0.856 ± 0.004 0.702 ± 0.010 0.779 ± 0.007 0.850 ± 0.008 0.751 ± 0.011 0.800 ± 0.009 0.790 ± 0.009

PmcmFL 0.840 ± 0.006 0.702 ± 0.011 0.771 ± 0.008 0.842 ± 0.005 0.666 ± 0.004 0.754 ± 0.005 0.834 ± 0.005 0.722 ± 0.012 0.778 ± 0.008 0.768 ± 0.007

FedDUET 0.867 ± 0.009 0.740 ± 0.004 0.803 ± 0.007 0.858 ± 0.007 0.709 ± 0.005 0.784 ± 0.006 0.855 ± 0.007 0.766 ± 0.003 0.811 ± 0.005 0.799 ± 0.006

(c) RealWorld-HAR.

5 EXPERIMENTS

5.1 SETUP

Datasets and baselines. We use three publicly available multimodal health sensing datasets in our
experiments: PAMAP2 (Reiss & Stricker, 2012), Sleep-EDF (Goldberger et al., 2000; Kemp et al.,
2000) and RealWorld-HAR (Sztyler & Stuckenschmidt, 2016). We benchmark FedDUET against the
foundational FedAvg (McMahan et al., 2017); methods for statistical non-IID data (FedProx (Li et al.,
2020), MOON (Li et al., 2021)) to show modality heterogeneity is a distinct challenge; architecturally
similar personalization methods (FedPer (Arivazhagan et al., 2019), Fed-RoD (Chen & Chao, 2022));
and PmcmFL (Bao et al., 2023), a direct competitor for modality-heterogeneous FL.

Models and learning. All methods share a common backbone: 1D CNNs (Haresamudram et al.,
2022) serve as unimodal encoders, and a masked multi-context attention mechanism (Bahdanau
et al., 2014) fuses available modality representations for classification by a two hidden-layer MLP.
FedRoD (Chen & Chao, 2022) and FedDUET augment this with a private head, and FedDUET
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Figure 4: Correlation between multimodal uncertainty (σf ) and model performance across three
datasets: (a) PAMAP2, (b) Sleep-EDF, and (c) RealWorld-HAR. In all cases, Spearman correlation
shows a statistically significant negative relationship, demonstrating that higher predicted uncertainty
corresponds to lower F1-scores. This confirms that σf serves as an effective indicator of client data
uncertainty.
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Figure 6: Visualization of inherent missingness
patterns in the Opportunity dataset.

further adds lightweight MLP-based uncertainty heads. We train for 200 global rounds, sampling
30∼50% of clients for 3 local epochs per round using SGD with momentum 0.9 and weight decay
5× 10−5. Additional experiment details are provided in Appendix E.

5.2 RESULTS

Overall results. Table 1 presents our main experimental results, evaluating FedDUET against
baselines under diverse and challenging client heterogeneity and modality instability conditions.
The findings demonstrate that FedDUET consistently outperforms all competing methods across the
three datasets. This is evident in the average F1-scores, where FedDUET achieves top performance
on PAMAP2 (0.642), Sleep-EDF (0.542), and RealWorld-HAR (0.799), underscoring the broad
effectiveness and generalizability of our framework. This consistent superiority stems directly from
FedDUET’s unique design, which is purpose-built to tackle the dual axes of modality heterogeneity.
The framework’s resilience to severe intra-client instability (I=Severe) is driven by its Uncertainty-as-
Temperature (UT) loss that dynamically modulates predictive entropy, steering predictions toward the
true posterior. Simultaneously, its robustness to high inter-client heterogeneity (H=Severe) arises from
the Decoupled Training (DT) strategy. By isolating the shared representation from client-specific
updates, DT ensures that personalization does not degrade the model’s generalizable knowledge—a
critical weakness in monolithic approaches. This synergy, where architectural separation provides
a stable foundation for fine-grained uncertainty management, is the core reason for FedDUET’s
consistently superior performance.

Multimodal uncertainty (σf ) as a predictor of performance degradation. To assess whether the
uncertainty predicted by FedDUET reliably reflects the uncertainty of client data, we analyze the
correlation between multimodal uncertainty (σf ) and downstream model performance. We compute
the multimodal uncertainty and the corresponding validation F1-score for each client across five seeds
and six different missingness settings, and evaluate their Spearman correlation (Spearman, 1961).
Figure 4 reports results on three datasets. In all cases, we observe a statistically significant negative

8
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Table 2: Ablation study of FedDUET’s core components. All values are reported as macro F1 scores.
The top section shows ablated models, while the bottom shows our full model.

Method Variant PAMAP2 Sleep-EDF RealWorld-HAR

FedDUET w/o UT, DT 0.608 ± 0.010 0.520 ± 0.006 0.765 ± 0.009

FedDUET w/o UT 0.624 ± 0.011 0.520 ± 0.008 0.791 ± 0.008

FedDUET w/o DT 0.591 ± 0.012 0.511 ± 0.009 0.758 ± 0.009

FedDUET 0.642 ± 0.011 0.542 ± 0.006 0.799 ± 0.006

Spearman correlation between σf and F1-score: ρ=-0.61, ρ=-0.42, ρ=-0.21, and all p < 0.001, for
PAMAP2, Sleep-EDF, and RealWorld-HAR, accordingly.

This finding confirms that, in general, across all datasets, higher predicted uncertainty is associated
with lower predictive performance. The correlation does not simply reflect missingness severity, since
removing uninformative signals may not harm accuracy, but instead captures performance-relevant
uncertainty. These results demonstrate that FedDUET not only adjusts the predictive entropy of the
model to better match the true posterior but also produces interpretable uncertainty estimates that
closely track downstream reliability. Per-client correlation results for all datasets are provided in
Table 6 of Appendix F.

Evaluation on naturally missing data. We further evaluate FedDUET on the Opportunity
dataset (Roggen et al., 2010), which inherently contains missing values rather than simulated dropouts,
as illustrated in Figure 6. Figure 5 reports F1-scores across baselines and FedDUET. FedDUET
achieves the best performance with an average F1-score of 0.887 over five seeds. In contrast, Fed-
RoD, which ranked second in Table 1 fails to improve over FedAvg, with both yielding an F1-score
of 0.877. Under this real-world missingness setting, FedProx and FedPer emerge as the strongest
baselines after FedDUET, both reaching an F1-score of 0.883.

These results highlight that FedDUET consistently achieves the best performance even under real
missingness patterns. Importantly, it remains superior despite the Opportunity dataset exhibiting a
relatively mild missing rate of about 8%. In addition, FedDUET shows lower variance across seeds
compared to the baselines, highlighting its robustness and stability in realistic scenarios. Detailed
experimental settings are provided in Appendix E.4.

Ablation study. Our ablation study in Table 2 dissects the impact of Decoupled Training (DT)
and Uncertainty-as-Temperature (UT). Interestingly, we find that introducing the UT loss without
a decoupled architecture (FedDUET – DT) degrades performance, even falling below the FedAvg
(FedDUET – UT – DT) baseline. As further evidenced in Appendix F.1, the effectiveness of UT is
empirically validated; however, this setting shows that a standard shared model cannot resolve the
conflicting uncertainty signals from heterogeneous clients. On the other hand, applying DT alone
(FedDUET – UT) provides the necessary architectural stability by resolving inter-client heterogeneity,
leading to significant gains; however, it does not directly address sample-level intra-client instability.
The full FedDUET model, which combines both components, achieves the best performance across
all datasets. Together, these results validate our design: DT first resolves inter-client heterogeneity,
thereby enabling UT to effectively mitigate intra-client instability.

6 CONCLUSION

We addressed the dual challenges of intra-client instability and inter-client heterogeneity in multi-
modal federated health sensing. We introduced FedDUET, a framework that integrates a Decoupled
Training (DT) architecture with an Uncertainty-as-Temperature (UT) loss to jointly ensure robust
generalization and reliable personalization. Through principled simulation and extensive evaluation
across multiple real-world datasets, we demonstrated that FedDUET consistently outperforms strong
baselines under diverse and realistic missingness regimes. Beyond empirical gains, our findings
establish that decoupling shared and private components while explicitly modeling uncertainty are
key principles for building the next generation of federated learning systems capable of handling
the complexities of multimodal sensing in the wild. We outline our limitations and provide further
discussions in Appendix G.
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ETHICS STATEMENT

We have used publicly available multimodal health sensing datasets in our experiments. There are no
ethical issues with this paper.

REPRODUCIBILITY STATEMENT

We have provided the complete pseudocode of FedDUET in Algorithm 1. Experimental and imple-
mentation details are included in Appendix E.

USAGE OF LARGE LANGUAGE MODELS

Large Language Models (LLM)s were used in enhancing writing quality of the manuscript through
grammar correction and structural sentence reorganization.
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FedDUET: Bridging Modality Gaps with
Decoupled Uncertainty-Enhanced Training

Appendix

A ALGORITHM

Algorithm 1 FedDUET: Decoupled Uncertainty-Enhanced Training

1: Server input: Initial shared parameters θ0G, global rounds T , client selection rate C.
2: Client k’s input: Local dataset Dk, local epochs E, learning rate η.

3: for t← 0 to T − 1 do
4: Sample a client subset St.
5: Communicate θtG to all clients k ∈ St.
6: for each client k ∈ St in parallel do
7: // Client-Side Local Training //
8: Initialize private head θP,k if not exists; Set local model θG,k ← θtG.
9: for e← 1 to E do

10: for each batch (x, y) ∈ Dk do
11: zG, {zm, sm},hf ← ForwardShared(θG,k, x).
12: σm ← exp(sm/2) for each modality m = 1, . . . ,M .
13: LG ← CE(zG, y) + 1

M

∑M
m=1 LUT(xm, σm, y). ▷ Equation 6

14: θG,k ← θG,k − η∇θG,k
LG.

15: zP,k ← ForwardPrivate(θP,k, detach(hf )).
16: Fuse {σm} into a multimodal uncertainty σf .
17: LP,k ← LmUT(x, σf , y). ▷ Equation 7
18: θP,k ← θP,k − η∇θP,k

LP,k.
19: end for
20: end for
21: Communicate updated shared parameters θG,k to the server.
22: end for
23: // Server-Side Aggregation //
24: Partition each θG,k into unimodal {θuni,m

G,k }Mm=1 and multimodal θmulti
G,k parts.

25: for each modality m ∈ {1, . . . ,M} do
26: θ̄uni,m

G ←
∑

k∈St
wm

k θuni,m
G,k , where wm

k ∝ |Dk,m|.
27: θuni,m,t+1

G ← (1− rm)θuni,m,t
G + rmθ̄uni,m

G .
28: end for
29: θmulti,t+1

G ←
∑

k∈St
wkθ

multi
G,k , where wk ∝ |Dk|.

30: end for

31: Server output: Final shared parameters θTG.
32: Client k’s output: Personalized head parameters θP,k.

The complete FedDUET framework, which integrates the Uncertainty-as-Temperature loss within
our Decoupled Training strategy, is detailed in Algorithm 1. The process unfolds over multiple
communication rounds coordinated by a central server. In each round, selected clients receive the
current shared model components (θG). During local training, each client updates these shared
components using the LG objective, learning generalized representations that are robust to intra-client
modality instability. Concurrently, each client’s private head (θP,k) is updated using the LP,k objective
to specialize for the client’s unique modality set, with gradients detached to preserve the integrity of
the shared model. Finally, the server aggregates the updated shared parameters from all clients.

To enhance stability, this aggregation is performed in a partitioned manner: unimodal components
are updated using a modality-weighted Exponential Moving Average (EMA), while the remaining
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multimodal components are aggregated using standard Federated Averaging. Note that a standard
EMA smoothing for unimodal encoder parameters is applied uniformly for all baselines for stability.
This process produces a robust global model along with specialized private heads tailored to each
client’s data. During training, we keep the learning objectives for the shared and personal components
decoupled; the personal head is trained to directly specialize on the client’s data using the shared
features, without being influenced by the global model’s classification output. At inference time,
however, the logits from the generalist global model and the specialist personal head are ensembled
via summation, combining their complementary knowledge to produce a more robust and accurate
final prediction.

B RELATED WORK

Federated learning in health sensing. Federated Learning (FL) (McMahan et al., 2017) offers a
compelling solution for data-sensitive domains such as healthcare (Antunes et al., 2022; Dang et al.,
2022), enabling training on decentralized data without compromising privacy. FL has been applied to
diverse healthcare sensing tasks, including medical image segmentation (Liu et al., 2021), human
activity recognition (Ouyang et al., 2021), and mortality prediction (Vaid et al., 2021). However, many
of these applications operate under the simplifying assumption that clients possess homogeneous
sensor infrastructures and complete modality sets. This assumption is misaligned with real-world
deployments, where modality heterogeneity is pervasive due to variations in device ownership and
intermittent sensor failures. Importantly, this heterogeneity is not simply another instance of statistical
non-IID data, but a structural challenge spanning two distinct axes: intra-client modality instability
and inter-client modality heterogeneity. To address this gap, we introduce a principled simulation
framework in Section 2 that formalizes and realistically models both challenges.

Federated learning with multimodal and missing data. Work on multimodal FL under missing
modalities spans both benchmarks and algorithms, but most evaluations simplify modality missingness
and heterogeneity. FedMultimodal (Feng et al., 2023) standardizes tasks and robustness tests, yet
models modality availability with a per-modality Bernoulli process at a uniform rate, omitting the
temporal burstiness of real sensing streams. Methods designed for non-IID data, such as FedProx (Li
et al., 2020) and MOON (Li et al., 2021), improve robustness to distribution shifts but are modality-
agnostic and do not address sample-level absence. Personalization approaches based on global–private
decoupling (Arivazhagan et al., 2019) or representation decoupling (Chen & Chao, 2022) handle
cross-client variation but generally assume complete inputs at each step. Methods tailored to
missing modalities, such as (Bao et al., 2023), compensate with priors or surrogates, masking absent
representations with learned prototypes to provide global prior information. Reconstruction-based
methods (Wang et al., 2024; Zheng et al., 2023) instead synthesize absent inputs or features, but result
in huge computation and communication costs. In contrast, our framework explicitly targets both
axes of heterogeneity by (i) tempering logits with uncertainty to down-weight unreliable, partially
observed samples, and (ii) decoupling shared representation learning from client-specific heads
guided by uncertainty, thereby avoiding reconstruction and public-data reliance while remaining
effective under realistic missingness dynamics.

Uncertainty estimation in deep learning. Uncertainty estimation in deep learning has been
extensively studied and is commonly categorized into epistemic and aleatoric uncertainty. Epistemic
uncertainty, which reflects the model’s ignorance about its parameters, is often is addressed at
inference time through techniques such as Monte Carlo dropout or deep ensembles (Kendall & Gal,
2017). Aleatoric uncertainty, which accounts for inherent noise and ambiguity in the data, is typically
modeled by predicting an input-dependent variance alongside the primary output. This variance
is then used to down-weight noisy or ambiguous samples, a strategy that has proven effective in
regression tasks (Kendall & Gal, 2017) and was later extended to classification for mitigating label
noise (Collier et al., 2021; Englesson et al., 2023). In time-series applications such as sensing data,
uncertainty modeling has also been applied to imputation for missing values (Kim et al., 2023),
but imputers are often inefficient and risk introducing bias. Motivated by the information-theoretic
principle that missing data increases posterior entropy (H(Y |Xobserved) ≥ H(Y |Xcomplete)), we
instead use aleatoric uncertainty as an input-dependent temperature to directly calibrate the model’s
predictive distribution. For intra-client instability, the learned temperature stabilizes local training by
modulating gradients for dropout-affected samples. For inter-client heterogeneity, the shared model
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learns robust representations together with their associated uncertainty estimates. This uncertainty
signal guides the personalization of private heads, enabling them to specialize effectively without
corrupting the generalizable shared model. As a result, personalization becomes both modality-aware
and reliability-calibrated.

C PROOF OF ENTROPY UNDER MISSINGNESS

Proposition. Let the complete data sample Xc = (Xo, Xm), consist of observed Xo and missing
Xm parts. Then, in expectation, the entropy of the true posterior with missing inputs is greater than
or equal to complete inputs:

H(Y | Xo) ≥ H(Y | Xc).

Proof. When Xm is missing, the posterior marginalizes over its possible values:

p(y | Xo) =

∫
p(y | Xo, xm) p(xm | Xo) dxm.

This forms a mixture distribution over the complete data posteriors p(y | Xo, xm).

The Shannon entropy H(·) is concave. By Jensen’s inequality, the entropy of a mixture distribution
is greater than or equal to the expectation of the entropies of its components.

H

(∑
i

πiPi

)
≥

∑
i

πiH(Pi).

Applying this property to the missing data case yields

H
(
p(y | Xo)

)
≥ EXm|Xo

[
H
(
p(y | Xo, Xm)

)]
.

Finally, taking expectation with respect to Xo gives the conditional entropy inequality

H(Y | Xo) ≥ H(Y | Xo, Xm) = H(Y | Xc).

Therefore, the expected entropy of the posterior under missingness is greater than or equal to that
with complete information. □

D DETAILS ON MODALITY HETEROGENEITY SIMULATIONS

Table 3: Core properties of the datasets and task setup.

Dataset Sampling Rate (Hz) Window Length
PAMAP2 100 200 (2.0s)
RealWorld-HAR 50 150 (3.0s)
Sleep-EDF 100 3000 (30.0s)

D.1 SIMULATION HYPERPARAMETERS

This section details the specific hyperparameter configurations used to generate the simulated datasets
for our experiments. The inherent properties of each dataset, including sampling rate and the
classification window size, are listed in Table 3.

The simulation parameters are detailed in Table 4. For Inter-Client Modality Heterogeneity, the
parameters of the Beta(αa, βa) distribution are kept consistent across datasets. For Intra-Client
Modality Instability, we define the expected burst length for operational and missing states, thereby
directly modeling realistic sensor failure scenarios.

The underlying Markov chain transition probabilities, p11 (present-to-present) and p00 (missing-to-
missing), are from these expected durations. The probability of remaining in a state is calculated as
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Table 4: Hyperparameter configurations for simulating inter-client heterogeneity and intra-client
instability.

Inter-Client Heterogeneity Parameters
Level Description Beta(αa, βa)
Homogeneous All modalities are available. N/A
Moderate Moderate modality variation. Beta(45, 20)
Severe High modality variation. Beta(45, 45)

Intra-Client Instability Parameters
Dataset Level Exp. Operational Exp. Missing

Burst (seconds) Burst (seconds)

PAMAP2 Moderate 100s ∼33s
Severe 100s 100s

RealWorldHAR Moderate 200s ∼67s
Severe 200s 200s

Sleep-EDF Moderate 1000s (∼17m) 500s (∼8m)
Severe 1000s (∼17m) 1000s (∼17m)

p = 1− (1/L), where L is the target expected burst length in time steps (L = duration in seconds×
sampling rate). For example, for PAMAP2, an expected 100-second operational burst corresponds
to L = 100s× 100Hz = 10, 000 steps, yielding a transition probability of p11 = 1− 1/10, 000 =
0.9999.

D.2 SIMULATION EXAMPLES ACROSS CLIENTS

Figure 7 illustrates representative examples of simulated missingness patterns across 12 clients on
RealWorld-HAR dataset under our proposed framework. Two key properties can be observed.

Diversity under inter-client heterogeneity. Even within the same inter-client heterogeneity level
(i.e., using identical (αa, βa) values for the Beta prior), the set of available modalities differs across
clients due to the stochastic sampling process. For example, client index 1 exhibits 5 unavailable
modalities, whereas client index 4 has only 1 unavailable modality. This variability faithfully reflects
realistic deployment scenarios, where individuals may own heterogeneous device configurations with
different sensor types and counts.

Bursty instability under intra-client dynamics. In addition, the Markov-chain design for intra-client
instability introduces temporal burstiness in sensor stability, resulting in partially missing segments of
varying lengths across clients and time. Importantly, the simulated patterns qualitatively resemble the
real-world missingness observed in the Opportunity dataset (Roggen et al., 2010) (shown Figure 6),
where modalities exhibit intermittent, bursty dropouts rather than independent random noise. This
alignment highlights that our simulation not only models the static diversity of sensor ownership but
also captures realistic temporal instability of sensing streams.

E EXPERIMENT DETAILS

E.1 DATASETS

We use the following real-world multimodal health sensing datasets in our experiments:
PAMAP2 (Reiss & Stricker, 2012), RealWorld HAR (Sztyler & Stuckenschmidt, 2016), and Sleep-
EDF (Goldberger et al., 2000; Kemp et al., 2000).

PAMAP2 (Reiss & Stricker, 2012) consists of recordings from nine users performing twelve activities
using wearable Inertial Measurement Unit (IMU) sensors. Following prior work (Jain et al., 2022), we

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0
1
2
3
4
5
6
7
8
9

M
od

al
ity

 in
de

x
Client index: 1 Client index: 2 Client index: 3 Client index: 4

0
1
2
3
4
5
6
7
8
9

M
od

al
ity

 in
de

x

Client index: 5 Client index: 6 Client index: 7 Client index: 8

Time
0
1
2
3
4
5
6
7
8
9

M
od

al
ity

 in
de

x

Client index: 9

Time

Client index: 10

Time

Client index: 11

Time

Client index: 12

Present Simulated missingness

Figure 7: Missing patterns of 12 clients in the RealWorld-HAR dataset under moderate inter-client
heterogeneity and intra-client stability.

exclude one subject who contributed data for only a single activity. The dataset provides accelerometer
and gyroscope signals from three body locations: wrist, chest, and ankle, yielding six sensing
modalities in total.

Sleep-EDF (Goldberger et al., 2000; Kemp et al., 2000) contains sleep recordings from 20 participants,
including electroencephalography (EEG), electrooculography (EOG), chin electromyography (EMG),
Respiration, and event markers. Each recording is annotated with hypnograms containing five sleep
stages. Following prior work (Tsinalis et al., 2016; Phan et al., 2018), we utilize the Sleep Cassette
subset, which focuses on age-related sleep patterns in healthy individuals.

RealWorld-HAR (Sztyler & Stuckenschmidt, 2016) consists of activity recordings from fifteen
participants performing eight daily activities. Data were collected with seven body-worn IMU sensors,
two of which were discarded due to limited activity coverage. The final dataset comprises signals
from ten modalities, spanning five body locations and two IMU sensor types.

E.2 BASELINES

FedAvg (McMahan et al., 2017) represents the foundational approach to FL, enabling decentralized
training without sharing raw data. As a baseline framework, FedAvg is crucial for assessing the
lowest achievable accuracy, especially in scenarios lacking specific mechanisms to address missing
modalities.

FedProx (Li et al., 2020) was proposed to address system and statistical heterogeneity. It enhances
performance by adding a proximal term to the local training loss, penalizing deviations between local
and global models to improve stability and convergence.

MOON (Li et al., 2021) targets the problem of local data heterogeneity. It incorporates contrastive
learning into federated learning, encouraging alignment between the global and local models’ em-
beddings while pushing apart embeddings from the client’s previous local model. MOON has
demonstrated strong performance across multiple image classification benchmarks, establishing its
effectiveness under non-IID conditions.
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FedPer (Arivazhagan et al., 2019) addresses statistical heterogeneity by splitting models into shared
base layers and client-specific personalization layers. The base layers are trained collaboratively
across clients using FedAvg, while the personalization layers are updated only with local data. FedPer
improves robustness compared to FedAvg when faced with heterogeneous client distributions.

FedRoD (Chen & Chao, 2022) bridges generic and personalized federated learning. It decouples the
local model into two predictors: a generic head trained with balanced risk minimization to improve
robustness against non-IID class distributions, and a personalized head trained with empirical risk
minimization to capture client-specific patterns. Fed-RoD consistently outperforms prior approaches
under heterogeneous data conditions.

PmcmFL (Bao et al., 2023) introduces a prototype library to address the challenges of missing
modalities in federated multimodal learning. Prototypes are used both as masks for absent modalities
and as anchors in a contrastive loss to reduce client heterogeneity. This design alleviates task drift and
improves robustness, achieving state-of-the-art performance under diverse missing-modality settings.

E.3 DETAILS OF LEARNING SETUP

Table 5: Hyperparameter configurations for all experiments.

Method Hyperparameter PAMAP2 RealWorld-HAR Sleep-EDF

FedAvg Learning Rate 0.001 0.03 0.03

FedPer Learning Rate 0.001 0.03 0.001

FedProx Learning Rate 0.001 0.03 0.01
Proximal Term (µprox) 0.1 0.01 0.01

MOON
Learning Rate 0.001 0.03 0.03
Contrastive Weight (µcontrast) 10 0.1 10
Temperature (τ ) 0.5 0.5 1.0

PmcmFL Learning Rate 0.001 0.03 0.001
CLIP Loss Weight 0.1 0.01 0.5

FedRoD Learning Rate 0.001 0.03 0.01

FedDUET Learning Rate 0.001 0.001 0.001

Details on learning setup. Table 5 lists the tuned hyperparameters for each method and dataset. For
all datasets, we sweep the learning rate over {0.001, 0.01, 0.03, 0.05}. For FedProx (Li et al., 2020),
we tune the proximal coefficient µprox ∈ {0.001, 0.01, 0.1, 0.5, 1}. For MOON (Li et al., 2021),
we tune the contrastive weight µcontrast ∈ {0.1, 1, 5, 10} and the temperature τ ∈ {0.1, 0.5, 1}. For
PmcmFL (Bao et al., 2023), we tune the CLIP loss weight over {0.01, 0.1, 0.5, 1.0, 5.0}.
For model selection, we employ a validation-based approach, which is tailored to the objective of
the target method. For standard federated learning methods like FedAvg and FedProx, we adopt a
global model selection policy. The server identifies the single global model that achieves the highest
average F1-score across all clients’ validation sets, and this globally best model is used for the final
test evaluation. In contrast, for personalized methods such as FedPer, FedRoD, and our proposed
FedDUET, we use a local model selection strategy. Each client independently tracks and saves the
state of its own personalized model that performs best on its local validation data. Consequently, the
final test performance is reported using each client’s individually selected best model, aligning the
evaluation with the goal of personalization.

E.4 DETAILS OF EVALUATION ON NATURALLY MISSING DATA.

We use the Opportunity dataset (Roggen et al., 2010), a multivariate time-series dataset collected
for human activity recognition using wearable, object, and ambient sensors. It includes five runs per
subject of daily activities (ADL runs) in natural settings, alongside a drill run. For our evaluation, we
focus on the ADL runs and use four coarse activity labels: Stand, Walk, Sit, and Lie.
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From the full suite of sensors, we used seven body-worn inertial measurement units (IMUs): Ac-
celerometer RKN∧ (Right Knee, Up), HIP (Hip), LUA∧ (Left Upper Arm, Up), RUA (Right Lower
Arm, Up), LH (Left Hand), BACK (Back), and RKN (Right Knee). Each accelerometer provides
tri-axial measurements (x, y, z), resulting in 21 feature columns in total. The dataset is partitioned
into four clients, with a client selection rate of 100%. The sampling rate is 32 Hz. In total, we
obtain 13,537,335 recorded values, among which 1,081,770 entries are missing, corresponding to
approximately 8% missingness overall.

F ADDITIONAL EXPERIMENT RESULTS

F.1 EFFECTIVENESS OF THE UNCERTAINTY-AS-TEMPERATURE LOSS

PAMAP2 Sleep-EDF RealWorld-HAR
Dataset
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Figure 8: F1-score improvements achieved by replacing cross-entropy loss with the proposed
Uncertainty-as-Temperature (UT) loss in a centralized setting. Results are averaged over unimodal
experiments on three datasets (PAMAP2, RealWorld-HAR, and Sleep-EDF) under varying levels
of modality instability. Performance gains from UT become increasingly pronounced as modality
instability worsens.

To assess the effectiveness of our proposed Uncertainty-as-Temperature (UT) loss, we conduct
experiments in a centralized setting. Specifically, we replace the standard cross-entropy loss with
UT loss and evaluate improvements in F1-score across unimodal settings. Figure 8 reports the
average improvements on PAMAP2, Sleep-EDF, and RealWorld-HAR under two levels of modality
instability.

Across all datasets, UT consistently improves performance over cross-entropy. The gains become
increasingly significant as instability worsens. For example, PAMAP2 and RealWorld-HAR achieve
improvements exceeding 1.5% in the severe setting. These results validate our theoretical motivation:
UT calibrates predictive distributions by adjusting their entropy with a learned temperature, thereby
better matching the true posterior under missing modalities. Its benefits are most pronounced when
modality instability is severe.

F.2 PER-CLIENT CORRELATION ANALYSIS

Table 6 reports the per-client Spearman correlation between multimodal uncertainty (σf ) and model
performance across the three datasets. Excluding non-significant cases, nearly all clients show
statistically significant negative correlations, except c1 in RealWorld-HAR and c12 in Sleep-EDF.
This confirms that, for the majority of clients, higher predicted uncertainty reliably corresponds
to lower model performance, reinforcing our key finding that uncertainty estimation in FedDUET
provides an effective measure of client-level data reliability.
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Table 6: Per-client correlation results between predicted multimodal uncertainty (σf ) and model
performance (F1-score) across three datasets: PAMAP2, RealWorld-HAR, and Sleep-EDF. The table
reports Spearman correlation coefficients (ρ) along with their statistical significance levels.

(a) PAMAP2

Client ρ Significance

c1 -0.565 p < 0.01∗∗∗

c2 -0.819 p < 0.001∗∗∗∗

c3 -0.503 p < 0.01∗∗

c4 -0.326 n.s.
c5 -0.563 p < 0.01∗∗∗

c6 -0.738 p < 0.001∗∗∗∗

c7 -0.477 p < 0.01∗∗

c8 -0.910 p < 0.001∗∗∗∗

(b) RealWorld-HAR

Client ρ Significance

c1 +0.601 p < 0.001∗∗∗

c2 -0.435 p < 0.05∗

c3 +0.204 n.s.
c4 -0.607 p < 0.001∗∗∗

c5 -0.382 p < 0.05∗

c6 +0.048 n.s.
c7 -0.634 p < 0.001∗∗∗

c8 -0.687 p < 0.001∗∗∗∗

c9 -0.806 p < 0.001∗∗∗∗

c10 -0.954 p < 0.001∗∗∗∗

c11 +0.128 n.s.
c12 -0.483 p < 0.01∗∗

c13 -0.366 p < 0.05∗

c14 +0.313 n.s.
c15 -0.552 p < 0.001∗∗∗

(c) Sleep-EDF

Client ρ Significance

c1 -0.894 p < 0.001∗∗∗∗

c2 -0.821 p < 0.001∗∗∗∗

c3 -0.608 p < 0.001∗∗∗

c4 -0.869 p < 0.001∗∗∗∗

c5 -0.078 n.s.
c6 -0.890 p < 0.001∗∗∗∗

c7 -0.595 p < 0.001∗∗∗

c8 -0.287 n.s.
c9 -0.853 p < 0.001∗∗∗∗

c10 -0.689 p < 0.001∗∗∗∗

c11 -0.452 p < 0.05∗

c12 +0.590 p < 0.001∗∗∗

c13 -0.444 p < 0.05∗

c14 -0.336 n.s.
c15 -0.810 p < 0.001∗∗∗∗

c16 -0.953 p < 0.001∗∗∗∗

c17 -0.959 p < 0.001∗∗∗∗

c18 -0.663 p < 0.001∗∗∗∗

c19 -0.777 p < 0.001∗∗∗∗

c20 -0.796 p < 0.001∗∗∗∗

G LIMITATIONS AND DISCUSSIONS

One consideration for the FedDUET framework is the potential system overhead from its additional
components, namely the unimodal Uncertainty Heads and the dual G/P-Heads. While these compo-
nents lead to a slight increase in local computation and communication costs relative to baselines like
FedAvg (McMahan et al., 2017), the impact is minimal. The Uncertainty and private P-Heads are
intentionally designed as lightweight two hidden layer MLPs, ensuring their computational footprint
is negligible. This design choice makes FedDUET far more efficient than alternative methods that
rely on data imputation or feature reconstruction (Zheng et al., 2023), which are notoriously expensive
in both computation and communication. Given the substantial performance improvements from
robustly handling heterogeneity, this modest increase in model complexity is a highly effective
trade-off.

Furthermore, while our work focuses on federated health sensing, the principles of FedDUET are
broadly applicable to any domain involving federated learning on multimodal time-series sensing
data. For instance, our method could be adapted for tasks such as robust autonomous driving (Prakash
et al., 2021), or predictive maintenance in industrial IoT (Zhang et al., 2025). We chose to focus
on the healthcare domain because it is an area where the need for privacy-preserving machine
learning is paramount. These sensitive nature of health data makes Federated Learning not just a
beneficial paradigm but often a necessary one, making it critical application area for developing
robust, real-world solutions.
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