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Abstract—Glomerulus detection is a critical component of re-
nal histopathology assessment, essential for diagnosing glomeru-
lonephritis. To mitigate the increasing workload on pathologists,
AI-assisted diagnostic methods based on high-resolution digi-
tal pathology whole slide images have been developed. How-
ever, these current AI-assisted approaches are limited to high-
resolution whole slide images, necessitating expensive digital
scanner equipment, high image storage costs, and significant
computational complexity. To address this limitation, this paper
pioneers a method for facilitating glomerulus detection in low-
resolution human kidney pathology images. Specifically, we
propose a novel multi-step hybrid knowledge distillation method.
Our method distills both the global features and the semantic
information through a hybrid knowledge distillation strategy
that integrates offline and online knowledge distillation, where
the information from high-resolution pathological images is
successively transferred to student model from the global features
in the shallow network layers to the semantic information of the
back-end through a multi-step training strategy. Experimental
results on two datasets show that the proposed method achieves
effective detection outcomes for low-resolution kidney pathology
images. Compared to other state-of-the-art detection techniques,
our method achieves an AP0.5:0.95 improvement of 23.1% on the
private LN dataset and 15.9% on the public HUBMAP dataset.

Index Terms—glomerulus detection, hybrid knowledge distilla-
tion, low-resolution pathology image, multi-step training strategy

I. INTRODUCTION

Glomerulonephritis is a common and potentially life-
threatening kidney disease primarily affecting the structure and
function of the glomeruli. Pathological diagnosis is the gold
standard for the diagnosis of glomerulonephritis, enabling the
detection of diseased glomeruli and the quantitative assess-
ment of nephritis severity. However, this diagnostic process
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Fig. 1. Examples of different resolutions in the same area. The green box
represents the glomerular region and the yellow box is the non-glomerular
region that appears similar to a glomerulus. In low-resolution pathological
images, the boundary of glomeruli in the green box area is not obvious, and
the yellow box area is easily misjudged as a glomerulus.

necessitates highly skilled pathologists and is labor-intensive,
failing to meet the current demands. In recent years, AI-
assisted diagnosis has been integrated into the detection of
pathological images, providing a potential solution [5], [11],
[12] to reduce the burden on pathologists who must contin-
uously analyze large batches of images. Various methods for
glomerulus detection [2], [3], [4], [30], [31] have demonstrated
commendable diagnostic performance.

However, the current methods have limited application
scenarios. These approaches are developed based on high-
resolution pathological images, necessitating costly scanners
and demanding scanning accuracy. Consequently, they are only
suitable for relatively advanced regions rather than less devel-
oped areas and countries. According to the survey, the price



of automatic digital scanner equipment used to acquire high-
resolution pathology images is generally 20 to 40 times higher
than the price of equipment used to acquire low-resolution
pathology images, or even more. Additionally, the time and
storage costs associated with obtaining high-resolution patho-
logical images are significant. Under these circumstances,
there is a great demand for pathological diagnosis based on
low-resolution pathological images.

Unfortunately, there are great challenges in performing
glomerulus detection based on low-resolution digital images.
Sensitivity to subtle structural changes and color differences
in tissue is a key indicator of a pathologist’s expertise and
is crucial for disease diagnosis. However, such cues are
often lost in low-resolution pathological images. As illustrated
in Fig.1, the comparison between high-resolution and low-
resolution kidney pathology images reveals that glomeruli,
marked by green boxes, have blurred boundaries in low-
resolution images, making them easily overlooked. Addition-
ally, non-glomerular tissues, marked by yellow boxes, are often
confused with glomeruli in low-resolution images due to the
lack of discernible details. The nuclei of mesangial cells and
the thickness of capillaries are critical indicators for assessing
abnormalities, yet this information is difficult to discern in
low-resolution images. Due to the aforementioned issues,
applying low-resolution whole slide images (WSIs) directly
to current detection methods [7], [8], [9], [10] significantly
degrades detection performance compared to high-resolution
WSIs.

To address this problem, this paper proposes a novel multi-
step hybrid knowledge distillation (MHKD) method. The core
concept is to employ knowledge distillation to enhance the stu-
dent model’s capability to extract features from low-resolution
pathological images by transferring information from high-
resolution pathological images in the teacher model to the stu-
dent model. This knowledge distillation process compensates
for the missing details in low-resolution pathological images,
resulting in detection performance that closely approximates
that of high-resolution images. However, due to the specific
nature of pathological input images, conventional knowledge
distillation methods do not achieve optimal results. Firstly, the
high-resolution pathological image information in the teacher
model is crucial for the distillation task, so we need to ensure
the extraction and transfer of high-resolution information at the
forward end, and on this basis to achieve efficient information
transmission at other locations. In addition, different from
natural images, the task-related features and discriminative
small details of kidney pathological images are densely con-
centrated in small local areas, and there is a large information
gap between pathological images of different resolutions. It
is difficult to ensure the effectiveness of critical knowledge
transfer by distillation of multiple positions of the model at
the same time.

Firstly, hybrid knowledge distillation integrates offline dis-
tillation and online distillation to optimize the distillation
performance. Typically, online distillation surpasses offline
distillation, but direct application in our specific task is not

suitable. We discovered that training solely with online distil-
lation would compromise the feature extraction capability of
the teacher model due to difference in input pathological image
resolutions. To address this issue, we exclusively employ
offline distillation in the backbone part of the teacher model.

Secondly, a multi-step training strategy is devised for the
distillation task involving varying resolutions of input patho-
logical images. We divide distillation locations into two main
groups: global features at the shallow network layers and
semantic information at the back-end. Semantic information
includes local features and output. The Basic Feature Adaptive
module has been designed to enhance the adaptability of
basic global features, enabling them to assimilate knowledge
effectively from the teacher network. To sequentially transfer
information from high-resolution pathological images through
basic features, adaptive features, local features, and semantic
information to the student model, we adopt a multi-step
training approach.

Overall, our contributions are summarized as follows:
• To the best of our knowledge, we are the first to propose

the task of glomerulus detection on low-resolution human
kidney pathology images and propose a novel multi-step
hybrid knowledge distillation method for this task.

• To effectively optimize knowledge transfer across differ-
ent resolution inputs, we propose a hybrid knowledge
distillation strategy that integrates both online and offline
approaches. The offline distillation of forward-end global
features ensures the feature extraction ability of the
teacher model, and the online distillation of backward-
end semantic information realizes the real-time guidance
of the teacher model and shortens the distance between
the student model and the teacher model.

• To effectively tackle the issue of insufficient discrimina-
tive information in low-resolution pathological images,
we present a multi-step training strategy. This strategy
sequentially guides distillation from global features to
semantic information, facilitating the systematic transfer
of knowledge from high-resolution pathological images
to the student model.

• For the task of glomerulus detection on low-resolution
digital pathology images of human kidneys, our proposed
method demonstrates superior performance on both a
private LN dataset and the public HUBMAP dataset
compared to the state-of-the-art detection methods.

II. RELATED WORKS

A. Diagnosis of Kidney Disease by Medical Imaging

In recent years, the advancement of computer technology
has led to an increasing number of studies applying computer
technology for the analysis and processing of digital kidney
images. In the diagnosis of renal disease digital images,
according to the source of the image, the diagnostic methods
can be divided into US-based methods, such as [26], CT-based
methods, such as [18], MRI-based methods, such as [27], and
WSI-based methods, such as [4]. The WSI-based approach is



the one to watch due to renal pathology being considered the
gold standard for diagnosing renal diseases. Evidence suggests
that patients who undergo renal biopsy have higher kidney
survival rates compared to those who do not [1].

There are two ways for glomerulus detection of a single
WSI in the WSI-based approach: one is the slider method.
Gal lego et al. [3] proposed a method that slices WSIs into
patches using a fixed-size sliding window approach followed
by patch classification into glomeruli or background using
CNNs. The classifiers in it can be changed according to the
task. The second is localization before classification. Zheng
et al. [4] divided their approach for detecting glomeruli
into two stages: initial localization on low-resolution WSIs
followed by interception of high-resolution local areas based
on this localization for subsequent classification. In addition,
multimodal combination of the above methods is also helpful
for glomerulus detection, such as WSIs with multiple stains.
Yoshimasa Kawazoe et al. [2] employed different dyes for
WSI staining and used a sliding window technique for WSI
detection.

However, these methods all require high-resolution WSIs.
Therefore, we propose a novel task of glomerulus detection
based on low-resolution human kidney digital pathology WSIs
to reduce the dependence on medical resources.

B. Knowledge Distillation

Knowledge distillation, a method often used for model
compression, is an effective technique for transferring knowl-
edge from large-scale teacher models to small-scale student
models. At present, most knowledge distillation is applied
to classification tasks [21], [22]. It was first proposed by
Hinton et al. [21], which uses the output as a soft label to
transfer the dark knowledge from a large teacher network
to a small student network for classification. Recently, sev-
eral works have successfully applied knowledge distillation
to object detection tasks. Chen et al. [23] was the first to
apply knowledge distillation to object detection through the
combination of feature and prediction. Subsequently, region-
specific feature distillation has been proposed, such as Li et al.
[24] proposed a scheme to imitate features within regions in
Faster R-CNN. In addition, with the proposal of Deep Mutual
Learning (DML) [25] and [29], distillation can be divided into
offline distillation and online distillation according to whether
the teacher model updates parameters during the training
process. The main advantage of the offline distillation [14],
[15] is its simplicity and ease of implementation. however,
the disadvantage is that complex high-capacity teacher models
and huge training time cannot be avoided. In online distillation
[16], [17], both the teacher model and the student model are
updated simultaneously. However, existing online approaches
usually fail to address the problem of high-ability teachers in
online Settings. In this paper, we adopt a distillation strategy
combining the two.

III. PROPOSED METHOD

A. Preliminaries

The object detection algorithm for pathological images
employs a two-stage approach, where proposals are extracted
from the feature maps to acquire regions of interest (ROIs),
followed by classification and regression on each ROI. Con-
sequently, the overall loss function for object detection can be
formulated as follows.

Ldetect = Lcls + Lreg, (1)

where Lcls is all classification loss, Lreg is all regression loss.
Considering the strategy of knowledge distillation, the range of
Ldetect needs to be further determined. If the strategy is offline
distillation, Ldetect only contains the loss of student model. If
the strategy is online distillation, Ldetect contains both the loss
of student model and teacher model.

To the best of our knowledge, no prior method has attempted
knowledge distillation for object detection in pathological im-
ages with varying resolutions. Existing approaches to knowl-
edge distillation in object detection tasks typically focus on
selecting information from two locations: features and outputs.
Hence, the formulation of the knowledge distillation loss
function can be expressed as follows.

LKD = Lfea + Lout , (2)

where Lfea is the feature distillation loss of different regions
or layers and Lout is the output distillation loss. The feature
distillation can be further categorized based on the location of
features. Additionally, Lout, also known as the soft loss, is the
loss computed between the output of the teacher model and
the output of the student model.

The overall training loss comprises the detection loss Ldetect

and the knowledge distillation loss LKD, thus can be formu-
lated as follows:

Lall = Ldetect + λKD · LKD, (3)

where λKD is a weight coefficient for knowledge distillation.
In our method, we select information for distillation in two
locations: global feature (basic feature and adaptive feature),
semantic information (local feature and output).

B. Hybrid Knowledge Distillation

The proposed hybrid knowledge distillation method in-
tegrates both offline and online distillation strategies. With
different resolutions of the input pathological images, hybrid
knowledge distillation not only can maintain that the feature
extractor in the input end of the teacher model can efficiently
extract the features of high-resolution pathological images, but
also ensure that the semantic information in the output end gets
real-time guidance from the teacher model, so as to shorten
the gap between the student model and the teacher model.
As show in Fig. 2, our proposed method is divided into two
parts: Global Feature Offline Distillation for the first half and
Semantic Information Online Distillation for the second half.



Fig. 2. Illustration of our proposed method MHKD. The top shows the framework of MHKD and the Hybrid Knowledge Distillation strategy, and the bottom
shows the Multi-step Training Strategy. The orange path represents the teacher model and the blue path represents the student model.

Before inputting images into the network, low-resolution
pathological images undergo upsampling to match the high-
resolution counterparts. This procedure guarantees a consistent
receptive field for the global features extracted by both the
teacher and student models.

1) Global Feature Offline Distillation: The role of global
feature offline distillation module is to transfer the high-
resolution pathological image information from the teacher
model to the student model through distillation at the global
feature level. This process aims to enhance the representation
ability of the global features extracted by the student model
and supplement the discriminative information.

As depicted in Fig. 2, our method employs offline distilla-
tion on the global feature within the global feature offline dis-
tillation module. The global feature represents comprehensive
information extracted by the feature extractor from the input
image, serveing as a fundamental component for all tasks.
Hence, we perform offline knowledge distillation to ensure that
the feature extraction capability of the already trained teacher
model remains unaffected by the student model. By mimicking
the teacher model’s global features fH, our approach enables
the student model to obtain the basic feature fLthat is closer
to the teacher model. Both the basic feature and the adaptive
feature are global features of student model, and the adaptive
feature will be explained in the next section. Although online
distillation typically yields better results with identical inputs,
it is unsuitable for our task at this time due to low-resolution

student inputs that would degrade teacher performance. Con-
sequently, we propose hybrid knowledge distillation which
incorporates offline distillation specifically for global feature
distillation. To elaborate further, we feed the teacher input
IH into the frozen backbone of the teacher model to extract
high-quality global features fH ∈ Rw×h×d. Simultaneously,
we pass an up-sampled version of student input IL through
the student model’s backbone to obtain corresponding global
features fL ∈ Rw×h×d. To guide pixel-level mimicry between
student’s global feature fL and its approximation towards fH,
we employ the mean square error (MSE) loss as our chosen
distillation loss function.

Lbasic =
1

N

N∑
n=1

(fH,n − fL,n), N = w × h× d (4)

2) Semantic Information Online Distillation: In the se-
mantic information online distillation phase, we optimize the
local features based on the proposals provided by RPN and
optimize the final output. The local features, referred to as ROI
features, represent the suspected target regions. Specifically,
both teacher and student models predict proposals: ProposalH
and ProposalL, respectively. The teacher model generates a
series of ROI features fH,H using fH and ProposalH , which
are then used to predict OT. Similarly, the student model gen-
erates a series of ROI features fL,L using fL and ProposalL,
which are utilized for predicting OS. To ensure that the local
features of the student model imitate the target features within



the same regions, we employ identical coordinates for region
selection. The teacher model generates a series of fH,L based
on fH and ProposalL, which represent the proposals from the
student model. Subsequently, pixel-wise MSE loss is utilized
to compute the losses between fH,L and fL,L.

Llocal =
1

M

M∑
m=1

(fmH,L − fmL,L) (5)

where M is the number of pixels in each ROI feature.
In addition to local feature distillation, we also introduce

distillation to guide the student model to produce more accu-
rate predictions at the final prediction output. In this method,
the teacher’s output OT is transformed into the same data
format as the ground truth (GT), replacing the role of GT
in normal training. This enables the student model to learn
from the teacher’s predictions directly. In the semantic online
distillation part, we introduce two distillations, one for local
features and another for the output. These locations contain
valuable semantic information that is closely related to the
final prediction. By adopting the online distillation strategy
close to the output, the teacher model can better explore
the relationship between teachers and students, realize real-
time guidance, effectively reduce the gap between the teacher
and student models, and improve the performance of the
student model. Consequently, our proposed hybrid knowledge
distillation method seamlessly integrates offline and online
approaches while incorporating global feature extraction, local
feature extraction, and output-based distillations.

C. Multi-Step Training Strategy

To improve the distillation effect, we divide the training
into four steps: basic feature offline distillation, adaptive
feature offline distillation, local feature online distillation, and
sematic information online distillation. The reason is that
progressive distillation training can effectively ensure that the
high-resolution pathological image information in the teacher
model can be gradually transferred to the student model.

1) Concrete Steps: The hybrid knowledge distillation
method we mentioned earlier divides the whole framework
into two parts. In the global feature offline distillation part,
the performance of the teacher model is not degraded. The
semantic online distillation part can effectively reduce the gap
between the teacher model and the student model.

However, in the global feature offline distillation part, there
is still a certain gap between global feature fL and fH
after direct distillation due to significant information gaps.
Therefore, we introduce adaptive feature offline distillation
to divide the global feature offline distillation into two steps:
basic feature offline distillation and adaptive feature offline
distillation. Specifically, we distilled the basic feature fL and
then performed adaptive transformation to obtain f ′L, and then
distilled it again. Consequently, the global features of the
student model are adaptively enhanced and the information
transfer from the teacher model is obtained twice respectively.
The global features obtained by the student model exhibit a

higher degree of proximity to those acquired by the teacher
model.

Specifically, in basic feature offline distillation, the teacher
model is frozen and the student model is trained, and the loss
includes the detection loss and the global feature distillation
loss. In adaptive feature offline distillation, the teacher model
is frozen and the student model is trained, and the loss
includes detection loss and global feature distillation loss. A
new module, Basic Feature Adaptive, is introduced to generate
adaptive global features in student model. In semantic feature
online distillation, the feature extractor of the teacher model
is frozen, the rest of the teacher model is trained, and the
student model is trained. the loss includes detection loss and
local feature distillation loss. In semantic information online
distillation, the feature extractor of the teacher model is frozen,
the rest of the teacher model is trained, and the student model
is trained. And the loss includes detection loss, local feature
distillation loss, and output loss.

2) Basic Feature Adaptive Module: To reduce the gap
between the global features of the student model and the
global features of the teacher model, we introduce the Basic
Feature Adaptive (BFA) module after the extracted global
features fL to obtain better global features. Considering that
the discrepancy between the teacher and student models lies
in their input image resolutions, our BFA module is modified
based on SRResnet [28], with adjustments made to parameters
such as channel numbers and scaling factors.

The SRResNet model is a deep learning architecture de-
signed for image super-resolution tasks. It utilizes residual
connections and convolutional neural networks (CNN) to
achieve high-quality upscaling of low-resolution images, en-
hancing image details and clarity. By employing sub-pixel
convolution, the model effectively addresses the challenge
of increasing image size without compromising pixel den-
sity. Therefore, as a feature adaptive module based on this
modification, we can better enrich the global feature of low-
resolution images.

IV. EXPERIMENT RESULTS

A. Dataset

To facilitate the exploration of the role of knowledge
distillation for detection tasks on low-resolution pathological
images, the dataset is downsampled so that WSIs can be
directly used as input to the network in this paper.

1) LN Dataset: The LN dataset contains 349 kidney biopsy
WSIs from 163 patients, collected between 2011 and 2019,
with varied ages, genders, and degrees of lupus nephritis.
This dataset is focused on lupus nephritis and can be utilized
for glomerulus detection and the diagnosis of lupus nephritis.
Glomeruli were classified into five categories: ’Slight’, ’Se-
vere’, ’Fibrosis’, ’Incomplete’, and ’Uncertain’.

The data were obtained from the Chinese Systemic Lupus
Erythematosus (SLE) Cohort database of Xijing Hospital and
were approved by the Institutional Review Board of the Ethics
Committee of Xijing Hospital (KY20223382-1) for this study.



2) HuBMAP Dataset: The HuBMAP dataset [32] is a
public dataset. The HuBMAP data used in this hackathon
includes 11 fresh frozen and 9 Formalin Fixed Paraffin Em-
bedded (FFPE) PAS kidney images. Glomeruli segmentation
annotations exist for 15 tissue samples. Each sample is large
in size and includes a substantial number of glomeruli. In this
paper we divided it into 171 pathological digital imagesd for
one-class glomerular detection only.

B. Setting

We utilized a Linux server equipped with a single NVIDIA
GeForce RTX 3090 to construct the trained model for
glomerulus detection. The high-resolution branch, serving as
the teacher model, was pre-trained and its backbone was
frozen. Conversely, the low-resolution branch, acting as the
student model, was not pre-trained. In order to facilitate the
exploration of ways to improve the input of low-resolution
images, we down sampled the input images. For LN dataset,
we set the input size of the high-resolution branch to 768 ×
2304 pixels while maintaining a resolution of 256 × 768 pixels
for the low-resolution branch. For HUBMAP dataset, we set
the input size of the high-resolution branch to 1024 × 1024
pixels while maintaining a resolution of 256 × 256 pixels for
the low-resolution branch. The initial learning rate was set at 1
×10−3, and every five epochs witnessed a decrease in learning
rate by a factor of 0.1. The batch size is assigned as 1 to save
memory. Except in the last step of multi-step training, where
λdetect is set to 0.9 and λlocal and λout are set to 0.1, in the
other steps, λdetect, λbasic, λBFA and λlocal are set to 1.

C. Compare With SOTA Methods

In this section, we compare the performance of our proposed
low-resolution branch network of multi-step hybrid knowledge
distillation with several state-of-the-art detection methods,
including Hui Y, et al.(Faster RCNN), Hui Y, et al.(Cascade
RCNN), FCOS, ATSS, DAB-DETR, and DINO. All these
methods trained with high-resolution input and up sample the
low-resolution input during inference to match the size of
the high-resolution input. These detection methods encompass
both one-stage and two-stage detection approaches as well
as CNN and transformer-based detectors. Fig. 3 presents a
subset of the obtained detection results. We can conclude that
MHKD outperforms these state-of-the-art methods through the
qualitative analysis of Fig. 3.

As shown in Table I, our baseline approach with single-step
offline distillation performs outperforms Hui Y, et al., Hui Y,
et al., FCOS, ATSS, DAP-DETR, and DINO on LN dataset.
The student method of MHKD outperforms the baseline and
the direct detection methods on the low-resolution images.
The mean average precision AP0.5:0.95 achieves an 23.1%
improvement compared with the direct detection methods and
15.5% improvement compared with the baseline. While the
MHKD method has higher complexity in terms of parameters,
its inference time remains competitive with baseline methods
and fully meets the clinical needs.

As shown in Table II, our baseline approach also out-
performs Hui Y, et al., Hui Y, et al., FCOS, ATSS, DAP-
DETR, and DINO on HUBMAP dataset. At the same time,
the student method of MHKD achieves an improvement of
15.9% compared with the direct detection methods and 3.5%
compared with baseline in the metric AP0.5:0.95.

This shows that MHKD makes the student model effectively
learn information from high-resolution branches, enabling it
to extract more representative features from low-resolution
inputs.

D. Ablation Experiments

In this section, we analyze the effect of each component in
our method on LN dataset.

1) Advantages of Basic Feature Adaptive Module: We
adapt a multi-step hybrid knowledge distillation training strat-
egy, which conducts three-step distillation training (basic fea-
tures, local features, semantic information) and four-step distil-
lation training (basic features, adaptive features, local features,
semantic information) for whether BFA is added or not. The
Table III shows the influence of the Basic Feature Adaptive
module on low resolution branch detection performance. The
addition of the BFA module and the distillation of adaptive
features improved the AP0.5:0.95 by 6.8%, It is proved that
the BFA module greatly improves the detection performance
of low-resolution pathological images.

2) Advantages of Hybrid Knowledge Distillation Strategy:
Online knowledge distillation and offline knowledge distil-
lation are common knowledge distillation strategies. Here
we compare our proposed hybrid knowledge distillation with
online distillation and offline distillation on the basis of
adding BFA and maintaining the multi-step distillation training
strategy. As shown in Table IV, the detection performance
of hybrid knowledge distillation is better than that of online
distillation and offline distillation in all metrics. It can be
seen that hybrid knowledge distillation plays a key role in
our method.

3) Advantages of Multi-Step Training Strategy: Table V
presents the detection results for different distilled locations.
We perform knowledge distillation at the three locations of
basic features, local features, and final output respectively,
showing better results than no knowledge distillation, proving
that knowledge distillation at all three locations is effective.

The training strategy is determined based on the distilla-
tion information partition. In single-step training strategy, we
perform online distillation of multiple locations simultane-
ously. In double-step training strategy, in the first step, we
perform offline distillation of global features (basic features
and adaptive global features), and in the second step, we
perform online distillation of semantic information. In four-
step training strategy, that is, our proposed MHKD method. As
shown in Table VI, the detection performance is significantly
improved with the increase of the number of steps. This proves
that even if the distillation is performed at all four locations,
the training step by step is more effective to improve the
detection performance of low-resolution pathological images.



Fig. 3. Visualization of the results of the various methods. The red boxes are false positives and the yellow boxes are false negatives.

TABLE I
PERFORMANCE OF DIFFERENT DETECTION METHODS ON LN DATASET.

Method AP0.5:0.95 AP0.5 AP0.75 AR0.5:0.95 APSlight APSevere APFibrosis APIncomplete APUncertain Params T ime
FCOS [9] 25.2% 39.9% 29.1% 43.3% 45.7% 37.4% 13.2% 18.7% 10.8% 50.79M 24.78s
ATSS [10] 29.9% 44.4% 34.9% 52.2% 53.6% 42.7% 15.9% 23.6% 13.8% 50.89M 24.49s
DAB-DETR [19] 29.1% 42.8% 34.7% 61.3% 60.5% 48.7% 7.1% 22.2% 6.9% 62.59M 2.22s
DINO [20] 32.7% 47.2% 38.8% 66.1% 62.1% 49% 15.7% 27.3% 9.3% 66.44M 2.19s
Hui Y, et al. [6] 22.3% 31.5% 27.5% 34.2% 39.8% 31.8% 8.8% 18.3% 12.8% 60.14M 22.84s
Hui Y, et al. [13] 24.3% 33.9% 28.6% 34.9% 42.6% 33.3% 10.6% 21.9% 13.4% 87.93M 24.41s
Baseline(KD) 40.3% 60.6% 47.7% 55.7% 63.6% 47.1% 37.1% 37.6% 16.0% 47.33M 6.27s
MHKD 55.8% 76.9% 68.8% 63.8% 69.5% 54.8% 52.6% 55.0% 46.9% 311.60M 6.54s
Here for comparison, all methods are trained on high-resolution pathology images, and the low-resolution input is up sampled during inference to align
with the high-resolution input. Baseline(KD) is the baseline we propose for this novel task. In the baseline, the strategy is to perform a single-step offline
knowledge distillation on basic feature, local feature, and output simultaneously. MHKD is the method we proposed for this novel task. In our method,
the strategy is to perform hybrid knowledge distillation in four steps. The distillation locations of the four steps are the basic feature, the adaptive feature,
the local feature, and the semantic information. Here, Time is the inference time.

TABLE II
PERFORMANCE OF DIFFERENT DETECTION METHODS ON HUBMAP

DATASET.

Method AP0.5:0.95 AP0.5 AP0.75 AR0.5:0.95

FCOS [9] 11.7% 39.2% 3.7% 24.3%
ATSS [10] 12.5% 41.8% 3.6% 20.1%
DAB-DETR [19] 19.4% 37.4% 17.1% 26.6%
DINO [20] 23.4% 41.5% 22.6% 39.5%
Hui Y, et al. [6] 11.4% 24.5% 8.6% 13.1%
Hui Y, et al. [13] 10.4% 19.7% 9.4% 11.6%
Baseline(KD) 35.8% 76.9% 25.8% 44.9%
MHKD 39.3% 80% 31.5% 46%

TABLE III
INFLUENCE OF THE BASIC FEATURE ADAPTIVE MODULE ON

LOW-RESOLUTION BRANCH DETECTION PERFORMANCE.

BFA AP0.5:0.95 AP0.5 AP0.75 AR0.5:0.95

✕ 49.0% 70.5% 60.6% 59.3%
✓ 55.8% 76.9% 68.8% 63.8%
Here ✕ indicates that the model utilizes the MHKD on basic feature, local
feature, and semantic information (local feature and output) without the Basic
Feature Adaptive module and adaptive global feature. Here, ✓ means adding
the Basic Feature Adaptive module to ✕ and adding a step of distillation of
adaptive features after basic feature distillation.

TABLE IV
INFLUENCE OF DIFFERENT KNOWLEDGE DISTILLATION STRATEGIES ON

LOW-RESOLUTION BRANCH DETECTION PERFORMANCE.

Strategy AP0.5:0.95 AP0.5 AP0.75 AR0.5:0.95

Online 49.5% 67.7% 59.3% 60.6%
Offline 54.3% 74.6% 65.8% 63.7%
Hybrid 55.8% 76.9% 68.8% 63.8%

TABLE V
INFLUENCE OF KNOWLEDGE DISTILLATION AT DIFFERENT LOCATIONS ON

LOW-RESOLUTION BRANCH DETECTION PERFORMANCE.

Global Local Output AP0.5:0.95 AP0.5 AP0.75 AR0.5:0.95

✕ ✕ ✕ 37.00% 54.70% 43.50% 55.30%
✓ ✕ ✕ 40.40% 62.60% 45.60% 58.80%
✕ ✓ ✕ 41.40% 63.60% 49.20% 54.50%
✕ ✕ ✓ 40.20% 61.40% 48.50% 55.00%

V. CONCLUSION

In this paper, we propose a glomerulus detection task in
low-resolution human kidney pathology images, aiming to
alleviate the limitations of hospitals in underdeveloped areas
without sufficient cost to acquire high-resolution WSIs for
kidney pathology diagnosis.

To address this challenge, we introduce a novel MHKD
approach for glomerulus detection in low-resolution patho-



TABLE VI
INFLUENCE OF MULTI-STEP TRAINING STRATEGY ON LOW-RESOLUTION

BRANCH DETECTION PERFORMANCE.

Training Strategy AP0.5:0.95 AP0.5 AP0.75 AR0.5:0.95

Single-step training strategy 39.3% 57.7% 47.1% 55.9%
Double-step training strategy 45.9% 68.0% 54.5% 57.3%

Four-step training strategy 55.8% 76.9% 68.8% 63.8%
Single-step training strategy represents online distillation at multiple locations
simultaneously. Double-step training strategy means that the training is
divided into two parts: offline distillation and online distillation. Four-step
training strategy is our proposed MHKD method.

logical images. The hybrid knowledge distillation strategy
combines offline and online distillation strategy, ensuring the
feature extraction ability of the front-end, but also reduces
the gap between the student model and the teacher model
in the back-end. The multi-step training strategy facilitates
the gradual transfer of high-resolution image information
to the student model, from global features to semantic de-
tails. The MHKD effectively enhances the model’s detection
performance on low-resolution images compared to various
direct detection methods, methods designed for high-resolution
pathology images and simple distillation techniques. Future
research will explore the integration of knowledge distillation
into transformer-based object detection methods to further im-
prove the accuracy of glomerulus detection in low-resolution
pathological images and its clinical diagnostic potential.
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