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ABSTRACT

Compositional zero-shot learning (CZSL) aims to recognize novel compositions
of attributes and objects learned from seen compositions. Previous works disen-
tangle attribute and object by extracting shared and exclusive parts between image
pairs sharing the same attribute (object), as well as aligning them with pretrained
word embeddings to improve unseen attribute-object recognition. Despite the sig-
nificant achievements of existing efforts, they are hampered by three limitations:
(1) the efficacy of disentanglement is compromised due to the influence of the
background and the intricate entanglement of attribute with object in the same
parts. (2) existing word embeddings fail to capture complex multimodal semantic
information. (3) overconfidence exhibited by existing models in seen composi-
tions hinders their generalization to novel compositions. Being aware of these, we
propose a novel framework named Multimodal Large Language Model (MLLM)
embeddings and atTRibute smoothlng guiDEd diseNTanglement (TRIDENT)
for CZSL. First, we leverage feature adaptive aggregation (FAA) modules to mit-
igate the impact of background, and utilize learnable condition masks to capture
multi-granularity features for subsequent disentanglement. Then, the last hidden
states of MLLM are employed as word embeddings for their superior represen-
tation capabilities. Moreover, we propose attribute smoothing through leveraging
auxiliary attributes generated by Large Language Model (LLM) for each seen
composition, addressing the issue of overconfidence by encouraging the model
to learn more attributes in one given composition instead of just fitting a fixed
attribute-object combination. Extensive experiments demonstrate that TRIDENT
achieves state-of-the-art performance on three challenging datasets: MIT-States,
C-GQA, and VAW-CZSL, respectively.

1 INTRODUCTION

As for the study of compositional generalization ability inherent to humans, compositional zero-
shot learning (CZSL) (Misra et al., 2017; Nagarajan & Grauman, 2018; Purushwalkam et al., 2019)
is proposed to enable machines to recognize unseen attribute-object compositions by leveraging
knowledge of attributes and objects (i.e., primitives) learned from seen compositions. Specifically,
in the training phase, models are provided with images and compositional labels (e.g., ripe orange
and peeled apple). During the testing phase, given an image depicting a novel composition (e.g.,
peeled orange), models are assigned to classify the image into the corresponding category (Zhang
et al., 2022b).

Prior works (Misra et al., 2017; Nan et al., 2019) focus on mapping the visual features and the word
embeddings of compositions into a joint space. These methods have poor generalization capability
to unseen compositions, as they fail to learn primitives. Therefore, recent studies (Saini et al., 2022;
Hao et al., 2023; Li et al., 2024) consider visual disentanglement. Among them, some prominent
works deploy a triplet of images to disentangle: a given image (noted as the main image), and two
supplementary images, each sharing either the same attribute or the same object as the main image.
The triplet of images is treated as two image pairs for subsequent analysis. These approaches aim
to disentangle attribute and object by analyzing the shared and exclusive features of the image pair,
as well as aligning them with word embeddings (e.g., GloVe (Pennington et al., 2014)), as shown in
Figure 1. Although these pioneer research studies have achieved great progress, they exhibit three
limitations:
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Figure 1: A general comparison between the existing method and our proposed TRIDENT. Note
that, we only present the representation learning of an image pair sharing the object for brevity.

L1: Disentanglement is impeded due to the influence of the background and the intricate entangle-
ment of attribute with object in the same parts of image. On the one hand, models tend to extract
the background feature unique to one image in the pair as the disentangled exclusive features. On
the other hand, some existing methods (Ruis et al., 2021; Saini et al., 2022) compute the similarity
of image pairs for disentanglement at the spatial level. However, disentangling attribute and object
at the spatial level presents significant challenges because they entangle in the same spatial features.
Taking an image of ripe apple as an example, the spatial regions corresponding to the attribute
"ripe" and the object "apple" are fully co-located.

L2: Existing word embeddings lack the depth needed to capture complex multimodal semantic
information. To begin with, word embeddings, such as Word2Vec (Mikolov, 2013) and GloVe
(Pennington et al., 2014), are grounded in word frequency and contextual co-occurrence, rather than
capturing high-level semantic nuances(Sarzynska-Wawer et al., 2021). Moreover, the process of
aligning visual features with word embeddings can be viewed as a form of cross-modal matching;
however, these word embeddings are trained only in a single text modal, preventing them from
capturing cross-modal information between images and texts.

L3: Existing methods display excessive confidence in seen compositions, impairing their ability
to generalize toward novel compositions. Due to the one-hot label used during training, these ap-
proaches are limited by learning only one attribute and object, neglecting the fact that objects nat-
urally exhibit multiple attributes (Xu et al., 2024). Consequently, models exhibit overconfidence
in the disentangled ground-truth attribute, treating other attributes that can describe the object as
negative attributes, which results in the diminished performance on unseen compositions.

To address the aforementioned limitations, we propose a novel framework named Multimodal
Large Language Model (MLLM) embeddings and atTRibute smoothIng guiDEd diseNTanglement
(TRIDENT), which consists of three major modules: visual feature extraction, attribute-object dis-
entanglement, and feature alignment. The first module leverages feature adaptive aggregation (FAA)
modules to mitigate the impact of background noise, and exploits learnable condition masks to learn
multi-granularity features to improve subsequent disentanglement. The second module aims at lever-
aging shared and exclusive weights of image pairs to disentangle attribute and object under the the
paradigm that apart from the shared features of the image pair, each image has its own exclusive
features. The third module is intended to align the visual features of compositions and disentangled
primitives with the last hidden states of an MLLM, LLaVA v1.5 (Liu et al., 2024a), i.e., MLLM em-
beddings. This is inspired by some works (Wang & Kuo, 2020; Muennighoff, 2022; Muennighoff
et al., 2024; Koh et al., 2023), which find that the last hidden states of (M)LLM exhibit power-
ful representational capabilities in embedding tasks, such as retrieval and classification. Moreover,
to tackle the issue that the ineffective overconfidence of the models regarding ground-truth attribute
hinders them from generalizing to unseen compositions, we exploit a Large Language Model (LLM),
GPT-3.5 (OpenAl, 2023) to generate auxiliary attributes based on attribute-object compositions and
perform label smoothing for attributes, i.e., attribute smoothing.

In summary, the main contributions of our work are three-fold:

1. We propose novel feature adaptive aggregation modules to reduce the impact of background, and
utilize learnable condition masks to capture multi-granularity features for disentanglement in CZSL.

2. We employ both LLM and MLLM to guide attribute-object disentanglement by generating aux-
iliary attributes and representing word embeddings, respectively. To the best of our knowledge, we
are the first to leverage both LLM and MLLM to advance disentanglement in CZSL task.

3. We conduct extensive experiments to evaluate our method on three CZSL benchmarks, showing
that TRIDENT has achieved state-of-the-art performance.
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2 RELATED WORK

Compositional zero-shot learning (CZSL). Prior works in CZSL can be broadly divided into two
main streams. One main stream is to learn representations of compositions in a joint space. SymNet
(Li et al., 2020) proposes to learn symmetry property in compositions. Co-CGE (Mancini et al.,
2022) leverages a Graph Convolutional Neural Network to learn compositional representations. The
other main stream aims at disentangling visual representations of primitives to reduce composition
learning into primitive learning. SCEN (Li et al., 2022) leverages contrastive loss to excavate dis-
criminative prototypes of primitives. INV (Zhang et al., 2022b) learns domain-invariant primitives.
OADis (Saini et al., 2022) and ADE (Hao et al., 2023) disentangle primitives by affinity modules
and the multi-head attention mechanism, respectively. CANet (Wang et al., 2023) learns conditional
attribute conditioned on the recognized object and the input image.

More recent works (Nayak et al., 2023; Lu et al., 2023; Huang et al., 2024) focus on leverag-
ing the encyclopedic knowledge of pretrained vision-language models (VLM), such as Contrastive
Language-Image Pre-training (CLIP) (Radford et al., 2021) and Context Optimization (CoOp) (Zhou
et al., 2022), to encode and align images and texts.

Large language model (LLM). LLMs have realized significant advancements thanks to the scal-
ing up of training data and the increase in the number of parameters. Early models, such as BERT
(Devlin et al., 2019) and GPT-2 (Radford et al., 2019), initially exhibit strong capabilities in un-
derstanding and generating human-like language. Subsequently, GPT-3 (Brown et al., 2020) with
about 175 billion parameters demonstrates great breakthroughs across numerous language bench-
marks. This development has facilitated the emergence of many LLMs, including OPT (Zhang
et al., 2022a) and LLaMA (Touvron et al., 2023). Moreover, by performing instruction fine-tuning
on LLM, ChatGPT (Ouyang et al., 2022) and Vicuna (Chiang et al., 2023; Zheng et al., 2023) are
competent at comprehending and following human instructions better.

Expanding on LLM, Multimodal Large Language Model (MLLM) incorporates a pretrained visual
encoder for vision-language tasks. Flamingo (Alayrac et al., 2022) first integrates Vision Trans-
former (ViT) (Dosovitskiy, 2020) and LLM by gated cross-attention. BLIP-2 (Li et al., 2023) puts
forward a Q-Former module to bridge the modality gap. Recently, LLaVA (Liu et al., 2024b) and
LLaVA v1.5 (Liu et al., 2024a) introduce visual instruction tuning to enhance instruction following
capability. The visual understanding part of LLaVA v1.5 consists of a ViT and a multilayer percep-
tron (MLP) cross-modal connector (CMC). CMC processes visual features before the last layer of
ViT, aligning the visual space of ViT with the linguistic space of LLM. We choose LLaVA v1.5 as
our foundational MLLM as it has demonstrated state-of-the-art performance across various tasks.

Recently, exploring the powerful language capabilities of (M)LLM to handle representation tasks
(e.g., retrieval) has emerged as a prominent research domain. SGPT (Muennighoff, 2022) exploits
the last hidden states of LLM for the input token sequence or a special learnable token to derive rep-
resentational embeddings. Subsequently, GritLM (Muennighoff et al., 2024) applies mean pooling
over the last hidden states of LLM to yield the textual embeddings. FROMAGe (Koh et al., 2023)
leverages a learnable [RET] token to represent the content fed into MLLM for image retrieval.

3  APPROACH

3.1 Task FORMULATION

Compositional zero-shot learning (CZSL) aims at learning a model that can recognize unseen com-
positions of attributes and objects that are learned from seen compositions. Given an attribute set A
and an object set O, the attributes and objects are composed to form a composition set C = A x Q.
The composition set C is divided into two disjoint sets: the seen composition set C; and the unseen
composition set C,, where C; N C, = @ and C; U C,, = C. The model is trained with a seen training
set Dy, = {(xy, ¢y)}, where x; € X is an image from the seen image set X corresponding to the seen
composition set Cy, and ¢, € C; is the label of x,. Following the Generalized CZSL (Purushwalkam
et al., 2019), the model is evaluated on a predefined test set D, = {(xz, cr)}, Where x;, € X, is an
image from the unseen image set X,, corresponding to the composition subset C,, of C, i.e., C,, C C,
and ¢, € Cy is the label of x;,. The aim of CZSL task is to learn a model M : X,, — C,, that predicts
labels ¢, from C,, for the input images x,, € X,,.
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Figure 2: The overall architecture of our proposed TRIDENT. TRIDENT consists of three major
modules: (a) visual feature extraction, (b) attribute-object disentanglement, and (c) feature align-
ment.

3.2 TRIDENT

As the major novelty, we propose a novel framework named MLLM embeddings and attribute
smoothing guided disentanglement framework (TRIDENT) for CZSL, as shown in Figure 2. It
consists of three major modules: (1) visual feature extraction, (2) attribute-object disentanglement,
and (3) feature alignment. We now detail each module of TRIDENT in this section.

3.2.1 VisuaL FEATURE EXTRACTION

As shown in Figure 2, we denote a given image with the attribute-object composition label (e.g.
ripe apple) as the main image x™, and randomly sample an image with the same attribute x* (i.e.,
ripe orange), as well as an image sharing the same object x° (i.e., peeled apple) to comprise a
triplet image set. For the convenience of expression, we simply use x™*8 (where img € {m, a, 0}) to
collectively denote the images as they are processed using the same module.

Visual feature extraction backbone. As mentioned before, since LLaVA v1.5 is used as our fun-
damental MLLM, we directly leverage the visual encoder, ViT, and cross-modal connector (CMC)
from the model to extract visual features. Specifically, the image x™¢ is partitioned into n patch
tokens, which are subsequently put into ViT along with the [CLS] token. Afterward, the output of
patch tokens before the last layer of ViT is fed into the CMC module, as implemented in LLaVA
v1.5. To align the dimension of patch tokens output by CMC with that of [CLS] token produced
by ViT, the patch tokens output by CMC are input into a linear layer. Consequently, we obtain one
feature vector of [CLS] token f:?:g € R? and a patch feature matrix of n patch tokens F;;”tf 5 € R
where d is the dimension of the features.

Local features extraction. Intuitively, the composition (e.g., ripe apple) only occupies a few
parts of the image. Since each patch token usually corresponds to one local region of the image,
to filter out background noise and focus on related regions, we deploy a set of feature adaptive
aggregation (FAA) modules to derive p relevant local features of x8, where each FAA module is
formulated as follows:

v=a® F[’)Z’ih with a = o‘(Conv(F;;"ih)) (1)
where Conv(-) represents the 1 X 1 convolution layer, o(-) denotes the sigmoid activation function,
a € R" is the weight vector, the k-th element of a is the weight for k-th patch feature. ® represents
matrix product, and v € R? is the local feature obtained by an FAA module. Subsequently, we
vertically concatenate the local features produced by p FAA modules to obtain the local feature
matrix F,"¢ € RP,



Under review as a conference paper at ICLR 2025

Global features extraction. Normally, the ViT output of [CLS] token is regarded as containing
various global information of the image, which highly entangles both attribute and object features
together(Hao et al., 2023). To disperse multi-granularity global information into different represen-

tations, ¢ learnable condition masks are applied to fézg to obtain ¢ different global representations,
where each global representation is computed as:

"o e 2)

u = cls

where u € R denotes each global representation. Here ¢ € R? refers to each learnable condition
mask and © is the element-wise multiplication. Consequently, we vertically concatenate ¢ global

representations to derive the global feature matrix F," € R9*.

Features concatenation. Finally, both F;’"g and F," are vertically concatenated to form the visual

features of x™, j.e., Fim8 = [F[img , ngmg ] € RW*P*d_which is used for the following disentangle-
ment of attribute and object.

Orthogonal regularization. We ideally want features extracted by different modules can represent
different information of the image x""¢. To this end, we further introduce the orthogonal regulariza-
tion, i.e.:

Lomo= . (F™F™" —1p,,) 3)

imge{m,a,o}

where I € RP*9*(+4 ig the identity matrix, and || - ||z, refers to the Frobenius norm of the matrix.

Image embedder. Inspired by Nagarajan & Grauman (2018), for the input image x™8, we first use
AveragePools Avg(-) on F;"* and F[mg , respectively, and horizontally concatenate them by Cat (-, -)
to aggregate both global and local visual information of x""¢ corresponding to the composition label.
Then the concatenated feature passes through a linear layer Lincom,(-) to derive the final feature
representation ﬂ;’fﬁp. This module is formulated as follows:

i = Lincomp(Cat(Avg(Fy"®), Avg(F"®))) 4)

where fﬁﬁ’,ﬁ,, € R?? denotes the visual feature corresponding to the composition. This module is
designed to learn the visual features of images associated with their corresponding composition
labels, serving as the primary branch for inference.

3.2.2 ATTRIBUTE-OBJECT DISENTANGLEMENT

As mentioned before, one of the key challenges for CZSL task is to disentangle attribute and object
from visual features. To overcome such challenge, we propose a novel weighted disentanglement
module to disentangle primitives, as illustrated in Figure 2. For brevity, one image pair X" and x¢
from the triplet image set is taken as an example to elaborate on this module, while another image
pair X" and x° follows the same architecture.

Weights computation.The features of x" and x? (i.e., F“ and F'°) are vertically concatenated and
fed into two MLP modules to derive their respective weights of shared attribute features relative
to each other, and subsequently utilize them to compute the weights of their own exclusive object
features as follows:

Wit = C(MLPyo([F", FY))

artr

m2a _ 1 _ a,Mm2a
wobj =1 wattr

wi = C(MLP o, (LF™, F“]))

artr

(&)

a2m
attr

a2m

obj =1-w

w

where w2 w®" ¢ R" demonstrate the weights of the shared attribute features of x” relative to x“,

artr > artr
and x“ relative to x™, respectively. w{’:fj“ and w(“)i”.’ denote the weights of exclusive object features

corresponding to X" and x“, respectively, which are derived by "1 — shared weights" paradigm as
beyond the shared features of the image pair are the exclusive features of each image. Taking w2
as an example, its k-th element refers to the shared attribute proportion of k-th feature of x™ relative

to x%.
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Disentangled features obtainment. We multiply elements of each weight by the corresponding
features and then calculate the average. The following takes the process of obtaining the shared
attribute features of image x™ relative to x* as an example:

1 h
m2a __ m2a a
attr — z § Waitr i F i (6)
i=1

where F';. denotes the i-th row of F“, i.e., the i-th feature of x“. w24 refers to the i-th element of

2 attr |
wned

m2a and f72¢ € RY is the shared attribute feature of x™ relative to x“.

attr

For the image pair of x” and x“, four parts are obtained: the shared attribute features of x” relative

, X iv X" ie., ,as W xclusiv j u s
to x*, and x“ relative to x™ m2a and £92m as well as the exclusive object features of x™ and x¢

respectively, i.e., (’)’1’3" and f(ff;". Then the shared attribute feature of x* and x™ without relativity
i 1s obtained by an MLP layer, which is less dependent on the object. The process is as follows:

2 2
attr = MLPuo(Cat(fo’, foiir) (7
Similarly, we disentangle attribute and object for x” and x° and obtain the same processed features
as x™ and x“: Fg”sz.”, ng;?’, Fm2o Fo2m and Ffb"j.

3.2.3 FEATURE ALIGNMENT

Inspired by Muennighoff et al. (2024) that leverages the last hidden states as the representation
embeddings, we consider the last hidden states of LLaVA v1.5 (Liu et al., 2024a) as our MLLM
embeddings for words. Moreover, to tackle the problem that the ineffective overconfidence exhib-
ited by the models in terms of the ground-truth attribute hinders them from generalizing to unseen
compositions, GPT 3.5 is employed to generate several auxiliary attributes that describe an object
with only one ground-truth attribute and perform label smoothing during attribute alignment. Now
we detail each part of feature alignment.

Generating auxiliary attribute words by LL.M. Since only attribute text needs to be generated, we
leverage a LLM, GPT-3.5, instead of MLLM, to generate several auxiliary attributes for each com-
position. Specifically, the following prompt is input to LLM: ’Please give me t adjectives that can
describe the visual feature of a photo of afan ... well.’, where ¢ is the number of auxiliary attributes
and attribute-object composition (e.g., peeled apple) is filled in ’...". Please refer to Appendix A for
more details about the generation of auxiliary attributes by GPT-3.5. Subsequently, the generated
auxiliary attribute words form a set A,. Therefore, the set of all words Y is obtained, including
attributes, objects and auxiliary attributes as follows:

Y=AUOUA, (8)

Obtaining MLLM embeddings for words and compositions. Each word y € Y is fed into LLaVA
v1.5 to get the last hidden states, i.e., LLaVAj,(-). Please refer to Appendix B for more details about
the obtainment of the last hidden states of LLaVA v1.5 for an input word. Subsequently, they are
passed through an MLP layer to get embeddings E,,,.4(-) of aligned dimension with visual features.
And for a composed pair ¢ of attribute a and object o, i.e., ¢ = (a, 0), we get the last hidden states of
LLaVA v1.5 for a and o, respectively, which are then horizontally concatenated and fed into a linear
layer Lin,m,(+) to get the composed pair embedding E,,(-). The process is formulated as follows:

Evora(y) = MLP,,q(LLaVAj,5(y)) 9
Ecomp(c) = Lin('omp(Cat((LLaVAlhs(a)’ (LLaVAIhs(O))) (10)

Word expanding. Prior works compute cosine similarities of disentangled features and word em-
beddings only within the respective domains of attributes or objects, which results in the disentan-
gled attributes and objects still retaining the information of each other. To address the problem, we
propose a word expanding strategy, which computes cosine similarities of visual features and the
embeddings of all words, including attributes and objects, and treats all words except the ground-
truth word as negative labels.

Alignment by cross-entropy. Similar to Mancini et al. (2021), we use cross-entropy to process the
cosine similarity of visual features and word embeddings. Assume that f is the visual embedding
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and E,,,4(wd) is the word embedding for the word wd € Y in a joint space. The classifier logit from
f to E,orq(wd) is defined as follows:

0¢0S(F Evoralwe))
CE(f,wd) =

ey €0 Eurd) an
where ¢ is the temperature variable, and cos(:,-) denotes cosine similarity function. Thus cross-
entropy with/without label smoothing can be uniformly formulated as follows:

1 —a, ifyis ground truth label
H(f,Y) = Z —z1og(CE(f,y)) with z=1a/t, if y is auxiliary label (12)
yey 0, otherwise

where a denotes the smoothing factor, ¢ refers to the number of auxiliary labels and z € [0, 1]
represents the target value of one-hot or smoothing label. For cross-entropy without label smoothing,
i.e.with one-hot label H,;,, @ and ¢ are set to 0. And the cross-entropy with label smoothing is denoted
as Hy.

For the disentangled attribute features of one image relative to each other, since a single object
exhibits multiple attributes, we exploit attribute smoothing with auxiliary attributes to undermine the
confidence in the ground-truth attribute and learn more related attributes. For the shared attribute
features without relativity, one-hot label is used to compute its classification loss. The loss for
disentangled attributes can be defined as follows:

Lar= D Hiy(F,Y)+ Hy(Fie,¥) (13)

attr»
ee{m2a,a2m,m20,02m}

Concerning the disentangled object features, we use cross-entropy with one-hot label to learn the
prototype of the object and the loss is as follows:

Lop; = D Hu(F, )+ Ho(Fl, ¥) (14)

ee{m2a,a2m,m20,02m}

With respect to the visual feature of the image from image embedder, we calculate the cosine similar-
ity between visual embedding and the composed pair embedding of the corresponding composition
label and use one-hot label to align them. The classification loss for compositions is as follows:

Leomp = >, HolFinp, Cy) (15)

imge{m,a,o}

3.3 TRAINING AND INFERENCE

During the training phase, the overall loss function is formulated as follows:
L= 70rth0-£ort/m + 700mp-£comp + 7attr£atlr + 70bj-£obj (16)
where Yoriho, Yeomps Yarr and Yop; are weighting factors to balance the influence of different losses.

For inference, we use the composition feature space generated by the classifier that is obtained by
optimizing Lc,mp. Specifically, given an image from test set, the cosine similarities of its visual fea-
ture obtained by image embedder and the composed pair embeddings of all candidate compositions
in the test set are computed. The composition with the highest similarity is the class predicted by
the model. Note that although the disentanglement branches are not used for inference, they still
influence the formation of the composition feature space.

4  EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets. We evaluate our model on three challenging CZSL benchmark datasets: MIT-states (Isola
et al., 2015), C-GQA (Naeem et al., 2021), and VAW-CZSL (Saini et al., 2022). MIT-states consists
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MIT-States C-GQA VAW-CZSL
Method AUC HM Seen Unseen AUC HM Seen Unseen AUC HM Seen Unseen
SymNet (Li et al., 2020) 32 13.7 227 20.1 1.9 10.8 203 11.8 2.8 135 202 18.0

CompCos (Mancini et al., 2021)  12.3 28.2 39.0 39.5 5.0 17.7 328 19.1 6.5 20.8 305 274
Co-CGE (Mancini et al., 2022) 103 25.1 41.0 33.1 42 152 329 170 6.2 19.7 31.0 26.1

SCEN (Li et al., 2022) 98 246 351 365 38 153 315 157 57 192 299 245
OADis (Saini et al., 2022) 13.1 290 423 273 23 121 233 128 41 162 260 20.7
INV (Zhang et al., 2022b) 115 266 285 250 14 79 286 68 20 111211 119
CANet (Wang et al., 2023) 13.6 298 46.4 399 57 189 348 205 67 21.0 312 274
ProCC (Huo et al., 2024) 95 281 43.1 391 35 151 324 158 36 189 269 255
CLIP (Nayak et al., 2023) 110 26.1 302 460 14 86 75 250 - - -
CoOp (Nayak et al., 2023) 135 298 344 476 44 17.1 205 268 - -
TRIDENT (Ours) 142 309 445 400 8.0 22.6 395 241 83 234 333 311

Table 1: Comparison with the state-of-the-art results on MIT-States, C-GQA and VAW-CZSL. We
compare our TRIDENT with the state-of-the-art methods on test AUC, best seen (S een), best un-
seen (Unseen) and best harmonic mean (HM) accuracies on these three datasets. We measure top-1
AUC on MIT-States and C-GQA, and top-3 AUC on VAW-CZSL. Best results are displayed in
boldface, and second best results are underlined.

of diverse real-world images labeled automatically by early image search engine technology. C-
GQA and VAW-CZSL are two more challenging benchmark datasets that consist of broad collections
of in-the-wild images. C-GQA has more one-to-one attribute-object compositions, while objects
in VAW-CZSL share more attributes. We present the common data splits of the three datasets in
Appendix C.

Metrics. Following the common generalized CZSL setting (Purushwalkam et al., 2019), we evaluate
the performance of our model on both seen and unseen pairs separately. Based on them, a calibration
bias trades off between the prediction scores of seen and unseen pairs. We calculate area under the
curve AUC (in %) using seen and unseen classification accuracies at different biases in test data. We
also report the best seen and unseen accuracies S een and Unseen (in %) of the curve. In addition,
we calculate the harmonic mean of seen and unseen classification accuracies at difference bias and
report the best one HM (in %).

Implementation details. We use the visual encoder of LLaVA vl1.5, Vit-large-14-336px as our
frozen feature extractor, whose outputs contain 577 tokens (1 [CLS] and 576 patch tokens) of 1024
dimensions. The cross-modal connector of LLaVA v1.5 maps the features to the dimension of 4096,
the same as last hidden states of based LLM Vicuna v1.5 (Zheng et al., 2023). Image embedder
and the MLP for words map them to the dimension of 1024 for faster training. TRIDENT and all
baseline models are trained with 128 batch size for 50 epochs. The number of global features is set
to 6, 2, 4 for the three datasets, respectively, and the number of local features is twice that of global
features. The label smoothing factor is set to 0.09, 0.03, 0.03 for the three datasets, respectively.
The number of generated auxiliary attributes for each composition is set to 3. Refer to Appendix D
for more information about implementation.

Baselines. We compare our TRIDENT with recent and prominent approaches in the task of CZSL:
SymNet (Li et al., 2020), CompCos (Mancini et al., 2021), Co-CGE (Mancini et al., 2022), SCEN
(Li et al., 2022), OAD:is (Saini et al., 2022), INV (Zhang et al., 2022b), CANet (Wang et al., 2023),
and ProCC (Huo et al., 2024). We replace their backbone with Vit-large-14-336px and retrain all
models with the same epoch for the sake of fairness. In addition, we choose CLIP and CoOp as
baselines for their strong zero-shot classification abilities.

4.2  REesurrs AND DI1scUsSION

In this section, we compare TRIDENT with state-of-the-art methods. As shown in Table 1, TRI-
DENT surpasses other models by a substantial margin in general. For MIT-States, TRIDENT
boosts AUC, HM, and Unseen from 13.6%, 29.8%, and 39.9% of CANet to the new state-of-the-art
performance of 14.2%, 30.9%, and 40.0% with 0.6%, 1.1%, and 0.1% improvement, respectively.
Due to the considerable label noise in the MIT-States benchmark (Atzmon et al., 2020), our model
achieves comparable performance as compared to other baselines. However, for the more chal-
lenging benchmark C-GQA, TRIDENT achieves 8.0%, 22.6%, 39.5%, and 24.1% on the metrics
of AUC, HM, Seen, and Unseen, providing 2.3%, 3.7%, 4.7%, and 3.6% improvements on the
previous state-of-the-art model CANet. For the existing most challenging benchmark dataset VAW-
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CZSL, TRIDENT attains performance of 8.3%, 23.4%, 23.4%, and 33.3%, surpassing CANet by
1.6%, 2.4%,2.2%, and 3.7% in terms of AUC, HM, S een, and Unseen. We observe that TRIDENT
performs significantly better than CANet regarding all metrics on two challenging and low-noise
benchmark dataset C-GQA and VAW-CZSL, which indicates the efficacy of our approach. This im-
provement arises from the utilization of MLLM embeddings and attribute smoothing, which enhance
attribute-object disentanglement and consequently facilitate the recognition of unseen compositions
while maintaining performance on seen compositions.

In addition, we compare TRIDENT with two pretrained Vision-Language Models (VLM), CLIP
and CoOp, after fine-tuned for the CZSL task. Since they are trained on a large amount of image-
text data, they possess zero-shot image classification capabilities, which leads to better classification
results for unseen images. Regarding the metrics of Unseen, CoOp outperforms TRIDENT by
7.6% and 2.7% on MIT-States and C-GQA, respectively. However, TRIDENT surpasses CoOp by
0.7% and 1.1% on the core metrics of AUC and HM on MIT-States, as well as 3.6% and 5.5% on
C-GQA, which suggests TRIDENT performs better than CLIP and CoOp in CZSL task.

Method AUC HM  Seen Unseen Method Varient AUC HM
w/o condition_masks 134 30.1 443 39.7 SCEN Jt+w2y 82 228
w/o FAAs 129 289 426 38.0 LLaVAy, 103  25.1
w/o word_expanding 14.0 30.1 447 39.8

Jt+w2v 123 284

wjo attribute_smoothing 13.9 30.5 44.9 39.5 CANet

W0 Loy + Loy, 132 301 438 389 LLaVAp, 125 283

w/o Lorno 14.1 30.7 44.6 39.7 ft+w2y 140 299

TRIDENT 142 309 445 400 TRIDENT %, va,.. 142 309
Table 2: Ablation study results on MIT-States. Table 3: Impact of word embedding on

wjo certain_part denotes this part is ablated. MIT-States.

4.3 ABLATION STUDY

Effectiveness of each component. We ablate certain module of TRIDENT to evaluate the contri-
bution of each module on MIT-States, as it is the most common used dataset. The ablation results
are reported in Table 2. From this table, we gain the following observations.

1) Both w/o condition_masks model and w/o FAAs model perform worse than TRIDENT, which
validates the importance of extracting the multi-granularity features and filtering out the background
noise, respectively.

2) TRIDENT surpasses w/o word_expanding model and wjo attribute_smoothing model on the
Unseen metric, yet falls short of them in the Seen metric. The difference between TRIDENT
and the w/o word_expanding model on the two metrics stems from its more thorough disentangle-
ment, which enhances the recognition of unseen images while weakens the identification of seen
images. The disparity between TRIDENT and the w/o attribute_smoothing model arises from at-
tribute smoothing, which diminishes the confidence of the model in seen compositions, facilitating
its generalization to unseen compositions. However, the improvement of TRIDENT over these
two models on AUC and HM indicates the effectiveness of word expanding and label smoothing
strategy.

3) TRIDENT outperforms w/o L + Lyp; model on all metrics, confirming that the attribute-object
disentanglement module is highly advantageous for generalization from seen compositions to unseen
compositions.

4) wjo L, model is inferior to TRIDENT, which suggests the designed orthogonal regularization
is indeed helpful to guarantee that different features extract different information.

Impact of word embeddings. Our work leverages the last hidden states of LLaVA v1.5 (LLaVAy;y)
as word embeddings, while Word2Vec (Mikolov, 2013) and Fasttext (Bojanowski et al., 2017) are
the most common word embeddings for MIT-States in previous works. In Table 3, based on three
models: SCEN, CANet and TRIDENT, we compare the performance of employing the last hidden
states of LLaVA v1.5 and the sum of Word2Vec and Fasttext (ft+w2v), respectively. The results in-
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(a) image-to-text retrieval. (b) text-to-image retrieval (c) text-to-image retrieval
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Figure 3: Qualitative analysis. (a) Top-5 image-to-text retrieval cases. The first two rows display
successful cases, while the last row presents failure cases. (b) Successful cases of top-5 text-to-
image retrieval. (c) Failure cases of top-5 text-to-image retrieval. In all cases, the attribute and
object of composition label are marked in and blue, respectively. And the successful and
failure retrieval results are tagged in green and red, respectively.

dicate that the last hidden states of MLLM capture more complex multimodal semantic information
than ordinary word embeddings.

For details on the impact of hyperparameters, including the number of visual features and the label
smoothing factor, please refer to Appendix E.

4.4 QUALITATIVE ANALYSIS

Inspired by Hao et al. (2023), we use TRIDENT to conduct both image-to-text retrieval and text-
to-image retrieval experiments on the three datasets.

We first consider image-to-text retrieval, shown in Figure 3a. The first two rows display success-
ful cases, while the last row presents failure cases. And the cases shown in these three columns are
drawn from the three datasets, respectively. Given an image, such as the image of burnt house, we
extract its visual features by image embedder and retrieve the top-5 closest composed pair embed-
dings of compositions. For successful cases, such as the image labeled burnt house, we notice that
the top and other predictions can both describe the image. In this image, there are logs burning on
fire, so the top-4 predictions of the image can also describe it. In terms of the image labeled green
leaf, another successful case, the predicted attributes can also describe leaf, which is thanks to
attribute smoothing learning more attributes for an object. For the failure cases, such as the image
labeled multicolored teddy-bear, the model pays more attention to the main puffy and orange
bear and neglects the background of multicolored bears.

We then consider text-to-image retrieval. Successful cases are shown in Figure 3b, while failure
cases are shown in Figure 3c. Given a text composition, we embed it and retrieve the top-5 closest
images. We can observe that the retrieved images of peeled orange are definitely correct. How-
ever, the retrieved images of green grapes are all wrong. This is due to the fact that the training
images of green grapes in C-GQA dataset are almost filled with a single grape, making it difficult
for the model to capture the contour features of a bunch of green grapes. The image-to-text and
text-to-image retrieval experiments confirm that our model effectively projects visual features and
word embeddings into a unified space.

5 CoONCLUSION

In this work, we propose a novel framework termed MLLM embeddings and attribute smoothing
guided disentanglement (TRIDENT) to address the challenging CZSL task. First, we leverage fea-
ture adaptive aggregation modules to mitigate the impact of background, and utilize learnable con-
dition masks to capture multi-granularity features for attribute-object disentanglement. In addition,
we exploit the last hidden states of MLLM to replace ordinary word embeddings, as they can cap-
ture complex multimodal semantic information. Moreover, we leverage LLM to generate auxiliary
attributes and perform attribute smoothing to diminish overconfidence of models in seen compo-
sitions, which enables models to generalize to unseen compositions better. Extensive experiments
have been conducted on three challenging datasets, and the results demonstrate the effectiveness
of TRIDENT. In the future, we plan to extend our method to harness the powerful capabilities of
LLMs, MLLMs, and CLIP to more effectively address the CZSL task.

10
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A AUXILIARY ATTRIBUTES GENERATION BY LLLM AND POST-PROCESS

As mentioned before, we leverage GPT-3.5 to generate some auxiliary attributes for attribute
smoothing. The auxiliary attributes are generated based on the contextual composition of the object
and its attribute, such as ripe apple or sliced apple. The model takes into account the unique
characteristics that arise from the combination of attribute and the object’s context. This ensures that
the auxiliary attributes accurately capture the nuances of the specific composition, rather than gen-
eral object-level attributes. Since the generation ability of LLM is affected by many factors, in this
section, we first explore the impact of different prompts on LLM-generated content. Then we study
on the influence of the number of auxiliary attributes ¢. In addition, we introduce post-processing of
generated text to eliminate potential noise.

User: Please give me five adjectives that are most likely to describe the browned beef well.

GPT-3.5: 1. Flavorful 2. Juicy 3. Savory 4. Tender 5. Rich

User: Now 1 give you an object with an adjective: browned beef. Please give me five more
possible adjectives that can describe the browned beef well.

GPT-3.5: 1. Juicy beef 2. Tender beef 3. Flavorful beef 4. Savory beef 5. Succulent beef

User: Please give me five common adjectives that can describe a browned beef well.

GPT-3.5: 1. Juicy 2. Brown 3. Savory 4. Tender 5. Succulent

User: Please give me five adjectives that can describe the visual feature of a photo of a/an broned
beef well.

GPT-3.5: 1. Juicy 2. Glistening 3. Crispy 4. Sizzling 5. Mouthwatering

Table 4: Example prompts with the composition browned beef input to GPT-3.5 and the generated
text.

User: Please give me five adjectives that are most likely to describe the inflated pool well.

GPT-3.5: 1. Spacious 2. Durable 3. Sturdy 4. Bright 5. Relaxing

User: Now 1 give you an object with an adjective: inflated pool. Please give me five more
possible adjectives that can describe the inflated pool well.

GPT-3.5: 1. Refreshing inflated pool 2. Relaxing inflated pool 3. Blue inflated pool 4. Large
inflated pool 5. Fun inflated pool

User: Please give me five common adjectives that can describe a inflated pool well.

GPT-3.5: 1. Large 2. Round 3. Inviting 4. Fun 5. Sturdy

User: Please give me five adjectives that can describe the visual feature of a photo of a/an in-
flated pool well.

GPT-3.5: 1. Colorful 2. Refreshing 3. Sparkling 4. Bright 5. Relaxing

Table 5: Example prompts with the composition inflated pool input to GPT-3.5 and the gener-
ated text.

Impact of prompt input to LLM. Users typically interact with LLMs through prompts to request
answers to questions, generate text, complete tasks, and more. The model generates text based
on the provided prompt, striving to meet the user’s requirements (Sahoo et al., 2024). Therefore,
the good design of prompt is significant for stimulating knowledge of LLMs, which enables them
to better follow our instructions and generate auxiliary attributes with high quality. We first design
some prompts with different style, then input them into GPT-3.5 and observe the quality of generated
attributes. Some prompt examples on the composition browned beef and ancient building are
shown in Table 4 and Table 5, respectively.

As shown in Table 4, the prompt without "the visual feature of ..." may cause the model to produce
adjectives that are not specific but generic, such Savory and Rich. In both Table 4 and Table 5, the
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prompts starting with "Now I give you...", compared to those starting with "Please give me ...", result
in a weaker instruction following ability of the model. Therefore, we choose the prompt: "Please
give me five adjectives that can describe the visual feature of a photo of a/an ... well."

Impact of the number of auxiliary attributes 7. In Table 4, we observe that the generated attributes
describe the compositions to varying degrees, with later items in the sequence being less relevant
generally. Therefore, we study on the influence of the number of auxiliary attributes .

t \ the generated text for the composition large garden
3 | 1. Lush 2. Vibrant 3. Flourishing

5 | 1. Lush 2. Expansive 3. Vibrant 4. Serene 5. Verdant

10 | 1. Lush 2. Vibrant 3. Expansive 4. Serene 5. Colorful 6. Beautiful 7. Bountiful 8.
Captivating 9. Peaceful 10. Tranquil

Table 6: Impact of 7 on the generated text with the composition large garden. Note that the input
prompt provided to GPT-3.5 is the previously selected one, replacing ¢t and the composition.

¢ | the generated text for the composition young girl
3 | 1. Innocent 2. Radiant 3. Youthful

5 | 1. Youthful 2. Innocent 3. Vibrant 4. Radiant 5. Captivating

10 | 1. Radiant 2. Innocent 3. Vibrant 4. Captivating 5. Playful 6. Ethereal 7. Alluring 8.
Charming 9. Enchanting 10. Happpy

Table 7: Impact of ¢ on the generated text with the composition young girl. Note that the input
prompt provided to GPT-3.5 is the previously selected one, replacing # and the composition.

Table 6 and Table 7 show the generated text using different ¢ of compositions large garden and
young girl. The results demonstrate that the greater the number, the more generic adjectives with
irrelevant information are included, for example, Captivating is generated for both compositions.
In addition, with ¢ increasing, the noise in the generated text due to the uncertainty of the model about
the given image grows. The young girl may not be happy, yet the model fails to find ten words to
describe her, so it has to guses. Therefore, we set ¢ to 3, this minimizes the general adjectives and
noise while retaining useful information.

Post-processing of generated text. GPT-3.5 generates a segment of text, which we need to process
into multiple useful words by exploiting regular expressions. However, the auxiliary attributes gen-
erated by LLM may contain the attribute of the input composition, for example, generating ancient
for ancient building. At this point, we reuse the model to generate 7 + 1 adjectives for this com-
position and select three adjectives that are not the attribute of the input composition.

B  OBTaINMENT OF THE LAsT HIDDEN STATES OF MLLM

We input the attribute (object) word into LLaVA v1.5, which first tokenizes the word into z tokens.
These tokens pass through all attention blocks in the MLLM, ultimately generating z embeddings
of dimension d,, after the last block, named the last hidden states. Subsequently, we apply average
pooling to these z embeddings of dimension d,, to obtain a d,,-dimensional embedding that repre-
sents the attribute. Since the last hidden states are designed to generate the next token rather than for
representation, Muennighoff et al. (2024) leverages instruction to fine-tune the model. Therefore,
we fine-tune the last hidden states with a low learning rate during the training phase of TRIDENT.
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C Dara StaTticTICS

Table 8 shows detailed data statistics following the common data splits of MIT-States (Isola et al.,
2015), C-GQA (Naeem et al., 2021) and VAW-CZSL (Saini et al., 2022). MIT-States contains 53753
images, with 115 attributes and 245 objects. It comprises 1262 seen compositions and 300/400 (val-
idation/test) unseen compositions. C-GQA is a natural image dataset which contains 39298 images,
with 413 attributes and 764 objects. It includes 5,592 seen compositions and 1,040/923 (valida-
tion/test) unseen compositions. VAW-CZSL is a larger dataset which contains 440 attributes and
541 objects for 238040 images, and it is split into 11175 seen and 2322/2470 unseen compositions
for training and validation/testing, respectively.

Composition Train Validation Test
Dataset Al 0] |AxOl ICyl X ICyl ICul X ICsl G X
MIT-States (Isola et al., 2015) 115 245 28175 1262 30338 300 300 10420 400 400 12995
C-GQA (Naeem et al., 2021) 413 674 278362 5592 26920 1252 1040 7280 888 923 5098

VAW-CZSL (Saini et al., 2022) 440 541 238040 11175 72203 2121 2322 9524 2449 2470 10856

Table 8: Summary statistics of the datasets used in our experiments.

D IMPLEMENTATION DETAILS

We use NVIDIA PTX 3090 GPU to train all models under the Pytorch framework (Paszke et al.,
2019). Since Lomp leverages image features during training, we use a Batch Normalization, ReLU
and 0.3 dropout for Image embedder. We train TRIDENT by Adam optimizer with weight decay
5e-5, learning rates 1.5e-6 for word embedding as well as 2e-4 for other modules on three datasets.
We decay the learning rate by 10 at epoch 30 and 40. The temperature variable of cosine similarity
o is set to 0.05. For weighting coefficients ¥orinos Ycomps Yarr> andyop j, we set them to 0.1, 1, 0.5, and
0.5, respectively.

E Impact oF HYPERPARAMETERS

To provide more insight into the effect of visual features and label smoothing, we study on the
performance of TRIDENT with respect to different numbers of visual features and different label
smoothing factors, respectively. Experiments exploring the impact of hyperparameters are con-
ducted on datasets MIT-States and C-GQA.
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Figure 4: Impact of the number of the visual features on (a) MIT-States and (b) C-GQA.

Impact of the number of visual features. We illustrate the performance of TRIDENT influenced
by different numbers of attribute features in Figure . In Figure 4a, the performance of our model
on MIT-States generally improves with the increasing number of visual features, but subsequently
declines. This trend is reasonable, as a greater number of Visual features contains more useful infor-
mation, thereby enhancing the performance. However, the number of useful features is limited; thus,

17



Under review as a conference paper at ICLR 2025

an excessive number of visual features may introduce redundancy and noise, ultimately hampering
the performance of the model.

However, in Figure 4b, as the number of visual features increases, the performance of the model on
C-GQA tends to decline overall. This may be attributed to the model’s strong expressive capability
in handling composition reasoning. In the low-noise C-GQA dataset, optimal performance can be
achieved using only two features. Increasing the number of features, however, results in heightened
model complexity without tangible benefits, potentially impairing generalization to unseen com-
positions. In contrast, the MIT-States dataset exhibits significant noise; thus, while the increase of
visual features may introduce more noise, it also necessitates a greater amount of useful information,
which can effectively mitigate the impact of the noise.
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Figure 5: Impact of the label smoothing factor on (a) MIT-States and (b) C-GQA.

Impact of the number of label smoothing factor. The label smoothing factor @ modulates the
extent to which the model’s confidence in seen compositions is attenuated. Figure 5a shows that as a
increases, the model’s performance on MIT-States initially improves before subsequently declining.
This is because if alpha is too small, label smoothing fails to enhance generalization, while if alpha
is too large, it adversely affects the model’s ability to learn the representation of the original labels,
resulting in more losses than gains. However, as shown in Figure 5b, the model achieves the best
performance with C-GQA a smaller a. This may be attributed to the fact that, compared to everyday
objects, LLMs are less familiar with in-the-wild objects, leading to relatively lower quality in the
generated auxiliary attributes; thus, a smaller smoothing factor can mitigate the impact.
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