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ABSTRACT
Principal component analysis is a versatile tool to reduce dimensionality which has wide applications in
statistics and machine learning. It is particularly useful for modeling data in high-dimensional scenarios
where the number of variables p is comparable to, or much larger than the sample size n. Despite an
extensive literature on this topic, researchers have focused on modeling static principal eigenvectors, which
are not suitable for stochastic processes that are dynamic in nature. To characterize the change in the entire
course of high-dimensional data collection, we propose a unified framework to directly estimate dynamic
eigenvectors of covariance matrices. Specifically, we formulate an optimization problem by combining
the local linear smoothing and regularization penalty together with the orthogonality constraint, which
can be effectively solved by manifold optimization algorithms. We show that our method is suitable for
high-dimensional data observed under both common and irregular designs, and theoretical properties of
the estimators are investigated under lq(0 ≤ q ≤ 1) sparsity. Extensive experiments demonstrate the
effectiveness of the proposed method in both simulated and real data examples.
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1. Introduction

Principal component analysis (PCA) has been widely used to
reduce dimensionality and extract useful features by transform-
ing the original variables into a few new uncorrelated vari-
ables while retaining most information in the data (Anderson
1963). It is an important tool in various applications, such as
data compression and reconstruction (Sirovich and Kirby 1987;
Turk and Pentland 1991). Despite its importance, existing works
in this field mainly focus on modeling a static decomposi-
tion, where principal eigenvectors are invariant with respect to
time. However, technological advances enable data collection in
dynamic environments that often vary with time or other index
variables. Such data are expected to possess dynamic structures
with eigenvectors/eigenspaces varying with time, which makes
existing methods less applicable. To tackle this issue, we aim to
dynamically estimate leading eigenvectors of covariance matri-
ces to capture the time-varying information, which is referred to
as the dynamic PCA (DPCA). It has wide applications in signal
processing, for example, subspace tracking (Delmas 2010).

A straightforward way to conduct the DPCA is to perform
PCA on the sample covariance matrix at each observed grid
point (Berrendero, Justel, and Svarc 2011). However, this has
several limitations. First, one cannot obtain a smooth estimate
over the whole time period in an integrative manner by their
method. Second, under the irregularly/sparsely observed case
for each subject, one cannot directly calculate the sample
covariance matrix, which makes their method inapplicable.
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More importantly, PCA is known to behave poorly in high-
dimensional settings, where the number of variables p is
comparable to or much larger than the sample size n (Johnstone
and Lu 2009).

In the high-dimensional static case, various sparse PCA
methods are developed and studied in the literature (Jolliffe,
Trendafilov, and Uddin 2003; Zou, Hastie, and Tibshirani 2006;
Shen and Huang 2008; Amini and Wainwright 2009; Witten,
Tibshirani, and Hastie 2009; Berthet and Rigollet 2013; Brennan
and Bresler 2019). For spiked covariance models, Johnstone
and Lu (2009) proposed the diagonal thresholding algorithm by
retaining variables with large sample variances, and Ma (2013),
Deshpande and Montanari (2014), and Krauthgamer, Nadler,
and Vilenchik (2015) further refined this estimation. Moreover,
Ding et al. (2019) and Holtzman, Soffer, and Vilenchik (2020)
proposed different algorithms for the sparse PCA problem in the
spiked covariance model. In more general settings, Vu and Lei
(2013) gave the nonasymptotic lower and upper bounds on the
minimax subspace estimation error. In addition, Vu et al. (2013)
considered a convex relaxation strategy based on the convex hull
of low rank projection matrices. Yet, if one adopts the method
in Berrendero, Justel, and Svarc (2011), the existing sparse PCA
methods in the static case are not readily applicable for modeling
time-varying principal eigenvectors. For instance, the irregular
sampling scheme and the dependence among measurements
from the same subject pose new challenges to methodological
and theoretical developments.

© 2022 American Statistical Association
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Another possible way to obtain time-varying eigenvectors
is through the eigendecomposition of estimated dynamic
covariance matrices, and dynamic covariance models have
been explored in the literature. In low-dimensional settings, the
nonparametric or semiparametric estimators are constructed
(Zhu et al. 2009; Yin et al. 2010; Yuan et al. 2012). For
high-dimensional data, Chen and Leng (2016) proposed a
sparse estimate using the kernel smoothing and thresholding.
However, it is unclear about the quality of eigenvector estimates
based on performing standard PCA on the sparse covariance
matrices. Our numerical studies reveal that the principal
eigenvectors deduced from dynamic covariance estimation
in Chen and Leng (2016) perform sub-optimally, especially
when the observational grids are sparse and the dimension is
large. Moreover, these existing works about dynamic covariance
matrices did not account for the dependence among observa-
tions from the same process which is an important nature of
repeated measurements (Cai and Yuan 2011).

In this work, we propose a unified framework with theoret-
ical guarantees for the DPCA. Specifically, to resolve the prob-
lems caused by the sample covariance matrix and the irregular
sampling scheme, we use the local linear smoothing (Fan and
Gijbels 1996) for estimation. To deal with high dimensionality,
we restrict our attention to the eigenvectors with sparsity struc-
tures. Consequently, we formulate an optimization problem
which combines the local linear smoothing and sparse regular-
ization. The proposed method has some remarkable features.
First, it is applicable to high-dimensional data under both com-
mon and irregular/sparse designs (Cai and Yuan 2011). Second,
instead of adopting the convex relaxation strategy which is
computationally expensive with the computational cost O(p3)
per iteration (Vu et al. 2013), our optimization problem is
directly defined on the Stiefel manifold, which can be solved
by leveraging manifold optimization algorithms, for example,
the proximal gradient method in Chen et al. (2020) operating
with O(p2d), where d is the number of principal eigenvectors
of interest. Third, our procedure consists of two steps: the first
step generates an initial estimate from the optimization, and
the second step refines the estimate by hard thresholding and
re-optimization on the reduced set of variables. This two-step
algorithm helps successfully identify significant features and
enhance the interpretability, which leads to consistent estima-
tors under the lq (0 ≤ q ≤ 1) sparsity. Moreover, we show
that the convergence rate of resulting estimators exhibits a phase
transition phenomenon that attains either nonparametric or
parametric rate, depending on the sampling frequency, that is,
how sparse/dense the repeated measurements are observed, see
Section 3. It is noteworthy that the convergence of estimated
principal eigenvectors is faster than that in dynamic covariance
estimation, which coincides with findings in the static case (Vu
and Lei 2012; Bickel and Levina 2008; Cai and Zhou 2012).

While both DPCA and functional PCA (FPCA) (Ramsay
and Silverman 2005) are tools to model random functions, they
are essentially different frameworks, see Remark 1. Although
FPCA is widely used to represent a single or a small number
of functional processes, its performance is not guaranteed and
can be unreliable in high dimensions due to error accumulation
(Yao, Müller, and Wang 2005a,b; Chiou, Chen, and Yang 2014).
In this regard, the DPCA is preferred to capture the dynamic

information with low-dimensional structures in applications
such as data compression and reconstruction. This is illustrated
in the real data example in terms of recovery errors in Section 5.

The remainder of the article is organized as follows. In Sec-
tion 2, we first introduce the dynamic PCA, then we provide the
lq(0 ≤ q ≤ 1) sparsity assumption in dynamic settings and
the formulation of our optimization problem, and describe pro-
cedures for practical implementation. In Section 3, we present
theoretical results under suitable regularity conditions. Simula-
tion results are included in Section 4, followed by an application
to the heartbeat sound data in Section 5. The additional results
and technical proofs are deferred to the Appendix and Supple-
mentary Material.

2. Dynamic Principal Component Analysis with
Sparsity

2.1. Dynamic Principal Component Analysis

We begin with some notations used in the sequel. For a matrix
A = (aij)

p
i,j=1 ∈ R

p×p, vec(A) denotes the vector with length p2

obtained by stacking the columns of A. We define the Frobe-

nius norm ‖A‖F =
(∑

i,j a2
ij

)1/2
, the elementwise l∞ norm

‖A‖∞ = max1≤i,j≤p |aij| and the elementwise l1 norm ‖A‖1 =∑
i,j |aij|. For a vector u ∈ R

p, denote its lq norm by ‖u‖q =(∑p
j=1 |uj|q

)1/q
with ‖u‖0 defined as the number of nonzero

elements. For two real numbers a and b, define a∧b = min(a, b)

and a ∨ b = max(a, b). We write a � b if a ≤ Cb for some
constant C > 0.

Let {X(t) : t ∈ T } be a vector-valued stochastic process
defined on a compact interval T = [0, 1], where X(t) =
(X1(t), . . . , Xp(t))T. The mean and diagonal covariance func-
tions are assumed to be continuous and denoted by μ(t) =
(μ1(t), . . . , μp(t))T = EX(t) and �(t) = (σjk(t))p

j,k=1 =
EX(t)X(t)T −μ(t)μ(t)T, respectively. For each fixed t, applying
multivariate PCA, we obtain

X(t) = μ(t) +
p∑

k=1
ξk(t)uk(t), (1)

where uk(t) is the kth principal eigenvector and ξk(t) = (X(t)−
μ(t))Tuk(t) is the kth principal component score with Eξk(t) =
0 and var(ξk(t)) = λk(t). Without loss of generality, suppose
that λ1(t) ≥ λ2(t) ≥ · · · ≥ λp(t) ≥ 0. Moreover, we have
cov(ξk(t), ξl(t)) = 0 and uk(t)Tul(t) = 0 for k 	= l at each
t. The time-varying version of PCA (1) is called dynamic PCA
(DPCA).

Remark 1. As discussed in Section 1, the DPCA is essentially
different from FPCA. In particular, the DPCA represents data
in the Euclidean space, that is, it applies multivariate PCA
at each t to obtain X(t) = μ(t) + ∑p

k=1 ξk(t)uk(t), where
uk(t), k = 1, . . . , p form an orthonormal basis in R

p. By com-
parison, the FPCA represents X(t) in the infinite-dimensional
function space, that is, X(t) = μ(t) + ∑∞

k=1 θkφk(t) where
θk are uncorrelated functional principal scores and φk(t) are
orthonormal basis functions in the space of square integrable
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functions L2(T ). Note that, instead of the auto-covariance func-
tion C(s, t) = EX(s)X(t)T − μ(s)μ(t)T, the DPCA studies the
much simper diagonal covariance function �(t) = C(t, t).

One advantage of DPCA is the ability to capture the dynamic
information contained in data, which facilitates interpretation.
Formally, the dynamic principal eigenvectors can be found by
solving the following optimization problem,

min
V(t)

∫
T E‖X(t) − μ(t) − V(t)V(t)T{X(t) − μ(t)}‖2dt

s.t. V(t)TV(t) = Id, (2)

where V(t) ∈ R
p×d, Id is a d × d identity matrix and d is

the number of principal eigenvectors of interest. The problem
(2) is reduced to perform multivariate PCA at each t based on
Lemma 2 in the Appendix, and a similar result can be found
in Berrendero, Justel, and Svarc (2011). Note that if λd(t) −
λd+1(t) > 0, then U(t) = (u1(t), . . . , ud(t)) is unique up to an
orthogonal matrix, that is, U(t)O is also an optimal solution of
(2) for any d × d orthogonal matrix O. We refer to the subspace
S(t) spanned by the column vectors of U(t) as the dynamic
principal subspace, and the corresponding projection matrix is
given by �(t) = U(t)U(t)T.

In reality, we observe noisy measurements at common or
irregular design points, yijl = xij(til) + εijl, til ∈ T , where εijl
are independent and identically distributed (iid) measurement
errors independent of xij with mean zero and variance σ 2, i =
1, . . . , n; j = 1, . . . , p and l = 1, . . . , mi, where mi is the number
of observations for each trajectory of the ith subject. We denote
N =∑n

i=1 mi and m̄ =∑n
i=1 mi/n. Under the common design,

all the observations are sampled at the same locations, that is,
t1l = t2l = · · · = tnl = tl for all l = 1, . . . , m where
m = m̄ = m1 = · · · = mn, while the locations til are sampled
independently from a compact interval T under the irregular
design (Cai and Yuan 2011).

An empirical version of (2) is formulated by substituting
the expectation with its estimate. A naive estimate is to use
the sample covariance matrix S, which however has some
drawbacks as discussed in Section 1. First, since the data are
collected at discrete grids, one can merely obtain estimates at
observed times instead of the whole period T . Second, the
sample covariance matrices are infeasible under the irregular
design. Third, the estimates may fluctuate significantly without
considering smoothness. Therefore, a reliable and smooth
estimate is desirable. To illustrate the main idea, we assume
μ(t) = 0 for the moment. To obtain the estimate at the
target time t, we borrow the information of the data observed
at neighboring grids. Thus, motivated by the local linear
smoothing, we propose an empirical optimization problem as
follows,

min
V(t)

n∑
i=1

mi∑
l=1

wil(t)‖yil − V(t)V(t)Tyil‖2

s.t. V(t)TV(t) = Id,

where wil(t) = {R2Kh(til − t) − R1Kh(til − t)(til − t)}/{R0R2 −
R2

1}, R	 = ∑n
i=1
∑mi

l=1 Kh(til − t)(til − t)	, 	 = 0, 1, 2, h is the
bandwidth, Kh(·) = K(·/h)/h and K is a kernel function (Fan

and Gijbels 1996). It can be equivalently formulated as

max
V(t)

Tr[V(t)T�̂(t)V(t)] (3)

s.t. V(t)TV(t) = Id,

where �̂(t) = ∑n
i=1
∑mi

l=1 wil(t)yilyT
il is the smoothed covari-

ance matrix.
Note that our proposal readily adapts to both common and

irregular designs using pooled data. More generally, incorporat-
ing the estimated mean function by the kernel smoothing, the
estimator Û(t) can be obtained by substituting �̂(t) in (3) with

�̂(t) =
n∑

i=1

mi∑
l=1

wil(t)yilyT
il −

n∑
i=1

mi∑
l=1

wil(t)yil

n∑
i=1

mi∑
l=1

wil(t)yT
il .

In addition, under the common design where the data are
observed at regular grids, practitioners can adopt an alternative
estimate of �̂(t) for simplified computation,

�̂common(t) =
m∑

l=1
wl(t)

n∑
i=1

n−1(yil − ȳl)(yil − ȳl)
T, (4)

where ȳl =∑n
i=1 yil/n, wl(t) = {R2,cKh(tl − t) − R1,cKh(tl − t)

(tl − t)
}
/(R2,cR0,c − R2

1,c), R	,c = ∑m
l=1 Kh(tl − t)(tl − t)	, 	 =

0, 1, 2.

2.2. Sparsity and Estimation in High Dimensions

For high-dimensional data, the number of variables p is
comparable to or even much larger than the sample size n.
The estimator Û(t) in Section 2.1 may become inconsistent
without additional structures. The sparsity assumption is
necessary to enhance the interpretability and improve the
estimates in high dimensions. Assume that U(t) ∈ U(q, Rq; T ),
where

U(q, Rq;T )

=
{

U(t) ∈ R
p×d , t ∈ T

∣∣∣∣U(t) ∈ Vp,d , sup
t∈T

max
1≤j≤d

‖uj(t)‖q
q ≤ Rq

}
,

with 0 < q ≤ 1. When q = 0,

U(0, R0;T )

=
{

U(t) ∈ R
p×d , t ∈ T

∣∣∣∣U(t) ∈ Vp,d , sup
t∈T

max
1≤j≤d

‖uj(t)‖0 ≤ R0

}
.

The set U(q, Rq; T ) is nonempty and the lq constraint is active
only when 1 ≤ Rq ≤ p1−q/2. In Section 3, we consider
bounded Rq to simplify the theoretical exposition. The family of
leading eigenvectors over T defined in U(q, Rq; T ) generalizes
the notion of static eigenvectors in Vu and Lei (2012). We stress
that if the sparsity condition does not hold uniformly over T ,
our method can still apply to the subregions of T where this
condition holds.

Recall that the projection matrix is �(t) = U(t)U(t)T. By
definition, �jj(t) = 0 holds if and only if each element of the
jth row of U(t) is zero. Further, it implies that if �jj(t) = 0,
then all entries of the jth row/column of �(t) are 0. Denote the
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support set J(t) = {j : �jj(t) > 0}. For notational convenience,
we introduce the following block representation of �(t):(

�JJ(t) �JJc(t)
�JcJ(t) �JcJc(t)

)
.

Similar block representations can be defined for other matrices
and vectors. Apparently, the principal eigenvectors at t does not
depend on the variables outside of the set J(t) in the sense that
all elements of UJc(t) are 0.

Note that U(t) ∈ Vp,d, where Vp,d = {V ∈ R
p×d|VTV = Id}

is the Stiefel manifold, which results in a non-convex problem
which is hard to solve. Most existing algorithms for static sparse
PCA require deflation steps (Shen and Huang 2008; Mackey
2009) or convex relaxation (d’Aspremont et al. 2007; Vu et al.
2013) to circumvent the orthogonality constraint, which either
lack theoretical guarantees or are computational expensive. To
avoid these issues, our optimization problem is defined directly
on the Stiefel manifold Vp,d which can be solved by manifold
optimization algorithms. The regularized manifold optimiza-
tion problem is formulated as follows,

min
V(t)

−Tr[V(t)T�̂(t)V(t)] + ρt‖V(t)‖1

s.t. V(t)TV(t) = Id,
(5)

where ρt > 0 is the regularization parameter at t. We allow
the parameter ρ to depend on t, which makes our proposal
fully adaptive to different sparsity levels varying with t. The
optimization problem (5) deals with sparsity and orthogonality
jointly, which can be solved effectively with recent developments
for manifold optimization, for example, the proximal gradient
method (Chen et al. 2020).

To improve estimation, we treat the solution of (5) as an
initial estimate which is denoted by Û0(t), and then propose
a refined version. Specifically, we add a thresholding step to
further filter out the variables irrelevant to the principal eigen-
vectors. Denote the set of remaining variables by Ĵ(t) = {j :
�̂0

jj(t) ≥ γt}, where �̂0(t) = Û0(t)Û0(t)T and γt > 0 is the
thresholding parameter at t. Since the estimate after threshold-
ing may not belong to the Stiefel manifold Vp,d, we reestimate
the principal eigenvectors afterwards. Our refined estimate is
given by

Û(t) =
(

ÛĴ(t)(t)
0

)
,

where ÛĴ(t)(t) is the solution of the problem,

min
V(t)

−Tr{V(t)T�̂Ĵ(t)Ĵ(t)(t)V(t)} + ρt‖V(t)‖1,1

s.t. V(t)TV(t) = Id.
(6)

Note that the estimated principal subspaces are readily
obtained by spanning the columns of Û(t) with projection
matrices �̂(t) = Û(t)Û(t)T. The two-step estimation pro-
cedure successfully identifies the significant variables and
provides consistent estimators under general lq sparsity, which
is theoretically and empirically demonstrated in Sections 3
and 4.

2.3. Tuning Parameters

In this section, we discuss how to select parameters that are
involved in the estimation procedure. Note that in the dynamic
setting, the number of principal eigenvectors of interest d may
be a constant or vary with t. There exists no consensus on the
selection of d which depends on the specific application. For
example, it could be selected based on the fraction of variance
explained (FVE). In supervised problems such as regression
or classification, it may be tuned by k-fold cross-validation to
minimize the prediction/classification error. Here we mainly
consider tuning three other parameters, the bandwidth h, the
sparsity parameter ρt and the thresholding parameter γt . We
suggest to select them in a sequential manner (Chen and Lei
2015; Chen and Leng 2016). For the bandwidth h, we use the
leave-one-curve-out cross-validation approach (Rice and Silver-
man 1991; Yao, Müller, and Wang 2005a). Specifically, we tune
the bandwidth h given ρt = 0 and γt = 0 by maximizing the
cross-validated inner product,

h∗ = arg max
h∈A1

1
nm̄

n∑
i=1

mi∑
l=1

Tr{Û−i
h,0,0(til)

T(yil − μ̂(til))(yil − μ̂(til))
TÛ−i

h,0,0(til)},

where μ̂ is the estimated mean function which refers to the sam-
ple mean under the common case and the local linear estimate
under the irregular design, A1 is a candidate set of h, Û−i

h,0,0 is
estimated by leaving out the ith subject with the bandwidth h,
ρt = 0 and γt = 0. Next, the parameter ρt is determined
by k-fold cross-validation. The data is divided into k-folds by
subjects, denoted by D1, . . . ,Dk. Let Û−ν

h,ρt ,γt
(t) be the estimator

using data other than Dν at time t with parameters h, ρt and γt .
Let �̂ν

h (t) be the smoothed covariance matrix estimate at t using
Dν with the bandwidth h. Next, we choose ρt given the selected
bandwidth h∗ and γt = 0 by maximizing the cross-validated
inner product,

ρ∗
t = arg max

ρt∈A2,t

1
k

k∑
ν=1

Tr[{Û−ν
h∗,ρt ,0(t)}T�̂ν

h∗(t)Û−ν
h∗,ρt ,0(t)],

where A2,t is a candidate set for ρt . At last, we tune the thresh-
olding parameter γt , given the selected bandwidth h∗ and spar-
sity level ρ∗

t , by a trade-off between the explained variance Ip(γt)
and model complexity, that is, the number of retained variables,
where

Ip(γt) = 1
k

k∑
ν=1

Tr[{Û−ν
h∗,ρ∗

t ,γt
(t)}T�̂ν

h∗(t)Û−ν
h∗,ρ∗

t ,γt
(t)],

where γt ∈ A3,t , A3,t is a candidate set and Ip(γt) is the
cross-validated inner product when the threshold equals γt . The
model complexity depicts the cardinality of the support set Ĵ(t).
One can select the γt to achieve model parsimony without much
information loss. We demonstrate the performance of selected
parameters in Section 4.

3. Theoretical Results

In this section, we investigate the theoretical properties of the
proposed estimator under both common and irregular designs.
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To measure the performance of the estimator, we use the notion
of the distance defined in Vu and Lei (2013). For U, V ∈ Vp,d,
the squared distance is defined by

d2(U, V) = d2(E ,F) = 1
2
‖E − F‖2

F , (7)

whereE andF are subspaces with projection matrices E = UUT

and F = VVT, respectively.
Some assumptions necessary for theoretical results are pro-

vided, concerning the properties of variables and kernel func-
tions. Assumption 1 ensures that the d-dimensional principal
subspace is well-defined. In multivariate cases, the commonly
used assumption for sparse PCA is that x2

j is sub-exponential,
while Assumption 2 is adapted to random processes, which
holds rather generally, for example, Gaussian processes.

Assumption 1. Assume that λd(t) − λd+1(t) > 0 for all t ∈ T .

Assumption 2. For each j = 1, . . . , p, X2
j (t) is sub-exponential

uniformly in t ∈ T , that is, there exists a positive constant λ0

such that supt∈T EeλX2
j (t)

< ∞ for |λ| < λ0. Also assume the
measurement error ε2 is sub-exponential.

Assumption 3. The mean functions μj(·) and the diagonal
covariance functions σjk(t) are twice differentiable and the
second derivative is bounded on T for j, k = 1, . . . , p.

Assumption 4. Assume log p(nm̄−1 + nh)−1 → 0 as n → ∞.

Assumption 5. The kernel function K(·) is a bounded and sym-
metric probability density function on [−1, 1] with

∫
u2K(u)du

< ∞ and
∫

K2(u)du < ∞.

The smoothness of mean and diagonal covariance func-
tions is imposed in Assumption 3, while X(t) is not necessarily
smooth. Assumption 4 indicates log p = O(nc) for some c > 0
since m̄ and h−1 typically grow at a fractional polynomial order
of n. Assumption 5 is standard in the kernel smoothing literature
(Fan and Gijbels 1996; Chen and Leng 2016).

First, we quantify the performance of the thresholding step
by investigating the false positive control and false negative
control of J(t). It is revealed in Lemma 1 that, with a suitable
parameter γt , we can recover the support set consistently. The
condition minj∈J(t) �jj(t) ≥ 2γt assures that the important
variables can be distinguished from the noise stochastically.
Denote (t) = �(t) + σ 2Ip where Ip ∈ R

p×p is an identity
matrix.

Lemma 1. Assume U(t) ∈ U(q, Rq; T ) and recall that �̂0(t)
is the initial estimator. Note that we have ‖�(t) − �̂0(t)‖2

F ≤
C‖�̂(t) − (t)‖∞ = op(1), t ∈ T for some positive constant
C > 0. If minj∈J(t) �jj(t) ≥ 2γt and γt > ‖�(t) − �̂0(t)‖F ,
then the variable selection procedure Ĵ(t) := {j : �̂0

jj(t) ≥ γt}
succeeds.

In the following, we state the theoretical properties of the
eventually obtained estimators Û(t). A theoretical challenge is
how to carefully control the lq(0 ≤ q ≤ 1) norm of our estima-
tors obtained with a lasso-type penalty, which can be tackled by

the consistent variable selection. Moreover, we need to deal with
the dependence between observations from the same trajectory
with care to control the concentration bound of the local linear
estimator, which is essential to the theoretical results. Next, we
investigate the behavior of the resulting estimator under both
irregular and common designs.

3.1. Rate of Convergence Under the Irregular Design

In this section, we provide a theoretical investigation of esti-
mators under the irregular design. Assumption 6 is about the
sampling scheme under the irregular design (Cai and Yuan
2011). Assumption 7 on the sampling frequency is assumed
to quantify the within-subject dependence and facilitate the
exposition of theoretical analysis. This is a standard condition
used in functional data (Zhang and Wang 2016), which is fairly
mild and holds for the common design and the irregular design
with finite mi or when mi are not all vastly different, 1 ≤ i ≤ n.

Assumption 6. Under the irregular design, til, i = 1, . . . , n; l =
1, . . . , mi are independent and identically distributed from a
density f (·) with compact support T . In addition, the sampling
density fT is bounded away form zero and infinity and is twice
continuously differentiable with a bound derivative on its sup-
port.

Assumption 7. Assume lim supn
∑n

i=1 m2
i /nm̄2 < ∞ and

supn(n maxi mi/
∑n

i=1 mi) < ∞.

Theorem 1. Suppose that U(t) ∈ U(q, Rq; T ) for 0 ≤ q ≤ 1.
Under Assumptions 1–7, for a fixed point t ∈ [0, 1], if ρt =
O
[{log p/(nm̄h) + log p/n}1/2 + h2] and minj∈J(t) �jj(t) ≥

2γt , where γ 2
t = O

[{log p/(nm̄h) + log p/n}1/2 + h2], then

d{U(t), Û(t)} = Op

⎡
⎣
{(

log p
nm̄h

+ log p
n

)1/2
+ h2

}1−q/2
⎤
⎦ .

From Lemma 1, the condition minj∈J(t) �jj(t) ≥ 2γt
together with the choice of γ (t) in Theorem 1 ensures that
signal variables can be distinguished from the noise, which
leads to consistent variable selection. The parameter ρt is to
balance the trade-off between bias and variance. The rate of
convergence in Theorem 1 consists of two parts, the variance
term

{
log p/(nm̄h) + log p/n

}1/2 and the bias term h2 for q = 0,
which is consistent with that of the mean estimation in Zhang
and Wang (2016) up to the log p term accounting for high
dimensionality. The convergence rate depends on m̄ through the
total number of observations nm̄. Thus, the magnitude of m̄ can
be of any order of the sample size n as long as log p/(nh) → 0
and h → 0, which demonstrates the advantage of our proposal
in handling the sparsely observed data. A careful inspection
shows that the convergence rate exhibits a phase transition
phenomenon. When m̄h → ∞, the sampling frequency m̄ has
no effect on the resulting rate, (log p/n)1/2−q/4, as if the whole
curves are completely observed. Otherwise, the estimates attain

the nonparametric rate
[{

log p/(nm̄h)
}1/2 + h2

]1−q/2
as if all

nm̄ observations are independently observed.
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In contrast, the convergence rate is of the order
[{log p/(nh)}1/2+h2]1−q for the dynamic covariance estimation
in Chen and Leng (2016) under the assumption that the columns
of covariance matrices possess the lq-type sparsity structure.
There are two notable differences between the two rates. First,
in our setting, the effective sample size is (nm̄h) ∧ n instead of
nh which differs from the conventional nonparametric scheme.
This is because we take the correlation among observations from
the same subject into account which is an important nature of
functional data or generally the repeated measurements data.
Second, the dependence on the q for these two convergence rates
is different. In the static case, it is known that the optimal rate
for eigenvector estimation (log p/n)1/2−q/4 is faster than the rate
obtained for covariance estimation (log p/n)1/2−q/2 (Bickel and
Levina 2008; Vu and Lei 2012; Cai and Zhou 2012). Likewise
in the dynamic setting, the convergence rate for eigenvectors
in Theorem 1 is faster than the rate of the corresponding
covariance estimation. The theoretical finding is corroborated
in empirical studies that the eigenvector estimators based on the
eigen-decomposition of dynamic covariance estimates perform
sub-optimally.

Moreover, Lemma 3 reveals that d{U, Û} ≤ Cq‖�̂−‖1−q/2
∞

where Cq = Cd2Rq for some positive constant C > 0.
Therefore, the quantity R0 may be allowed to grow to infinity,
and the consistency of the estimator is guaranteed as long as
R0{
(
log p/(nmh) + log p/n

)1/2 + h2} → 0. Given that the
bandwidth is carefully tuned to balance the bias and variance,
the quantity m̄ plays a crucial role in the convergence rate, which
is illustrated in Corollary 1.

Corollary 1. Suppose that U(t) ∈ U(q, Rq) and conditions in
Theorem 1 hold and t is a fixed point in [0, 1].
1. When m̄/(n/ log p)1/4 → 0 and h = O[{log p/(nm̄)}1/5],

d{U(t), Û(t)} = Op

⎡
⎣
{(

log p
nm̄h

)1/2
+ h2

}1−q/2
⎤
⎦ .

2. When m̄/(n/ log p)1/4 → C, where C > 0, and h =
O{(log p/n)1/4},

d{U(t), Û(t)} = Op

{(
log p

n

)1/2−q/4
}

.

3. When m̄/(n/ log p)1/4 → ∞, h = o{(log p/n)1/4} and
m̄h → ∞,

d{U(t), Û(t)} = Op

{(
log p

n

)1/2−q/4
}

.

As Corollary 1 reveals, the phase transition occurs when m̄ is
of the order (n/ log p)1/4. When m̄ is relatively small as in case
(1), the nonparametric rate is determined jointly by quantities
n and m̄. With m̄ grows such that m̄ � (n/ log p)1/4, the rate
achieves (log p/n)1/2−q/4 regardless of m̄ which coincides with
the optimal rate for estimating static eigenvectors. Although the
rates are of the same order in cases (2) and (3) which fall into
the parametric paradigm, the bias in case (2) is nonvanishing
(Zhang and Wang 2016). With the advantage of data pooling,
the grids are allowed to be sparse under the irregular design as
long as the sample size n suffices.

3.2. Rate of Convergence Under the Common Design

In this section, we focus on the common design where sampling
locations tl, l = 1, . . . , m are deterministic.

Assumption 8. Under the common design, tl’s are fixed and dis-
tinct, and max0≤l≤m |tl+1−tl| ≤ Cm−1, where t0 = 0, tm+1 = 1.

Assumption 9. The sampling frequency m → ∞ and 1/(mh) =
O(1), h → 0 as n → ∞.

Under the common design, the data should be observed on
sufficiently dense grids. To see this, if m is finite, no data is
available in the suitably small neighboring region for some t,
which causes large bias for the resulting estimates. Moreover,
Assumption 9 guarantees that h ≥ minj=1,...,m |t−tj| = O(1/m)

for each t ∈ T to avoid the trivial estimator.

Theorem 2. Suppose that U(t) ∈ U(q, Rq; T ) for 0 ≤ q ≤ 1.
Under Assumptions 1–5, 8, and 9, for a fixed point t ∈ [0, 1],
if ρt = O

[{log p/(nmh) + log p/n}1/2 + h2] and minj∈J(t)
�jj(t) ≥ 2γt , where γ 2

t = O
[{log p/(nmh) + log p/n}1/2 + h2],

then

d{U(t), Û(t)} = Op

⎡
⎣
{(

log p
nmh

+ log p
n

)1/2
+ h2

}1−q/2
⎤
⎦ .

At first glance, the convergence rates under common and
irregular designs are similar. However, since the data are
observed at common locations under this design, the number of
locations where the data are used for estimation is of the order
mh. Consequently, the sampling frequency m is required to be
sufficiently large which differs from the case under the irregular
design. The effect of m on the convergence rate is illustrated in
Corollary 2.

Corollary 2. Suppose that U(t) ∈ U(q, Rq) and conditions in
Theorem 2 hold and t is a fixed point in [0, 1].
1. When m/(n/ log p)1/4 → 0 and h = O(1/m),

d{U(t), Û(t)} = Op

{(
1

m2

)1−q/2
}

.

2. When m/(n/ log p)1/4 → C, where C > 0, and h =
O{(log p/n)1/4} = O(1/m),

d{U(t), Û(t)} = Op

{(
log p

n

)1/2−q/4
}

.

3. When m/(n/ log p)1/4 → ∞, h = o{(log p/n)1/4} and
mh → ∞,

d{U(t), Û(t)} = Op

{(
log p

n

)1/2−q/4
}

.

The phase transition phenomenon appears more complex
under the common design because of the interplay among the
quantities h, n and m. The bandwidth is usually chosen to
be of the order {log p/(nm̄)}1/5 to balance the associated bias
and variance. Yet, restricted by the condition 1/(mh) = O(1)
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that guarantees observations available in the local window, the
bandwidth is at least of the order 1/m, see Corollary 2. When m
is relatively small, the sampling frequency m plays a dominant
role in the convergence rate, that is, (1/m2)1−q/2, which is slower
than that under the irregular design. When m grows such that
m � (n/ log p)1/4, the parametric rate (log p/n)1/2−q/4 can
be achieved. Again, it requires m → ∞ to guarantee the
consistency, otherwise, the bias is not negligible.

In summary, the phase transition occurs at the same order,
m = O{(n/ log p)1/4}, for both designs. When m/(n/ log p)1/4

→ 0, the rate depends on the total number of observations
nm̄ under the irregular case, while the rate is solely determined
by the sampling frequency m under the common case. Other-
wise, both designs achieve parametric rates. Under the irregular
design, the estimator is consistent as long as (log p/nm̄h) ∨
(log p/n) → 0. Thus, as the sample size permits, we can
handle the extremely sparse case, that is, the sampling frequency
is allowed to be very small. However, the quantity m should
be sufficiently large to achieve reasonable estimates under the
common design. Further, when the sampling frequency is small,
the irregular design is preferable to the common design with
faster convergence rates.

4. Simulation

In this section, several experiments are conducted to evaluate
the numerical performance of our proposal under irregular
and common designs. The observations are generated from the
model, yi(til) = ∑10

k=1 ξik(til)uk(til) + εil, i = 1, . . . , n; l =
1, . . . , mi, where ξik ∈ R, yi(til), uk(til) ∈ R

p and εil
iid∼

Np(0, σ 2Ip). Moreover, we set ξik(til) ≡ ξik
iid∼ N(0, λk)

where λ = (30, 18, 10, 5, 3, 2, 1, 0.5, 0.2, 0.1)T, which follows
the classical generation mechanism of functional data. The
sparse eigenvectors uk are obtained by applying Gram-Schmidt
orthonormalization on vk(t) defined later. Let vk,(k−1)×5+r(t) =
φr(t), k = 1, . . . , 10, r = 1, . . . , 5, and other entries of vk
be zero, where vk,j is the j-th element of the vector vk, φr(t)
are functions in the Fourier basis, φr(t) = √

2 sin(π(r +
1)t) when r is odd, φr(t) = √

2 cos(πrt) when r is even.
The locations of nonzero elements are different for different
eigenvectors.

We design simulation settings to demonstrate the effect of the
sample size n and the sampling frequency under both common
and irregular cases. Under the irregular design, we consider six
settings for various combinations of mi and n where mi are iid
from a discrete uniform distribution on the set M. Setting 1:
n = 100 and m̄ = 100, M = {95, 100, 105}. Setting 2: n = 100
and m̄ = 50, M = {45, 50, 55}. Setting 3: n = 100 and m̄ = 20,
M = {15, 20, 25}. Setting 4: n = 500 and m̄ = 20, M =
{19, 20, 21}. Setting 5: n = 500 and m̄ = 10, M = {9, 10, 11}.
Setting 6: n = 500 and m̄ = 4, M = {3, 4, 5}. The time points til
are iid sampled from the uniform distribution on [0,1]. Under
the common design, the data are sampled at til = (2l)/(2m + 1)

with the sample size n = 100 and the sampling frequency
m = 20, 50, 100, respectively. In each setting, we repeat 100
times independently for p = 50, 100, 200 and the noise level
σ 2 = 1, 3, respectively.

For comparison purposes, we estimate eigenvectors by
performing conventional PCA on sparse covariance matrices
obtained by dynamic covariance models (DCM) (Chen and
Leng 2016). Since the bandwidth selected by the leave-one-
point-out cross-validation in the DCM might be inappropriate
for repeated measurements, we use the leave-one-curve-out
cross-validation instead and denote the resulting model by
DCM+. Under the common design, we include the methods
of Berrendero, Justel, and Svarc (2011) and Johnstone and Lu
(2009), denoted by BJS and DT, respectively. Note that the
parameters in DT are set to the recommended values in the
original paper. We evaluate the performance of estimators by the
mean integrated squared error (MISE) which is approximated
by computing the average of squared errors, defined in (7),
on a grid of 50 equally spaced points. Since the BJS and DT
only obtain estimates under the sampling locations, to calculate
the MISE for these two methods, we simply generate data at
evaluated grids to obtain corresponding estimates. Note that
the resulting errors MISEBJS and MISEDT are not relevant to the
sampling frequency.

We begin with illustrating the selection and the performance
of tuning parameters in our method. We set d = 3 under
which the FVE is about 85%, and other parameters are chosen as
discussed in Section 2.3. Specifically, the bandwidth h is selected
by leave-one-curve-out cross-validation, while the ρt and γt are
determined by 5-fold cross-validation to save the computation
time. Since the quantity m or m̄ might be large, to further reduce
the computation, we randomly choose 10 observational points
with equal probability for each curve to calculate the error in
the validation step to tune the bandwidth. The effectiveness
of the selection strategy for the parameters is illustrated in
Figure 1. As is shown, the selected parameters well depict the
true smoothness of covariance matrices, the sparsity level and
model complexity of the eigenvectors, respectively.

The results for p=100 and 200 with σ 2 = 3 are summarized
in Tables 1 and 2, while the results for p = 50 are qualitatively
similar, thus not reported for space economy. Moreover, the
results with σ 2 = 1 are provided in the Supplementary Material.
The errors of the initial estimate Û0 and the refined estimate Û
are denoted by MISE0 and MISE, respectively. As Tables 1 and
2 show, the proposed method outperforms other methods in
all settings, while the refined estimators perform slightly better
than the initial estimates under both designs. The DCM and
DCM+ methods perform decently when m = 100 and p =
100. However, their performance deteriorates significantly if the
dimension increases or the sampling frequency becomes small.
Under the irregular design, as noted in Section 3.1, the grids
can be sparse to obtain consistent estimation as the sample size
permits. Thus, even in the very sparse case as m̄ = 4 or 10
(n = 500), the error is still well controlled and even smaller than
that when m̄ = 20 (n = 100) due to a larger sample size and the
advantage of data pooling. Moreover, when the total number of
observations is comparable, a larger sample size usually leads to
a better estimate. Under the common design, it is not surprising
that the BJS method fails to obtain reasonable estimators as it did
not accommodate high dimensionality. Although the DT yields
sparse eigenvectors, it tends to select too few coordinates, which
introduces larger bias. Further, as shown in the left of Figure 2,
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Figure 1. The performance of the cross-validation to select parameters under the common design with p = 100, m = 50 and σ 2 = 3. All the parameters are selected
by maximizing the cross-validated inner product (black, solid, left y label). Left: bandwidth selection. The right y label indicates the MRSE(h) = m−1∑m

l=1 ‖�̂(tl) −
�(tl)‖2

F/‖�(tl)‖2
F . An ideal h should be close to the hora = arg min MRSE(h). The selected bandwidth matches the one attaining the minimal MRSE (treated as a

benchmark; see red, dashed line, right y label) . Middle: sparsity parameter selection. For a fixed t, the right y label represents ‖U(t)‖1. The ‖ · ‖1 of estimated U(t) with the
selected ρt (red, dashed, right y label) approximately meets that of the true matrix (indicated by the horizontal dotted line). Right: thresholding parameter selection. The
right y label represents the size of the support set. The γt is selected as the minimum value which maximizes the cross-validated inner product. The number of retained
variables with the selected γt (red, dashed, right y label) is equal to the true number of relevant variables (horizontal, dotted).

Table 1. Average integrated squared errors and standard deviations over 100
replications for different settings under the irregular design and σ 2 = 3.

Model MISE0 MISE MISEDCM MISEDCM+

p=100 n=100 m̄ = 100 0.033 (0.014) 0.031(0.012) 0.040(0.037) 0.038(0.031)
m̄ = 50 0.042(0.014) 0.041(0.016) 0.128(0.189) 0.121(0.157)
m̄ = 20 0.112(0.056) 0.102(0.061) 0.488(0.237) 0.498(0.226)

p=100 n=500 m̄ = 20 0.023(0.003) 0.022(0.002) 0.021(0.006) 0.022(0.005)
m̄ = 10 0.035(0.008) 0.034(0.007) 0.059(0.091) 0.080(0.130)
m̄ = 4 0.078(0.016) 0.068(0.016) 0.465(0.158) 0.460(0.167)

p=200 n=100 m̄ = 100 0.038(0.023) 0.036(0.022) 0.127(0.168) 0.130(0.177)
m̄ = 50 0.058(0.037) 0.059(0.044) 0.361(0.263) 0.322(0.275)
m̄ = 20 0.148(0.071) 0.123(0.079) 0.577(0.193) 0.574(0.184)

p=200 n=500 m̄ = 20 0.024(0.002) 0.023(0.002) 0.095(0.154) 0.077(0.130)
m̄ = 10 0.036(0.005) 0.035(0.005) 0.288(0.206) 0.269(0.214)
m̄ = 4 0.104(0.025) 0.080(0.031) 0.515(0.087) 0.515(0.086)

our method performs significantly better than other methods
uniformly over t. The results under other simulation settings
lead to similar conclusions and are not reported.

At last, to illustrate the performance of the refined estimates
in achieving model parsimony, two criteria TNR = TN/(TN+FP)
and TPR=TP/(TP+FN) are reported in Figure 2, where TP
and TN are abbreviations for true positives and true negatives,
respectively, that is, the number of significant or nonsignificant
variables correctly identified by our method, similarly FP and
FN stand for false positives and false negatives. The numerical
values of �̂jj over 10−6 in magnitude are considered nonzero
for the consideration of computation accuracy. As the principal
eigenvectors vary with t, the signal minj∈J(t) �jj(t) may be close
to zero which leads to a bit lower TPR at some t. The result
reveals the fact that the refined estimate by thresholding yields
better variable selection results, which is particularly useful for
model interpretation.

5. Real Data Example

The heartbeat sound dataset from http://www.timeseriesclassifi
cation.com/description.php?Dataset=Heartbeat were sourced
from several contributors around the world, collected at either a

clinical or nonclinical environment (Liu et al. 2016). The heart
sound recordings were collected from different locations on the
body. The typical four locations are the aortic area, pulmonic
area, tricuspid area and mitral area, but could be one of nine
different locations. Each recording was truncated to 5 seconds.
A Spectrogram of each instance was then created with a window
size of 0.061 seconds and an overlap of 70%. Each instance is
arranged such that each dimension is a frequency band from the
spectrogram, with p = 61 and m = 405. We focus on extracting
the dynamic features of n = 295 pathological patients.

For the purpose of evaluation, we compute the mean squared
recovery error on the held-out test sample. Specifically, we ran-
domly choose 100 subjects as the test data, and treat the remain-
ing data as the training set. The estimators are obtained using
the training sample under different methods including the pro-
posed method, DCM, DCM+, BJS, and DT. To better demon-
strate the advantages of smoothing, we compare with a variant of
our method with the bandwidth nearly 0, denoted by the rough
estimator. More specifically, this variant is obtained by using the
same optimization technique in our article and only replacing
the smoothed covariance matrix with the sample covariance
matrix. The mean squared recovery errors under a different
number of eigenvectors d are calculated over all 405 grids, that
is, (100m)−1∑

i,l ‖yil − μ̂l − ÛlÛT
l (yil − μ̂l)‖2, where yil are

observations of the i-th test subject, μ̂l is the sample mean vector
and Ûl is the estimator at the l-th observed locations. Moreover,
to compare with the performance of FPCA (Ramsay and Sil-
verman 2005) in terms of the low-dimensional representation,
we implement FPCA for each functional variable and calculate
the mean squared recovery error, (100m)−1∑

i,j,l(yijl − μ̂jl −∑d
k=1 ξ̂jkψ̂jkl)

2, where ξ̂jl = m−1∑m
l=1(yijl − μ̂jl)ψ̂jkl and ψ̂jkl

is the value at the lth time point of the kth eigenfunction for
the jth functional variable. Note that Proposed0 and Proposed
represent the proposed method without and with the refinement
step, respectively. While the refinement step has little effect on
the recovery errors, it in fact leads to a more parsimonious
model with fewer retained variables, screening out about 20%
insignificant variables. As Table 3 shows, the proposed method
obtains favorable performance over other methods, suggesting

http://www.timeseriesclassification.com/description.php?Dataset=Heartbeat
http://www.timeseriesclassification.com/description.php?Dataset=Heartbeat
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Table 2. Average integrated squared errors and standard deviations over 100 replications for different settings under the common design and σ 2 = 3.

Model MISE0 MISE MISEDCM MISEDCM+ MISEBJS MISEDT

p=100 n=100 m=100 0.032(0.016) 0.030(0.016) 0.064(0.096) 0.058(0.065) 0.643(0.075) 0.647(0.099)
m=50 0.040(0.014) 0.037(0.013) 0.212(0.177) 0.199(0.159)
m=20 0.128(0.081) 0.114(0.085) 0.722(0.260) 0.706(0.276)

p=200 n=100 m=100 0.037(0.028) 0.036(0.025) 0.242(0.275) 0.180(0.219) 1.021(0.098) 0.645 (0.118)
m=50 0.053(0.028) 0.053(0.030) 0.581(0.299) 0.609(0.292)
m=20 0.157(0.063) 0.132(0.074) 1.026(0.125) 1.018(0.147)

Figure 2. The common design: p = 100 and σ 2 = 3. Left: The errors, defined in (7), of different methods over 50 equally spaced points in [0,1]. The two black dotted lines
reflect uncertainty (standard deviation) of errors for the proposed estimate. Right: The performance of TPR (middle) and TNR (right) over t of the proposed estimates with
γt = 0 (solid) or γt 	= 0 (dashed). It illustrates the advantage of the refinement step in screening out irrelevant variables and achieving desired model parsimony, which
improves TNR without decreasing TPR.

Table 3. The mean squared recovery errors on the test data with a different number
of principal eigenvectors/eigenfunctions for different methods.

Proposed0 Proposed DCM DCM+ BJS DT Rough FPCA

d = 5 0.201 0.201 0.274 0.222 0.279 0.302 0.273 3.156
d = 6 0.113 0.112 0.218 0.151 0.192 0.228 0.191 3.120
d = 7 0.072 0.072 0.187 0.114 0.132 0.184 0.131 3.078
d = 8 0.045 0.045 0.165 0.097 0.091 0.157 0.093 3.044

Table 4. The mean squared recovery errors on the test data for different methods
under the irregular case with different m̃ and d = 6, 8.

d = 6 d = 8

Proposed0 Proposed DCM DCM+ Proposed0 Proposed DCM DCM+

m̃ = 30 0.191 0.191 0.226 0.232 0.124 0.124 0.151 0.162
m̃ = 50 0.150 0.150 0.174 0.202 0.072 0.072 0.120 0.150
m̃ = 80 0.147 0.147 0.176 0.175 0.068 0.068 0.116 0.114

more accurate estimation from our approach for the dynamic
PCA. In particular, our approach outperforms the rough estima-
tor, showing the usefulness of the smoothing strategy. The DCM
performs worse than DCM+ because it tends to select smaller
bandwidth which is not satisfactory in this case. As seen in
Table 3, the representation obtained by FPCA is not promising
with large recovery errors.

To demonstrate the performance under the irregular design,
we randomly sample m̃ = 30, 50, 80 measurements, respec-
tively, with equal probability from each subject of the training
sample, and use the obtained irregular data for estimation. Since
the methods BJS and DT are not feasible for the irregular design,
we compare the recovery errors of the other three approaches
for the dynamic PCA. Note that we report the results with d =
6, 8 in Table 4 for space economy, since the results exhibit a
similar pattern for other values of d. It is demonstrated that
the proposed method is capable of producing more desirable

estimates. Moreover, despite fewer observations, the recovery
errors in Table 4 are still much lower than the errors of FPCA
obtained under the common design.

6. Concluding Remarks

We propose a unified framework to estimate dynamic eigenvec-
tors in high-dimensional settings by combining the local linear
smoothing and the sparsity constraint under both common and
irregular designs. The resulting estimators satisfy sparsity and
orthogonality simultaneously. Different from the conventional
nonparametric smoothing, the rates of convergence depend on
the sampling frequency and the sample size jointly, exhibit-
ing the phase transition phenomenon. When the sampling fre-
quency is suitably large, the obtained rates are optimal as if the
whole curves are available under both designs. Otherwise, the
irregular design is preferred with a faster rate of convergence.

It is interesting to study other types of smoothing techniques,
such as smoothing splines, for the problem of DPCA. Moreover,
since the PCA is sensitive to outliers, it is also useful to develop
a dynamic robust model. These topics are beyond the scope of
the current article and deserve future study.

Appendix

Appendix A: Auxiliary Lemmas

In the sequel, we suppress the index t of pointwise results for conve-
nience when no ambiguity arises. We write a � b if a � b and b � a
hold simultaneously.

Lemma 2. Given the random function X(t) ∈ R
p with the mean

function μ(t) = EX(t), t ∈ T . Denote U(t) = (u1(t), . . . , ud(t)),
where u1(t), . . . , ud(t) are the first d eigenvectors of X(t). Then, U(t)
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is a solution of the optimization problem (2). Moreover, solving (2) is
reduced to performing multivariate PCA at each t.

Proof. Let h
(
V(t)

) = E‖X(t) − μ(t) − V(t)V(t)T{X(t) − μ(t)}‖2.
We first show that U(t) is a solution of (2), and define the optimization
problem for multivariate PCA at each t as,

min
V(t)

h
(
V(t)

)
s.t. V(t)TV(t) = Id. (A.1)

Denote by U∗(t) the solution of (A.1), and let h∗(t) = h
(
U∗(t)

)
.

Moreover, we denote the solution of (2) by U∗∗(t), and let h∗∗(t) =
h
(
U∗∗(t)

)
. Thus, we have

∫
T {h∗(t) − h∗∗(t)}dt ≤ 0. Since U∗(t) is

feasible for (2), then
∫
T h∗∗(t)dt ≤ ∫

T h∗(t)dt. Due to the fact that∫
T h∗(t)dt = ∫T h∗∗(t)dt, we conclude that U∗(t) is a solution of (2).

Note that (A.1) seeks an orthonormal matrix V(t) ∈ R
p×d to minimize

E‖X(t) − μ(t) − V(t)V(t)T{X(t) − μ(t)}‖2, which is equivalent to
finding an orthonormal matrix to maximize Tr(V(t)T�(t)V(t)). Thus,
U(t) is a solution of (A.1), then it is also a solution of (2).

Next, we show that (2) is reduced to the multivariate PCA at each
t. If U∗∗(t) is not the solution of (A.1), then there exists some t̃ ∈
T such that the columns of U∗∗(t̃) does not correspond to the first
d eigenvectors of X(t̃). It contradicts the argument that U∗∗(t) is a
solution of (2) since replacing U∗∗(t̃) with U(t̃) leads to a smaller
objective value for (2).

Lemma 3. Recall that U and Û are true and estimated principal
eigenvectors with projection matrices � = UUT and �̂ = ÛÛT,
respectively. Assume U ∈ U(q, Rq), 0 ≤ q ≤ 1. If conditions
in Lemma 1 hold, with appropriate choice of parameters, we have
d{U, Û} ≤ Cq‖�̂ − ‖1−q/2

∞ where Cq = Cd2Rq for some positive
constant C > 0.

Lemma 4. If h → 0 and nm̄h → ∞, then under the irregular design,
we have

(a) R	 � nm̄h	
(
1 + op(1)

)
, 	 = 0, 1, 2. Moreover, R2R0 − R2

1 �
n2m̄2h2(1 + op(1)

)
.

(b) E
[{

R2Kh(til − t) − R1Kh(til − t)(til − t)
}

xijlxikl
]2 =

O(n2m̄2h3).
(c) E

(
w̃ilxijlxiklw̃i′l′xi′jl′xi′kl′

)
= O(n2m̄2h4) for (i, l) 	= (i′, l′), where

w̃il = R2Kh(til − t) − R1Kh(til − t)(til − t).

Lemma 5. Under Assumptions 2–7, we have for each t ∈ T ,

max
j,k

∣∣∣∣∣∣
n∑

i=1

mi∑
l=1

{
w̃ilxijlxikl − E

(
w̃ilxijlxikl

)}∣∣∣∣∣∣
= Op{(log p)1/2(n3m̄3h3 + n3m̄4h4)1/2}.

The proofs of Lemmas 3–5 are deferred to the Supplementary
Material. In the following, we provide the proof of Theorem 1, while
the proof of Theorem 2 is analogous which could be found in the
Supplementary Material.

Appendix B: Proofs of Main Results
Proof of Theorem 1. From Lemma 3, we have d{Û(t), U(t)} ≤
Cq‖�̂(t) − �(t) − σ 2Ip‖1−q/2

∞ . Thus, it suffices to quantify the error
‖�̂(t) − �(t) − σ 2Ip‖∞.

Let �(t) = E(X(t)X(t)T), we have �(t) = �(t) − μ(t)μ(t)T.
Under the irregular design, using the triangle inequality,

‖�̂(t) − �(t) − σ 2Ip‖∞

= ‖
n∑

i=1

mi∑
l=1

wilyilyT
il −

n∑
i=1

mi∑
l=1

wilyil

n∑
i=1

mi∑
l=1

wilyT
il

−{�(t) − μ(t)μ(t)T} − σ 2Ip‖∞

≤
∥∥∥∥

n∑
i=1

mi∑
l=1

wilyilyT
il − �(t) − σ 2Ip

∥∥∥∥∞
+
∥∥∥∥

n∑
i=1

mi∑
l=1

wilyil

n∑
i=1

mi∑
l=1

wilyT
il − μ(t)μ(t)T

∥∥∥∥∞
= M1(t) + M2(t). (B.2)

Note that

M1(t) = ‖
n∑

i=1

mi∑
l=1

wil(xil + εil)(xil + εil)
T − �(t) − σ 2Ip‖∞

≤
∥∥∥∥

n∑
i=1

mi∑
l=1

wilxilxT
il − �(t)

∥∥∥∥∞ + 2
∥∥∥∥

n∑
i=1

mi∑
l=1

wilxilε
T
il

∥∥∥∥∞
+
∥∥∥∥

n∑
i=1

mi∑
l=1

wilεilε
T
il − σ 2Ip

∥∥∥∥∞, (B.3)

where εil = (εi1l, . . . , εipl)
T. Similarly,

M2(t) ≤
∥∥∥∥∥∥

n∑
i=1

mi∑
l=1

wilxil

n∑
i=1

mi∑
l=1

wilxT
il − μ(t)μ(t)T

∥∥∥∥∥∥∞
+2

∥∥∥∥∥∥
n∑

i=1

mi∑
l=1

wilxil

n∑
i=1

mi∑
l=1

wilε
T
il

∥∥∥∥∥∥∞
+
∥∥∥∥∥∥

n∑
i=1

mi∑
l=1

wilεil

n∑
i=1

mi∑
l=1

wilε
T
il

∥∥∥∥∥∥∞
. (B.4)

To bound the term �n = ‖∑n
i=1
∑mi

l=1 wilxilxT
il − �(t)‖∞, we

have

�n =
∥∥∥∥

n∑
i=1

mi∑
l=1

wilxilxT
il − �(t)

∥∥∥∥∞
= max

j,k

∣∣∣∣
∑n

i=1
∑mi

l=1

{
w̃ilxijlxikl − E(w̃ilxijlxikl)

}
R0R2 − R2

1

+
∑n

i=1
∑mi

l=1

{
E(w̃ilxijlxikl) − w̃ilωjk(t)

}
R0R2 − R2

1

∣∣∣∣

≤
max

j,k

∣∣∣∣∑n
i=1
∑mi

l=1

{
w̃ilxijlxikl − E(w̃ilxijlxikl)

} ∣∣∣∣∣∣∣∣R0R2 − R2
1

∣∣∣∣

+
max

j,k

∣∣∣∣∑n
i=1
∑mi

l=1

{
E(w̃ilxijlxikl) − w̃ilωjk(t)

} ∣∣∣∣∣∣∣∣R0R2 − R2
1

∣∣∣∣
= I + II,

where w̃il = R2Kh(til − t) − R1Kh(til − t)(til − t) and ωjk(t) =
E{xij(t)xik(t)}. The second equality holds due to the fact that∑n

i=1
∑mi

l=1 wil = 1.

Denote ζ1 = maxj,k

∣∣∣∣∑n
i=1
∑mi

l=1

{
w̃ilxijlxikl − E(w̃ilxijlxikl)

} ∣∣∣∣.
By Lemma 5, we conclude ζ1 = Op{(log p)1/2(n3m̄3h3+n3m̄4h4)1/2}.
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From (a) of Lemma 4, we have R0R2 − R2
1 � n2m̄2h2(1 + op(1)

)
.

Consequently,

I = Op

{(
log p
nm̄h

+ log p
n

)1/2
}

.

Next we bound the term II. Denote that ζ2 = maxj,k

∣∣∣∣∑n
i=1
∑mi

l=1{
E(w̃ilxijlxikl) − w̃ilωjk(t)

} ∣∣∣∣. Notice that

ζ2 = max
j,k

∣∣∣∣
n∑

i=1

mi∑
l=1

{
E(w̃ilωjk(til)) − w̃ilωjk(t)

} ∣∣∣∣
= max

j,k

∣∣∣∣
n∑

i=1

mi∑
l=1

⎛
⎝E

⎡
⎣w̃il

⎧⎨
⎩ωjk(t) + ω

(1)
jk (t)(til − t) +

ω
(2)
jk (ξil)

2
(til − t)2

⎫⎬
⎭
⎤
⎦− w̃ilωjk(t)

⎞
⎠∣∣∣∣

≤ max
j,k

|ωjk(t)|
∣∣∣∣

n∑
i=1

mi∑
l=1

(w̃il − Ew̃il)

∣∣∣∣+
∣∣∣∣

n∑
i=1

mi∑
l=1

E

⎧⎨
⎩

w̃ilω
(2)
jk (ξil)

2
(til − t)2

⎫⎬
⎭
∣∣∣∣

= II1 + II2,

where ξil is between t and til, and the inequality holds since∑n
i=1
∑mi

l=1 w̃il(til − t) = 0. Using similar arguments for the proof
of Lemma 4(b), we obtain II1 = Op{(nm̄h)3/2}. To bound the term II2,
notice that ω

(2)
jk (ξil) is bounded by Assumption 3 and

E{w̃il(til − t)2}
= E

[{
R2Kh(til − t) − R1Kh(til − t)(til − t)

}
(til − t)2

]
.

Note that

E
{

R2Kh(til − t)(til − t)2
}

= E

⎡
⎣
⎧⎨
⎩

n∑
i=1

mi∑
l=1

Kh(til − t)(til − t)2

⎫⎬
⎭Kh(til − t)(til − t)2

⎤
⎦

= O(nm̄h4),

by the change of variables. Analogously, we show that E
[{

R1Kh(til − t)
(til − t)

}
(til − t)2] = O(nm̄h4). Thus, II2 = O(n2m̄2h4). According

to Lemma 4(a), we have R0R2 − R2
1 = n2m̄2h2(1 + op(1)

)
. Combining

these pieces together leads to the fact that II = Op{h2 + 1/(nm̄h)1/2}.
The rates of other terms are proved using similar arguments which

are omitted here to save space. By (B.2), (B.3), and (B.4), we obtain

‖�̂(t) − (t)‖∞ = Op

{(
log p
nm̄h

+ log p
n

)1/2
+ h2

}
,

which completes the proof together with Lemma 3.

Supplementary Materials

The supplementary material contains the algorithm details, additional
simulation and technical proofs.
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