
Under review as a conference paper at ICLR 2023

GENERATED GRAPH DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph generative models become increasingly effective for data distribution ap-
proximation and data augmentation. Although still in sandboxes, they have aroused
public concerns about their malicious misuses or misinformation broadcasts, just as
what Deepfake visual and auditory media has been delivering to society. It is never
too early to regulate the prevalence of generated graphs. As a preventive response,
we pioneer to formulate the generated graph detection problem to distinguish gen-
erated graphs from real ones. We propose the first framework to systematically
investigate a set of sophisticated models and their performance in four classification
scenarios. Each scenario switches between seen and unseen datasets/generators
during testing to get closer to real world settings and progressively challenge the
classifiers. Extensive experiments evidence that all the models are qualified for
generated graph detection, with specific models having advantages in specific
scenarios. Resulting from the validated generality and oblivion of the classifiers to
unseen datasets/generators, we draw a safe conclusion that our solution can sustain
for a decent while to curb generated graph misuses.

1 INTRODUCTION

Graph generative models aim to learn the distributions of real graphs and generate synthetic ones Xie
et al. (2022); Liu et al. (2021); Wu et al. (2021b). Generated graphs have found applications
in numerous domains, such as social networks Qiu et al. (2018), e-commerce Li et al. (2020),
chemoinformatics Kearnes et al. (2016), etc. In particular, with the development of deep learning,
graph generative models have witnessed significant advancement in the past 5 years Stoyanovich
et al. (2020); Liao et al. (2019); Kipf & Welling (2016); You et al. (2018a).

However, a coin has two sides, there is a concern that the synthetic graphs can be misused. For
example, molecular graphs are used to design new drugs Simonovsky & Komodakis (2018); You
et al. (2018a). The generated graphs can be misused in this process and it is important for the
pharmaceutical factory to vet the authenticity of the molecular graphs. Also, synthetic graphs make
deep graph learning models more vulnerable against well-designed attacks. Existing graph-level
backdoor attacks Xi et al. (2021) and membership inference attacks Wu et al. (2021a) require the
attackers to train their local models using the same or similar distribution data as those for the target
models. Adversarial graph generation enables attackers to generate graphs that are close to the
real graphs. It facilitates the attackers to build better attack models locally hence keeping those
attacks more stealthy (since the attackers can minimize the interaction with the target models). This
advantage also applies to the latest graph attacks such as the property inference attack Zhang et al.
(2022) and GNN model stealing attack Shen et al. (2022).

As a result, it is essential to regulate the prevalence of generated graphs. In this paper, we propose to
proactively target the generated graph detection problem, i.e., to study whether generated graphs can
be differentiated from real graphs with machine learning classifiers.

To detect generated graphs, we train graph neural network (GNN)-based classifiers and show their
effectiveness in encoding and classifying graphs Zhang et al. (2020); Kipf & Welling (2017); Hamilton
et al. (2017). Figure 2 illustrates the general pipeline of the generated graph detection. To evaluate
their accuracy and generalizability, we test graphs from varying datasets and/or varying generators
that are progressively extended towards the unseen during training. The seen concept in dataset or
generator means that the graphs used in the training and testing stage are from the same dataset
or generated by the same generator, respectively. That is to say, they share the same or similar
distribution. And the unseen concept represents the opposite.

1

Under review as a conference paper at ICLR 2023

To sophisticate our solution space, we study three representative classification models. The first
model is a direct application of GNN-based end-to-end classifiers Kipf & Welling (2017); Hamilton
et al. (2017); Chen et al. (2018); Xu et al. (2019b). The second model shares the spirit of contrastive
learning for images Chen et al. (2020); Wu et al. (2018); Hénaff (2020) and graphs Zhu et al. (2021a);
You et al. (2020); Hassani & Ahmadi (2020); Zhu et al. (2021b), which, as one of the cutting-edge
self-supervised representation learning models, learns similar representations for the same data under
different augmentations. We adapt graph contrastive learning to learn similar representations of
graphs from the same source under different augmentations. The third model is based on deep metric
learning Xing et al. (2002); Schroff et al. (2015); Song et al. (2016), which learns close/distant
representations for the data from the same/different classes. We adopt metric learning to learn
close/distant representations for graphs from the same/different sources.

We systematically conduct experiments under different settings for all the classification models to
demonstrate the effectiveness of our framework. Moreover, we conduct the dataset-oblivious study
which mixes various datasets in order to evaluate the influence along the dataset dimension. The
evidenced dataset-oblivious property makes them independent of a specific dataset and practical in
real-world situations.

2 PRELIMINARIES

Notations. We define an undirected and unweighted homogeneous graph as G = (V, E ,A), where
V = {v1, v2, ..., vn} represents the set of nodes, E ⊆ {(v, u) | v, u ∈ V} is the set of edges and
A ∈ {0, 1}n×n denotes G’s adjacency matrix. We denote the embedding of a node u ∈ V as hu and
the embedding of the whole graph G as hG .

Graph Neural Networks. Graph neural networks (GNNs) have shown great effectiveness in fusing
information from both the graph topology and node features Zhang et al. (2020); Hamilton et al.
(2017); Kipf & Welling (2017). In recent years, they become the start-of-the-art technique serving as
essential building blocks in graph generators and graph classification algorithms. A GNN normally
takes the graph structure as the input for message passing, during which the neighborhood information
of each node u is aggregated to get a more comprehensive representation hu. The detailed information
of GNN is described in Appendix A.1.

Graph Generators. Graph generators aim to produce graph-structured data of observed graphs
regardless of the domains, which is fundamental in graph generative models. The study of graph
generators dated back at least to the work by Erdös-Rényi Erdös & Rényi (1959) in the 1960s.
These traditional graph generators focus on various random models Erdös & Rényi (1959); Albert
& Barabási (2002), which typically use simple stochastic generation methods such as a random
or preferential attachment mechanism. However, the traditional models require prior knowledge
to obtain/tune the parameters and tie them specifically to certain properties (e.g., probability of
connecting to other nodes, etc.), hence their limited capacity of handling the complex dependencies of
properties. Recently, graph generators using GNN as the foundation have attracted huge attention Liao
et al. (2019); You et al. (2018b); Grover et al. (2019); Simonovsky & Komodakis (2018). The GNN-
based graph generators can be further grouped into two categories: autoencoder-based generators
and autoregressive-based generators. Autoencoder-based generator Kipf & Welling (2016); Grover
et al. (2019); Mehta et al. (2019); Simonovsky & Komodakis (2018) is a type of neural network
which is used to learn the representations of unlabeled data and reconstruct the input graphs based
on the representations. Autoregressive-based generator Liao et al. (2019); You et al. (2018b) uses
sophisticated models to better capture the properties of observed graphs. By generating graphs
sequentially, the models can leverage the complex dependencies between generated graphs. In
this paper, we selectively focus on eight graph generators that span the space of commonly used
architectures, including ER Erdös & Rényi (1959), BA Albert & Barabási (2002), GRAN Liao et al.
(2019), VGAE Kipf & Welling (2016), Graphite Grover et al. (2019), GraphRNN You et al. (2018b),
SBMGNN Mehta et al. (2019), and GraphVAE Simonovsky & Komodakis (2018) (see more detailed
information about graph generators in Appendix A.2).

2

Under review as a conference paper at ICLR 2023

3 GENERATED GRAPH DETECTION

3.1 PROBLEM STATEMENT

The generated graph detection problem studied in this paper can be formulated as follows. Suppose
we have a set of real graphs RG = {rg1, . . . , rgℓ}, m seen graph generators Φseen = {ϕ1, . . . , ϕm},
k unseen graph generators Φunseen = {ϕm+1, . . . , ϕm+k}, and a collection of generated graphs
by seen and unseen generators GG = {GG1, . . . ,GGm+k}. Here each GGi is a set of graphs
generated by a graph generator ϕi. To be specific, let D = {(x1, y1), (x2, y2), . . . , (xz, yz)}, where
xi ∈ RG

⋃
GG, yi represents the label of each graph (i.e., real or generated) and z =

∑m+k
i=1 |GGi|

is the total number of samples. A generated graph detector f(·) is later trained on D. Once trained, it
classifies each testing graph as real or generated. However, it is normal to see the arrival of graphs
from unknown generators that have never been seen in training, and the graphs may not bear with
similar properties as of the training data in the real world. The existing solutions usually leverage
model retraining to cope with the problem. Yet, it is impractical to retrain a model from scratch every
time a new graph generator is added or unseen data is encountered. Ideally, f(·) should be built in a
way that it can be generalized to previously unseen data/generator in the real world.

3.2 A GENERAL FRAMEWORK FOR GENERATED GRAPH DETECTION AND ANALYSIS

In this paper, we propose a general framework to detect generated graphs. Specifically, this framework
consists of four scenarios depending on whether the dataset or graph generator has been used to train
the model. These scenarios comprehensively cover from the simplest close world scenario to the
most challenging full open world detection scenario. We discuss how we choose different ML models
to implement this framework in Section 3.3.

Closed World. In this scenario, the training and testing graphs are sampled from seen datasets and
generated by seen generators. The goal is to predict whether a graph is real or generated by seen
generators. Under this setting, to train the generated graph detector f(·), we sample real graphs from
RG as positive samples and sample graphs generated by seen generators Φseen as negative samples.
The graphs used to test f(·) share the same distribution with the training set, i.e., they consist of real
graphs sampled from RG and generated graphs generated by seen generators Φseen.

Open Generator. In this scenario, the negative samples of the testing graphs are generated by unseen
generators but are in the same or similar distribution of training data (i.e., seen data). The training
data of f(·) does not contain any graphs generated by these unseen generators. Since only the graph
generators used in the testing dataset are not seen at the time of training, we thus name it “Open
Generator” scenario. Under this setting, the detector f(·) is trained with the graphs sampled from RG
(positive samples) and graphs generated by seen generators Φseen (negative samples). The positive
samples used to test f(·) are also from RG while the negative samples are generated by unseen
generators Φunseen. The goal is to predict whether a graph is real or generated by unseen generators.

Open Set. In this scenario, the testing graphs are from seen generators that are trained on an unseen
dataset. Concretely, the graph generators that the system sees in training are what it will see in testing
(i.e., seen generators). However, the testing graphs are of the different distribution of training data
(i.e., unseen data). For instance, f(·) was trained using both real and generated graphs from chemical
graphs, yet, the testing graphs (either real or generated) are social network graphs that are inherently
different. As such, we name this scenario “Open Set” scenario. Similar to the “Open Generator”
scenario, the detector f(·) is trained with the graphs sampled from RG (as positive samples) and the
graphs generated by seen generators Φseen (as negative samples). Unlike previous experiment, the
graphs used to test f(·) are from different datasets. The testing graphs of f(·) consist of real graphs
sampled from other datasets and graphs generated by seen generators Φseen based on other datasets.
The goal is to predict whether a graph from unseen dataset is real or generated.

Open World. In this scenario, the testing graphs are from unseen generators that are trained on an
unseen dataset. This setting is the most challenging yet common in the real world. It is normal to
see the arrival of graphs from unknown generators that have never been seen at the training time,
and the graphs may not bear with similar properties as of the training data. To be specific, certain
generators that the system sees at the testing time are not included in its training stage (i.e., unseen
generators), and the testing graphs are of the different distribution of training data (i.e., unseen data).

3

Under review as a conference paper at ICLR 2023

Similar to “Open Generator” and “Open Set” scenarios, the generated graph detector f(·) is trained
with the graphs sampled from RG (as positive samples) and the graphs generated by seen generators
Φseen (as negative samples). The testing graphs consist of real graphs sampled from other datasets
and graphs generated by unseen generators Φunseen based on other datasets. The goal is to predict
whether a graph from unseen dataset is real or generated by unseen generators.

3.3 DETECTION METHODOLOGIES

As discussed in Section 3.2, we need an ML model f(·) to cope with the four generated graph
detection scenarios. In this section, we introduce three ML models – end-to-end classifier Kipf &
Welling (2017); Hamilton et al. (2017); Chen et al. (2018); Xu et al. (2019b), contrastive learning-
based model Zhu et al. (2021a); You et al. (2020); Hassani & Ahmadi (2020); Zhu et al. (2021b),
and metric learning-based model Xing et al. (2002); Schroff et al. (2015); Song et al. (2016) – to
implement the aforementioned detection framework. All the models can work as the f(·) to do the
final detection in all scenarios. For each scenario, f(·) has the same structure, while trained or tested
by different samples. The pros and cons of each model are evaluated and discussed in Section 4.

End-to-end Classifier. The most straightforward approach to distinguishing between real and
generated graphs is to train a binary classifier in an end-to-end manner. As aforementioned,
among all the research, graph classification methods based on graph convolutional networks
(GCNs) are commonly recognized as the state-of-the-art technique in deep learning-based graph
classification Kipf & Welling (2017); Hamilton et al. (2017); Chen et al. (2018); Xu et al. (2019b).
Also, we can also see the results from Appendix A.5 also shows that GCN performs better in most
of the times compared with other GNN networks. Therefore we choose the GCN model Kipf &
Welling (2017) as our end-to-end classifier. It consists of four GCN layers and a fully connected
layer. We use this four-layer GCN network to embed the graph data into a 128-dimensional vector,
and use a fully connected layer to compute the final classification result.

Contrastive Learning-based Model. Previous studies have shown that contrastive learning helps to
improve the graph encoding performance Zhu et al. (2021a); You et al. (2020); Hassani & Ahmadi
(2020); Zhu et al. (2021b). Different from the traditional binary classifier that trains the GNN model
in an end-to-end manner, the contrastive learning-based model first learns a powerful graph encoder in
a self-supervision manner, then uses the graph encoder to transform the graphs into graph embeddings,
and employs a binary classifier to predict the results. Figure 3 (in Appendix A.3) illustrates the general
workflow of our contrastive learning-based model. We use support vector machines (SVM) as the
final classifier following the previous work Sun et al. (2020a); You et al. (2020). The implementation
details of the contrastive learning-based model are introduced in Appendix A.3.

Metric Learning-based Model. In the past few years, deep metric learning has consistently achieved
the state-of-the-art model performance Xing et al. (2002); Schroff et al. (2015); Song et al. (2016).
As one of the cutting-edge unsupervised representation learning models, deep metric learning aims
to map input data into a metric space, where data from the same class get close while data from
different classes fall apart from each other. However, unlike other tasks such as classification or
face recognition in which only one training sample is needed to get the output, in metric learning,
at least two training samples are needed at one time, as the output of metric learning is whether the
two input samples are from the same category Guo et al. (2017); He et al. (2018). Based on the
core concept of metric learning, siamese network Guo et al. (2017); He et al. (2018) is proposed,
which takes paired samples as inputs and outputs whether the paired samples are from the same
category. The implementation details of metric learning-based model is introduced in Appendix A.4.
Since the siamese network takes paired samples as input and only predicts whether the two input
samples are from the same label, to evaluate the performance of the metric learning-based model in
the perspective of getting prediction results of each graph, we still need to predict the exact label for
each testing sample by querying the siamese network using paired samples consists of one testing
sample and one known sample.

In order to get the final classification results, for each testing sample, we randomly select Nk samples
of each label from the training set and generate Nk ∗Nclass paired samples. Here Nclass equals to
2 (i.e., real and generated). After feeding the paired samples into the siamese network, we will get
Nk posteriors for each label. Each posterior represents the probability of the paired samples from
the same label. After calculating the mean value of the Nk posteriors for each label, we can find the

4

Under review as a conference paper at ICLR 2023

maximum mean value and take the corresponding label as the predicted result of the testing sample.
For example, if the maximum mean value of the posteriors is from label real, then we consider using
real as the final classification result.

4 EXPERIMENTS

We first introduce the datasets and implementation details of our experiments. Then following the
application scenarios described in Section 3, we conduct experiments based on each scenario.

4.1 EXPERIMENTAL SETUP

Datasets. We use 7 benchmark datasets from TUDataset Morris et al. (2020) to evalu-
ate the performance, including AIDS Riesen & Bunke (2008), Alchemy Chen et al. (2019),
Deezer ego nets (abbreviated as Deezer) Rozemberczki et al. (2020), DBLP DBL, GitHub
StarGazer (abbreviated as GitHub) Rozemberczki et al. (2020), COLLAB Yanardag & Vish-
wanathan (2015) and Twitch ego nets (abbreviated as Twitch) Rozemberczki et al. (2020).

Table 1: Dataset statistics.

Dataset # of graphs Avg. Nodes Avg. Edges

AIDS 2,000 15.69 16.20
Alchemy 202,579 10.10 10.44
Deezer 9,629 23.49 65.25
DBLP 19,456 10.48 19.65
GitHub 12,725 113.79 234.64

COLLAB 5,000 74.49 2,457.78
Twitch 127,094 29.67 86.59

Among them, Deezer, GitHub, and Twitch are so-
cial networks with nodes representing users and
edges indicating friendships. DBLP and COLLAB
are collaboration networks with nodes represent-
ing papers/researchers and edges indicating cita-
tions/collaborations. AIDS and Alchemy are molec-
ular graphs with nodes representing atoms of the
compound and edges corresponding to chemical
bonds. These graphs form our real datasets for
the rest of the evaluation. The statistics of all the
datasets are summarized in Table 1.

Sampling High-quality Generated Graphs. Al-
though the graph generators are capable to generate
graphs with similar distribution as real graphs, some of the generated graphs may still contain obvious
artifacts in some cases. There is a concern that the classification may be biased by such artifacts.
Thus we compute the number of nodes, the number of edges, density, diameter, average clustering
and transitivity as the statistical features of each graph and use Euclidean Distance to measure the
1-nearest-neighbor similarity between each generated graphs and real graph sets Yu et al. (2019). We
select 20% generated graphs with the highest similarity for the following experiments.

To evaluate the quality of generated graphs, we use maximum mean discrepancy (MMD) over these
graph features to measure the similarity between real graphs and graphs generated by different
generators. The MMD results show that the graphs generated by different generators and real graphs
are statistically indistinguishable. The MMD results are shown in Table 6 in Appendix A.6.

Implementation Details. We use the GCN to embed the graphs in the end-to-end classifier and
metric learning-based model. The GCN is implemented in PyTorch PyT. The optimizer we used
is Adam optimizer Kingma & Ba (2015). Each model is trained for 200 epochs. The learning rate
is set to 0.001 and we adopt Cross-Entropy Loss as the loss function. The ratio of the training set
and testing set is 8:2. The contrastive learning-based model is trained following the implementation
details in GraphCL You et al. (2020). As mentioned in Section 3.3, we generate Nps ∗ 2 paired
samples to train the siamese network in the metric learning-based model and use Nk samples from
each label to predict the final results. Nps ∗ 2 is the number of paired samples used to train the
siamese network. Here we conduct experiments to fine-tune metric learning-based model and find
the best Nps = 200, 000 and Nk = 10 which makes the model perform the best. The corresponding
results are displayed in Appendix A.6 (Figure 5 and Figure 6).

Baseline. To better evaluate the performance of our proposed models, We incorporate a new model
named Feature Classification (FC) as the baseline. FC model leverages the graph statistical features
as input and uses Multilayer perceptron (MLP) to do the final prediction. The statistical features
we used are the number of nodes, the number of edges, density, diameter, average clustering and
transitivity, which are the same as the features we used to sample high-quality graphs.

5

Under review as a conference paper at ICLR 2023

4.2 EXPERIMENTS FOR THE “CLOSED WORLD” SCENARIO

In this scenario, we want to explore whether real graphs and generated graphs can be distinguished
when the distribution of all testing graphs are known. As introduced before, we propose three methods
to classify graphs. The evaluation metrics we used in this paper are accuracy and F1-score.

Overall Results. The accuracy of binary classification is summarized in Table 3. In general, our
proposed models outperform FC model in all datasets, demonstrating that the GNN-based models can
better capture the characteristics of graphs compared to using MLP with only statistical features. Also,
we observe that among the three methods, the metric learning-based model performs the best in most
cases, while the contrastive learning-based model performs least satisfying. Moreover, the results
show that in general, the performance of Deezer, Github, and Twitch is better than other datasets.
Compared to other datasets, the graphs in Twitch, Github, and Deezer are bigger and the three datasets
also have a richer amount of graphs. This implies that the binary classifiers can distinguish between
real graphs and generated graphs with higher accuracy for larger datasets with bigger graphs.

Although the contrastive learning-based model and metric learning-based model have a similar goal,
i.e. training an encoder that makes graphs with the same label get closer to each other and graphs
with different labels fall apart, the metric learning-based model performs better than the contrastive
learning-based model in this scenario. Thus we can draw the conclusion that the embeddings produced
by the metric learning tend to be distinguished easily in graph datasets.

Dataset Oblivious Study. Besides the evaluation from the perspective of a single dataset, we also
conduct the dataset oblivious study. In this experiment, we first randomly sample 1,000 real graphs
from each dataset. Then we randomly select 1,000 generated graphs which are evenly generated
by all the generators from each dataset. Finally, we obtain a mixed dataset consisting of 7,000 real
graphs and 7,000 generated graphs to train the binary classifier.

Surprisingly, a persuasive performance can also be noticed even when we don’t take the dimension
of the dataset into consideration. The performance indicates that the models can still distinguish
real graphs from generated graphs even when the graphs used to train the model don’t belong to
any specific dataset. This is more meaningful in the real world scenario as we may not know which
dataset the graphs come from at the test time. In the mixed dataset, the end-to-end classifier performs
the best, which means when the graphs which need to be classified do not belong to one specific
dataset, the end-to-end classifier can better capture the complex dependencies of graphs and detect
generated graphs with higher accuracy.

Table 2: Distinguish Graphs Generated by Un-
seen Generators.

Accuracy F1-score

AIDS 0.78 0.78
Alchemy 0.82 0.82
Deezer 0.93 0.93
DBLP 0.75 0.74
GitHub 0.95 0.95

COLLAB 0.83 0.83
TWITCH 0.89 0.89
MIXED 0.64 0.64

Distinguish Graphs Generated by Unseen Gen-
erators. Apart from classifying real graphs and
graphs generated by unseen generators, we use met-
ric learning to predict whether two graphs generated
by unseen generators are generated by the same gen-
erator. To evaluate the performance of predicting
whether any two graphs generated by unseen gen-
erators are generated by the same generator, we
randomly generate 50,000 positive graph pairs and
50,000 negative graph pairs and use metric learning
to take the graph pairs as input (the performance is
shown in Table 2). It can be noticed that the metric
learning can predict whether two graphs generated
by unseen generators are generated by the same gen-
erator to some extent. Moreover, we can see that
the performance of Deezer, Github and TWITCH
are better than other datasets, which is consistent with the results of the “Open Generator” scenario.

However, when we use the mixed dataset to train and test the metric learning-based model, the
performance is much worse than in other datasets. It is reasonable since we can see from Table 3 that
the metric learning-based model with a mixed dataset performs the worst among all the datasets. The
visualization of graphs generated by the unseen generators shown in Figure 7 also supports our results,
the embeddings of the mixed dataset can not be separated explicitly compared to other datasets.

6

Under review as a conference paper at ICLR 2023

Table 3: The accuracy/F1-score of generated graph detection in “Closed World” scenario and “Open
Generator” scenario.

Closed World Open Generator

Dataset FC End-to-end Contrastive Metric FC End-to-end Contrastive Metric

AIDS 0.75/0.73 0.89/0.85 0.87/0.84 0.91/0.90 0.73/0.70 0.82/0.81 0.84/0.82 0.87/0.84
Alchemy 0.78/0.78 0.87/0.87 0.85/0.80 0.90/0.89 0.74/0.73 0.80/0.77 0.82/0.79 0.84/0.82
Deezer 0.78/0.78 0.97/0.95 0.95/0.94 0.98/0.97 0.74/0.74 0.90/0.88 0.92/0.92 0.91/0.91
DBLP 0.70/0.68 0.84/0.83 0.82/0.82 0.82/0.82 0.75/0.74 0.79/0.79 0.82/0.82 0.80/0.79
Github 0.81/0.81 0.95/0.94 0.92/0.92 0.96/0.96 0.80/0.82 0.94/0.94 0.91/0.91 0.96/0.92

COLLAB 0.56/0.55 0.85/0.84 0.84/0.82 0.89/0.89 0.50/0.49 0.78/0.76 0.80/0.79 0.84/0.82
Twitch 0.56/0.55 0.92/0.89 0.90/0.88 0.95/0.93 0.51/0.49 0.85/0.85 0.90/0.89 0.86/0.86
Mixed 0.64/0.62 0.84/0.83 0.80/0.80 0.82/0.81 0.60/0.59 0.78/0.76 0.82/0.80 0.79/0.78

4.3 EXPERIMENTS FOR THE “OPEN GENERATOR” SCENARIO

The experiments above have proved that the real graphs and graphs generated by different generators
can be distinguished in the close world scenario. In order to further evaluate if our models can
still detect generated graphs when given unseen generators, we choose three different generators
- GraphRNN You et al. (2018b), SBMGNN Mehta et al. (2019), and GraphVAE Simonovsky &
Komodakis (2018) - to generate fake graphs for each dataset. For all datasets, we use real graphs as the
positive samples and graphs generated by unseen generators as the negative samples to test the models.

Overall Results. The final classification results are shown in Table 3, from which we can see that the
binary classification results of all the datasets are over 0.75, which indicates that even when the graphs
are generated by unseen algorithms, the models can still have a relatively good performance. This
indicates that all the models can generalize to other generators. Also, we can see a higher accuracy of
the metric learning-based model, which exemplifies that it can better generalize to other generators.

Dataset Oblivious Study. Moreover, we also train all models for the mixed dataset. It can be noticed
that the performance of the mixed dataset is in part with those of other datasets. The experimental
results suggest that our models can still generalize to previously unseen generators even when we
don’t take the dimension of the dataset into consideration.

The accuracy of the contrastive learning-based model for the mixed dataset is even better for COLLAB
and is the best among the three models. This suggests that the contrastive learning-based model
can better generalize to other generators in datasets with a wide range of node numbers and graph
densities, i.e. mixed dataset.

4.4 EXPERIMENTS FOR THE “OPEN SET” SCENARIO

Apart from distinguishing between real graphs and graphs generated by unseen algorithms, we
also conduct experiments to evaluate whether graphs generated by unseen datasets can still be
distinguished from real graphs. In this experiment, we use graphs from AIDS, Alchemy, Deezer,
DBLP, and Github as the seen datasets to train all the models, and use COLLAB and Twitch as
unseen datasets to test the models.

For each seen dataset, we randomly select 1,000 real graphs and 1,000 generated graphs which are
evenly generated by the seen generators. In the end, we use the final dataset with 5,000 real graphs
and 5,000 generated graphs to train all the models.

In this scenario, we want to evaluate whether the fake graphs generated by seen generators in unseen
datasets can be distinguished from the real graphs. To test the model, for each unseen dataset, we
randomly select real graphs and the same amount of generated graphs which are evenly generated by
the seen generators. The final testing set contains 2,000 real graphs and 2,000 generated graphs. The
performance of all the models is summarized in Table 4.

We can see from the table that, in general, the real graphs and generated graphs can be distinguished
with an accuracy higher than 0.78. This implies that our models have the ability to generalize to
unseen datasets. Moreover, the accuracy of the contrastive learning-based model is higher than 0.85

7

Under review as a conference paper at ICLR 2023

Table 4: Generated graph detection in “Open Set” scenario and “Open World” scenario.

Open Set Open World

Metric Accuracy F1-score Accuracy F1-score

Feature classification 0.57 0.54 0.64 0.62
End to end classifier 0.82 0.82 0.76 0.75

Contrastive learning-based model 0.85 0.84 0.83 0.83
Metric learning-based model 0.78 0.76 0.74 0.74

and the best among the three models, which suggests that the contrastive learning-based model can
generalize to the unseen datasets better.

After comparing the performance with the “Closed World” scenario in Section 4.2, we find that the
performance drops. It is reasonable because the graphs used to test the models come from new datasets
which are not seen in the training set, which makes the task harder than in the previous experiment.

4.5 EXPERIMENTS FOR THE “OPEN WORLD” SCENARIO

The fourth scenario is to evaluate whether the fake graphs generated by unseen algorithms in unseen
datasets can be distinguished from the real graphs. To test the model, for each unseen dataset, we
randomly select real graphs and the same amount of generated graphs which are evenly generated by
the unseen generators. The final testing set contains 2,000 real graphs and 2,000 generated graphs.
The performance of all the models is summarized in Table 4.

The scenario is called the “Open World” scenario as described before since the datasets and generators
are both unseen in the training phase. It is the hardest task among the four scenarios. We can see
from Table 4 that the performance, as expected, is lower than those in Section 4.4 and Section 4.5.

Although the performance is not as competent, the accuracies of all models are still higher than
0.74. This suggests that the models can still distinguish real graphs and graphs generated by unseen
generators in unseen datasets to some extent. Apart from that, the contrastive learning-based model
performs the best among all the models, which is in line with the previous experiments.

Throughout all the experiments, we can draw a conclusion that the metric learning-based model tends
to perform better in the “Closed World” scenario while the contrastive learning-based model shows
advantages in “Open Generator”, “Open Set” and “Open World” scenarios. The results give us an
insight that metric learning can learn better representations of graphs with known graph distributions.
On the contrary, as a representative self-supervised method, the contrastive learning-based model can
learn representations that are more general and can be transferred to different graph distributions.

4.6 VISUALIZATION ANALYSIS

Among the previous experiment, we can draw the conclusion that contrastive learning-based models
tend to perform better in “Open Generator”, “Open Set” and “Open World” scenarios with the
mixed dataset, we further explore the reason behind it. To this end, we use t-Distributed Stochastic
Neighbor Embedding (t-SNE) van der Maaten & Hinton (2008) to visualize the graphs embedded by
different models. Figure 1 shows the t-SNE results of the testing samples used in the fourth scenario.
It can be easily noticed that the embeddings produced by the contrastive encoder can be divided
better, which may be the major reason why the contrastive learning-based model outperforms other
models in the “Open World” Scenario.

5 RELATED WORK

We have already covered several highly-related works (e.g., graph generative models and graph neural
networks) in Section 2. We discuss additional related work in a broader scope below.

Generated Data Detection. Although it remains an unexplored area in generated graph detection,
there has been some research about generated image detection in the past few years. Rössler et al.

8

Under review as a conference paper at ICLR 2023

REAL
Generated

(a) End-to-end

REAL
Generated

(b) Contrastive

REAL
Generated

(c) Metric

Figure 1: The visualization results of different models in “Open World” scenario.

showed that simple classifiers can detect images created by a single category of networks Rössler
et al. (2019). Wang et al. Wang et al. (2020) demonstrated that a simple image classifier trained
on one specific CNN generator (ProGANKarras et al. (2018)) is able to generalize well to unseen
architectures. Ning et al. Yu et al. (2019) learned the GAN fingerprints towards image attribution
and showed that even a small difference in GAN training (e.g., the difference in initialization) can
leave a distinct fingerprint that can be detected. Most of the previous studies focus on image data;
as far as we know, we are the first to investigate the generated graph detection.

Privacy and Security Issues in GNN. Rising concerns about the privacy and security of GNNs
have led to a surge of research on graph adversarial attacks. Broadly speaking, they can be grouped
into two categories — causative attacks and exploratory attacks. Causative attacks on GNNs add
unnoticeable adversarial perturbations to node features and graph structures to reduce the accuracy
of or intentionally change the outcome of node classification Bojchevski & Günnemann (2019);
Caverlee et al. (2020); Ma et al. (2020); Sun et al. (2020b); Wu et al. (2019); Xu et al. (2019a), link
prediction Bojchevski & Günnemann (2019); Lin et al. (2020), graph classification Dai et al. (2018);
Xi et al. (2021), etc. To conduct causative attacks, attackers must be able to tamper with the training
process of GNNs or influence the fine-tuning process of pre-trained GNNs. Exploratory attacks on
GNNs send (carefully crafted) query data to the target GNNs and observe their decisions on these input
data. Attackers then leverage the responses to build shadow models to achieve different attack goals,
such as link re-identification He et al. (2021), property inference Zhang et al. (2022), membership
inference Wu et al. (2020), model stealing Duddu et al. (2020), etc. To launch exploratory attacks,
attackers must be able to interact with the GNNs (e.g., via publicly accessible API) at the runtime.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a general framework for generated graph detection. In this framework,
we introduce four application scenarios based on different training data and testing data and design
three kinds of models to accomplish experiments in each scenario. The experimental results show
that all models can distinguish real graphs from generated graphs successfully in all scenarios, which
means that although the generative models show great advantage and success in many domains,
the generated graphs can still be detected by GNN-based models. Also, we notice that the metric
learning-based model tends to perform the best in the close world scenario while the contrastive
learning-based model always shows the best performance in “Open Generator”, “Open Set” and
“Open World” scenarios, which suggests that the contrastive learning-based model can generalize to
datasets and generators better. Our experiment about dataset oblivious study shows that our models
can still work with a persuasive performance when we use the mixed dataset to train and test the
models. This is an interesting finding since the graphs in different datasets vary a lot, hence the
mixed dataset tends to have a wide range of node numbers and densities. The results imply that our
models can handle datasets with many disparate graphs. The finding also fits more to the real world
situation, where the graphs that need to be detected may not be from a specific dataset. Moreover,
although we only discuss the detection of generated graphs in this paper, the framework can also
be extended to other research areas, such as images, text, or audio.

9

Under review as a conference paper at ICLR 2023

REFERENCES

https://github.com/GRAND-Lab/graph_datasets.

https://pytorch.org/.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 2002.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial Attacks on Node Embeddings via
Graph Poisoning. In International Conference on Machine Learning (ICML), pp. 695–704. PMLR,
2019.

James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang. All You Need Is Low (Rank):
Defending Against Adversarial Attacks on Graphs. In ACM International Conference on Web
Search and Data Mining (WSDM), pp. 169–177. ACM, 2020.

Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao,
Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, Richard S. Zemel, and Shengyu Zhang. Alchemy:
A Quantum Chemistry Dataset for Benchmarking AI Models. CoRR abs/1906.09427, 2019.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast Learning with Graph Convolutional Networks
via Importance Sampling. In International Conference on Learning Representations (ICLR), 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A Simple Framework for
Contrastive Learning of Visual Representations. In International Conference on Machine Learning
(ICML), pp. 1597–1607. PMLR, 2020.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial Attack on
Graph Structured Data. In International Conference on Machine Learning (ICML), pp. 1123–1132.
PMLR, 2018.

Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying Privacy Leakage in Graph
Embedding. CoRR abs/2010.00906, 2020.

Paul Erdös and Alfréd Rényi. On Random Graphs I. Publicationes Mathematicae Debrecen, 1959.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative Generative Modeling of Graphs.
In International Conference on Machine Learning (ICML), pp. 2434–2444. PMLR, 2019.

Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and Song Wang. Learning Dynamic Siamese
Network for Visual Object Tracking. In IEEE International Conference on Computer Vision
(ICCV), pp. 1781–1789. IEEE Computer Society, 2017.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In Annual Conference on Neural Information Processing Systems (NIPS), pp. 1025–1035.
NIPS, 2017.

Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive Multi-View Representation Learning on
Graphs. In International Conference on Machine Learning (ICML), pp. 4116–4126. PMLR, 2020.

Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A Twofold Siamese Network for Real-Time
Object Tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4834–4843. IEEE Computer Society, 2018.

Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and Yang Zhang. Stealing Links from
Graph Neural Networks. In USENIX Security Symposium (USENIX Security), pp. 2669–2686.
USENIX, 2021.

Olivier J. Hénaff. Data-Efficient Image Recognition with Contrastive Predictive Coding. In Interna-
tional Conference on Machine Learning (ICML), pp. 4182–4192. PMLR, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of GANs for Im-
proved Quality, Stability, and Variation. In International Conference on Learning Representations
(ICLR), 2018.

10

https://github.com/GRAND-Lab/graph_datasets
https://pytorch.org/

Under review as a conference paper at ICLR 2023

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular Graph
Convolutions: Moving Beyond Fingerprints. Journal of Computer-Aided Molecular Design, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations (ICLR), 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In International Conference
on Learning Representations (ICLR), 2014.

Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders. In NeurIPS Workshop on
Bayesian Deep Learning (NeurIPS-16 BDL), 2016.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations (ICLR), 2017.

Xiaoxiao Li, João Saúde, Prashant Reddy, and Manuela Veloso. Classifying and Understanding
Financial Data Using Graph Neural Network. In The AAAI Workshop on Knowledge Discovery
from Unstructured Data in Financial Services (KDF). AAAI, 2020.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duvenaud, Raquel
Urtasun, and Richard S. Zemel. Efficient Graph Generation with Graph Recurrent Attention
Networks. In Conference on Neural Information Processing Systems (NeurIPS), pp. 4257–4267,
2019.

Wanyu Lin, Shengxiang Ji, and Baochun Li. Adversarial Attacks on Link Prediction Algorithms
Based on Graph Neural Networks. In ACM Asia Conference on Computer and Communications
Security (ASIACCS), pp. 370–380. ACM, 2020.

Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph Self-Supervised
Learning: A Survey. CoRR abs/2103.00111, 2021.

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards More Practical Adversarial Attacks on Graph
Neural Networks. In Annual Conference on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2020.

Nikhil Mehta, Lawrence Carin, and Piyush Rai. Stochastic Blockmodels meet Graph Neural Networks.
In International Conference on Machine Learning (ICML), pp. 4466–4474. PMLR, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In The ICML
Workshop on Graph Representation Learning and Beyond (GRL). ICML, 2020.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. DeepInf: Social
Influence Prediction with Deep Learning. In ACM Conference on Knowledge Discovery and Data
Mining (KDD), pp. 2110–2119. ACM, 2018.

Kaspar Riesen and Horst Bunke. IAM Graph Database Repository for Graph Based Pattern Recogni-
tion and Machine Learning. In Structural, Syntactic, and Statistical Pattern Recognition, Joint
IAPR International Workshop (SSPR), pp. 287–297. Springer, 2008.

Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
Nießner. FaceForensics++: Learning to Detect Manipulated Facial Images. In IEEE International
Conference on Computer Vision (ICCV), pp. 1–11. IEEE, 2019.

Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented Open-Source
Python Framework for Unsupervised Learning on Graphs. In ACM International Conference on
Information and Knowledge Management (CIKM), pp. 3125–3132. ACM, 2020.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified Embedding for Face
Recognition and Clustering. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 815–823. IEEE, 2015.

Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. Model stealing attacks against inductive graph
neural networks. pp. 1175–1192. IEEE, 2022.

11

Under review as a conference paper at ICLR 2023

Martin Simonovsky and Nikos Komodakis. Dynamic Edge-Conditioned Filters in Convolutional
Neural Networks on Graphs. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 29–38. IEEE Computer Society, 2017.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
Variational Autoencoders. In International Conference on Artificial Neural Networks (ICANN), pp.
412–422. Springer, 2018.

Kihyuk Sohn. Improved Deep Metric Learning with Multi-class N-pair Loss Objective. In Annual
Conference on Neural Information Processing Systems (NIPS), pp. 1849–1857, 2016.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep Metric Learning via Lifted
Structured Feature Embedding. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4004–4012. IEEE Computer Society, 2016.

Julia Stoyanovich, Bill Howe, and H. V. Jagadish. Responsible Data Management. Proceedings of
the VLDB Endowment, 2020.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. InfoGraph: Unsupervised and
Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. In
International Conference on Learning Representations (ICLR), 2020a.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Non-target-specific
Node Injection Attacks on Graph Neural Networks: A Hierarchical Reinforcement Learning
Approach. In The Web Conference (WWW), pp. 673–683. ACM, 2020b.

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations
(ICLR), 2018.

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. CNN-Generated
Images Are Surprisingly Easy to Spot... for Now. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8692–8701. Computer Vision Foundation / IEEE, 2020.

Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. Model Extraction Attacks on Graph
Neural Networks: Taxonomy and Realization. CoRR abs/2010.12751, 2020.

Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. Adapting membership inference attacks
to GNN for graph classification: Approaches and implications. In IEEE International Conference
on Data Mining, ICDM 2021, Auckland, New Zealand, December 7-10, 2021, pp. 1421–1426.
IEEE, 2021a.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adver-
sarial Examples for Graph Data: Deep Insights into Attack and Defense. In International Joint
Conferences on Artifical Intelligence (IJCAI), pp. 4816–4823. IJCAI, 2019.

Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan.Z.Li. Self-supervised Learning
on Graphs: Contrastive, Generative,or Predictive. IEEE Transactions on Knowledge and Data
Engineering, 2021b.

Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised Feature Learning via
Non-Parametric Instance Discrimination. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3733–3742. IEEE, 2018.

Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph Backdoor. In USENIX Security
Symposium (USENIX Security). USENIX, 2021.

Yaochen Xie, Zhao Xu, Zhengyang Wang, and Shuiwang Ji. Self-Supervised Learning of Graph
Neural Networks: A Unified Review. IEEE Transactions on Knowledge and Data Engineering,
2022.

12

Under review as a conference paper at ICLR 2023

Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J. Russell. Distance Metric Learning with
Application to Clustering with Side-Information. In Annual Conference on Neural Information
Processing Systems (NIPS), pp. 505–512. MIT Press, 2002.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. In
International Joint Conferences on Artifical Intelligence (IJCAI), pp. 3961–3967. IJCAI, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations (ICLR), 2019b.

Pinar Yanardag and S. V. N. Vishwanathan. Deep Graph Kernels. In ACM SIGKDD International
Conference on Knowledge Discovery and Data (SIGKDD), pp. 1365–1374. ACM, 2015.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. Graph Convolutional Policy
Network for Goal-Directed Molecular Graph Generation. In Conference on Neural Information
Processing Systems (NeurIPS), pp. 6412–6422, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. GraphRNN: Generating
Realistic Graphs with Deep Auto-regressive Models. In International Conference on Machine
Learning (ICML), pp. 5694–5703. PMLR, 2018b.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
Contrastive Learning with Augmentations. In Annual Conference on Neural Information Processing
Systems (NeurIPS). NeurIPS, 2020.

Ning Yu, Larry Davis, and Mario Fritz. Attributing Fake Images to GANs: Learning and Analyzing
GAN Fingerprints. In IEEE International Conference on Computer Vision (ICCV), pp. 7555–7565.
IEEE, 2019.

Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. Inference Attacks Against
Graph Neural Networks. In USENIX Security Symposium (USENIX Security). USENIX, 2022.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep Learning on Graphs: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 2020.

Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An Empirical Study of Graph Contrastive Learning.
CoRR abs/2109.01116, 2021a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph Contrastive Learning
with Adaptive Augmentation. In The Web Conference (WWW), pp. 2069–2080. ACM, 2021b.

13

Under review as a conference paper at ICLR 2023

Figure 2: The pipeline of generated graph detection. The real graphs are from real world datasets,
the generated graphs are generated by different graph generators based on real graphs. The GNN-
based classifier is built to classify real graphs and generated graphs.

A APPENDIX

A.1 THE DETAILED INFORMATION OF GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have shown great effectiveness in fusing information from both
the graph topology and node features Zhang et al. (2020); Hamilton et al. (2017); Kipf & Welling
(2017). In recent years, they become the start-of-the-art technique as essential building blocks in
graph generators and graph classification algorithms.

General Definition. Most of the GNNs learn the node representations for graph-structured data
by a neighborhood aggregation strategy, where a model iteratively updates the representation of a
node through message passing and aggregating representations of its neighbors. After k iterations of
aggregation, we can get the node’s representation hv which stores the structural information within
its k-hop neighborhood. Typically, the GNN contains multiple graph convolutional layers. The
definition of each layer is as follows:

hk
v = ϕ

(
hk−1
v , ψ

(
hk−1
v ,hk−1

u

))
,∀u ∈ N (v), (1)

where N (v) is a set of nodes adjacent to node v. hk−1
v is the node embedding of node u after

k iterations, ψ
(
hk−1
v ,hk−1

u

)
represents the message received from the neighbours, and ϕ(·) is an

aggregation operation.

Aggregator. Recently, researchers have proposed different kinds of practical implementations of
aggregation operations Kipf & Welling (2017); Hamilton et al. (2017); Chen et al. (2018); Xu et al.
(2019b), among which the Graph Convolutional Networks (GCN) is the most representative method
which uses the symmetric normalization method to aggregate all the information from the neighbors
and shows great success Kipf & Welling (2017). The aggregation process of GCN can be defined as
follows:

hk
v = ϕ

(
hk−1
u , u ∈ N (v) ∪ v

)
=

∑
u∈N (v)∪v

h
(k−1)
j /

√
dudv (2)

where du and dv are the node degrees of node u and v, respectively. Here ϕ(·) is a mean aggregation
operator.

Graph Pooling. After obtaining the embeddings of all nodes, we use a graph pooling operation to
integrate the embeddings of all nodes in the graph to get the embedding of the whole graph. In our
graph classification model, we use a straightforward but efficient approach called mean pooling that
averages all the node embeddings to obtain the graph embedding, i.e., hG = 1

|V|
∑

u∈V hu.

14

Under review as a conference paper at ICLR 2023

Figure 3: The workflow of the contrastive learning-based model. The model trains a contrastive
encoder to embed the graphs and uses a machine learning-based classifier to do the final classification.
The contrastive encoder is based on GraphCL You et al. (2020), which uses the graph augmentation
method to get two correlated augmented views as a positive pair and embed them with a GNN-based
encoder f (·) and projection head g (·). Then the contrastive loss function is used to maximize
the agreement between the positive pairs. After embedding all the graphs, we use support vector
machines (SVM) to do the final prediction.

A.2 THE DETAILED INFORMATION OF GRAPH GENERATORS

Traditional Graph Generator. Erdös-Rényi (ER) model Erdös & Rényi (1959) and Barabási-Albert
(BA) model Albert & Barabási (2002) are two commonly used traditional graph generators. Given
a few parameters, these generators can be explicitly expressed by formulas. ER model generates
random graphs with a fixed number of nodes and edges. BA model is often used to generate scale-free
graphs using a preferential attachment mechanism. That is, a new node will be added each time, and
the edges will be randomly added to connect the new node and the existing nodes.

Autoencoder-based Generator. The autoencoder-based generator is a type of neural network which
is used to learn the representations of unlabeled data and reconstruct the input graphs based on
the representations. We consider VGAE Kipf & Welling (2016), Graphite Grover et al. (2019),
SBMGNN Mehta et al. (2019), and GraphVAE Simonovsky & Komodakis (2018) in this paper.
VGAE uses a graph convolutional network (GCN) as the encoder and the inner product as the
decoder. The model can obtain the node features and capture the overall distribution of input graphs.
Based on VGAE, Grover et al. proposed Graphite, a latent variable generative model which also
utilizes GCN as the encoder. Unlike VGAE, Graphite adds a multi-layer iterative neural network
before the inner product to construct the decoder. SBMGNN produces graphs by modeling sparse
latent variables, which makes it competitive in preserving the community structure. It uses a sparse
variational autoencoder (VAE) Kingma & Welling (2014) to model graphs. The decoder consists of a
fast recognition model which models the probability of an edge between two nodes by a nonlinear
function. GraphVAE is also an autoencoder based-model. It uses a feed-forward network with edge-
conditioned graph convolutions (ECC) Simonovsky & Komodakis (2017) to encode the graphs into
continuous representations. The main idea of the decoder is to output the probabilistic fully-connected
graph and at last use a standard graph matching algorithm to align it to the original graph.

Autoregressive-based Generator. To capture the complex dependencies of all nodes and edges,
autoregressive-based generators are proposed. An autoregressive-based generator adds nodes and
edges sequentially. In this paper, we include GRAN Liao et al. (2019) and GraphRNN You et al.
(2018b) as the Autoregressive-based model. GRAN generates a block of nodes and associated edges
at each step. It uses GNN with attention to utilizing the topology of the generated part of the graph,
which makes GRAN model the dependencies between the already generated part and the newly
generated part more effectively. GraphRNN uses two recurrent neural networks (RNN), which are
called graph-level RNN and edge-level RNN. The graph-level RNN is used to maintain the state of a
generated graph and generate new nodes. The edge-level RNN is used to generate the edges between
new nodes and the already existing graph.

15

Under review as a conference paper at ICLR 2023

Figure 4: The workflow of the siamese network. In siamese network, two graphs Gi and Gj are fed
into the encoder fθ one by one to get the embeddings hi and hj . The L1 distance between hi and hj
are calculated and used to do the final prediction.

A.3 THE IMPLEMENTATION DETAILS OF CONTRASTIVE LEARNING-BASED MODEL

Training Contrastive Encoder. As one of the cutting-edge unsupervised representation learning
models, contrastive learning aims at learning similar representations of the same data under different
augmentations. It is widely used in visual representation learning Chen et al. (2020); Wu et al. (2018);
Hénaff (2020) and graph embedding Zhu et al. (2021a); You et al. (2020); Hassani & Ahmadi (2020);
Zhu et al. (2021b). In this paper, we use GraphCL You et al. (2020) as the graph contrastive encoder.1

In the graph contrastive encoder, we first use the graph augmentation method to get two correlated
augmented views Ĝi and Ĝj as a positive pair. We use node dropping as the first augmentation, and
randomly select one augmentation from the augmentation pool as the second one. The augmentation
pool consists of node dropping, edge perturbation, and subgraph. Then the Ĝi and Ĝj will be embedded
by a GNN-based encoder fθ. After that, a projection head g(·) is used to map the embeddings to a
different latent space to calculate the contrastive loss. The projection head g(·) used in contrastive
learning is a multi-layer perceptron (MLP). Then the contrastive loss function is used to maximize
the agreement between the positive pairs. Here the loss function is the normalized temperature-scaled
cross-entropy loss (NT-Xent) Sohn (2016); Wu et al. (2018).

When training the contrastive encoder, a mini-batch of N graphs will be randomly sampled and
processed, which means that 2∗N augmented graphs and the corresponding loss need to be optimized
each time. We denote the augmented nth graph in the mini-batch as zn,i, zn,j and use them as the
positive pairs. The negative pairs are generated by zn,i, zn,j and other augmented graphs within the
same mini-batch except for zn,i, zn,j . Finally, the NT-Xent for the nth graph is defined as follows:

sim (zn,i, zn,j) =
z⊤
n,izn,j

∥zn,i∥ ∥zn,j∥
(3)

Loss = − log
exp (sim (zn,i, zn,j) /τ)∑N

n′=1,n′ ̸=n exp (sim (zn,i, zn′,j) /τ)
(4)

where sim (zn,i, zn,j) means the cosine similarity of zn,i, zn,j . τ denotes the temperature parameter.
After generating the loss for each graph in the mini-batch, the overall loss is computed across all the
positive pairs in the mini-batch.

A.4 THE IMPLEMENTATION DETAILS OF METRIC LEARNING-BASED MODEL

Training Siamese Network. Figure 4 shows the workflow of the siamese network. Two graphs
Gi and Gj are fed into the encoder fθ one by one to get the embeddings hi and hj . In the siamese

1The source code of GraphCL is in https://github.com/Shen-Lab/GraphCL.

16

https://github.com/Shen-Lab/GraphCL

Under review as a conference paper at ICLR 2023

Table 5: The accuracy of different backbones in end-to-end model.

Dataset GAT GIN GCN

AIDS 0.89 0.88 0.89
Alchemy 0.88 0.86 0.87
Deezer 0.96 0.96 0.97
DBLP 0.86 0.82 0.84
Github 0.93 0.94 0.95

COLLAB 0.84 0.82 0.85
Twitch 0.91 0.91 0.92
Mixed 0.82 0.83 0.84

network, the paired samples are fed into the same encoder and the weights of them are shared. Then
the L1 distance d between the two embeddings is calculated by the following equation.

d = abs(||hi − hj | |) (5)

d is used to feed into the loss function and tune the network to get a better embedding. The loss
function we used in this paper is called binary cross-entropy loss, which is commonly used in
classification tasks. The equation of binary cross equation loss is as follows:

Loss = −(y log(p) + (1− y) log(1− p)) (6)

d is used to feed into the loss function and tune the network to get a better embedding. The loss
function we used in this paper is called binary cross-entropy loss, which is commonly used in
classification tasks.

To train the siamese network, we sample a training set that consists of Numps paired samples with
the same label and Numps paired samples with different labels for each dataset.

A.5 ABLATION STUDY

Different GNN Networks. Our end-to-end model uses GCN as the backbone. We replace it with
GIN Xu et al. (2019b) and GAT Velickovic et al. (2018), and compare the performance of different
backbones. We can see from Table 5 that in most of the time, GCN performs better than the others,
thus we choose GCN as the final backbone of end-to-end model in our experiment.

Metric Learning-based Model.. To achieve the best classification results of the metric learning-
based model, we evaluate the impact of different Nps and Nk on model performance. Here Nps

represents the number of paired samples used to train the siamese network. Nk denotes the reference
samples used to obtain the final prediction results.

We can see from Figure 5 that if we use more paired samples to train the siamese network, the metric
learning-based model tends to perform better. Due to the time and resource limitations, we finally
choose to use 20,000 paired samples to train the siamese network. Figure 6 shows that in general, the
metric learning-based model shows the best performance when Nk = 10. Thus we use Nk = 10 in
the following experiments.

A.6 ADDITIONAL RESULTS

In the appendix, plots are illustrated for additional information and experimental results as mentioned
throughout the paper.

MMD results. Table 6 shows the MMD results of real graphs and graphs generated by different
generators.

The visualization results of graphs generated by unseen generators.. Figure 7 shows the visual-
ization results of three unseen generators (GraphRNN, GRAPHVAE and SBMGNN) produced by the
metric learning-based model.

17

Under review as a conference paper at ICLR 2023

2000 20000 50000 100000 200000
Number of Paired Samples

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

AIDS
ALCHEMYL
DEEZER
DBLP
GITHUB
COLLAB
TWITCH
MIXED

(a) Accuracy

2000 20000 50000 100000 200000
Number of Paired Samples

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

AIDS
ALCHEMYL
DEEZER
DBLP
GITHUB
COLLAB
TWITCH
MIXED

(b) F1-score

Figure 5: Different Nps. The impact of different number of paired samples on metric learning-based
model.

2 5 10 20 50
Number of Reference Samples

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

AIDS
ALCHEMYL
DEEZER
DBLP
GITHUB
COLLAB
TWITCH
MIXED

(a) Accuracy

2 5 10 20 50
Number of Reference Samples

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
-s

co
re

AIDS
ALCHEMYL
DEEZER
DBLP
GITHUB
COLLAB
TWITCH
MIXED

(b) F1-score

Figure 6: Different Nk. The impact of different number of reference samples on metric learning-
based model.

Table 6: The MMD results of real graphs and graphs generated by different generators.

ER BA graphite VGAE GRAN GraghRNN GraghVAE sbmgnn

AIDS 0.0863 0.1070 0.0547 0.0324 0.0534 0.1016 0.0526 0.1884
Alchemy 0.0139 0.1167 0.0205 0.0088 0.0641 0.1493 0.0284 0.2844
Deezer 0.0356 0.1161 0.1869 0.2565 0.1168 0.0755 0.1167 0.1363
DBLP 0.0601 0.3117 0.0759 0.1168 0.4496 0.3835 0.1808 0.0238
Github 0.0249 0.2513 0.0398 0.0452 0.0315 0.1635 0.0314 0.0294
COLLAB 0.0270 0.0362 0.0092 0.0118 0.0024 0.0099 0.0021 0.0175
Twitch 0.0148 0.0336 0.0728 0.0589 0.0182 0.0663 0.0218 0.0681

18

Under review as a conference paper at ICLR 2023

GRAPHVAE
SBMGNN
GRAPHRNN

(a) AIDS

GRAPHVAE
SBMGNN
GRAPHRNN

(b) Alchemy

SBMGNN
GRAPHVAE
GRAPHRNN

(c) Deezer

SBMGNN
GRAPHVAE
GRAPHRNN

(d) DBLP

GRAPHRNN
GRAPHVAE
SBMGNN

(e) Github

GRAPHRNN
GRAPHVAE
SBMGNN

(f) COLLAB

SBMGNN
GRAPHRNN
GRAPHVAE

(g) Twitch

GRAPHRNN

GRAPHVAE

SBMGNN

(h) Mixed

Figure 7: The visualization results of graphs generated by unseen generators.

19

	Introduction
	Preliminaries
	Generated Graph Detection
	Problem Statement
	A General Framework for Generated Graph Detection and Analysis
	Detection Methodologies

	Experiments
	Experimental Setup
	Experiments for the ``Closed World'' Scenario
	Experiments for the ``Open Generator'' Scenario
	Experiments for the ``Open Set'' Scenario
	Experiments for the ``Open World'' Scenario
	Visualization Analysis

	Related work
	Conclusion and Future Work
	Appendix
	The Detailed Information of Graph Neural Networks
	The Detailed Information of Graph Generators
	The Implementation Details of Contrastive Learning-based Model
	The Implementation Details of Metric Learning-based Model
	Ablation Study
	Additional Results

